Nothing Special   »   [go: up one dir, main page]

JP6850854B2 - Bonding head and mounting device - Google Patents

Bonding head and mounting device Download PDF

Info

Publication number
JP6850854B2
JP6850854B2 JP2019207900A JP2019207900A JP6850854B2 JP 6850854 B2 JP6850854 B2 JP 6850854B2 JP 2019207900 A JP2019207900 A JP 2019207900A JP 2019207900 A JP2019207900 A JP 2019207900A JP 6850854 B2 JP6850854 B2 JP 6850854B2
Authority
JP
Japan
Prior art keywords
heater
bonding head
heat insulating
insulating block
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019207900A
Other languages
Japanese (ja)
Other versions
JP2020025141A (en
Inventor
寺田 勝美
勝美 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2019207900A priority Critical patent/JP6850854B2/en
Publication of JP2020025141A publication Critical patent/JP2020025141A/en
Application granted granted Critical
Publication of JP6850854B2 publication Critical patent/JP6850854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Wire Bonding (AREA)

Description

本発明は、半導体チップ等の電子部品を配線基板等に加熱圧着する際に用いるボンディングヘッドおよびこれを備えた実装装置に関するものである。 The present invention relates to a bonding head used when heat-bonding an electronic component such as a semiconductor chip to a wiring board or the like, and a mounting device provided with the bonding head.

半導体チップ等の電子部品を配線基板等の基板に実装する方法として、フリップチップ工法が知られている。フリップチップ工法では、図5に示すような実装装置1を用いて、電子部品の電極と基板の電極を熱圧着して接合させている。 The flip chip method is known as a method of mounting an electronic component such as a semiconductor chip on a substrate such as a wiring board. In the flip-chip method, the mounting device 1 as shown in FIG. 5 is used to thermocompression-bond the electrodes of the electronic component and the electrodes of the substrate.

図5の実装装置1では、まず、図示しない電子部品受け渡し機構により電子部品Cがボンディングヘッド2の先端部に配置され、ボンディングヘッド2に保持される。その後、基板ステージ4上に保持された基板Bに設けられたアライメントマークと電子部品Cに設けられたアライメントマークを画像認識手段5で認識し、位置合わせを行う。位置合わせに際しては、ボンディングヘッド2と基板ステージ4の少なくとも一方を、基板Bと平行な面内方向(XY方向およびθ方向)に移動させて行う。位置合わせ後は、ボンディングユニット3によりボンディングヘッド2を下降し、電子部品Cを昇温加熱しながら、基板Bに圧着して、電子部品Cの電極と基板Bの電極を接合する。接合が完了すると、ボンディングヘッド2は電子部品Cの保持を解除し、ボンディングユニット3によって上昇し、次に実装すべき電子部品Cを先端部に保持し、前述の一連の動作が行われる。 In the mounting device 1 of FIG. 5, first, the electronic component C is arranged at the tip of the bonding head 2 by an electronic component delivery mechanism (not shown), and is held by the bonding head 2. After that, the image recognition means 5 recognizes the alignment mark provided on the substrate B held on the substrate stage 4 and the alignment mark provided on the electronic component C, and performs alignment. The alignment is performed by moving at least one of the bonding head 2 and the substrate stage 4 in the in-plane direction (XY direction and θ direction) parallel to the substrate B. After the alignment, the bonding head 2 is lowered by the bonding unit 3, and the electronic component C is heated and pressure-bonded to the substrate B to bond the electrode of the electronic component C and the electrode of the substrate B. When the bonding is completed, the bonding head 2 releases the holding of the electronic component C, is raised by the bonding unit 3, holds the electronic component C to be mounted next at the tip portion, and performs the above-mentioned series of operations.

ここで、ボンディングヘッド2は、図6に示すような構成となっている。すなわち、ボンディングヘッド2は、電子部品Cを下面で吸着保持するアタッチメントツール20、アタッチメントツール20の上方に配置されるヒータ21、ヒータ21の上方に配置される断熱ブロック22を備えている。アタッチメントツール20を昇温する機能を有するヒータ21を加熱することで電子部品Cが加熱されるが、ヒータ21の熱を電子部品Cに効率的に供給するために、ヒータ21上方への伝熱を抑制するため断熱ブロック22が配置されている。更に、断熱ブロック22はホルダ23を介してヘッド本体24に連結されている。 Here, the bonding head 2 has a configuration as shown in FIG. That is, the bonding head 2 includes an attachment tool 20 that attracts and holds the electronic component C on the lower surface, a heater 21 that is arranged above the attachment tool 20, and a heat insulating block 22 that is arranged above the heater 21. The electronic component C is heated by heating the heater 21 having a function of raising the temperature of the attachment tool 20, but in order to efficiently supply the heat of the heater 21 to the electronic component C, heat is transferred upward to the heater 21. The heat insulating block 22 is arranged in order to suppress the above. Further, the heat insulating block 22 is connected to the head body 24 via the holder 23.

フリップチップ工法では、はんだバンプを電子部品の電極として用いることが多く、基板に加熱圧着された電子部品は、はんだが固相状態になるまで冷却される必要がある。また、近年では、電子部品の電極側の面に熱硬化性接着剤層を予め設けておいて、熱圧着時に熱硬化性接着剤層を硬化させる工法の採用も進んでいるが、このような工法において、電子部品を保持する段階においてアタッチメントツールの温度は熱硬化性接着剤層の硬化開始温度よりも低くなければならない。このため、一連のタクトタイムにおいて、加熱したアタッチメントツール(およびヒータ)を冷却する時間の割合が増しており、タクトタイム短縮の観点から効果的な冷却手段が求められている。 In the flip-chip method, solder bumps are often used as electrodes of electronic components, and the electronic components heat-bonded to the substrate need to be cooled until the solder reaches a solid phase state. Further, in recent years, a method of providing a thermosetting adhesive layer in advance on the surface of an electronic component on the electrode side and curing the thermosetting adhesive layer at the time of thermocompression bonding has been adopted. In the construction method, the temperature of the attachment tool must be lower than the curing start temperature of the thermosetting adhesive layer at the stage of holding the electronic parts. Therefore, in a series of takt times, the ratio of the time for cooling the heated attachment tool (and heater) is increasing, and an effective cooling means is required from the viewpoint of shortening the takt time.

たとえば、特許文献1では、アタッチメントツールとヒータを周囲に設けた冷却ブロー用ノズルを用いて空冷する方法が紹介されている。ところが、この方法では、空冷されている面と内部に温度差を生じ、内部まで冷却する時間としては大きな短縮が望めない。 For example, Patent Document 1 introduces a method of air cooling using an attachment tool and a cooling blow nozzle provided around the heater. However, in this method, a temperature difference is generated between the air-cooled surface and the inside, and a large reduction in the cooling time to the inside cannot be expected.

そこで、ヒータに複数の溝を設け、ヒータと断熱ブロックの重ね合わせによって形成される流路に、ヒータ内側から冷却空気を流してヒータを冷却する方法も提案されている(例えば特許文献2)。 Therefore, a method has been proposed in which a plurality of grooves are provided in the heater and cooling air is flowed from the inside of the heater through a flow path formed by superimposing the heater and the heat insulating block to cool the heater (for example, Patent Document 2).

その一例を図7に示す。図7では、図6に示したボンディングヘッド2におけるヒータ21と断熱ブロック22の部分を示している。また。図8および図9は、図7に示した部分を構成するヒータ21と断熱ブロック22の形状を示す三面図である。図8に示すようにヒータ21の上面には複数の溝21Uが設けられており、図9に示す断熱ブロック22とヒータ21を重ね合わせることにより、複数の管状流路21Pが形成される。一方、断熱ブロック22にはヒータ21の全ての溝21Uに跨る範囲の窪み22Dが形成され、この窪み22Dに繋がる通気孔22Vが設けられている。 An example thereof is shown in FIG. FIG. 7 shows a portion of the heater 21 and the heat insulating block 22 in the bonding head 2 shown in FIG. Also. 8 and 9 are three views showing the shapes of the heater 21 and the heat insulating block 22 constituting the portion shown in FIG. 7. As shown in FIG. 8, a plurality of grooves 21U are provided on the upper surface of the heater 21, and a plurality of tubular flow paths 21P are formed by superimposing the heat insulating block 22 and the heater 21 shown in FIG. On the other hand, the heat insulating block 22 is formed with a recess 22D in a range straddling all the grooves 21U of the heater 21, and is provided with a ventilation hole 22V connected to the recess 22D.

このため、通気孔22Vに冷却空気を送りこむことで、冷却空気は、ヒータ21中央付近から両側面(図7の前方向および後方向)に流れ、ヒータ21は内部から冷却される。なお、図7および図8において、溝21Uおよび管状流路21Pは説明のために大きめに描いているが、実際は各片が1mm未満の溝21U(管状流路21P)が多数形成されている。 Therefore, by sending the cooling air into the ventilation hole 22V, the cooling air flows from the vicinity of the center of the heater 21 to both side surfaces (front direction and rear direction in FIG. 7), and the heater 21 is cooled from the inside. In addition, in FIGS. 7 and 8, the groove 21U and the tubular flow path 21P are drawn larger for the sake of explanation, but in reality, a large number of grooves 21U (tubular flow paths 21P) in which each piece is less than 1 mm are formed.

このように、ヒータ21の上面に溝21Uを形成し、断熱ブロック22の下面22Sと重ねて流路を形成する方式は、ヒータ21を内部から冷却できることから、外部から冷却空気を吹きかける場合に比べて有利な冷却方式である。 In this way, in the method of forming the groove 21U on the upper surface of the heater 21 and forming the flow path by overlapping with the lower surface 22S of the heat insulating block 22, the heater 21 can be cooled from the inside, so that the method is compared with the case where the cooling air is blown from the outside. This is an advantageous cooling method.

特開平10−340915号公報Japanese Unexamined Patent Publication No. 10-340915 特開2014−22629号公報Japanese Unexamined Patent Publication No. 2014-22629

この方式では、図7において、溝21Uを形成する壁21Wの上部21Tは断熱ブロック22の下面22Sに密着した状態となる。その結果、壁21Wの上部21Tから外部への伝熱が妨げられヒータ21の最上面における放熱特性に難があった。その一方において、ヒータ21を昇温する際には、ヒータ21から断熱ブロック22への伝熱は僅かながらでも存在するため、熱伝導率が低く放熱の少ない断熱ブロック22の温度が上昇する。その結果、ヒータ21を冷却する段階で、(ヒータ21に密着した)断熱ブロック22からヒータ21への伝熱が生じて、ヒータ21を冷却する際の弊害にもなっていた。 In this method, in FIG. 7, the upper portion 21T of the wall 21W forming the groove 21U is in close contact with the lower surface 22S of the heat insulating block 22. As a result, heat transfer from the upper portion 21T of the wall 21W to the outside is hindered, and there is a difficulty in heat dissipation characteristics on the uppermost surface of the heater 21. On the other hand, when the temperature of the heater 21 is raised, the heat transfer from the heater 21 to the heat insulating block 22 is present even if it is small, so that the temperature of the heat insulating block 22 having low thermal conductivity and low heat dissipation rises. As a result, at the stage of cooling the heater 21, heat is transferred from the heat insulating block 22 (which is in close contact with the heater 21) to the heater 21, which is also an adverse effect when cooling the heater 21.

また、壁21Wの上部21Tが断熱ブロック22の下面22Sと密着していることから、ヒータ21の溝21Uと断熱ブロック22の下面22Sによって形成される管状流路21Pは、相互間で空気漏れのない状態になっている。 このため、(溝21U形成時の加工精度バラツキの影響等で)管状流路21Pの形状にバラツキがあると、個々の管状流路21P間で冷却効果が異なり、ヒータ面内で冷却ムラが生じる。 Further, since the upper portion 21T of the wall 21W is in close contact with the lower surface 22S of the heat insulating block 22, the tubular flow path 21P formed by the groove 21U of the heater 21 and the lower surface 22S of the heat insulating block 22 leaks air between each other. It is in a non-existent state. Therefore, if the shape of the tubular flow path 21P varies (due to variations in processing accuracy when the groove 21U is formed, etc.), the cooling effect differs between the individual tubular flow paths 21P, and cooling unevenness occurs in the heater surface. ..

一方において、この方式は、ヒータ21と断熱ブロック22は中央近傍で締結部品で上下方向に固定されているため、中央近傍以外の密着面においてヒータ21と断熱ブロック21は横方向には熱膨張および収縮し得る。このため、上面に微小な溝21Uを多数形成したヒータ21と断熱ブロック22を重ね合わせた形態では昇温・冷却を繰り返すことにより弊害が生じることもある。 On the other hand, in this method, since the heater 21 and the heat insulating block 22 are fixed in the vertical direction by fastening parts near the center, the heater 21 and the heat insulating block 21 are thermally expanded in the lateral direction on the contact surface other than the center. Can shrink. For this reason, in the form in which the heater 21 in which a large number of minute grooves 21U are formed on the upper surface and the heat insulating block 22 are superposed, adverse effects may occur due to repeated temperature raising and cooling.

この弊害は、ヒータ21と断熱ブロック22の素材が異なることに起因し、昇温・冷却の際にヒータと断熱部材の界面に熱伝導率の違いによる温度差が出来、それぞれの熱膨張差によって発生する応力に係る。例えば、ヒータ21が窒化アルミで断熱ブロック22がアドセラム(登録商標)の組み合わせであった場合に熱膨張係数はどちらも5×10−6/K程度で同等であるが、熱伝導率が100倍以上違うため両材料の界面に大きな温度差が生まれて熱膨張による伸びの差が発生してしまう。すなわち、ヒータ21の上面に狭幅な溝21Uを多数形成しているめ、(溝21Uを形成する)薄い壁21Wが応力の影響を受けやすく、壁21Wの上部21Tが変形したり摩擦を生じる。このような変形や摩擦は極僅かなものであっても、ヒータ21の昇温・冷却を繰り返すうちに、図10に示すように、壁21Wの上部21Tが削られたり(図10のAB)、損傷したり(図10のBR)、断熱ブロック22の下面22Sが削られることもある。特にセラミックの場合は固くて脆い材料のため、壁21Wの上部21の角部は応力が集中して欠けやすいと言う欠点がある。 This adverse effect is caused by the fact that the materials of the heater 21 and the heat insulating block 22 are different, and when the temperature is raised or cooled, a temperature difference is formed at the interface between the heater and the heat insulating member due to the difference in thermal conductivity. It is related to the generated stress. For example, when the heater 21 is made of aluminum nitride and the heat insulating block 22 is a combination of Adcerum (registered trademark), the coefficient of thermal expansion is about 5 × 10-6 / K, which is the same, but the thermal conductivity is 100 times higher. Because of the above differences, a large temperature difference is created at the interface between the two materials, and a difference in elongation due to thermal expansion occurs. That is, since a large number of narrow grooves 21U are formed on the upper surface of the heater 21, the thin wall 21W (which forms the grooves 21U) is easily affected by stress, and the upper portion 21T of the wall 21W is deformed or causes friction. .. Even if such deformation and friction are extremely slight, as shown in FIG. 10, the upper portion 21T of the wall 21W is scraped as the heater 21 is repeatedly heated and cooled (AB in FIG. 10). , It may be damaged (BR in FIG. 10), or the lower surface 22S of the heat insulating block 22 may be scraped. In particular, in the case of ceramic, since it is a hard and brittle material, there is a drawback that stress is concentrated on the corners of the upper portion 21 of the wall 21W and the material is easily chipped.

ヒータ21の溝21Uを形成する壁21Wや断熱ブロック22の下面22Sが削られたり損傷すると、その磨耗粉PWや破片BPは溝21Uに入り込み、一部は冷却空気とともに外部に輩出され、一部は溝21Uに残り管状流路21Pを塞ぐ。ここで、外部に排出された、磨耗粉PWや破片BPは、実装雰囲気における異物となり、電子部品Cの実装品質に悪影響を及ぼす。また、溝21Uに残った磨耗分は、管状流路21Pを塞ぐことで冷却空気の流れを妨げ、冷却ムラの原因となる。 When the wall 21W forming the groove 21U of the heater 21 and the lower surface 22S of the heat insulating block 22 are scraped or damaged, the wear debris PW and the debris BP enter the groove 21U, and a part of them is produced to the outside together with the cooling air. Remains in the groove 21U and closes the tubular flow path 21P. Here, the abrasion powder PW and the debris BP discharged to the outside become foreign substances in the mounting atmosphere and adversely affect the mounting quality of the electronic component C. Further, the wear remaining in the groove 21U obstructs the flow of cooling air by blocking the tubular flow path 21P, which causes uneven cooling.

本発明は、上記問題に鑑みて成されたものであり、冷却性能に優れ、昇温・冷却を繰り返しても、実装品質に悪影響を及ぼさないボンディングヘッドおよびこれを用いた実装装置を提供するものである。 The present invention has been made in view of the above problems, and provides a bonding head having excellent cooling performance and which does not adversely affect the mounting quality even if the temperature is raised and cooled repeatedly, and a mounting device using the same. Is.

上記の課題を解決するために、請求項1に記載の発明は、
電子部品の加熱圧着に用いるボンディングヘッドであって、
下面に電子部品を保持するアタッチメントツールと、
前記アタッチメントツールの上部に配置されるヒータと、
前記ヒータの上部に配置される断熱ブロックとを備え、
前記ヒータの上面側に、平行な複数の溝を設けることで複数の板状壁を形成し、
更に前記板状壁上部を前記ヒータ上面に対して低くして、前記断熱ブロックの下面と前記板状壁の上部に隙間を設けたボンディングヘッドである。
In order to solve the above problems, the invention according to claim 1 is
A bonding head used for heat crimping of electronic components.
An attachment tool that holds electronic components on the underside,
A heater located on top of the attachment tool,
It is provided with a heat insulating block arranged on the upper part of the heater.
A plurality of plate-shaped walls are formed by providing a plurality of parallel grooves on the upper surface side of the heater.
Further, the bonding head is provided with a gap between the lower surface of the heat insulating block and the upper portion of the plate-shaped wall by lowering the upper portion of the plate-shaped wall with respect to the upper surface of the heater.

請求項2に記載の発明は、請求項1に記載のボンディングヘッドであって、
前記隙間の間隔が、前記板状壁の高さの0.3%以上で40%以下であることを特徴とするボンディングヘッドである。
The invention according to claim 2 is the bonding head according to claim 1.
The bonding head is characterized in that the gap between the gaps is 0.3% or more and 40% or less of the height of the plate-shaped wall.

請求項3に記載の発明は、請求1または請求項2に記載のボンディングヘッドを備えていることを特徴とする実装装置である。


The invention of claim 3 is a mounting apparatus characterized by comprising a bonding head according to claim 1 or claim 2.


本発明のボンディングヘッドおよびこれを用いた実装装置により、冷却性能に優れ、昇温・冷却を繰り返しても、実装品質に悪影響を及ぼさない電子部品の実装が行える。 With the bonding head of the present invention and the mounting device using the same, it is possible to mount an electronic component which is excellent in cooling performance and does not adversely affect the mounting quality even if the temperature is raised and cooled repeatedly.

本発明の一実施形態に係るボンディングヘッドのヒータと断熱ブロックを示す図である。It is a figure which shows the heater and the heat insulation block of the bonding head which concerns on one Embodiment of this invention. 本発明の一実施形態に係るボンディングヘッドの断熱ブロックの構造を示す三面図である。It is a three-view view which shows the structure of the heat insulation block of the bonding head which concerns on one Embodiment of this invention. 本発明の別の実施形態に係るボンディングヘッドのヒータと断熱ブロックを示す図である。It is a figure which shows the heater and the heat insulation block of the bonding head which concerns on another embodiment of this invention. 本発明の別の実施形態に係るボンディングヘッドのヒータの構造を示す三面図である。It is a three-view view which shows the structure of the heater of the bonding head which concerns on another embodiment of this invention. 実装装置の構成を示す図である。It is a figure which shows the structure of the mounting apparatus. ボンディングヘッドの構成を示す図である。It is a figure which shows the structure of a bonding head. 公知技術のボンディングヘッドのヒータと断熱ブロックを示す図である。It is a figure which shows the heater and the heat insulation block of the bonding head of a known technique. 公知技術のボンディングヘッドのヒータの構造を示す三面図である。It is a three-sided view which shows the structure of the heater of the bonding head of a known technique. 公知技術のボンディングヘッドの断熱ブロックの構造を示す三面図である。It is a three-view drawing which shows the structure of the heat insulation block of the bonding head of a known technique. 公知技術の問題点の一つを説明する図である。It is a figure explaining one of the problems of a known technique.

本発明の実施形態について、図面を用いて説明する。
本発明の一実施形態に係る実装装置とボンディングヘッドは、図5に示す実装装置1と図6に示すボンディングヘッド2のような構成をしており、ボンディングヘッド2におけるヒータ21と断熱ブロック22をの拡大して示したのが図1である。また、図2には図1に示した断熱ブロック22の三面図を示している。
Embodiments of the present invention will be described with reference to the drawings.
The mounting device and the bonding head according to the embodiment of the present invention have the same configurations as the mounting device 1 shown in FIG. 5 and the bonding head 2 shown in FIG. 6, and the heater 21 and the heat insulating block 22 in the bonding head 2 are provided. FIG. 1 is an enlarged view of. Further, FIG. 2 shows a three-view view of the heat insulating block 22 shown in FIG.

図1において、ヒータ21の材質はセラミックスであり、内部に発熱抵抗体を埋め込んだものである。なお、セラミックスとしては熱伝導率が高く(50W/m・K以上)、電気的絶縁性に優れたものが望ましく、窒化アルミニウムなどが好適である。一方、断熱ブロック22の材質もセラミックスを用いるが、熱伝導率が5W/m・K以下、望ましくは1.5W/m・K以下が好適である。 In FIG. 1, the material of the heater 21 is ceramics, and a heat generating resistor is embedded therein. As the ceramics, those having high thermal conductivity (50 W / m · K or more) and excellent electrical insulation are desirable, and aluminum nitride or the like is preferable. On the other hand, although ceramics are used as the material of the heat insulating block 22, the thermal conductivity is preferably 5 W / m · K or less, preferably 1.5 W / m · K or less.

図1のヒータ21は、図8に三面図を示したものと同じ形状であり、上面の1側面から対向する側面に向けて、幅がWUで深さがHUの溝21Uが複数形成してある。溝21Uを複数形成することによって櫛歯状の壁21Wが複数形成される。図8に示すヒータ21において、壁21Wの上部21Tはヒータ21の上面21Sと同じ高さであり、壁21Wの高さはHUとなる。なお、壁21Wは幅はWTであるが、幅WTは溝21Uの幅WUと形成ピッチによって決まる。 The heater 21 of FIG. 1 has the same shape as that shown in the three views of FIG. 8, and a plurality of grooves 21U having a width of WU and a depth of HU are formed from one side surface of the upper surface toward the opposite side surface. is there. By forming a plurality of grooves 21U, a plurality of comb-shaped walls 21W are formed. In the heater 21 shown in FIG. 8, the upper portion 21T of the wall 21W has the same height as the upper surface 21S of the heater 21, and the height of the wall 21W is HU. The width of the wall 21W is WT, but the width WT is determined by the width WU of the groove 21U and the formation pitch.

一方、図1の断熱ブロック22は、図2に示す三面図の形状になっている。図2に示す断熱ブロック22では、図9に示したものと異なり、第2下面22Cを有している。第2下面22Cは平坦かつ下面22Sに平行な面であるが、下面22Sに対して高さHGの段差を有しており、下面22Sを平坦な面に設置すると隙間22Gはトンネル形状となる。この第2下面22Cは、ヒータ21に断熱ブロック22を重ねたときに、トンネル形状の長手方向が溝21Uと平行となり、全ての溝21Uを包括する範囲に隙間22Gを形成する幅を有している。 On the other hand, the heat insulating block 22 of FIG. 1 has the shape of the three views shown in FIG. The heat insulating block 22 shown in FIG. 2 has a second lower surface 22C, unlike the one shown in FIG. The second lower surface 22C is a flat surface parallel to the lower surface 22S, but has a step of height HG with respect to the lower surface 22S, and when the lower surface 22S is installed on a flat surface, the gap 22G has a tunnel shape. When the heat insulating block 22 is superposed on the heater 21, the second lower surface 22C has a width in which the longitudinal direction of the tunnel shape is parallel to the groove 21U and a gap 22G is formed in a range including all the grooves 21U. There is.

図1に示すヒータ21および断熱ブロック22を備えたボンディングヘッド2では、冷却に際して、図示しない送風系により冷却空気が通気孔22Vに送り込まれ、送り込まれた冷却空気が窪み22Dを経て、溝21Uを通過することによりヒータ21を内側から冷却する。また、冷却空気は隙間22Gも通過するが、その際に壁21Wの上面21Tにも接触するため、ヒータ21を上面から冷却する効果がある。これは、壁21Wの上面21Tが断熱ブロック22の下面22Sに密着しているため、上面21Tが冷却し難い従来技術にはない効果である。 In the bonding head 2 provided with the heater 21 and the heat insulating block 22 shown in FIG. 1, when cooling, cooling air is sent to the ventilation hole 22V by a ventilation system (not shown), and the sent cooling air passes through the recess 22D and passes through the groove 21U. By passing through, the heater 21 is cooled from the inside. Further, the cooling air also passes through the gap 22G, but at that time, it also comes into contact with the upper surface 21T of the wall 21W, so that there is an effect of cooling the heater 21 from the upper surface. This is an effect not found in the prior art, in which the upper surface 21T of the wall 21W is in close contact with the lower surface 22S of the heat insulating block 22 and the upper surface 21T is difficult to cool.

一方において、空気の熱伝導率の低さから、この断熱材の隙間22Gにより、壁21Wの上部21Tから第2下面22Cへの熱が伝わり難くなる。このため、ヒータ21を昇温する際の断熱ブロック22の温度が上昇が抑えられる。更に、ヒーター21の発熱の際に奪われる熱量も小さくなり、加熱圧着時にヒーター21の下面に吸着保持されているアタッチメントツール20側、しいては電子部品Cへ効果的に熱を伝えることが出来ると言う効果もある。 On the other hand, due to the low thermal conductivity of air, the gap 22G of the heat insulating material makes it difficult for heat to be transferred from the upper portion 21T of the wall 21W to the second lower surface 22C. Therefore, the temperature rise of the heat insulating block 22 when the temperature of the heater 21 is raised is suppressed. Further, the amount of heat taken away when the heater 21 generates heat is also reduced, and the heat can be effectively transferred to the attachment tool 20 side, which is attracted and held on the lower surface of the heater 21 at the time of heat crimping, and to the electronic component C. There is also the effect of saying.

また、溝21Uの形状にバラツキがあったとしても、各溝21Uの上部は隙間22Gに繋がっており、冷却効果の低い溝21Uの熱は周囲に伝播するため、溝21U間の冷却効果のバラツキは改善される。 Even if the shape of the grooves 21U varies, the upper part of each groove 21U is connected to the gap 22G, and the heat of the groove 21U having a low cooling effect propagates to the surroundings, so that the cooling effect varies between the grooves 21U. Will be improved.

ところで、断熱ブロック22の下面22Sと第2下面22Cの段差によって形成される隙間の間隔HGは以下のようにして決定する。すなわち、下限値は、ヒータ21の昇温・冷却に伴う、ヒータ21と断熱ブロック22の変形が生じても、壁21Wの上部21Tが断熱ブロック22の第2下面に接触しない値。上限値は、冷却効率等の観点から、溝21Uの断面積に対する隙間22Gの断面積の比率によって定められる。 By the way, the distance HG of the gap formed by the step between the lower surface 22S of the heat insulating block 22 and the second lower surface 22C is determined as follows. That is, the lower limit is a value at which the upper portion 21T of the wall 21W does not come into contact with the second lower surface of the heat insulating block 22 even if the heater 21 and the heat insulating block 22 are deformed due to the temperature rise and cooling of the heater 21. The upper limit value is determined by the ratio of the cross-sectional area of the gap 22G to the cross-sectional area of the groove 21U from the viewpoint of cooling efficiency and the like.

すなわち、下限値としては、壁21Wが最大限熱膨張しても上部21Tが断熱ブロック22の第2下面22Cに接触しないよう、間隔HGは以下の式(1)を満たす。ここで、αはヒータ21を構成する材料の熱膨張係数、ΔTはヒータ21の昇温時と冷却時の温度差である。 That is, as a lower limit value, the interval HG satisfies the following equation (1) so that the upper portion 21T does not come into contact with the second lower surface 22C of the heat insulating block 22 even if the wall 21W expands to the maximum extent. Here, α is the coefficient of thermal expansion of the material constituting the heater 21, and ΔT is the temperature difference between the temperature rise and the cooling of the heater 21.

HG>α×ΔT×HU ・・・・・ (1)
一方、上限値としては、冷却効率の観点での冷却面積/流路体積が、隙間22Gを設けない方式よりも高くしようとすれば、以下の式(2)を満たす必要があることから式(3)であることが望ましい。
HG> α × ΔT × HU ・ ・ ・ ・ ・ (1)
On the other hand, as the upper limit value, if the cooling area / flow path volume from the viewpoint of cooling efficiency is to be higher than the method in which the gap 22G is not provided, the following equation (2) must be satisfied. 3) is desirable.

(2HU+WU)/(HU×WU)≦WT/(HG×(WU+WT)) ・・(2)
HG≦WT×HU×WU/((WU+WT)×(2HU+WU)) ・・・(3)
ただし、ヒータ21と断熱ブロック22の間の断熱性の観点および冷却ムラを低減する効果は(3)式を満たさなくても得られる。このため、溝21U内に有効に冷却空気を送りこむという効果が得られる条件として、隙間22Gが形成する断面積が、溝21Uが形成する断面積と同等までなら問題ない。すなわち、式(4)から間隔HGの条件として式(5)を満たせばよい。
(2HU + WU) / (HU × WU) ≦ WT / (HG × (WU + WT)) ・ ・ (2)
HG ≤ WT x HU x WU / ((WU + WT) x (2HU + WU)) ... (3)
However, the viewpoint of heat insulating property between the heater 21 and the heat insulating block 22 and the effect of reducing cooling unevenness can be obtained even if the equation (3) is not satisfied. Therefore, as a condition for effectively sending the cooling air into the groove 21U, there is no problem as long as the cross-sectional area formed by the gap 22G is equal to the cross-sectional area formed by the groove 21U. That is, the equation (5) may be satisfied as the condition of the interval HG from the equation (4).

HG×(WU+WT)≦HU×WU ・・・・・(4)
HG≦HU×WU/(WU+WT) ・・・・・(5)
このような条件を満たす条件は、溝21Uの形状および配置によって異なるが、具体的な数値としては、溝21Uの深さHUの0.3%から40%の範囲が好適である。
HG x (WU + WT) ≤ HU x WU ... (4)
HG ≤ HU x WU / (WU + WT) ... (5)
The conditions for satisfying such conditions differ depending on the shape and arrangement of the groove 21U, but as a specific numerical value, a range of 0.3% to 40% of the depth HU of the groove 21U is preferable.

ところで、ヒータ21において溝21Uの数が多いほど冷却効果が期待出来るので、加工精度に応じて出来るだ多くの数の溝を形成することが望ましい。また、溝21Uの深さHUが大なほど冷却効果が期待できるので、発熱抵抗体の埋め込みに支障がない範囲で深くすることが望ましい。ここで、溝21Uの数を増やすことおよび深さHUを大とすることは、壁21Wの機械的強度を低下させるが、前述のとおり壁21Wの上部21Tは断熱ブロック22と接触することがないので応力を受けることはない。このため、従来技術に比べて、溝21Uを多く、深く形成することが可能であるので冷却効果改善に有効である。 By the way, since the cooling effect can be expected as the number of grooves 21U in the heater 21 increases, it is desirable to form as many grooves as possible according to the processing accuracy. Further, since the cooling effect can be expected as the depth HU of the groove 21U becomes larger, it is desirable to make the groove 21U deep as long as it does not hinder the embedding of the heat generating resistor. Here, increasing the number of grooves 21U and increasing the depth HU reduces the mechanical strength of the wall 21W, but as described above, the upper portion 21T of the wall 21W does not come into contact with the heat insulating block 22. Therefore, it is not stressed. Therefore, as compared with the prior art, more grooves 21U can be formed deeper, which is effective in improving the cooling effect.

このように、本実施形態で説明したボンディングヘッド2を用いることにより、ヒータ21の冷却効率が改善が図れるとともに、ヒータ21の壁21Wに削れや破損も防げる。このため本実施形態のボンディングヘッド2を用いた実装装置1では、実装品質に悪影響を及ぼすことなく電子部品実装のタクトタイム短縮も図れる。 As described above, by using the bonding head 2 described in the present embodiment, the cooling efficiency of the heater 21 can be improved, and the wall 21W of the heater 21 can be prevented from being scraped or damaged. Therefore, in the mounting device 1 using the bonding head 2 of the present embodiment, the tact time for mounting electronic components can be shortened without adversely affecting the mounting quality.

以上、図1を用いて、断熱ブロック22に隙間22Gを設けた例について説明したが、壁21Wの上部21Tが断熱ブロック22に接触しないのであれば、本発明はこれにこだわるものではない。すなわち、図3に示す別の実施形態のように、ヒータ21の上面22Sに対して、壁21Wの上部21Tをが低くなるような隙間21Gを設けるようにしてもよい。すなわち、図4に三面図を示すヒータ21を用いて、図9に示す断熱ブロック22と組み合わせても図1の構成と同様な効果が得られる。ここで、ヒータ21の隙間21Gの間隔についても、図2に示した断熱ブロック22の下面22Sと第2下面22Cの段差によって形成される隙間の間隔HGと同様な範囲にすることが好ましい。 The example in which the heat insulating block 22 is provided with the gap 22G has been described above with reference to FIG. 1, but the present invention is not particular about this if the upper portion 21T of the wall 21W does not come into contact with the heat insulating block 22. That is, as in another embodiment shown in FIG. 3, a gap 21G may be provided so as to lower the upper portion 21T of the wall 21W with respect to the upper surface 22S of the heater 21. That is, even if the heater 21 shown in the three views shown in FIG. 4 is used in combination with the heat insulating block 22 shown in FIG. 9, the same effect as that of the configuration of FIG. 1 can be obtained. Here, it is preferable that the gap 21G of the heater 21 is also in the same range as the gap HG formed by the step between the lower surface 22S of the heat insulating block 22 and the second lower surface 22C shown in FIG.

さらに本発明はボンディングヘッド2についてだけではなく、基板B側を保持加熱する基板ステージ4にも用いても良く、ボンディングヘッド2、基板ステージ4の両方に用いて両側から加熱及び冷却を行っても良い。電子部品Cが微小で基板B側の方が体積が大きくヘッド側からの熱量が十分に伝わらない場合には、基板B側からヒーターで加熱するのが有効で、電子部品C、基板Bともに微小であった場合には両側からヒーターで加熱するのが有効である。 Further, the present invention may be used not only for the bonding head 2 but also for the substrate stage 4 that holds and heats the substrate B side, or may be used for both the bonding head 2 and the substrate stage 4 to heat and cool from both sides. good. When the electronic component C is minute and the volume is larger on the substrate B side and the amount of heat from the head side is not sufficiently transferred, it is effective to heat the electronic component C from the substrate B side with a heater, and both the electronic component C and the substrate B are minute. If this is the case, it is effective to heat with heaters from both sides.

1 実装装置
2 ボンディングヘッド
3 ボンディングユニット
4 基板ステージ
5 画像認識手段
20 アタッチメントツール
21 ヒータ
21G 隙間
21P 管状流路
21S ヒータの上面
21T 壁の上部
21U 溝
21W 溝を形成する壁
22 断熱ブロック
22C 断熱ブロックの第2下面
22D 窪み
22G 隙間
22S 断熱ブロックの下面
22V 通気孔
23 ホルダ
24 ヘッド本体
B 基板
C 電子部品
AB 壁の削れ部
BP 破片
BR 壁の損傷部
HG 隙間の間隔
HU 溝の深さ
PW 磨耗粉
WT 壁の幅(厚み)
WU 溝の幅
1 Mounting device 2 Bonding head 3 Bonding unit 4 Board stage 5 Image recognition means 20 Attachment tool 21 Heater 21G Gap 21P Tubular flow path 21S Upper surface of heater 21T Upper part of wall 21U Groove 21W Groove forming wall 22 Insulation block 22C Insulation block 2nd lower surface 22D dent 22G gap 22S lower surface of heat insulating block 22V vent hole 23 holder 24 head body B board C electronic component AB wall scraped part BP debris BR wall damaged part HG gap spacing HU groove depth PW abrasion powder WT Wall width (thickness)
WU groove width

Claims (3)

電子部品の加熱圧着に用いるボンディングヘッドであって、
下面に電子部品を保持するアタッチメントツールと、
前記アタッチメントツールの上部に配置されるヒータと、
前記ヒータの上部に配置される断熱ブロックとを備え、
前記ヒータの上面側に、平行な複数の溝を設けることで複数の板状壁を形成し、
更に前記板状壁上部を前記ヒータ上面に対して低くして、前記断熱ブロックの下面と前記板状壁の上部に隙間を設けたボンディングヘッド。
A bonding head used for heat crimping of electronic components.
An attachment tool that holds electronic components on the underside,
A heater located on top of the attachment tool,
It is provided with a heat insulating block arranged above the heater.
A plurality of plate-shaped walls are formed by providing a plurality of parallel grooves on the upper surface side of the heater.
Furthermore by lowering the upper portion of the plate-shaped wall to the heater upper face, a bonding head provided with a gap at the top of the lower surface and the plate-like wall of the insulation block.
請求項1に記載のボンディングヘッドであって、
前記隙間の間隔が、前記板状壁の高さの0.3%以上で40%以下であることを特徴とするボンディングヘッド。
The bonding head according to claim 1.
A bonding head characterized in that the gap between the gaps is 0.3% or more and 40% or less of the height of the plate-shaped wall.
請求1または請求項2に記載のボンディングヘッドを備えていることを特徴とする実装装置。 Mounting apparatus characterized by comprising a bonding head according to claim 1 or claim 2.
JP2019207900A 2019-11-18 2019-11-18 Bonding head and mounting device Active JP6850854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019207900A JP6850854B2 (en) 2019-11-18 2019-11-18 Bonding head and mounting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019207900A JP6850854B2 (en) 2019-11-18 2019-11-18 Bonding head and mounting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015204941A Division JP6836317B2 (en) 2015-10-16 2015-10-16 Bonding head and mounting device

Publications (2)

Publication Number Publication Date
JP2020025141A JP2020025141A (en) 2020-02-13
JP6850854B2 true JP6850854B2 (en) 2021-03-31

Family

ID=69618983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019207900A Active JP6850854B2 (en) 2019-11-18 2019-11-18 Bonding head and mounting device

Country Status (1)

Country Link
JP (1) JP6850854B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114981939A (en) * 2020-12-28 2022-08-30 株式会社新川 Mounting head

Also Published As

Publication number Publication date
JP2020025141A (en) 2020-02-13

Similar Documents

Publication Publication Date Title
US9418909B1 (en) Stacked silicon package assembly having enhanced lid adhesion
US11456233B2 (en) Semiconductor module, vehicle and manufacturing method
JP5793473B2 (en) Heater for bonding apparatus and cooling method thereof
JP2010219524A (en) Millichannel substrate, cooling device using the same, and method of manufacturing device
WO2016067383A1 (en) Heat-dissipating structure
JP4952094B2 (en) Semiconductor module
JP5098301B2 (en) Power semiconductor device
US9978664B2 (en) Semiconductor module
JP2005136278A (en) Power semiconductor module and its manufacturing method
JP6850854B2 (en) Bonding head and mounting device
JP6200759B2 (en) Semiconductor device and manufacturing method thereof
JP6836317B2 (en) Bonding head and mounting device
US10276474B2 (en) Semiconductor device
KR101474610B1 (en) Heat sink and cooling system with the same
JP5065202B2 (en) Semiconductor device
JP2007067258A (en) Cooler and power module
JP5273265B2 (en) Power semiconductor device
JP4706819B2 (en) Thermoelectric device
JP2005064131A (en) Semiconductor device
JP6813728B2 (en) Manufacturing method of packages for power semiconductor modules and packages for power semiconductor modules
KR102272631B1 (en) thermoelectric module
JP2017076762A (en) Bonding head and mounting device
JP7179613B2 (en) device
US10192847B2 (en) Rapid cooling system for a bond head heater
JP4573467B2 (en) Power semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210308

R150 Certificate of patent or registration of utility model

Ref document number: 6850854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250