JP6850223B2 - Ni-based superalloy powder for laminated molding - Google Patents
Ni-based superalloy powder for laminated molding Download PDFInfo
- Publication number
- JP6850223B2 JP6850223B2 JP2017165034A JP2017165034A JP6850223B2 JP 6850223 B2 JP6850223 B2 JP 6850223B2 JP 2017165034 A JP2017165034 A JP 2017165034A JP 2017165034 A JP2017165034 A JP 2017165034A JP 6850223 B2 JP6850223 B2 JP 6850223B2
- Authority
- JP
- Japan
- Prior art keywords
- based superalloy
- superalloy powder
- powder
- less
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 title claims description 45
- 229910000601 superalloy Inorganic materials 0.000 title claims description 37
- 238000000465 moulding Methods 0.000 title description 5
- 238000000034 method Methods 0.000 claims description 21
- 239000002245 particle Substances 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 13
- 238000007711 solidification Methods 0.000 claims description 12
- 230000008023 solidification Effects 0.000 claims description 12
- 238000002844 melting Methods 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 11
- 238000010791 quenching Methods 0.000 claims description 11
- 230000000171 quenching effect Effects 0.000 claims description 11
- 238000005245 sintering Methods 0.000 claims description 9
- 229910052721 tungsten Inorganic materials 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229910052715 tantalum Inorganic materials 0.000 claims description 7
- 239000000654 additive Substances 0.000 claims description 5
- 230000000996 additive effect Effects 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 description 19
- 229910052735 hafnium Inorganic materials 0.000 description 18
- 229910052726 zirconium Inorganic materials 0.000 description 18
- 239000000203 mixture Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 229910052750 molybdenum Inorganic materials 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 8
- 229910052758 niobium Inorganic materials 0.000 description 8
- 229910052804 chromium Inorganic materials 0.000 description 7
- 150000001247 metal acetylides Chemical class 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000003475 lamination Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000005336 cracking Methods 0.000 description 3
- 238000005242 forging Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000009689 gas atomisation Methods 0.000 description 2
- 229910001068 laves phase Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- -1 M 6 C Chemical class 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 229910001067 superalloy steel Inorganic materials 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Powder Metallurgy (AREA)
Description
本発明は、高温特性の良好な積層造形用Ni基超合金粉末に関する。より詳細には、本発明は、積層造形法などの急速溶融急冷凝固プロセスで焼結を行った場合でも、高温特性が良好な焼結体が得られるNi基超合金粉末に関するものである。 The present invention relates to a Ni-based superalloy powder for laminated molding having good high temperature characteristics. More specifically, the present invention relates to a Ni-based superalloy powder capable of obtaining a sintered body having good high temperature characteristics even when sintering is performed by a rapid melting and quenching solidification process such as a layered manufacturing method.
従来、粉末材料にレーザーや電子ビームを照射して三次元形状造形物を製造する方法(以下、粉末焼結積層法と呼ぶ)が知られている。この方法は、例えば特許第4661842号公報(特許文献1)に開示されているように、金属粉末からなる粉末層に光ビームを照射して焼結層を形成すると共に、焼結層を積層することで三次元形状造形物を得る金属光造形に用いられる金属光造形用金属粉末の製造方法が提案されている。 Conventionally, a method of irradiating a powder material with a laser or an electron beam to produce a three-dimensional shaped object (hereinafter referred to as a powder sintering lamination method) is known. In this method, for example, as disclosed in Japanese Patent No. 4661842 (Patent Document 1), a powder layer made of a metal powder is irradiated with a light beam to form a sintered layer, and the sintered layer is laminated. As a result, a method for producing a metal powder for metal stereolithography used for metal stereolithography to obtain a three-dimensional shape model has been proposed.
一方、粉末焼結積層法で用いられる粉末のひとつに、Ni基超合金粉末がある。Ni基超合金は、宇宙・航空機分野のエンジン部品素材などとして広範に用いられている。例えば特開2005−97650号公報(特許文献2)に開示されているように、重量%で、Cr:20%以下、Mo:10%以下、W:15%以下、Al:2〜10%、Ta+Nb+Ti:16%以下、Ru:10%以下を含有し、残部がNiと不可避的不純物からなる組成を有するNi基超合金が提案されている。なお、本発明の場合は特にRuを必須元素としていることに特徴がある。 On the other hand, one of the powders used in the powder sintering lamination method is a Ni-based superalloy powder. Ni-based superalloys are widely used as materials for engine parts in the space and aircraft fields. For example, as disclosed in Japanese Patent Application Laid-Open No. 2005-97650 (Patent Document 2), in terms of weight%, Cr: 20% or less, Mo: 10% or less, W: 15% or less, Al: 2 to 10%, A Ni-based superalloy containing Ta + Nb + Ti: 16% or less and Ru: 10% or less and having a composition in which the balance is composed of Ni and unavoidable impurities has been proposed. The present invention is particularly characterized in that Ru is an essential element.
また、特開平11ー310839号公報(特許文献3)に開示されているように、重量%で、Hf:0〜2%、Zr:0〜0.1、Cr:2〜25%、Al:2〜7%、Mo:0〜8%、W:0〜16%、Re:0〜16%、V:0〜4%、Nb:0〜8%、Ta:0〜16%、Co:〜15%、Ti:0〜7%と、Ru、Rh、Pd、Ir及びPtの1種または2種以上の合計量8%以下と、Sc、Y、La及びCeの1種または2種以上の合計量2%以下とを含む高強度Ni基超合金方向性凝固鋳物が提案されている。なお、本発明の場合は特にNbが実施例からみて積極添加されていないことにある。 Further, as disclosed in Japanese Patent Application Laid-Open No. 11-310839 (Patent Document 3), by weight%, Hf: 0 to 2%, Zr: 0 to 0.1, Cr: 2 to 25%, Al: 2-7%, Mo: 0-8%, W: 0-16%, Re: 0-16%, V: 0-4%, Nb: 0-8%, Ta: 0-16%, Co: ~ 15%, Ti: 0 to 7%, the total amount of one or more of Ru, Rh, Pd, Ir and Pt is 8% or less, and one or more of Sc, Y, La and Ce. High-strength Ni-based superalloy directional solidified castings containing a total amount of 2% or less have been proposed. In the case of the present invention, Nb is not positively added in view of the examples.
上述した特許文献2、3に開示されている場合の現状は鋳造材、鍛造材での使用が多く、難加工性の点から、ニアネットシェイプで部品を作製できる粉末焼結積層法の適用が進められている。また、Ni基超合金は一般的にAl、Ti、Nbが、結晶粒内にγ’(ガンマプライム)相と呼ばれるNi3(Al、Ti)や、γ’’(ガンマダブルプライム)相と呼ばれるNi3(Al、Ti、Nb)の強化相を微細析出させることで、高温において優れた機械的特性を発現させる。よって、γ’、γ’’量を多くすることで高温での強度をより高強度化することができる。そのγ’、γ’’量はAl、Ti、Nb等の添加量によって変化し、添加量を多くすることで析出量を多くすることができる。 At present, when disclosed in Patent Documents 2 and 3 described above, they are often used in casting materials and forging materials, and from the viewpoint of difficulty in workability, the powder sintering lamination method capable of manufacturing parts with a near net shape can be applied. It is being advanced. In addition, Ni-based superalloys generally contain Al, Ti, and Nb in the crystal grains, which are called Ni 3 (Al, Ti) phase called γ'(gamma prime) phase or γ'' (gamma double prime) phase. By finely precipitating the strengthened phase of Ni 3 (Al, Ti, Nb), excellent mechanical properties are exhibited at high temperatures. Therefore, the strength at high temperature can be further increased by increasing the amounts of γ'and γ''. The amount of γ'and γ'' varies depending on the amount of Al, Ti, Nb or the like added, and the amount of precipitation can be increased by increasing the amount of addition.
しかし、γ’相やγ’’相の生成元素であるAlやTi量を増大させると凝固割れの原因、Nb量増大はラーベス相の生成による強度低下に繋がる。そのため急速溶融急冷凝固プロセスを伴う粉末焼結積層法に適用可能で、合金の強度を高めつつ、高温特性が良好な焼結体が得られるNi基超合金粉末の作製は困難であった。 However, increasing the amounts of Al and Ti, which are the elements that produce the γ'phase and γ'phase, causes solidification cracking, and increasing the amount of Nb leads to a decrease in strength due to the formation of the Laves phase. Therefore, it has been difficult to produce a Ni-based superalloy powder that can be applied to a powder sintering lamination method involving a rapid melting and quenching solidification process and can obtain a sintered body having good high temperature characteristics while increasing the strength of the alloy.
上述のような課題に対し鋭意検討した結果、Zr、Y、Hfのいずれか1種以上を添加することで、粉末積層造形法などの急速溶融急冷凝固プロセスを適用し焼結された組織にしても、高温特性が良好な焼結体を得ることができることを見出し、本発明に至った。
その発明の要旨とするところは、
(1)質量%で、C:0.001〜0.3%、Cr:9.0〜25.0%、Ti+Al:1.0〜10.0%、Mo:0.1〜10.0%、Nb:0.1〜7.0%、Zr、Y、Hfの少なくとも1種以上を、Zr:0.1〜2.0%、Y:0.2〜2.0%、Hf:0.1〜2.0%の量で含有し、残部をNiおよび不可避的不純物からなることを特徴とするNi基超合金粉末。
As a result of diligent studies on the above-mentioned problems, by adding one or more of Zr, Y, and Hf, a rapid melting and quenching solidification process such as powder additive manufacturing is applied to obtain a sintered structure. Also, they have found that a sintered body having good high temperature characteristics can be obtained, and have reached the present invention.
The gist of the invention is
(1) In terms of mass%, C: 0.001 to 0.3%, Cr: 9.0 to 25.0%, Ti + Al: 1.0 to 10.0%, Mo: 0.1 to 10.0% , Nb: 0.1-7.0%, at least one of Zr, Y, Hf, Zr: 0.1-2.0%, Y: 0.2-2.0%, Hf: 0. A Ni-based superalloy powder containing in an amount of 1 to 2.0%, the balance of which is composed of Ni and unavoidable impurities.
(2)前記(1)の成分に加え、更にW、Co、Taの少なくとも1種または2種以上を合計で0.1〜40%の量で含有することを特徴とするNi基超合金粉末。 (2) A Ni-based superalloy powder characterized by containing at least one or more of W, Co, and Ta in a total amount of 0.1 to 40% in addition to the component of (1) above. ..
(3)積層造形法などの急速溶融急冷凝固プロセスで焼結をおこなった後の特性において、常温時(TR)と高温時(TH)のそれぞれの引張強さをATR、ATH、0.2%耐力をBTR、BTH、伸びをCTR、CTHとした時、下記(1)式を満たす前記(1)または(2)に記載のNi基超合金粉末。
ただし、TRは0℃から50℃までの温度を、THは50℃から760℃までの温度を示す。0.4≦ATH/ATR、BTH/BTR、CTH/CTR≦1.0 ・・・(1)
(3) In the characteristics after sintering by the rapid melting and quenching solidification process such as additive manufacturing, the tensile strengths at room temperature (TR) and high temperature (TH) are A TR , A TH , and 0. The Ni-based superalloy powder according to (1) or (2) above, which satisfies the following formula (1) when the 2% proof stress is B TR and B TH and the elongation is C TR and C TH.
However, TR indicates a temperature from 0 ° C. to 50 ° C., and TH indicates a temperature from 50 ° C. to 760 ° C. 0.4 ≤ A TH / A TR , B TH / B TR , C TH / C TR ≤ 1.0 ... (1)
(4)平均粒子径D50とタップ密度TDの比(D50/TD)が0.2〜20を満たす前記(1)〜(3)のいずれか1に記載のNi基超合金粉末。
また、D50の単位はμm、TDの単位はMg/m3にある。
(4) The Ni-based superalloy powder according to any one of (1) to (3) above, wherein the ratio (D 50 / TD) of the average particle size D 50 to the tap density TD satisfies 0.2 to 20.
The unit of D 50 is μm, and the unit of TD is Mg / m 3 .
以上述べたように、本発明は、積層造形法などの急速溶融急冷凝固プロセスで焼結を行っても、高温特性が良好な焼結体を得られるNi基超合金粉末を提供するもので、焼結させるための照射方式に問わず、積層造形用母材として用いることができる。 As described above, the present invention provides a Ni-based superalloy powder capable of obtaining a sintered body having good high-temperature characteristics even when sintering is performed by a rapid melting and quenching solidification process such as additive manufacturing. It can be used as a base material for additive manufacturing regardless of the irradiation method for sintering.
以下、本発明について詳細に説明する。
Ni基超合金は、一般の鋳造、鍛造プロセスを母材に作製した際と同様、急速溶融急冷凝固プロセスで造形体を作製した場合、高温域では特性が悪化する傾向がある。この悪化の状況を調査した結果、常温では確認できない非常に小さな介在物、酸化物が、高温では粒界境界面に存在することが分かった。急速急冷プロセスでは、一般の鋳造、鍛造プロセスよりも、短時間で溶融、凝固が繰り返されることから、不純物元素が拡散しきる前に、溶融、凝固に至る。そのため、粒界境界面に介在物、酸化物が偏析した状態になり、高温域での割れの起因点になると考えた。
Hereinafter, the present invention will be described in detail.
The characteristics of Ni-based superalloys tend to deteriorate in a high temperature region when a model is produced by a rapid melting and quenching solidification process, as in the case of producing a general casting and forging process as a base material. As a result of investigating the situation of this deterioration, it was found that very small inclusions and oxides, which cannot be confirmed at room temperature, are present at the intergranular interface at high temperature. In the rapid quenching process, melting and solidification are repeated in a shorter time than in a general casting and forging process, so that the impurity elements are melted and solidified before they are completely diffused. Therefore, inclusions and oxides were segregated at the boundary surface of the grain boundaries, which was considered to be the cause of cracking in the high temperature range.
そこで、高温において優れた特性を発現させるために鋭意検討した結果、Zr、Y、Hfの少なくとも1種以上を、Zr:0.1%以上2.0%以下、Y:0.2%以上2.0%以下、Hf:0.1%以上2.0%以下に制御することにより、良好な高温特性を示すことが分かった。すなわち、急速溶融急冷凝固プロセスにおいて、Zr、Y、Hfを添加することでZr、Y、Hfの化合物が熱的に安定な酸化物、介在物になり、ピン止め効果によって生地組織を微細かつ安定化させたことで、造形体自身の高温特性が良好なものになることを明らかにした。 Therefore, as a result of diligent studies to develop excellent properties at high temperatures, at least one of Zr, Y, and Hf was selected as Zr: 0.1% or more and 2.0% or less, Y: 0.2% or more 2 It was found that good high temperature characteristics were exhibited by controlling the ratio to 0.0% or less and Hf: 0.1% or more and 2.0% or less. That is, in the rapid melting and quenching solidification process, by adding Zr, Y, and Hf, the compounds of Zr, Y, and Hf become thermally stable oxides and inclusions, and the dough structure is finely and stably by the pinning effect. It was clarified that the high temperature characteristics of the model itself will be improved by making it.
本発明は、このように急速溶融急冷凝固プロセスにおける高温特性悪化原因から、Ni基超合金粉末中のZr、Y、Hfの添加が有効であることを見出し、良好な高温特性を示すNi基超合金の造形を実現したものである。 The present invention has found that the addition of Zr, Y, and Hf in a Ni-based superalloy powder is effective from the cause of deterioration of high-temperature characteristics in the rapid melting and quenching solidification process, and Ni-based superalloys exhibiting good high-temperature characteristics. It is a realization of alloy molding.
以下に、本発明の成分組成を限定理由について説明する。
C:0.001〜0.3%
本発明Ni基超合金粉末においてCは、Nb、TiなどとMC型炭化物を形成するほか、Cr、Mo、WなどとM6 C、M7 C3 、M23C6 などの炭化物をつくり合金の高温強さを高める効果があるため、0.001%以上添加することが必要である。しかし、Cを多量に添加すると、炭化物が結晶粒界に連続的に析出し、結晶粒界がぜい弱になり、耐食性、靭性が劣化するので、0.3%以下が必要である。好ましくは、0.05%以上、0.1%以下である。
The reasons for limiting the component composition of the present invention will be described below.
C: 0.001 to 0.3%
In the Ni-based superalloy powder of the present invention, C forms MC-type carbides with Nb, Ti, etc., and also forms carbides such as M 6 C, M 7 C 3 , M 23 C 6 with Cr, Mo, W, etc. Since it has the effect of increasing the high temperature strength of molybdenum, it is necessary to add 0.001% or more. However, when a large amount of C is added, carbides are continuously precipitated at the grain boundaries, the grain boundaries become fragile, and the corrosion resistance and toughness deteriorate. Therefore, 0.3% or less is required. Preferably, it is 0.05% or more and 0.1% or less.
Cr:9.0〜25.0%
本発明Ni基超合金粉末においてCrは、合金の固溶体強化と耐酸化性の向上に寄与する必須元素である。9.0%未満では上記効果が得られず、25.0%を超えるとδ相が生成し、高温強度と靭性が低下するため、9.0%以上、25.0%以下とする。好ましくは13.0%以上20.0%以下である。
Cr: 9.0-25.0%
In the Ni-based superalloy powder of the present invention, Cr is an essential element that contributes to strengthening the solid solution of the alloy and improving the oxidation resistance. If it is less than 9.0%, the above effect cannot be obtained, and if it exceeds 25.0%, a δ phase is formed and high temperature strength and toughness are lowered. Therefore, the content is set to 9.0% or more and 25.0% or less. It is preferably 13.0% or more and 20.0% or less.
Ti+Al:0.1〜10.0%
本発明Ni基超合金粉末においてTi、Alは、γ‘相を形成し、クリープ破断強さと耐酸化性を上げる元素であるが、10.0%を超えると高温割れが発生しやすくなり、積層造形時に割れが発生しやすくなるため、10.0%以下とする。
Ti + Al: 0.1 to 10.0%
In the Ni-based superalloy powder of the present invention, Ti and Al are elements that form a γ'phase and increase creep rupture strength and oxidation resistance. However, if it exceeds 10.0%, high-temperature cracking is likely to occur and lamination is performed. Since cracks are likely to occur during modeling, the percentage should be 10.0% or less.
Mo:0.1〜10.0%
本発明Ni基超合金粉末においてMoは、固溶体強化に寄与し強度を高めるのに有効な元素であるため、0.1%以上含有させる必要がある。しかし、含有量が多すぎるとμ相またはσ相の生成を助長し、脆化の一因となるため、10.0%以下とする。
Mo: 0.1 to 10.0%
In the Ni-based superalloy powder of the present invention, Mo is an element that contributes to strengthening the solid solution and is effective in increasing the strength, and therefore needs to be contained in an amount of 0.1% or more. However, if the content is too large, it promotes the formation of the μ phase or the σ phase and contributes to embrittlement, so the content should be 10.0% or less.
Nb:0.1〜7.0%
本発明Ni基超合金粉末においてNbは、炭化物を形成するとともにγ‘相を強化し強度を向上させるので、0.1%以上含有させる必要がある。しかし、多すぎるとラーベス相を生成して、強度を低下させるので、7.0%以下とする。
Nb: 0.1 to 7.0%
In the Ni-based superalloy powder of the present invention, Nb forms carbides and strengthens the γ'phase to improve the strength, and therefore needs to be contained in an amount of 0.1% or more. However, if it is too large, a Laves phase is generated and the strength is lowered, so the ratio is set to 7.0% or less.
Zr:0.1〜2.0%
本発明Ni基超合金粉末においてZrは、酸化物、炭化物と反応して熱的に安定なZrの酸化物粒子、介在物粒子になり、生地組織を微細かつ安定化させるため0.2%以上含有させる必要がある。しかし、多すぎると酸化物粒子、介在物粒子が粗大になり、高温強度を低下させるので、2.0%以下とする。
Zr: 0.1 to 2.0%
In the Ni-based superalloy powder of the present invention, Zr reacts with oxides and carbides to become thermally stable Zr oxide particles and inclusion particles, and 0.2% or more for finely and stabilizing the dough structure. Need to be included. However, if the amount is too large, the oxide particles and inclusion particles become coarse and the high temperature strength is lowered, so the content is set to 2.0% or less.
Y:0.2〜2.0%
本発明Ni基超合金粉末においてYは、酸化物、炭化物と反応して熱的に安定なYの酸化物粒子、介在物粒子になり、生地組織を微細かつ安定化させるため0.2%以上含有させる必要がある。しかし、多すぎると酸化物粒子、介在物粒子が粗大になり、高温強度を低下させるので、2.0%以下が良い。
Y: 0.2 to 2.0%
In the Ni-based superalloy powder of the present invention, Y reacts with oxides and carbides to become thermally stable Y oxide particles and inclusion particles, which are 0.2% or more in order to finely and stabilize the dough structure. Need to be included. However, if the amount is too large, the oxide particles and inclusion particles become coarse and the high temperature strength is lowered, so 2.0% or less is preferable.
Hf:0.1〜2.0%
本発明Ni基超合金粉末においてHfは、耐酸化性を向上させる効果があるため、必要に応じて0.1%以上含有させる必要がある。しかし、多すぎると脆化相を生成して、強度、靱性を低下させるので、2.0%以下が良い。
Hf: 0.1 to 2.0%
In the Ni-based superalloy powder of the present invention, Hf has an effect of improving oxidation resistance, and therefore needs to be contained in an amount of 0.1% or more, if necessary. However, if it is too large, an embrittled phase is generated and the strength and toughness are lowered, so 2.0% or less is preferable.
W、Co、Taの少なくとも1種または2種以上を合計で0.1〜40%
本発明Ni基超合金粉末において、Wは、固溶体強化に寄与し強度を高めるのに有効な元素、Coは、γ‘相のNi固溶体に対する溶解度を増加させ、高温延性と高温強度を改善、Taは、炭化物を形成するとともにγ‘相を強化し強度を向上させるため、必要に応じて少なくとも1種または2種以上を合計で0.1〜40%添加できる。しかし、含有量が多すぎると脆化や強度低下に繋がるため、合計で40.0%以下とする。
At least one or more of W, Co, Ta, 0.1-40% in total
In the Ni-based superalloy powder of the present invention, W is an element effective for strengthening the solid solution and increasing the strength, and Co increases the solubility of the γ'phase in the Ni solid solution to improve high-temperature ductility and high-temperature strength, Ta. Can add 0.1 to 40% in total of at least one or two or more, if necessary, in order to form carbides and strengthen the γ'phase to improve strength. However, if the content is too large, it leads to embrittlement and decrease in strength, so the total content should be 40.0% or less.
常温時(TR)と高温時(TH)の引張強さA、0.2%耐力B、伸びCが0.4≦ATH/ATR、BTH/BTR、CTH/CTR<1.0である金属粉末 … (1)
本発明Ni基超合金粉末において、ATH/ATR、BTH/BTR、CTH/CTRは0.4〜1.0である。しかし、0.4より小さい場合、常温時の特性が非常に良好だとしても、高温時での使用環境には適さない。1.0より大きいことは、通常の材料、通常の試験条件ではありえない。したがって、その範囲を0.4〜1.0とした。
Tensile strength A at normal temperature (TR) and high temperature (TH), 0.2% proof stress B, elongation C is 0.4 ≤ A TH / A TR , B TH / B TR , C TH / C TR <1 .0 metal powder ... (1)
In the Ni-based superalloy powder of the present invention, A TH / A TR , B TH / B TR , and C TH / C TR are 0.4 to 1.0. However, if it is smaller than 0.4, even if the characteristics at room temperature are very good, it is not suitable for the usage environment at high temperature. Greater than 1.0 cannot be a normal material, normal test conditions. Therefore, the range is set to 0.4 to 1.0.
平均粒子径D50とタップ密度TDの比(D50/TD)が0.2〜20を満たす金属粉末
本発明Ni基超合金粉末において、D50/TDは0.2〜20である。0.2未満では、微粉化により粉末の流動性が低下し、造形体の密度が低下する。20よりも大きい場合、積層造形時に粉末の一部が溶け残って焼結され、欠陥として残存する。したがって、その範囲を0.2〜20とした。
Metal powder in which the ratio of the average particle size D50 to the tap density TD (D50 / TD) is 0.2 to 20. In the Ni-based superalloy powder of the present invention, D50 / TD is 0.2 to 20. If it is less than 0.2, the fluidity of the powder is lowered due to the pulverization, and the density of the modeled body is lowered. If it is larger than 20, a part of the powder remains undissolved and sintered during the laminated molding, and remains as a defect. Therefore, the range is set to 0.2 to 20.
以下、本発明について実施例によって具体的に説明する。
まず、添加元素Zr、Hf,Yの高温特性改善に対する影響を詳細に評価した。ベースは、代表的なNi基超合金の3鋼種(Ni−19.0Cr−3.0Mo−5.0Nb−1.5(Ti+Al)−0.05C、Ni−12.5Cr−4.2Mo−2Nb−6.9(Ti+Al)−0.1Zr−0.1C、Ni−22.5Cr−1Nb−5.5(Ti+Al)−19.0Co−2.0W−1.4Ta−0.15C)とし、添加元素Zr量を0.1〜2.0%、Y量を0.2〜2.0%、Hf量を0.1〜2.0%の範囲で変化させ、常温時(TR)と高温時(TH)のそれぞれの引張強さ比ATR/ATH、0.2%耐力比BTR/BTH、伸び比CTR/CTH、平均粒子径D50とタップ密度TDの比(D50/TD)に対する挙動を評価し、Ni基超合金のZr,Hf,Y添加量の有効組成範囲を検討した(表1、No.1〜24)。
Hereinafter, the present invention will be specifically described with reference to Examples.
First, the effects of the added elements Zr, Hf, and Y on the improvement of high temperature characteristics were evaluated in detail. The base is three typical Ni-based superalloy steel types (Ni-19.0Cr-3.0Mo-5.0Nb-1.5 (Ti + Al) -0.05C, Ni-12.5Cr-4.2Mo-2Nb. -6.9 (Ti + Al) -0.1Zr-0.1C, Ni-22.5Cr-1Nb-5.5 (Ti + Al) -19.0Co-2.0W-1.4Ta-0.15C) and added. The amount of element Zr is changed in the range of 0.1 to 2.0%, the amount of Y is changed in the range of 0.2 to 2.0%, and the amount of Hf is changed in the range of 0.1 to 2.0%. (TH) tensile strength ratio A TR / A TH , 0.2% strength ratio B TR / B TH , elongation ratio C TR / C TH , ratio of average particle size D 50 to tap density TD (D 50) The behavior with respect to / TD) was evaluated, and the effective composition range of the amount of Zr, Hf, and Y added to the Ni-based superalloy was examined (Table 1, Nos. 1 to 24).
次に、Ni基超合金の組成を変化させ、ATR/ATH、BTR/BTH、CTR/CTH、D50/TDを評価し、Ni基超合金のC,Cr,Ti+Al,Mo,Nb,Zr,Y,Hf,W,Co,Ta量の有効組成範囲を検討した(表1、No.25〜51)。 Next, the composition of the Ni-based superalloy was changed, A TR / A TH , B TR / B TH , C TR / C TH , and D50 / TD were evaluated, and the Ni-based superalloys C, Cr, Ti + Al, and Mo were evaluated. , Nb, Zr, Y, Hf, W, Co, Ta amounts of effective composition range were examined (Table 1, No. 25-51).
[供試材の作製]
ガスアトマイズ法により所定の成分の粉末を作製し63μm以下に分級した。ガスアトマイズは、真空中にてアルミナ製坩堝で所定の配分となる様にした原料を高周波誘導加熱で溶解し、坩堝下の直径約5mmのノズルから溶融した合金を落下させ、これに高圧アルゴンまたは高圧窒素を噴霧することで実施した。これを原料粉末とし、3次元積層造形装置(EOS−M280)を用いて各試験に供する材料を作製した。
[Preparation of test material]
A powder having a predetermined component was prepared by a gas atomizing method and classified into 63 μm or less. In gas atomization, raw materials that have been made to have a predetermined distribution in an alumina crucible are melted in a vacuum by high-frequency induction heating, and a molten alloy is dropped from a nozzle with a diameter of about 5 mm under the crucible, to which high-pressure argon or high pressure is applied. It was carried out by spraying nitrogen. Using this as a raw material powder, a material to be used for each test was prepared using a three-dimensional laminated molding apparatus (EOS-M280).
[常温引張特性]
JIS14A号 φ5試験片(φ5×GL25mm)を作製し、引張試験中に加わった最大引張応力σを引張強さ(σ=測定荷重F/断面積S)として算出した。また、荷重と伸びをグラフにプロットし、弾性領域と平行に標点距離の0.2%分だけオフセットした直線を引き、荷重曲線との交点を0.2%耐力として算出した。伸びZは、標点間距離L0が破断後にLfになったときの百分率((Lf−L0)/L0×100)として算出した。
[Normal temperature tensile properties]
A JIS14A φ5 test piece (φ5 × GL25 mm) was prepared, and the maximum tensile stress σ applied during the tensile test was calculated as the tensile strength (σ = measured load F / cross-sectional area S). In addition, the load and elongation were plotted on a graph, a straight line was drawn parallel to the elastic region and offset by 0.2% of the gauge point distance, and the intersection with the load curve was calculated as 0.2% withstand force. The elongation Z was calculated as a percentage ((Lf-L0) / L0 × 100) when the distance L0 between the gauge points became Lf after breaking.
[高温引張特性]
JIS G 0567 ■―6型試験片(φ6×GL30mm)を作製し、常温引張特性と同様の測定を760℃の環境下で実施し、引張強さ、0.2%耐力、伸びを算出した。
[High temperature tensile properties]
JIS G 0567 ■ -6 type test piece (φ6 × GL30 mm) was prepared, and the same measurement as the normal temperature tensile property was carried out in an environment of 760 ° C., and tensile strength, 0.2% proof stress, and elongation were calculated.
[粒度分布測定、タップ密度]
平均粒径はレーザー回折法で評価した。タップ密度は、約50gの球状粉末を、容積100cm3のシリンダーに充填し、落下高さ10mm、タップ回数200回の時の充填密度で評価した。
[Measurement of particle size distribution, tap density]
The average particle size was evaluated by laser diffraction. The tap density was evaluated by filling a cylinder having a volume of 100 cm 3 with about 50 g of spherical powder, dropping height 10 mm, and tapping 200 times.
[評価方法]
(評価1)ATH/ATR、BTH/BTR、CTH/CTR:0.9〜1.0
D50/TD:0.2〜20
(評価2)ATH/ATR、BTH/BTR、CTH/CTR:0.5〜0.9未満
D50/TD:0.2〜20
(評価3)ATH/ATR、BTH/BTR、CTH/CTR:0.4〜0.5未満
D50/TD:0.2〜20
(評価4)ATH/ATR、BTH/BTR、CTH/CTR:0.4未満
D50/TD:0.2未満もしくは20より大きい
のいずれかに該当する。
(評価5)組成が本発明の範囲を外れる。
[Evaluation methods]
(Evaluation 1) A TH / A TR , B TH / B TR , C TH / C TR : 0.9 to 1.0
D50 / TD: 0.2 to 20
(Evaluation 2) A TH / A TR , B TH / B TR , C TH / C TR : 0.5 to less than 0.9
D50 / TD: 0.2 to 20
(Evaluation 3) A TH / A TR , B TH / B TR , C TH / C TR : 0.4 to less than 0.5
D50 / TD: 0.2 to 20
(Evaluation 4) A TH / A TR , B TH / B TR , C TH / C TR : Less than 0.4
D50 / TD: less than 0.2 or greater than 20
It corresponds to any of.
(Evaluation 5) The composition is outside the scope of the present invention.
表2に示す比較例No.38、41、42、45、49、50は、成分組成であるZr、Y、Hfの含有量が全て範囲外であり、かつC、Cr、Ti+Al、Mo、Nbの1種または2種の含有量の何れかが範囲外であり、加えて、No.38の場合はW,Co,Taの少なくとも1種または2種以上の合計含有量が範囲外であるために、評価5となる。 Comparative Example No. shown in Table 2. 38, 41, 42, 45, 49, 50 have all the contents of Zr, Y, Hf which are component compositions out of the range, and contain one or two kinds of C, Cr, Ti + Al, Mo, Nb. Any of the quantities is out of range, and in addition, No. In the case of 38, since the total content of at least one or two or more of W, Co, and Ta is out of the range, the evaluation is 5.
表2に示す比較例No.26、30〜35、39、43、44、48、51は、成分組成であるZr、Y、Hfの含有量が全て範囲内であるが、C、Cr、Ti+Al、Mo、Nbの1種または2種の含有量の何れかが範囲外であり、加えて、No.31、32、33、39、48はW,Co,Taの少なくとも1種または2種以上の合計含有量が範囲外であるために、評価5となる。 Comparative Example No. shown in Table 2. 26, 30 to 35, 39, 43, 44, 48, 51 all contain Zr, Y, Hf, which are component compositions, within the range, but one of C, Cr, Ti + Al, Mo, Nb or One of the two contents is out of range, and in addition, No. 31, 32, 33, 39, and 48 are evaluated as 5 because the total content of at least one or more of W, Co, and Ta is out of the range.
表2に示す比較例No.25、27は、成分組成であるZr、Y、Hfの含有量が1種または2種範囲内であるが、No.25は、C、Ti+Alの含有量が範囲外、No.27は、Cr、Ti+Alの含有量が範囲外であるために、評価5となる。 Comparative Example No. shown in Table 2. In Nos. 25 and 27, the contents of Zr, Y, and Hf, which are the component compositions, are within the range of 1 or 2 types. In No. 25, the contents of C and Ti + Al were out of the range. No. 27 is evaluated as 5 because the contents of Cr and Ti + Al are out of the range.
表2に示す比較例No.28、37は、成分組成であるZr、Y、Hfの含有量が1種範囲内であるが、Crの含有量が低いために、評価5となる。 Comparative Example No. shown in Table 2. 28 and 37 are evaluated as 5 because the content of Zr, Y, and Hf, which are the component compositions, is within the range of one type, but the content of Cr is low.
表2に示す比較例No.29、36、40、46、47は、成分組成であるZr、Y、Hfの含有量が1種範囲内であるが、全てTi+Alの含有量が範囲外であり、さらにNo.29はC、Moが範囲外、No.40はCが範囲外、No.46はCrが範囲外、No.47はMoが範囲外であるために、評価5となる。 Comparative Example No. shown in Table 2. In 29, 36, 40, 46, and 47, the content of Zr, Y, and Hf, which are the component compositions, is within the range of one kind, but the content of Ti + Al is out of the range, and No. In 29, C and Mo are out of range, No. In 40, C is out of range, No. In 46, Cr is out of range, No. 47 is evaluated as 5 because Mo is out of range.
これに対して、本発明例No.1〜24は、いずれも本発明の条件を満たしていることから、その評価は1〜4の値を示していることが分かる。 On the other hand, the present invention example No. Since all of 1 to 24 satisfy the conditions of the present invention, it can be seen that the evaluation shows a value of 1 to 4.
以上のように、Ni基超合金粉末の成分組成を規制し、その上で特にNi基超合金粉末を急速溶融急冷凝固プロセスで高温特性を改善するために、Zr、Y、Hfを添加することでZr、Y、Hfの化合物が熱的に安定な酸化物粒子、介在物粒子になり、ピン止め効果によって生地組織を微細かつ安定化させたことで、造形体自身の高温特性が良好なものになることを明らかにしたものである。
特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, the composition of the Ni-based superalloy powder is regulated, and Zr, Y, and Hf are added to the Ni-based superalloy powder in order to improve the high temperature characteristics in the rapid melting and quenching solidification process. The compounds of Zr, Y, and Hf become thermally stable oxide particles and inclusion particles, and the dough structure is finely and stabilized by the pinning effect, so that the high temperature characteristics of the model itself are good. It is clarified that it will be.
Patent applicant Sanyo Special Steel Co., Ltd.
Attorney attorney Akira Shiina
Claims (4)
C:0.001〜0.3%、
Cr:9.0〜25.0%、
Ti+Al:1.0〜10.0%、
Mo:0.1〜10.0%、
及び
Nb:0.1〜7.0%、
を含有しており、
Zr:0.1〜2.0%、
及び/又は
Y:0.2〜2.0%
を含有しており、
さらに、
Hf:0.01〜0.07%
を含有し、
残部がNiおよび不可避的不純物からなることを特徴とするNi基超合金粉末。 By mass%
C: 0.001 to 0.3%,
Cr: 9.0-25.0%,
Ti + Al: 1.0 to 10.0%,
Mo: 0.1 to 10.0%,
And Nb: 0.1 to 7.0%,
Contains
Zr: 0.1 to 2.0%,
And / or Y: 0.2-2.0%
Contains
further,
Hf: 0.01-0.07%
Contain,
Ni-base superalloy powder and the balance being Ni and unavoidable impurities.
TRは0℃から50℃までの温度を、THは50℃から760℃までの温度を示す。
0.4≦ATH/ATR、BTH/BTR、CTH/CTR≦1.0 ・・・(1) In the characteristics after sintering by the rapid melting and quenching solidification process such as additive manufacturing, the tensile strength at room temperature (TR) and high temperature (TH) are A TR , A TH , and 0.2% proof stress. The Ni-based superalloy powder according to claim 1 or 2, wherein when is B TR , B TH , and the elongation is C TR , C TH, the following equation (1) is satisfied.
TR indicates a temperature from 0 ° C. to 50 ° C., and TH indicates a temperature from 50 ° C. to 760 ° C.
0.4 ≤ A TH / A TR , B TH / B TR , C TH / C TR ≤ 1.0 ... (1)
また、D50の単位はμm、TDの単位はMg/m3。 The Ni-based superalloy powder according to any one of claims 1 to 3, wherein the ratio of the average particle size D50 to the tap density TD (D50 / TD) satisfies 0.2 to 20.
The unit of D50 is μm, and the unit of TD is Mg / m 3 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017165034A JP6850223B2 (en) | 2017-08-30 | 2017-08-30 | Ni-based superalloy powder for laminated molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017165034A JP6850223B2 (en) | 2017-08-30 | 2017-08-30 | Ni-based superalloy powder for laminated molding |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021004644A Division JP7128916B2 (en) | 2021-01-15 | 2021-01-15 | Additive manufacturing |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019044209A JP2019044209A (en) | 2019-03-22 |
JP6850223B2 true JP6850223B2 (en) | 2021-03-31 |
Family
ID=65813856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017165034A Active JP6850223B2 (en) | 2017-08-30 | 2017-08-30 | Ni-based superalloy powder for laminated molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6850223B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6931545B2 (en) | 2017-03-29 | 2021-09-08 | 三菱重工業株式会社 | Heat treatment method for Ni-based alloy laminated model, manufacturing method for Ni-based alloy laminated model, Ni-based alloy powder for laminated model, and Ni-based alloy laminated model |
DE102018107248A1 (en) * | 2018-03-27 | 2019-10-02 | Vdm Metals International Gmbh | USE OF NICKEL CHROME IRON ALUMINUM ALLOY |
CN111500898B (en) * | 2020-06-19 | 2021-02-02 | 北京钢研高纳科技股份有限公司 | Nickel-based superalloy, method for producing same, component and use |
CN112553504B (en) * | 2020-11-23 | 2021-12-14 | 中国华能集团有限公司 | Precipitation strengthening type nickel-cobalt-based alloy with high oxidation resistance and preparation method thereof |
CN113305285A (en) * | 2021-05-14 | 2021-08-27 | 西安铂力特增材技术股份有限公司 | Nickel-based superalloy metal powder for additive manufacturing |
JP2024129534A (en) * | 2023-03-13 | 2024-09-27 | 川崎重工業株式会社 | Nickel-based superalloy, nickel-based superalloy powder and method for producing shaped body |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3890816A (en) * | 1973-09-26 | 1975-06-24 | Gen Electric | Elimination of carbide segregation to prior particle boundaries |
JPH08225864A (en) * | 1995-02-20 | 1996-09-03 | Kobe Steel Ltd | Nickel-base heat resistant alloy excellent in high temperature characteristic and its production |
CN102676881A (en) * | 2012-06-12 | 2012-09-19 | 钢铁研究总院 | Nickel-based powder metallurgy high-temperature alloy capable of eliminating previous particle boundary |
CN103866162B (en) * | 2014-03-02 | 2015-10-14 | 钢铁研究总院 | A kind of Ni based powder metallurgy superalloy with high CraCk extenslon reslstsnce |
US20160348216A1 (en) * | 2014-12-16 | 2016-12-01 | Honeywell International Inc. | Nickel-based superalloys and additive manufacturing processes using nickel-based superalloys |
CN105624474A (en) * | 2016-04-11 | 2016-06-01 | 西安欧中材料科技有限公司 | Preparation method of superfine high-grade spherical EP741NP alloy powder |
-
2017
- 2017-08-30 JP JP2017165034A patent/JP6850223B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019044209A (en) | 2019-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6850223B2 (en) | Ni-based superalloy powder for laminated molding | |
JP6499546B2 (en) | Ni-based superalloy powder for additive manufacturing | |
CN112813308B (en) | Cobalt-based alloy material | |
WO2020121367A1 (en) | Cobalt-based alloy laminate molded body, cobalt-based alloy product, and manufacturing method of these | |
JP2019173175A (en) | Manufacturing method of cobalt-based alloy laminate molded body | |
JP6270563B2 (en) | Precipitation hardening type stainless steel powder that can obtain high strength after sintering-aging treatment, its production method, and its compact | |
JP6703511B2 (en) | Fe-based metal powder for modeling | |
EP3778068A1 (en) | Powder for mold | |
WO2019106922A1 (en) | Ni-BASED ALLOY FOR HOT-WORKING DIE, AND HOT-FORGING DIE USING SAME | |
WO2020110498A1 (en) | Powder for laminate formation use, laminated article, and method for producing laminated article | |
JP7153502B2 (en) | Molded body made of nitride-dispersed Ni-based alloy | |
WO2020179082A1 (en) | Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body | |
JP7128916B2 (en) | Additive manufacturing | |
JP6803484B2 (en) | Fe-based metal powder for modeling | |
WO2021054014A1 (en) | Powder material, layered shaped article, and production method for powder material | |
JP7339412B2 (en) | Ni-based alloy powder for additive manufacturing and additive manufacturing | |
JP6425274B2 (en) | Ni-based heat-resistant alloy | |
EP4424858A1 (en) | Ni alloy powder suited to additive manufacturing and additively manufactured article obtained using same | |
WO2024101048A1 (en) | Nickel-cobalt-based alloy, nickel-cobalt-based alloy member using same, and method for manufacturing same | |
EP4275814A1 (en) | Cobalt-based alloy for additive manufacturing | |
JP2022148950A (en) | METHOD FOR PRODUCING MOLDED ARTICLE INCLUDING Fe-BASED ALLOY POWDER | |
KR20230046239A (en) | Fe-BASED ALLOY FOR MELTING-SOLIDIFICATION SHAPING AND METAL POWDER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20171020 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210305 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6850223 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |