Nothing Special   »   [go: up one dir, main page]

JP6840637B2 - Method of forming fine dimples on the surface of hard and brittle materials - Google Patents

Method of forming fine dimples on the surface of hard and brittle materials Download PDF

Info

Publication number
JP6840637B2
JP6840637B2 JP2017146808A JP2017146808A JP6840637B2 JP 6840637 B2 JP6840637 B2 JP 6840637B2 JP 2017146808 A JP2017146808 A JP 2017146808A JP 2017146808 A JP2017146808 A JP 2017146808A JP 6840637 B2 JP6840637 B2 JP 6840637B2
Authority
JP
Japan
Prior art keywords
dimples
brittle material
hard
hard brittle
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017146808A
Other languages
Japanese (ja)
Other versions
JP2019025584A (en
Inventor
間瀬 恵二
恵二 間瀬
正三 石橋
正三 石橋
祐介 近藤
祐介 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Manufacturing Co Ltd
Original Assignee
Fuji Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Manufacturing Co Ltd filed Critical Fuji Manufacturing Co Ltd
Priority to JP2017146808A priority Critical patent/JP6840637B2/en
Priority to US15/918,209 priority patent/US10987778B2/en
Priority to KR1020180031869A priority patent/KR102140369B1/en
Priority to CN201810239260.2A priority patent/CN109304675A/en
Publication of JP2019025584A publication Critical patent/JP2019025584A/en
Application granted granted Critical
Publication of JP6840637B2 publication Critical patent/JP6840637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C11/00Selection of abrasive materials or additives for abrasive blasts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/91After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • C04B2235/945Products containing grooves, cuts, recesses or protusions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Surface Treatment Of Glass (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)

Description

本発明はセラミックス等の硬脆性材料表面に対し,ミクロンオーダーの開口径を有する微小な窪み(ディンプル)を形成する方法に関する。 The present invention relates to a method for forming minute dents (dimples) having an opening diameter on the order of microns on the surface of a hard brittle material such as ceramics.

なお,本発明における硬脆性材料の表面には,硬脆性材料から成る表面全般を含み,硬脆性材料製の成品の表面のみならず,各種材質の成品表面に形成された硬脆性材料の被膜,例えばセラミックコーティングの表面も含む。 The surface of the hard-brittle material in the present invention includes the entire surface made of the hard-brittle material, and not only the surface of the product made of the hard-brittle material but also the coating of the hard-brittle material formed on the surface of the product of various materials. For example, the surface of a ceramic coating is also included.

硬脆性材料の一例としてセラミックスは各種成品の材料やコーティング材等として使用されており,高硬度であると共に耐熱性,耐摩耗性等に優れていることから,他部材との接触が行われる成品,例えば摺動部品や金型表面の構成材料やコーティング材等として使用されている。 As an example of hard and brittle materials, ceramics are used as materials for various products and coating materials. Since they have high hardness and excellent heat resistance and wear resistance, they are products that come into contact with other members. , For example, it is used as a constituent material or coating material for sliding parts and mold surfaces.

このような摺動部品や金型の表面には,微小な窪み(ディンプル)を形成してこのディンプル内に潤滑剤や離型剤等を保持させることで摺動部の摩擦抵抗の低減や離型性の向上を図ることが行われている。 By forming minute dents (dimples) on the surface of such sliding parts and molds and holding a lubricant, a mold release agent, etc. in the dimples, the frictional resistance of the sliding parts can be reduced or separated. Improvements in moldability are being made.

このようなディンプルの形成は,ディンプルの形成対象とする成品が金属製のものである場合,その表面を塑性変形させることにより形成することもでき,このような方法として,略球状の噴射粒体を高速で噴射して衝突させることにより生じた圧痕を,潤滑油を保持するための油溜とすることも提案されている(特許文献1)。 When the product to be formed of the dimples is made of metal, such dimples can be formed by plastically deforming the surface of the dimples. It has also been proposed to use the indentation generated by injecting and colliding the oil at a high speed as an oil reservoir for holding the lubricating oil (Patent Document 1).

しかし,摺動部品がセラミックスで形成されている場合,あるいはセラミックコーティングされている場合,セラミックスは高硬度である一方で,変形し難く,大きな力が加わった際に金属のように塑性変形することなく強度の限界に達すると一気に破壊してしまう,硬脆性の材料であることから,金属のような塑性変形によるディンプルの形成を行うことができない。 However, when the sliding parts are made of ceramics or coated with ceramics, the ceramics have high hardness but are not easily deformed, and when a large force is applied, they are plastically deformed like metal. Since it is a hard and brittle material that breaks at once when it reaches the limit of strength, it is not possible to form dimples by plastic deformation like metal.

そのため,セラミックスに対するディンプルの形成は,セラミックスを焼成する前にディンプルが形成されるように調整しておくか,又は事後的にディンプルを形成する場合には,脆性破壊によって形成する等,塑性変形によらない方法によって形成されている。 Therefore, the formation of dimples on the ceramics is adjusted so that the dimples are formed before firing the ceramics, or when the dimples are formed after the fact, they are formed by brittle fracture. It is formed by a method that does not depend on it.

焼成前の調整によってディンプルを形成する方法としては,セラミックス原料に樹脂や発泡剤,ウイスカー等を添加混合して成形した後に焼成することで,添加した樹脂や発泡剤を焼成中に焼失させてディンプルを形成する方法(特許文献2の[0030]欄),焼成前のセラミック原料を,ディンプルに対応する凸形状を備えた金型を用いて成形した後に焼成する方法(特許文献2の[0031]欄)等がある。 As a method of forming dimples by adjusting before firing, a resin, a foaming agent, a whiskers, etc. are added to and mixed with a ceramic raw material, and the dimples are formed. ([0030] column of Patent Document 2), a method of molding a ceramic raw material before firing using a mold having a convex shape corresponding to dimples and then firing ([0031] of Patent Document 2). Column) etc.

また,焼成後のセラミックスに対し事後的にディンプルを形成する方法としては,ベアリングや等速ジョイントのセラミックス製転動体の表面に,ピコ秒レーザ以上に短いパルス幅の単パルスレーザを照射して微小なディンプルを形成することが提案されている(特許文献3)。 In addition, as a method of forming dimples on ceramics after firing, the surface of a ceramic rolling element of a bearing or a constant velocity joint is irradiated with a single pulse laser having a pulse width shorter than that of a picosecond laser to make a minute amount. It has been proposed to form a simple dimple (Patent Document 3).

特開平07−188738号公報Japanese Unexamined Patent Publication No. 07-188738 特開平08−128448号公報Japanese Unexamined Patent Publication No. 08-128448 特開2016−156428号公報Japanese Unexamined Patent Publication No. 2016-156428

以上で説明したディンプルの形成方法中,セラミックス原料に樹脂や発泡剤,ウイスカー等を添加混合して成形した後に焼成することで添加した樹脂や発泡剤等の焼失によってディンプルを形成する方法では,連続しない独立したディンプルが均一に形成されるようにするためのプロセス管理が困難であり,安定した品質の成品を製造することが困難である。 Among the dimple forming methods described above, the method of forming dimples by burning the added resin, foaming agent, etc. by adding and mixing a resin, a foaming agent, a whiskers, etc. to the ceramic raw material and then firing them is continuous. It is difficult to control the process to ensure uniform formation of independent dimples, and it is difficult to produce products of stable quality.

また,この方法では,製造する成品の材料となるセラミックスの種類毎,製造する成品の種類毎に,添加する樹脂や発泡剤等の種類や量等を調整することが必要となる点においても製造管理が煩雑である。 In addition, this method also requires adjustment of the type and amount of resin, foaming agent, etc. to be added for each type of ceramics used as the material for the manufactured product and for each type of manufactured product. Management is complicated.

これに対し,焼成前のセラミック原料を,ディンプルに対応する凸形状を備えた金型を用いて成形した後に焼成する方法では,この金型を使用して成型された成品では,いずれも同じ位置に同じ形状のディンプルを形成することができる点で成品間の品質のばらつきをなくすことができる。 On the other hand, in the method in which the ceramic raw material before firing is molded using a mold having a convex shape corresponding to dimples and then fired, all the products molded using this mold have the same position. It is possible to eliminate the variation in quality between the products in that dimples having the same shape can be formed.

しかし,この方法によるディンプルの形成は,該金型を使用して成型される成品に対してのみ適用され,他の成品に対してもディンプルを形成しようとすれば,製造する成品毎に,適切な配置でディンプルとなる凸部が形成された金型を準備する必要があり,製造コストが嵩む。 However, the formation of dimples by this method is applied only to the products molded using the mold, and if dimples are to be formed on other products, it is appropriate for each product to be manufactured. It is necessary to prepare a mold in which convex portions to be dimples are formed in such an arrangement, which increases the manufacturing cost.

特に,前掲の特許文献2では,半球状のディンプルの他,長方形,星形,円形連鎖形等の角を持った形状に形成することも提案するが,このような角を持った形状では摺動時にこの部分に力の集中が起こり破壊の原因となると共に,欠け等が生じた場合,欠けにより生じた破片が摺動面を傷付けて摩耗させるアブレッシブ摩耗の発生原因にもなる。 In particular, Patent Document 2 described above proposes forming a shape having corners such as a rectangle, a star shape, and a circular chain shape in addition to the hemispherical dimples. When moving, force is concentrated on this part, which causes destruction, and when a chip is generated, the debris generated by the chip damages the sliding surface and causes wear, which also causes absent wear.

しかも,上記方法は,いずれもディンプルを形成するためには焼成前の事前の準備が必要であり,焼成後のセラミックスの表面に事後的にディンプルを形成することはできない。 Moreover, all of the above methods require advance preparation before firing in order to form dimples, and it is not possible to form dimples on the surface of the ceramic after firing.

また,前述したセラミックス成品に対するディンプルの形成方法では,いずれ共,セラミックコーティングに対してディンプルを形成することができない。 Further, in any of the above-mentioned methods for forming dimples on ceramic products, dimples cannot be formed on ceramic coatings.

これに対し,セラミックス製の転動体の表面に単パルスレーザを照射して微小なディンプルを形成する特許文献3に記載の方法では,焼成後のセラミックス成品に対し事後的にディンプルを形成することができ,また,各転動体に同大,同間隔でディンプルを形成することで,均一な品質の成品を製造することも可能である。 On the other hand, in the method described in Patent Document 3 in which minute dimples are formed by irradiating the surface of a ceramic rolling element with a single pulse laser, dimples can be formed ex post facto on the ceramic product after firing. It is also possible to produce products of uniform quality by forming dimples on each rolling element at the same size and at the same intervals.

しかし,この方法によりディンプルを形成する場合,個々の転動体を所定の方向に回転させながら表面に単パルスレーザを一定の間隔で照射して同大,同間隔にディンプルを形成する作業が必要であり,このような複雑な動作を可能とする複雑かつ高価な処理装置が必要となるため,多大な初期投資が必要となる。 However, when forming dimples by this method, it is necessary to irradiate the surface with a single pulse laser at regular intervals while rotating each rolling element in a predetermined direction to form dimples of the same size and at the same intervals. Therefore, a large initial investment is required because a complicated and expensive processing device that enables such a complicated operation is required.

しかも,転動体のそれぞれに対し同大,同間隔でディンプルを形成する作業には長時間を要することから,ディンプルの形成にコストが嵩み,この方法でディンプルが形成された転動体の価格を高めることとなる。 Moreover, since it takes a long time to form dimples of the same size and at the same interval for each of the rolling elements, the cost of forming the dimples increases, and the price of the rolling elements in which the dimples are formed by this method is increased. It will be enhanced.

さらに,パルスレーザの照射によってディンプルを形成する場合,加工により材料表面より飛散した物質がデブリと呼ばれる微粒子となって表面に付着して汚染し,このデブリが摩擦面間に介在することにより摺動部の表面が削り取られるアブレッシブ摩耗の原因となることから,ディンプルの形成後,このデブリを除去する作業が必要となる。 Furthermore, when dimples are formed by irradiation with a pulse laser, substances scattered from the surface of the material due to processing become fine particles called debris that adhere to the surface and become contaminated, and the debris slides between the friction surfaces. Since it causes abrasive wear in which the surface of the part is scraped off, it is necessary to remove this debris after forming the dimples.

なお,以上では摺動部品の摺動面に潤滑油等の潤滑材を保持するためのディンプルを形成する場合を例として説明したが,このようなディンプルの形成は,離型性の向上を目的として金型の表面に離型剤や空気を保持させるために設ける場合がある等,摺動部材の摺動面に限定されず,各種のセラミックス成品やセラミックコーティングの表面に対し形成され得るものであり,セラミックスの表面に対するディンプルを簡単かつ低コストで形成することができる方法が要望されている。 In the above, the case of forming dimples for holding a lubricating material such as lubricating oil on the sliding surface of the sliding component has been described as an example, but the formation of such dimples is aimed at improving the releasability. It is not limited to the sliding surface of the sliding member, such as being provided to hold the release agent and air on the surface of the mold, and can be formed on the surface of various ceramic products and ceramic coatings. Therefore, there is a demand for a method capable of forming dimples on the surface of ceramics easily and at low cost.

本発明は,上記要望に応ずるべく成されたものであり,比較的廉価に導入することができる既存の処理装置を使用して,比較的簡単な方法により,低コストで,かつ,被処理成品の形状や材質に関係なく,セラミックスに代表される硬脆性材料に対し事後的にディンプルを形成することができるディンプルの形成方法を提供することを目的とする。 The present invention has been made in response to the above-mentioned demands, and is a low-cost and processed product by a relatively simple method using an existing processing apparatus that can be introduced at a relatively low cost. It is an object of the present invention to provide a dimple forming method capable of forming dimples ex post facto on a hard brittle material typified by ceramics regardless of the shape and material of the material.

上記目的を達成するための,本発明の硬脆性材料表面に対する微小ディンプルの形成方法は,セラミックス等の硬脆性材料から成る被処理成品の表面や硬脆性材料製の被膜で覆われた被処理成品の表面等,被処理成品の硬脆性材料から成る表面のうち,ディンプルを形成する領域であるディンプル形成領域に対し,メディアン径d50が1〜18μmの略球状の噴射粒体を,0.01MPa〜0.7MPaの噴射圧力の圧縮気体と共に噴射して,前記ディンプル形成領域の前記硬脆性材料表面のうち前記噴射粒体の衝突部分を凹ませて,切削によらず塑性変形によりディンプルを形成することを特徴とする(請求項1)。 In order to achieve the above object, the method for forming fine dimples on the surface of a hard brittle material of the present invention is a method for forming a micro dimple on the surface of a hard brittle material such as ceramics or a product to be treated covered with a film made of a hard brittle material. Of the surface made of the hard brittle material of the product to be treated, such as the surface of the product, a substantially spherical jet particle having a median diameter d50 of 1 to 18 μm is formed from 0.01 MPa to the dimple-forming region, which is the region where the dimples are formed. by spraying with 0.7MPa injection pressure compressed gas, said dimple forming region hardness by recessing each collision portion of the injection granules of brittle material surface, by the plastic deformation regardless of the cutting Ride Inpuru (Claim 1).

ここで「メディアン径d50」とは,累積質量50%径,すなわち,粒子群をある粒子径から2つに分けたとき,大きい側の粒子群の積算粒子量と,小さい側の粒子群の積算粒子量が等量となる径をいい,JIS R 6001(1987)における「累積高さ50%点の粒子径」と同義である。 Here, the "median diameter d50" is the cumulative mass diameter of 50%, that is, when the particle group is divided into two from a certain particle size, the integrated particle amount of the large particle group and the integrated particle group of the small side are integrated. It refers to a diameter at which the amount of particles is equal, and is synonymous with "particle diameter at a cumulative height of 50%" in JIS R 6001 (1987).

前記ディンプルは,一例として開口径1〜20μm,深さ0.01〜1μmである(請求項2)。 As an example, the dimples have an opening diameter of 1 to 20 μm and a depth of 0.01 to 1 μm (claim 2).

前記ディンプルは,前記ディンプルの開口面積の合計が前記ディンプル形成領域の面積に対し50%以上になるように形成することが好ましい(請求項3)。 The dimples are preferably formed so that the total opening area of the dimples is 50% or more of the area of the dimple forming region (claim 3).

前記硬脆性材料は,好ましくはセラミックス(請求項4),又はガラスであり(請求項5),セラミックス製の摺動部品を被処理対象とし,該摺動部品の摺動面を前記ディンプル形成領域とすることもできる(請求項6)。 The hard and brittle material is preferably ceramics (Claim 4) or glass (Claim 5), and a sliding component made of ceramic is targeted for processing, and the sliding surface of the sliding component is the dimple-forming region. (Claim 6).

以上で説明した本発明の構成により,本発明の方法では,以下の顕著な効果を得ることができた。 With the configuration of the present invention described above, the following remarkable effects could be obtained by the method of the present invention.

メディアン径d50が1〜18μmの略球状の噴射粒体を,0.01MPa〜0.7MPaの噴射圧力の圧縮気体と共に噴射するという極めて簡単な方法で,セラミックス等の硬脆性材料表面にディンプルを形成することができた。 Dimples are applied to the surface of hard and brittle materials such as ceramics by an extremely simple method of injecting substantially spherical injection particles with a median diameter d50 of 1 to 18 μm together with a compressed gas with an injection pressure of 0.01 MPa to 0.7 MPa. I was able to form it.

このディンプルの形成によっても硬脆性材料には破断やクラックが生じておらず,また,ディンプルの形成に際し切削粉等の発生も確認できないこと,更には本発明の方法で処理した後のセラミックス成品(一例としてWCを主成分とした超硬合金)の表面をX線解析した結果では,圧縮残留応力の大幅な増加(未処理時−1000MPaが,処理後−2200MPaに変化)が得られていること等から,本発明の方法によるディンプルの形成は,脆性破壊によるものではなく,硬脆性材料の表面が塑性変形することにより生じたものであると考えられる。 Even with the formation of the dimples, the hard and brittle material did not break or crack, and the generation of cutting powder or the like could not be confirmed during the formation of the dimples. Furthermore, the ceramic product product after being treated by the method of the present invention ( As an example, the result of X-ray analysis of the surface of a cemented carbide containing WC as the main component shows that a significant increase in compressive residual stress (from -1000 MPa when untreated to -2200 MPa after treatment) was obtained. Therefore, it is considered that the dimple formation by the method of the present invention is not caused by brittle fracture but by plastic deformation of the surface of the hard brittle material.

また,上記方法によるディンプルの形成は,比較的廉価である既知のエア式のブラスト加工装置を使用して比較的短時間の処理によって行うことができ,ディンプルの形成に要するコストを低く抑えることができた。 Further, the dimple formation by the above method can be performed by a relatively short treatment using a known air-type blasting apparatus which is relatively inexpensive, and the cost required for dimple formation can be kept low. did it.

実施例1の金型の(A)は表面顕微鏡写真,(B)は表面断面形状。(A) of the mold of Example 1 is a surface micrograph, and (B) is a surface cross-sectional shape. 比較例(未処理)の金型の(A)は表面顕微鏡写真,(B)は表面断面形状。(A) of the mold of the comparative example (untreated) is a surface micrograph, and (B) is a surface cross-sectional shape. FEMによるフォンミーゼス応力の解析画像(噴射粒体10μm)。Analysis image of von Mises stress by FEM (injection granules 10 μm). FEMによるフォンミーゼス応力の解析画像(噴射粒体50μm)。Analysis image of von Mises stress by FEM (injection granules 50 μm). 試験片(ソーダガラス)の表面断面形状であり,(A)は未処理の状態,(B)は本発明による処理後The surface cross-sectional shape of the test piece (soda glass), (A) is an untreated state , and (B) is after the treatment according to the present invention .

次に,本発明の実施形態につき添付図面を参照しながら以下説明する。 Next, an embodiment of the present invention will be described below with reference to the accompanying drawings.

〔処理対象〕
本発明の方法によるディンプルの形成対象とする成品(被処理対象成品)は,硬脆性材料から成る成品,又は,表面を硬脆性材料の被膜でコーティングされた成品等,その最表面が硬脆性材料によって構成されている各種成品を対象とすることができる。
〔Processing object〕
The product to be formed of dimples by the method of the present invention (product to be treated) is a product having a hard brittle material or a surface coated with a film of a hard brittle material, the outermost surface of which is a hard brittle material. It is possible to target various products composed of.

硬脆性材料には,セラミックスの他,単結晶シリコン等も含み,前述のセラミックスには,酸化物,炭化物,窒化物,ホウ化物,珪化物,弗化物,硫化物,炭素などの,主として非金属から成る無機固体材料全般を含み,一例としてアルミナ(Al23),ジルコニア(ZrO2),二酸化珪素(SiO2),チタン酸バリウム(BaO3Ti),酸化イットリウム(Y23),炭化ケイ素(SiC),炭化タングステン(WC),炭化チタン(TiC),窒化ケイ素(Si34),窒化チタン(TiN),窒化チタンアルミ(TiAlN),ホウ化チタン(TiB2),ホウ化ジルコニウム(ZrB2),珪化モリブデン(MoSi2),珪化タングステン(WSi2),フッ化カルシウム(CaF2),ダイヤモンドライクカーボン(DLC)や,前掲の二酸化珪素(SiO2)を主成分とするガラス(ソーダガラス,鉛ガラス,硼珪酸ガラス)等はいずれも本願におけるセラミックスに含まれる。 The hard and brittle material includes not only ceramics but also single crystal silicon, etc., and the above-mentioned ceramics include mainly non-metals such as oxides, carbides, nitrides, borides, silices, fluorides, sulfides, and carbons. Including all inorganic solid materials composed of, for example, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silicon dioxide (SiO 2 ), barium titanate (BaO 3 Ti), yttrium oxide (Y 2 O 3 ), silicon carbide (SiC), tungsten carbide (WC), titanium carbide (TiC), silicon nitride (Si 3 N 4), titanium nitride (TiN), titanium aluminum nitride (TiAlN), titanium boride (TiB 2), boride Glass mainly composed of zirconium (ZrB 2 ), molybdenum silicate (MoSi 2 ), tungsten silicate (WSi 2 ), calcium fluoride (CaF 2 ), diamond-like carbon (DLC), and silicon dioxide (SiO 2) mentioned above. (Soda glass, lead glass, borosilicate glass) and the like are all included in the ceramics in the present application.

また,前述した硬脆性材料から成る成品,又は,硬脆性材料がコーティングされた成品であれば,その用途に限定はなく,各種成品に対し本発明の方法を適用可能であり,また,成品表面の一部分に対しディンプルを形成することもでき,ベアリング,シャフト,歯車などの他部材と摺接させて使用する摺動部材に対し適用する場合には,摺動部材のうち,他部材との摺動部のみを処理対象とするものとしても良い。 Further, as long as it is a product made of the above-mentioned hard brittle material or a product coated with the hard brittle material, its use is not limited, and the method of the present invention can be applied to various products, and the surface of the product. Dimples can be formed on a part of the sliding member, and when applied to a sliding member used by sliding contact with other members such as bearings, shafts, and gears, sliding with other members among the sliding members. Only the moving part may be processed.

〔ディンプルの形成方法〕
前述した被処理対象成品の表面のうち,ディンプルを形成する領域であるディンプル形成領域に対し,略球状の噴射粒体を圧縮気体と共に噴射して,前述した領域に衝突させる処理を行う。
[Dimple formation method]
Of the surface of the product to be treated described above, a substantially spherical jet particle is injected together with the compressed gas onto the dimple forming region, which is a region where dimples are formed, and is subjected to a process of colliding with the above-mentioned region.

上記の処理を行う際に使用する噴射粒体,噴射装置,噴射条件を一例として以下に示す。 The injection granules, the injection device, and the injection conditions used when performing the above processing are shown below as an example.

(1)噴射粒体
本発明の表面処理方法で使用する略球状の噴射粒体における「略球状」とは,厳密に「球」である必要はなく,一般に「ショット」として使用される,角のない形状の粒体であれば,例えば楕円形や俵型等の形状のものであっても本発明で使用する「略球状の噴射粒体」に含まれる。
(1) Injection Granules The "substantially spherical" in the substantially spherical injection granules used in the surface treatment method of the present invention does not have to be strictly "spheres" and is generally used as "shots". As long as the granular material has no shape, for example, even if it has an elliptical shape or a bale shape, it is included in the "substantially spherical injection granular material" used in the present invention.

噴射粒体の材質としては,金属系,セラミックス系のいずれのものも使用可能であり,一例として,金属系の噴射粒体の材質としては,スチール,高速度工具鋼(ハイス鋼),ステンレス鋼,クロムボロン鋼(FeCrB)等を挙げることができ,また,セラミックス系の噴射粒体の材質としては,アルミナ(Al23),ジルコニア(ZrO2),ジルコン(ZrSiO4),炭化ケイ素(SiC),硬質ガラス等を挙げることができる。 As the material of the injection granules, either metal-based or ceramic-based materials can be used. As an example, the materials of the metal-based injection granules are steel, high-speed tool steel (high-speed steel), and stainless steel. , Chrome boron steel (FeCrB), etc., and as the material of the ceramic-based injection granules, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), zircon (ZrSiO 4 ), silicon carbide (SiC), etc. ), Hard glass, etc.

使用する噴射粒体の粒径は,メディアン径(d50)で1〜20μmの範囲のものが使用可能である。 The particle size of the injection granules to be used can be in the range of 1 to 20 μm in median diameter (d50).

(2)噴射装置
前述した噴射粒体を被処理成品の表面に向けて噴射する噴射装置としては,圧縮気体(空気,アルゴン,窒素等)と共に研磨材の噴射を行う既知のブラスト加工装置を使用することができる。
(2) Injection device As the injection device that injects the above-mentioned injection particles toward the surface of the product to be treated, a known blasting device that injects the abrasive material together with the compressed gas (air, argon, nitrogen, etc.) is used. can do.

このようなブラスト加工装置としては,圧縮気体の噴射により生じた負圧を利用して研磨材を噴射するサクション式のブラスト加工装置,研磨材タンクから落下した研磨材を圧縮気体に乗せて噴射する重力式のブラスト加工装置,研磨材が投入されたタンク内に圧縮気体を導入し,別途与えられた圧縮気体供給源からの圧縮気体流に研磨材タンクからの研磨材流を合流させて噴射する直圧式のブラスト加工装置,及び,上記直圧式の圧縮気体流を,ブロワーユニットで発生させた気体流に乗せて噴射するブロワー式ブラスト加工装置等が市販されているが,これらはいずれも前述した噴射粒体の噴射に使用可能である。 Such a blasting device includes a suction type blasting device that injects an abrasive by utilizing the negative pressure generated by the injection of the compressed gas, and an abrasive that has fallen from the abrasive tank and is injected onto the compressed gas. A gravitational blasting device, a compressed gas is introduced into the tank into which the abrasive is charged, and the abrasive flow from the abrasive tank is merged with the compressed gas flow from the separately given compressed gas supply source and injected. Direct-pressure blasting devices and blower-type blasting devices that inject the above-mentioned direct-pressure compressed gas flow on the gas flow generated by the blower unit are commercially available. It can be used for injection of injection particles.

(3)処理条件
以上で説明した被処理対象成品に対し,前述した材質等からなるメディアン径d50が1〜18μmの略球状の噴射粒体を,0.01MPa以上,0.7MPa以下の噴射圧力の圧縮気体と共に噴射する。
(3) Treatment conditions For the product to be treated described above, a substantially spherical injection granule having a median diameter d50 of 1 to 18 μm made of the above-mentioned materials is injected at 0.01 MPa or more and 0.7 MPa or less. Inject with a compressed gas of pressure.

これにより,硬脆性材料の表面に開口径1〜20μm,深さ0.01〜1μmのディンプルを形成することができる。 As a result, dimples having an opening diameter of 1 to 20 μm and a depth of 0.01 to 1 μm can be formed on the surface of the hard brittle material.

噴射粒体の噴射は,形成されたディンプルの開口面積の合計が,ディンプル形成領域の面積に対し50%以上となるように行う。 The injection granules are injected so that the total opening area of the formed dimples is 50% or more of the area of the dimple forming region.

〔ディンプルの形成試験1〕
(1)試験の目的
噴射粒体の噴射条件の変化に伴う硬脆性材料表面の状態変化を確認すると共に,ディンプルの形成による摺動性の向上を確認する。
[Dimple formation test 1]
(1) Purpose of the test To confirm the change of state of the surface of the hard and brittle material due to the change of the injection conditions of the injected granules, and to confirm the improvement of slidability due to the formation of dimples.

(2)試験方法
被処理対象成品としてジルコニア(ZrO2)製のアルミ合金用押出し成形金型(表面を算術平均粗さ(Ra)で0.1μm以下にラップ研磨したもの)に対し,下記の表1に示す条件で噴射粒体の噴射を行った。
(2) Test method The following is applied to the extruded mold for aluminum alloy made of zirconia (ZrO 2 ) (the surface is lap-polished to 0.1 μm or less with arithmetic average roughness (Ra)) as the product to be treated. The injection particles were injected under the conditions shown in Table 1.

未処理の金型の表面凹凸形状と,上記各条件で処理した後の金型の表面凹凸形状を,形状解析レーザ顕微鏡(キーエンス社製「VK-X250」)を使用して観察した。 The surface uneven shape of the untreated mold and the surface uneven shape of the mold after being treated under each of the above conditions were observed using a shape analysis laser microscope (“VK-X250” manufactured by KEYENCE CORPORATION).

また,未処理の金型と,上記実施例1〜3の条件で処理した金型を使用して,アルミ合金の押出し成型を行い,金型表面に対するアルミの凝着状態を目視により観察した。 Further, an aluminum alloy was extruded using an untreated mold and a mold treated under the conditions of Examples 1 to 3 above, and the state of aluminum adhesion to the mold surface was visually observed.

(3)測定結果
図1は,前掲の実施例1の条件でディンプルを形成した後の金型表面の形状解析レーザ顕微鏡による観察結果であり,図1(A)は金型表面を撮影した電子顕微鏡像,図1(B)は解析結果より求めたディンプル形成位置表面の断面形状である。
(3) Measurement results FIG. 1 shows the observation results by a laser microscope for shape analysis of the mold surface after forming dimples under the conditions of Example 1 described above, and FIG. 1 (A) shows the electrons obtained by photographing the mold surface. The microscope image and FIG. 1 (B) are cross-sectional shapes of the dimple formation position surface obtained from the analysis results.

なお,実施例2,3の条件で処理した金型の表面形状についても略同様の結果が確認されたことから,代表例として実施例1の条件で処理を行った金型の表面形状のみを図1に示し,実施例2,3の条件で処理した金型表面の形状解析レーザ顕微鏡による観察結果は図示を省略した。 Since substantially the same results were confirmed for the surface shape of the mold treated under the conditions of Examples 2 and 3, only the surface shape of the mold treated under the conditions of Example 1 was used as a typical example. The results of observation by the shape analysis laser microscope of the mold surface treated under the conditions of Examples 2 and 3 shown in FIG. 1 are not shown.

なお,比較のため,図2に未処理の金型表面の形状解析レーザ顕微鏡による観察結果を示す。図2(A)は金型表面を撮影した電子顕微鏡像,図2(B)は解析結果より求めた表面の断面形状である。 For comparison, FIG. 2 shows the observation results of the untreated mold surface with a shape analysis laser microscope. FIG. 2 (A) is an electron microscope image of the surface of the mold, and FIG. 2 (B) is a cross-sectional shape of the surface obtained from the analysis results.

また,実施例1〜3及び未処理(比較例)の金型を使用した押出し成型後の金型表面に対するアルミの凝着状態を観察した結果を,表2に示す。 Table 2 shows the results of observing the state of aluminum adhesion to the mold surface after extrusion molding using the dies of Examples 1 to 3 and the untreated (comparative example) dies.

図1と図2の比較より,比較的平坦な状態であった未処理の金型表面(図2参照)に対し,実施例1の条件で処理を行った後の金型表面(図1参照)ではディンプル(半球状の窪み)が形成されていることが判る。 From the comparison between FIGS. 1 and 2, the untreated mold surface (see FIG. 2), which was in a relatively flat state, was treated under the conditions of Example 1 and then the mold surface (see FIG. 1). ) Shows that dimples (hemispherical depressions) are formed.

また,同様に形状解析レーザ顕微鏡を使用した観察で,実施例2,3の条件で処理した金型についても同様にディンプルが形成されていることが確認できた。 Similarly, by observing using a shape analysis laser microscope, it was confirmed that dimples were similarly formed in the molds treated under the conditions of Examples 2 and 3.

なお,実施例1〜3のいずれの条件での処理によっても,加工後の金型表面には破断やクラックの発生は確認できず,また,処理中,切削粉の発生も確認できなかったこと,更には本願方法による処理後の表面では圧縮残量応力の大幅な増大が確認されていることから,前述したディンプルの形成は,脆性破壊によるものではなく,塑性変形により生じたものであると推察される。 No breakage or cracks could be confirmed on the surface of the mold after processing under any of the conditions of Examples 1 to 3, and no cutting powder could be confirmed during the processing. Furthermore, since a significant increase in the residual compressive stress was confirmed on the surface after treatment by the method of the present application, it is considered that the above-mentioned dimple formation was caused not by brittle fracture but by plastic deformation. Inferred.

また,表2に示すように,本発明の方法でディンプルを形成した金型では,アルミの凝着が生じ難くなっていることが確認でき,本発明の方法によって形成されたディンプルが,成形材料と金型表面間の摺動性の向上に貢献するものであることが確認されている。 Further, as shown in Table 2, it can be confirmed that in the mold in which the dimples are formed by the method of the present invention, the adhesion of aluminum is less likely to occur, and the dimples formed by the method of the present invention are the molding material. It has been confirmed that it contributes to the improvement of the slidability between the mold surface and the mold surface.

(4)考察
本発明の方法により,硬脆性材料であるジルコニアに破断やクラックを発生させることなく塑性変形によるものと考えられるディンプルが形成できた原理は必ずしも明らかではないが,本発明の方法では,メディアン径(d50)で1〜18μmという微小な噴射粒
体を使用したことにより,このような塑性変形によるディンプルの形成が実現できたものと考えられる。
(4) Discussion The principle that dimples, which are considered to be due to plastic deformation, could be formed in zirconia, which is a hard and brittle material, without causing breakage or cracks by the method of the present invention is not always clear, but the method of the present invention does not necessarily clarify. It is considered that the formation of dimples by such plastic deformation was realized by using the injection granules having a median diameter (d50) of 1 to 18 μm.

すなわち,セラミックス等の硬脆性材料に塑性変形を生じさせるためには,力を加えたときの単位体積あたりの永久変形エネルギーが大きくなくてはならないと考えられ,本発明の場合では,噴射粒子が衝突したときに,微小な領域に大きな力(衝撃力)を加える必要がある。 That is, in order to cause plastic deformation in a hard and brittle material such as ceramics, it is considered that the permanent deformation energy per unit volume when a force is applied must be large, and in the case of the present invention, the jet particles are When a collision occurs, it is necessary to apply a large force (impact force) to a minute area.

そこで,粒径10μmと,粒径50μmの二種類のスチール製の噴射粒体(密度7.85)を被加工物に対し衝突させた際の有限要素法(Finite Element Method:FEM)による解析(以下,「FEM解析」という)によるフォンミーゼス(Von Mises)応力のシミュレーションを行った結果を,図3(粒径10μm)及び図4(粒径50μm)にそれぞれ示す。 Therefore, analysis by the Finite Element Method (FEM) when two types of steel jet particles (density 7.85) with a particle size of 10 μm and a particle size of 50 μm are made to collide with the workpiece (Finite Element Method: FEM) ( The results of simulating the Von Mises stress by (hereinafter referred to as "FEM analysis") are shown in FIGS. 3 (particle size 10 μm) and FIG. 4 (particle size 50 μm), respectively.

ここで,FEM解析は,数値解析手法の1つであり,複雑形状モデルなど解析的手法で解くことが困難な場合,領域を微小要素に分割し要素単位で単純方程式を立て要素間を補間関数で近似して領域全体の解を得る手法であり,ここでは解析用のソフトウェアとして,「Femap with NX Nastran」(株式会社エヌ・エス・ティ製)を使用した。 Here, FEM analysis is one of the numerical analysis methods, and when it is difficult to solve by an analytical method such as a complicated shape model, the region is divided into minute elements, a simple equation is set up for each element, and an interpolation function is used between the elements. This is a method of obtaining the solution of the entire region by approximating with, and here, "Femap with NX Nastran" (manufactured by NST Co., Ltd.) was used as the analysis software.

また,「フォンミーゼス応力」とは,せん断ひずみエネルギー説に基づく相当応力のことで,方向を持たないスカラー値として表現されるもので荷重が多方向から複雑にかかるような応力場で,1軸の引張りまたは圧縮応力へ投影した値である。 The "von Mises stress" is the equivalent stress based on the shear strain energy theory, which is expressed as a scalar value without direction, and is a stress field in which a load is applied in a complicated manner from multiple directions. The value projected onto the tensile or compressive stress of.

このフォンミーゼス応力を参照することで,この材料が降伏するかどうかを判断する指標となり,降伏応力との比較の際に,他方向に応力を見る必要がなく,フォンミーゼス応力一つで判断し得るものである点に鑑み,これを利用して,噴射粒体の衝突によって生じる応力をシミュレートした。 By referring to this von Mises stress, it becomes an index to judge whether or not this material yields, and when comparing with the yield stress, it is not necessary to look at the stress in the other direction, and it is judged by one von Mises stress. In view of the points to be obtained, this was used to simulate the stress generated by the collision of the injected particles.

シミュレーション結果より,噴射粒体の粒径と,応力の入る深さの関係を見ると,噴射粒体の粒径が小さい程,表面の非常に浅い層に強い応力が入り,粒径が大きくなると応力はより深い層まで入るが,その応力は小さくなっていることが判る。 From the simulation results, looking at the relationship between the particle size of the injected particles and the depth at which stress is applied, the smaller the particle size of the injected particles, the stronger the stress is applied to the very shallow layer on the surface, and the larger the particle size. It can be seen that the stress enters deeper layers, but the stress is smaller.

図3及び図4の等値線図(コンター図)において,三日月型に見える部分の中心が応力の最も強く入っている部分を表している。 In the contour diagrams of FIGS. 3 and 4, the center of the crescent-shaped portion represents the portion where the stress is most intense.

この最大応力は,10μmの噴射粒体では8.752kgf/mm2,50μmの噴射粒体では6.084kgf/mm2であり,10μmの噴射粒体では,50μmの噴射粒体の場合に比較して1.4倍の最大応力が発生している。 The maximum stress, 8.752kgf / mm 2 in the injection granules of 10 [mu] m, the injection granules of 50μm was 6.084kgf / mm 2, the injection granules of 10 [mu] m, compared to the case of 50μm injection granules The maximum stress is 1.4 times.

しかも,最大応力の発生している深さは粒径50μmの噴射粒体の場合では2.33μmであるのに対し,粒径10μmの噴射粒体の場合では0.40μmと約1/6程度であることから,単位体積当たりの衝撃力は,噴射粒体の粒径が小さくなる程,飛躍的に同大する。 Moreover, the depth at which the maximum stress is generated is 2.33 μm in the case of the injection granules having a particle size of 50 μm, whereas it is 0.40 μm in the case of the injection granules having a particle size of 10 μm, which is about 1/6. Therefore, the impact force per unit volume becomes dramatically the same as the particle size of the injected granules becomes smaller.

そのため,メディアン径(d50)で1〜18μmという微小な粒径の噴射粒体を使用する本発明の方法では,硬脆性材料製品の表面に降伏点を超える衝撃力を加えることができ,その結果,塑性変形によるディンプルの形成ができたものと考えられる。 Therefore, in the method of the present invention using injection granules having a median diameter (d50) and a fine particle size of 1 to 18 μm, an impact force exceeding the yield point can be applied to the surface of the hard brittle material product. As a result, it is considered that dimples were formed by plastic deformation.

〔ディンプルの形成試験2〕
(1)試験の目的
前掲の〔ディンプル形成試験1〕で処理対象とした,ジルコニア以外の硬脆性材料に対しても,本発明の方法によりディンプルを形成することができることを確認する。
[Dimple formation test 2]
(1) Purpose of the test It is confirmed that dimples can be formed by the method of the present invention even for a hard brittle material other than zirconia, which was treated in the above-mentioned [Dimple formation test 1].

(2)試験方法
未処理のソーダガラス製試験片(縦10mm×横10mm×厚さ2mm)と,本発明の方法で噴射粒体を噴射してディンプルを形成した後のソーダガラス製試験片それぞれの表面形状を,形状解析レーザ顕微鏡(キーエンス社製「VK-X250」)を使用して観察した。
(2) Test method An untreated soda-glass test piece (length 10 mm × width 10 mm × thickness 2 mm) and a soda-glass test piece after injecting jet particles by the method of the present invention to form dimples, respectively. The surface shape of the glass was observed using a shape analysis laser microscope (“VK-X250” manufactured by KEYENCE CORPORATION).

噴射粒体の噴射は,下記の表3に示す噴射条件にて試験片の片面全体に対して行った。 The injection granules were injected onto the entire surface of the test piece under the injection conditions shown in Table 3 below.

(3)測定結果
未処理の試験片の表面形状(断面)を図5(A)に,本発明の方法による処理後の試験片の表面形状(断面)を図5(B)にそれぞれ示す。
(3) Measurement Results The surface shape (cross section) of the untreated test piece is shown in FIG. 5 (A), and the surface shape (cross section) of the test piece treated by the method of the present invention is shown in FIG. 5 (B).

未処理の試験片表面〔図5(A)〕には目立った凹凸がなく平坦であったが,本発明の方法による処理後の状態〔図5(B)〕では,ディンプルが形成されていることが確認できた。 The surface of the untreated test piece [FIG. 5 (A)] was flat without any noticeable unevenness, but in the state after treatment by the method of the present invention [FIG. 5 (B)], dimples were formed. I was able to confirm that.

また,ソーダガラスに対する試験においても,処理後の試験片には破断やクラックの発生を確認することはできず,また,噴射粒体との衝突に伴うソーダガラスの切削粉の発生も確認できないこと,更には圧縮残留応力が付与されていることから,上記ディンプルは塑性変形によって得られたものであると推察される。 Also, in the test on soda glass, it is not possible to confirm the occurrence of breakage or cracks in the test piece after treatment, and it is not possible to confirm the generation of cutting powder of soda glass due to collision with the jet particles. Furthermore, since compressive residual stress is applied, it is inferred that the dimples were obtained by plastic deformation.

(4)考察
以上の結果から,本発明の方法によればジルコニアに限らず,ソーダガラスの表面に対しても塑性変形によるディンプルの形成ができることが確認された。
(4) Discussion From the above results, it was confirmed that the method of the present invention can form dimples not only on zirconia but also on the surface of soda glass by plastic deformation.

このことから,本発明の方法は,実施例で処理対象としたジルコニアやソーダガラスに限定されず,その他の硬脆性材料に対するディンプルの形成にも適用可能であると合理的に推察される。 From this, it can be reasonably inferred that the method of the present invention is not limited to the zirconia and soda glass treated in the examples, but can also be applied to the formation of dimples on other hard and brittle materials.

以上で説明した本発明の方法は,硬脆性材料の表面に対するディンプルの形成が必要となるあらゆる用途に適用可能である。 The method of the present invention described above can be applied to all applications requiring the formation of dimples on the surface of a hard brittle material.

一例として,セラミックス成品又はセラミックスコーティングされた成品に対する適用例を挙げると,摺動部材の摺動面に対するディンプルの形成により,ティンプルに対する液体・固体潤滑材の保持や,ディンプルを空気溜りとすることによる接触面積の減少による摩擦抵抗の低減を図ることができる。 As an example, to give an application example to a ceramic product or a ceramic-coated product, the dimples are formed on the sliding surface of the sliding member to hold the liquid / solid lubricant on the timples, and the dimples are used as air reservoirs. Friction resistance can be reduced by reducing the contact area.

また,金型表面に対するディンプルの形成により,ディンプルに対する離型剤の保持や,ディンプルを空気溜りとすることによる接触面積の減少に伴う離型性の向上を図ることができる。 Further, by forming the dimples on the surface of the mold, it is possible to maintain the release agent on the dimples and improve the releasability by reducing the contact area by using the dimples as an air reservoir.

その他,ディンプルの形成によってセラミックスの表面を各種の液体(薬品,香水,油脂,オイル等)の保持性に優れた表面とすることができることで,印刷時に使用されるセラミックス製給水ローラ等,液体や油脂の塗布等に使用されるセラミックス製ローラの表面処理等,前述した摺動性の向上等を目的とした処理の他,液体の保持性を向上が必要とされる各種セラミックス製品に対し適用可能である。

In addition, by forming dimples, the surface of ceramics can be made a surface with excellent retention of various liquids (chemicals, perfumes, oils, oils, etc.), so that liquids such as ceramic water supply rollers used during printing can be used. Applicable to various ceramic products that require improved liquid retention, in addition to the above-mentioned treatments aimed at improving slidability, such as surface treatment of ceramic rollers used for applying oils and fats. Is.

Claims (6)

被処理成品の硬脆性材料から成る表面のうち,ディンプルを形成する領域であるディンプル形成領域に対し,メディアン径d50が1〜18μmの略球状の噴射粒体を,0.01MPa〜0.7MPaの噴射圧力の圧縮気体と共に噴射して,前記ディンプル形成領域の前記硬脆性材料表面のうち前記噴射粒体の衝突部分を凹ませて,切削によらず塑性変形によりディンプルを形成することを特徴とする硬脆性材料表面に対する微小ディンプルの形成方法。 Of the surface made of the hard brittle material of the product to be treated, substantially spherical injection particles having a median diameter d50 of 1 to 18 μm are formed at 0.01 MPa to 0.7 MPa with respect to the dimple forming region, which is the region where dimples are formed. is injected with compressed gas injection pressure, the by recessing each collision portion of the injection granules of the hard brittle material surface dimple formation region to form a by Ride Inpuru plastic deformation regardless of the cutting that A method for forming fine dimples on the surface of a hard and brittle material. 前記ディンプルが開口径1〜20μm,深さ0.01〜1μmであることを特徴とする請求項1記載の硬脆性材料表面に対する微小ディンプルの形成方法。 The method for forming fine dimples on the surface of a hard brittle material according to claim 1, wherein the dimples have an opening diameter of 1 to 20 μm and a depth of 0.01 to 1 μm. 前記ディンプルの開口面積の合計が前記ディンプル形成領域の面積に対し50%以上になるように形成することを特徴とする請求項1記載の硬脆性材料表面に対する微小ディンプルの形成方法。 The method for forming fine dimples on the surface of a hard brittle material according to claim 1, wherein the total opening area of the dimples is formed so as to be 50% or more with respect to the area of the dimple forming region. 前記硬脆性材料がセラミックスであることを特徴とする請求項1〜3いずれか1項記載の硬脆性材料表面に対する微小ディンプルの形成方法。 The method for forming fine dimples on the surface of a hard brittle material according to any one of claims 1 to 3, wherein the hard brittle material is ceramics. 前記硬脆性材料がガラスであることを特徴とする請求項1〜3いずれか1項記載の硬脆性材料表面に対する微小ディンプルの形成方法。 The method for forming fine dimples on the surface of a hard brittle material according to any one of claims 1 to 3, wherein the hard brittle material is glass. 摺動部品を前記被処理成品とすると共に,該摺動部品の摺動面を前記ディンプル形成領域とすることを特徴とする請求項4記載の硬脆性材料表面に対する微小ディンプルの形成方法。 The method for forming fine dimples on the surface of a hard brittle material according to claim 4, wherein the sliding component is the product to be treated and the sliding surface of the sliding component is the dimple forming region.
JP2017146808A 2017-07-28 2017-07-28 Method of forming fine dimples on the surface of hard and brittle materials Active JP6840637B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017146808A JP6840637B2 (en) 2017-07-28 2017-07-28 Method of forming fine dimples on the surface of hard and brittle materials
US15/918,209 US10987778B2 (en) 2017-07-28 2018-03-12 Method of forming fine dimples in a hard-brittle material surface
KR1020180031869A KR102140369B1 (en) 2017-07-28 2018-03-20 Method of forming fine dimples in a hard-brittle material surface
CN201810239260.2A CN109304675A (en) 2017-07-28 2018-03-22 The method of unevenness is formed in hard brittle material surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017146808A JP6840637B2 (en) 2017-07-28 2017-07-28 Method of forming fine dimples on the surface of hard and brittle materials

Publications (2)

Publication Number Publication Date
JP2019025584A JP2019025584A (en) 2019-02-21
JP6840637B2 true JP6840637B2 (en) 2021-03-10

Family

ID=65138100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017146808A Active JP6840637B2 (en) 2017-07-28 2017-07-28 Method of forming fine dimples on the surface of hard and brittle materials

Country Status (4)

Country Link
US (1) US10987778B2 (en)
JP (1) JP6840637B2 (en)
KR (1) KR102140369B1 (en)
CN (1) CN109304675A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6773342B2 (en) * 2019-03-06 2020-10-21 株式会社不二製作所 Surface treatment method for DLC coating member
EP4074674A4 (en) * 2019-12-10 2024-01-17 Tosoh Corporation Sintered compact having exceptional impact resistance

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014615A (en) * 1983-07-06 1985-01-25 Ebara Corp Thrust bearing and it's manufacture
US5003805A (en) * 1990-02-02 1991-04-02 General Electric Company Method and system for monitoring shot peening
JP3212433B2 (en) 1993-12-28 2001-09-25 株式会社不二機販 Wear prevention method for sliding parts of metal products
JP3694540B2 (en) 1994-10-31 2005-09-14 京セラ株式会社 Sliding member and sliding device using the same
US6884386B2 (en) 2000-09-21 2005-04-26 Sintokogio, Ltd. Method of toughening and modifying ceramic and ceramic products
JP2003053720A (en) * 2001-08-10 2003-02-26 Fuji Mach Mfg Co Ltd Processing method for unburned ceramic material
DE602004019527D1 (en) * 2003-05-26 2009-04-02 Sintokogio Ltd METHOD FOR HARDENING A SURFACE OF A CUTTING TOOL OF SINTERED MATERIAL
JP6006176B2 (en) 2013-06-06 2016-10-12 株式会社不二製作所 Surface treatment method for translucent glass and translucent glass
JP2016156428A (en) 2015-02-24 2016-09-01 株式会社不二Wpc Rolling body, and rolling body for constant velocity joint
JP2017001166A (en) * 2015-06-15 2017-01-05 学校法人関東学院 Method for forming water-repellent surface and water-repellent article with water-repellent surface formed using the same method
WO2017026057A1 (en) * 2015-08-11 2017-02-16 株式会社不二製作所 Surface treatment method for transparent resin forming mold, transparent resin forming mold, and transparent resin formed article
JP6307109B2 (en) 2016-05-20 2018-04-04 株式会社不二製作所 Surface treatment method of metal product and metal product
JP6570581B2 (en) 2017-07-13 2019-09-04 株式会社不二製作所 Ceramic surface treatment method and ceramic product

Also Published As

Publication number Publication date
US10987778B2 (en) 2021-04-27
JP2019025584A (en) 2019-02-21
KR102140369B1 (en) 2020-07-31
US20190030682A1 (en) 2019-01-31
KR20190013440A (en) 2019-02-11
CN109304675A (en) 2019-02-05

Similar Documents

Publication Publication Date Title
TWI527665B (en) Method of treating surface of mold and mold having surface treated by said method
KR102217842B1 (en) The structure of the blade part of the machine tool and its surface treatment method
JP6840637B2 (en) Method of forming fine dimples on the surface of hard and brittle materials
JP6556846B2 (en) Surface treatment method for transparent resin molding die, transparent resin molding die, and method for producing transparent resin molded product
JP6556845B2 (en) Mold surface treatment method and mold treated by the method
JP6570581B2 (en) Ceramic surface treatment method and ceramic product
KR102173928B1 (en) Method of surface treatment of metal products and metal products
KR20230136691A (en) Method for using surface material of mold molding surface and method for using mold having molding surface treated
TWI681086B (en) Surface member of metal product and its polishing processing method
CN111660206B (en) Surface treatment method for DLC coated member
Guo Influence the Microtexture of Al2O3 and Processing Morphology on of Mold Steel: Hydrophilic-to-Hydrophobic Transition
JP2022034600A5 (en)
JP3184845U (en) Cold drawn steel
JP2007167885A (en) Method for treating surface of pressing tool and pressing tool surface treated by the method
PL215072B1 (en) Unit for surface treatment of surface layers, especially metal
JP2009136837A (en) Surface treatment method of object to be treated
JP2016141150A (en) Metal mold used for extrusion molding machine for building material, and production method of metal mold

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200417

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200428

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200430

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200619

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200623

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200924

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20201015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201210

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201225

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210128

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210217

R150 Certificate of patent or registration of utility model

Ref document number: 6840637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250