Nothing Special   »   [go: up one dir, main page]

JP6840332B2 - Immunostimulatory oligonucleotide complex - Google Patents

Immunostimulatory oligonucleotide complex Download PDF

Info

Publication number
JP6840332B2
JP6840332B2 JP2017527515A JP2017527515A JP6840332B2 JP 6840332 B2 JP6840332 B2 JP 6840332B2 JP 2017527515 A JP2017527515 A JP 2017527515A JP 2017527515 A JP2017527515 A JP 2017527515A JP 6840332 B2 JP6840332 B2 JP 6840332B2
Authority
JP
Japan
Prior art keywords
stranded
double
cells
complex
cpg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017527515A
Other languages
Japanese (ja)
Other versions
JPWO2017007027A1 (en
Inventor
信孝 花方
信孝 花方
大塚 浩史
浩史 大塚
貴文 原田
貴文 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
National Institute for Materials Science
Original Assignee
Denka Co Ltd
National Institute for Materials Science
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, National Institute for Materials Science, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Publication of JPWO2017007027A1 publication Critical patent/JPWO2017007027A1/en
Application granted granted Critical
Publication of JP6840332B2 publication Critical patent/JP6840332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6807Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug or compound being a sugar, nucleoside, nucleotide, nucleic acid, e.g. RNA antisense
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/117Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Mycology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

本発明は、免疫刺激オリゴヌクレオチド複合体に関し、詳細には2本鎖オリゴヌクレオチドと担体が複合化されてなり、インターフェロン-α (IFN-α)やインターフェロン-β (IFN-β)のようなI型インターフェロンおよびインターロイキン-12 (IL-12)のようなサイトカインの誘導活性に優れ、アジュバントとしての作用を有する複合体に関する。 The present invention relates to immunostimulatory oligonucleotide complexes, in particular a double-stranded oligonucleotide and a carrier complexed with an I such as interferon-α (IFN-α) or interferon-β (IFN-β). It relates to a complex having excellent inducing activity of cytokines such as interferon type and interleukin-12 (IL-12) and acting as an adjuvant.

自然免疫は微生物の感染に対する生体の初期防御反応である。微生物の構成成分はToll-like receptors (TLRs),NOD-like receptors (NLRs),RIG-I-like receptors (RLRs)、DNA-dependent activator of IFN-regulatory factors(DAI)、IFN-γ-inducible protein 16 (IFI16)、DDX41、cyclic GMP-AMP synthase (cGAS)などの受容体によって認識されることで様々な免疫応答を引き起こす。 Innate immunity is the body's initial defense response to microbial infection. The constituents of the microorganism are Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), DNA-dependent activator of IFN-regulatory factors (DAI), IFN-γ-inducible protein. It provokes various immune responses by being recognized by receptors such as 16 (IFI16), DDX41, and cyclic GMP-AMP synthase (cGAS).

Toll-like receptors (TLRs)は1回型膜貫通型受容体でリガンドが結合することにより、ホモダイマー又はへテロダイマーを形成し、シグナルを伝達する。ヒトでは10種類存在し,そのうち、核酸を認識するのは、TLR3(二本鎖RNAを認識)、TLR7及びTLR8(一本鎖RNAを認識)、及びTLR9(非メチル化CpG DNAを認識する)である。TLR3、TLR7、TLR8及びTLR9は、主としてER,エンドソームなどの細胞内オルガネラ膜に局在し,エンドソームでリガンドを認識しシグナルを伝達する。一方、細菌やウイルス由来の糖,脂質,タンパク質を認識するTLR1(トリアシルリポプロテインなどを認識),TLR2(ペプチドグリカンなどを認識),TLR4(リポ多糖などを認識),TLR5(フラジェリンなどを認識),TLR6(ジアシルリポプロテインなどを認識)はいずれも細胞表面に存在し,細胞表面で微生物の表層成分を認識しシグナルを伝達する。 Toll-like receptors (TLRs) form homodimers or heterodimers by binding ligands on single-transmembrane receptors and transmit signals. There are 10 types in humans, of which TLR3 (recognizing double-stranded RNA), TLR7 and TLR8 (recognizing single-strand RNA), and TLR9 (recognizing unmethylated CpG DNA) recognize nucleic acids. Is. TLR3, TLR7, TLR8 and TLR9 are mainly localized in intracellular organelle membranes such as ER and endosomes, and endosomes recognize ligands and transmit signals. On the other hand, TLR1 (recognizing triacyl lipoprotein, etc.), TLR2 (recognizing peptidoglycan, etc.), TLR4 (recognizing lipopolysaccharide, etc.), TLR5 (recognizing flagellin, etc.) that recognizes sugars, lipids, and proteins derived from bacteria and viruses. , TLR6 (recognizing diacyl lipoproteins, etc.) are all present on the cell surface, and recognize the surface layer components of bacteria on the cell surface and transmit signals.

NOD-like receptors (NLRs)は30を超える大きなファミリーをなしている細胞内受容体である。主として微生物由来のペプチドグリカンを特異的認識している。
RIG-I-like receptors (RLRs)は細胞質内RNAヘリカーゼファミリーであり、細胞質内に存在するRNAを認識する。
DNA-dependent activator of IFN-regulatory factors(DAI)、IFN-γ-inducible protein 16 (IFI16)、DDX41、cyclic GMP-AMP synthase (cGAS)は細胞質内DNA受容体として同定されたが、その他にも細胞質内DNA受容体の存在が示唆されている。
NOD-like receptors (NLRs) are intracellular receptors that form a large family of over 30. It specifically recognizes peptidoglycan, which is mainly derived from microorganisms.
RIG-I-like receptors (RLRs) are a family of intracellular RNA helicases that recognize RNA present in the cytoplasm.
DNA-dependent activator of IFN-regulatory factors (DAI), IFN-γ-inducible protein 16 (IFI16), DDX41, cyclic GMP-AMP synthase (cGAS) have been identified as intracellular DNA receptors, but also cytoplasm. The presence of internal DNA receptors has been suggested.

以上のように様々な受容体が個別に又は共同して免疫活性に関与しており、その全容解明はなされていない。 As described above, various receptors are individually or jointly involved in immune activity, and the whole picture has not been elucidated.

感染症や癌、アレルギー等は免疫活性を増強することによって改善される。これらの疾患に対して、非メチル化シトシン‐グアニン配列(CpG)を含む合成されたオリゴデオキシヌクレオチド(以下「ODN」と表す場合がある)を免疫活性化医薬として利用する研究開発が2000年以降活発に行われている。これまでに開発されたCpG ODNは、大きく3つのクラス (クラスA、クラスB、およびクラスC)に分類されている。 Infectious diseases, cancer, allergies, etc. are improved by enhancing immune activity. For these diseases, research and development using synthesized oligodeoxynucleotides containing unmethylated cytosine-guanine sequence (CpG) (hereinafter sometimes referred to as "ODN") as immunostimulatory drugs has been conducted since 2000. It is actively done. The CpG ODN developed so far is roughly classified into three classes (class A, class B, and class C).

クラスA(Dタイプとも呼ばれる)のCpG-A ODNは、ホスホジエステル骨格のパリンドローム配列にCpGを含み、その両末端 (3’および5’末端) にホスホロチオエート骨格のポリグアニン配列が付加された1本鎖ODNである(例えば、表1に示すODN2216、ODN1585、D35)。CpG-A ODNは、ホスホジエステル骨格のパリンドローム配列によって2つの分子が相補的に2本鎖を形成し、さらに両末端のポリグアニン配列がグアニン四量体を形成する性質を有するため、2つの2本鎖CpG-A ODNがさらに自己会合的に四量体を形成する。この四量体が、さらに2本鎖CpG-A ODNや1本鎖CpG-A ODN分子と自己会合することによって高次構造を形成する(非特許文献1)。CpG-A ODNは、主に樹状細胞のTLR9に認識されインターフェロン-α (IFN-α)やインターフェロン-β (IFN-β)などのI型インターフェロン (IFN) を誘導する(特許文献1、非特許文献2)。 Class A (also called D type) CpG-A ODN contains CpG in the palindromic sequence of the phosphodiester skeleton, with the polyguanine sequence of the phosphorothioate skeleton added to both ends (3'and 5'ends). Chain ODN (eg, ODN2216, ODN1585, D35 shown in Table 1). CpG-A ODN has the property that two molecules complementarily form a double strand by the parindrome sequence of the phosphodiester skeleton, and the polyguanine sequences at both ends form a guanine tetramer. The main chain CpG-A ODN further self-associates to form a tetramer. This tetramer further self-associates with a double-stranded CpG-A ODN or a single-stranded CpG-A ODN molecule to form a higher-order structure (Non-Patent Document 1). CpG-A ODN is mainly recognized by TLR9 in dendritic cells and induces type I interferon (IFN) such as interferon-α (IFN-α) and interferon-β (IFN-β) (Patent Document 1, non-). Patent Document 2).

クラスB (Kタイプとも呼ばれる)のCpG-B ODNは、CpGを含むホスホロチオエート骨格のみからなる1本鎖ODNである(例えば、表1に示すODN1826、ODN2006、K3)。CpG-B ODNは、主にB細胞のTLR9によって認識されインターロイキン-6 (IL-6)やIL-12あるいは腫瘍壊死因子 (tumor necrosis factors, TNFs)などの炎症性サイトカインを誘導する(非特許文献3)。CpG-B ODNを、カチオン性ペプチドやカチオン性リポソームなどに静電的に結合させて複合体化すると、CpG-Aと同様にI型IFNを誘導することが知られている(非特許文献4)。 Class B (also called K type) CpG-B ODN is a single-stranded ODN consisting only of a phosphorothioate backbone containing CpG (eg, ODN1826, ODN2006, K3 shown in Table 1). CpG-B ODN is recognized primarily by B cell TLR9 and induces inflammatory cytokines such as interleukin-6 (IL-6) and IL-12 or tumor necrosis factors (TNFs) (non-patented). Document 3). It is known that when CpG-B ODN is electrostatically bound to a cationic peptide or a cationic liposome to form a complex, type I IFN is induced in the same manner as CpG-A (Non-Patent Document 4). ).

クラスCのCpG-C ODNは、3’末端側にパリンドローム配列を含むホスホロチオエート骨格のみからなる1本鎖ODNで、5’末端側と3’末端側の両方にCpGを含んでいる(例えば、表1に示すODN2395)。CpG-C ODNはパリンドローム配列によって2つの分子が部分的な2本鎖を形成している。CpG-C ODNは、CpG-AとCpG-Bの中間的な性質を示し、炎症性サイトカインとI型IFNの両方を誘導する(非特許文献5)。 Class C CpG-C ODN is a single-stranded ODN consisting only of a phosphorothioate backbone containing a palindromic sequence on the 3'terminal side and contains CpG on both the 5'terminal side and the 3'terminal side (eg,). ODN2395 shown in Table 1). In CpG-C ODN, two molecules form a partial double strand due to the palindromic sequence. CpG-C ODN exhibits intermediate properties between CpG-A and CpG-B and induces both inflammatory cytokines and type I IFN (Non-Patent Document 5).

特開2008−516634号公報Japanese Unexamined Patent Publication No. 2008-516634

Klein et al. Higher order structure of short immunostimulatory oligonucleotides studies by atomic force microscopy. Ultramicroscopy, 110: 689-693 (2010)Klein et al. Higher order structure of short immunostimulant oligonucleotides studies by atomic force microscopy. Ultramicroscopy, 110: 689-693 (2010) Krug et al. Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur. J. Immunol. 31: 2154-2163 (2001)Krug et al. Identification of CpG oligonucleotide sequences with high induction of IFN-alpha / beta in plasmacytoid dendritic cells. Eur. J. Immunol. 31: 2154-2163 (2001) Hartmann et al. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J. Immunol. 164: 1617-1624 (2000)Hartmann et al. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J. Immunol. 164: 1617-1624 (2000) Gungor B., Yagci FC., Tincer G., Bayyurt B., Alpdundar E., Yildiz S., Ozcan M., Gurcel I., Gurcel M. CpG ODN nanorings induce IFNα from plasmacytoid dendritic cells and demonstrate potent vaccine adjuvant activity. Science Translational Medicine 6, 235ra61 (2014)Gungor B., Yagci FC., Tincer G., Bayyurt B., Alpdundar E., Yildiz S., Ozcan M., Gurcel I., Gurcel M. CpG ODN nanorings induce IFNα from plasmacytoid dendritic cells and demonstrate potent vaccine adjuvant activity .Science Translational Medicine 6, 235ra61 (2014) Poeck et al. Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help. Blood, 103: 3058-3064 (2004)Poeck et al. Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help. Blood, 103: 3058-3064 (2004)

これら従来のCpG ODNは、ODN骨格の全部あるいは一部がホスホロチオエート化、即ち、ODNを構成するヌクレオチドのリン酸基のいずれかの酸素原子が硫黄原子によって置換されている。ホスホロチオエート骨格を有するODNは、体内のDNA分解酵素に耐性となり、また、ホスホジエステル骨格のみからなるODNに比べて細胞への取り込み効率が向上する。しかし、ホスホロチオエート骨格を有するODNは、タンパク質と非特異的に結合し、それによる副作用の懸念があることが指摘されている。 In these conventional CpG ODNs, all or part of the ODN skeleton is phosphorothioated, that is, the oxygen atom of any of the phosphate groups of the nucleotides constituting the ODN is replaced by a sulfur atom. ODNs having a phosphorothioate skeleton become resistant to DNA-degrading enzymes in the body, and their uptake efficiency into cells is improved as compared with ODNs consisting only of a phosphodiester skeleton. However, it has been pointed out that ODN having a phosphorothioate skeleton binds non-specifically to a protein, and there is a concern about side effects due to it.

また、CpG-A ODNは、上述のように高次構造を有するが、該構造は合成の過程で自然に生成する種々の高次構造が混在している形態である。これを、特定の高次構造が形成されるように工業的に制御する事はおろか、高いIFN誘導効果を示す高次構造を特定する事も不可能といってよく、このことがCpG-A ODNの臨床への応用を妨げている。上記非特許文献4は、CpG-Bをカチオン性ペプチドと複合化することで均一なナノ環状構造を作製することを提案しているが、ODNの塩基数、担体との比率等が限られ、設計の自由度に欠ける。 Further, CpG-A ODN has a higher-order structure as described above, and the structure is a form in which various higher-order structures naturally generated in the process of synthesis are mixed. It can be said that it is impossible to specify a higher-order structure showing a high IFN-inducing effect, let alone industrially control this so that a specific higher-order structure is formed, and this is CpG-A. It hinders the clinical application of ODN. The above-mentioned Non-Patent Document 4 proposes to prepare a uniform nanocyclic structure by complexing CpG-B with a cationic peptide, but the number of bases of ODN, the ratio with a carrier, etc. are limited. Lack of design freedom.

そこで、本発明はホスホロチオエート化されていなくてもI型IFN誘導活性に優れ、且つ、工業的生産に適する、免疫刺激オリゴヌクレオチドを提供することを目的とする。 Therefore, an object of the present invention is to provide an immunostimulating oligonucleotide which is excellent in type I IFN-inducing activity even if it is not phosphorothioated and is suitable for industrial production.

上記目的を達成するために種々検討したところ、驚くことに、CpGを含みホスホロチオエート化されていない1本鎖ODNを線状の2本鎖ODNとし、該2本鎖ODNを担体と複合体化すると、TLR9に認識されてI型IFNを誘導することを見出し、本発明を完成した。即ち、本発明は、以下のものである: As a result of various studies to achieve the above objectives, surprisingly, a single-stranded ODN containing CpG and not phosphorothioated was converted into a linear double-stranded ODN, and the double-stranded ODN was complexed with a carrier. , TLR9 was recognized to induce type I IFN, and the present invention was completed. That is, the present invention is as follows:

[1]10〜100塩基対を含む線状の2本鎖オリゴヌクレオチドであって、該2本鎖を構成する各1本鎖オリゴヌクレオチドは、ホスホジエステルを介したシトシン-グアニン配列(CpG)を2〜20個含み、各1本鎖オリゴヌクレオチドのヌクレオチド間の結合の90%以上がホスホジエステル結合である、2本鎖オリゴヌクレオチド;
[2]前記各1本鎖オリゴヌクレオチドが、パリンドローム配列を含まない、[1]記載の2本鎖オリゴヌクレオチド;
[3]各1本鎖オリゴヌクレオチドのヌクレオチド間の結合が全てホスホジエステル結合である、[1]又は[2]に記載の2本鎖オリゴヌクレオチド;
[4]1本鎖オリゴヌクレオチドが、下記塩基配列及び該配列においてCpG以外の1〜3塩基が欠損、置換もしくは付加された配列のいずれかの配列を有する、[1]〜[3]のいずれか1項に記載の2本鎖オリゴヌクレオチド
5’-TCGTCGTTTTGTCGTTTTGTCGTT-3’( 配列番号1)
5’-TCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTT-3’(配列番号2)
5’-TCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTT-3’(配列番号3)
5’-ATCGACTCTCGAGCGTTCTC-3’(配列番号4);
[5] 担体と、該担体と複合体化された[1]〜[4]のいずれか1項記載の2本鎖オリゴヌクレオチドとを含む、免疫刺激オリゴヌクレオチド複合体;
[6] 該担体が、リポソーム、高分子化合物、及び無機化合物から選択される、[5]記載の免疫刺激オリゴヌクレオチド複合体;
[7] 平均粒径が100nm以上、好ましくは250nm以上、より好ましくは700nm以上である、[5]又は[6]に記載の免疫刺激オリゴヌクレオチド複合体;
[8] 2本鎖オリゴヌクレオチドと担体との重量比が0.05:1〜10:1、好ましくは0.1:1〜10:1、より好ましくは0.15:1〜10:1である、[5]又は[6]に記載の免疫刺激オリゴヌクレオチド複合体;
[9] [5]〜[8]のいずれか1項に記載の免疫刺激オリゴヌクレオチド複合体を含む、ワクチンのアジュバント。
[1] A linear double-stranded oligonucleotide containing 10 to 100 base pairs, and each single-stranded oligonucleotide constituting the double strand has a phosphodiester-mediated citocin-guanine sequence (CpG). Double-stranded oligonucleotides containing 2 to 20 and in which 90% or more of the nucleotide-to-nucleotide bonds of each single-stranded oligonucleotide are phosphodiester bonds;
[2] The double-stranded oligonucleotide according to [1], wherein each of the single-stranded oligonucleotides does not contain a palindrome sequence;
[3] The double-stranded oligonucleotide according to [1] or [2], wherein the bonds between the nucleotides of each single-stranded oligonucleotide are all phosphodiester bonds;
[4] Any of [1] to [3], wherein the single-stranded oligonucleotide has the following base sequence and any sequence in which 1 to 3 bases other than CpG are deleted, substituted or added in the sequence. The double-stranded oligonucleotide according to item 1.
5'-TCGTCGTTTTGTCGTTTTGTCGTT-3'(SEQ ID NO: 1)
5'-TCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTT-3'(SEQ ID NO: 2)
5'-TCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTT-3'(SEQ ID NO: 3)
5'-ATCGACTCTCGAGCGTTCTC-3' (SEQ ID NO: 4);
[5] An immunostimulatory oligonucleotide complex comprising a carrier and the double-stranded oligonucleotide according to any one of [1] to [4] complexed with the carrier;
[6] The immunostimulating oligonucleotide complex according to [5], wherein the carrier is selected from liposomes, polymeric compounds, and inorganic compounds;
[7] The immunostimulating oligonucleotide complex according to [5] or [6], wherein the average particle size is 100 nm or more, preferably 250 nm or more, more preferably 700 nm or more;
[8] The weight ratio of the double-stranded oligonucleotide to the carrier is 0.05: 1 to 10: 1, preferably 0.1: 1 to 10: 1, and more preferably 0.15: 1 to 10: 1. There is an immunostimulating oligonucleotide complex according to [5] or [6];
[9] A vaccine adjuvant comprising the immunostimulatory oligonucleotide complex according to any one of [5] to [8].

[10] ヒトを含む哺乳動物、鳥類或いは魚類の感染症予防のための方法であって、感染症の原因となる病原体由来の無毒化あるいは弱毒化された抗原と、[5]〜[8]のいずれか1項に記載の免疫刺激オリゴヌクレオチド複合体を、連続して或いは同時に投与することにより、体内に病原体に対する抗体産生を促し、感染症に対する免疫を獲得すること含む、方法;
[11] ヒトを含む哺乳動物、鳥類或いは魚類の感染症予防用ワクチン製造における、[5]〜[8]のいずれか1項に記載の免疫刺激オリゴヌクレオチド複合体の使用;
[12] ヒトを含む哺乳動物、鳥類或いは魚類の感染症予防のための、[5]〜[8]のいずれか1項に記載の免疫刺激オリゴヌクレオチド複合体の使用。
[10] A method for preventing infectious diseases of mammals including humans, birds or fish, which is a detoxified or attenuated antigen derived from a pathogen causing the infectious disease, and [5] to [8]. The method comprising continuously or simultaneously administering the immunostimulatory oligonucleotide complex according to any one of the above items to promote the production of antibodies against pathogens in the body and acquire immunity against infectious diseases;
[11] Use of the immunostimulatory oligonucleotide complex according to any one of [5] to [8] in the production of a vaccine for preventing infectious diseases in mammals including humans, birds or fish;
[12] Use of the immunostimulatory oligonucleotide complex according to any one of [5] to [8] for the prevention of infectious diseases in mammals including humans, birds or fish.

[13]ガンの治療又は予防のための方法であって、
ガン抗原又はその一部分と、[5]〜[8]のいずれか1項に記載の免疫刺激オリゴヌクレオチド複合体を、連続して或いは同時に投与することにより、体内にがん抗原に対する細胞傷害性T細胞(CTL)を誘導し、ガン抗原を提示するがん細胞を攻撃させることにより、ガンを治療または予防する方法;
[14]ガン治療又は予防用ワクチン製造における、[5]〜[8]のいずれか1項に記載の免疫刺激オリゴヌクレオチド複合体の使用;
[15]ガン治療又は予防のための、[5]〜[8]のいずれか1項に記載の免疫刺激オリゴヌクレオチド複合体の使用。
[13] A method for treating or preventing cancer.
By continuously or simultaneously administering the cancer antigen or a part thereof and the immunostimulatory oligonucleotide complex according to any one of [5] to [8], cytotoxic T cells against the cancer antigen are administered into the body. A method of treating or preventing cancer by inducing cells (CTL) and attacking cancer cells that present cancer antigens;
[14] Use of the immunostimulatory oligonucleotide complex according to any one of [5] to [8] in the production of a vaccine for treating or preventing cancer;
[15] Use of the immunostimulatory oligonucleotide complex according to any one of [5] to [8] for the treatment or prevention of cancer.

[16] [5]〜[8]のいずれか1項記載の免疫刺激オリゴヌクレオチド複合体を含む、アレルギー治療又は予防のための医薬組成物;
[17] アレルゲン又はその一部を更に含む[16]に記載の医薬組成物。
[16] A pharmaceutical composition for treating or preventing allergies, which comprises the immunostimulating oligonucleotide complex according to any one of [5] to [8];
[17] The pharmaceutical composition according to [16], which further comprises an allergen or a part thereof.

[18]アレルギーの治療又は予防のための方法であって、
[5]〜[8]のいずれか1項に記載の免疫刺激オリゴヌクレオチド複合体を投与することにより、アレルゲン特異的なヘルパー1T(Th1)細胞をヘルパー2T(Th2)細胞よりも活性化させることによって、アレルギーを治療または予防する方法;
[19]さらにアレルゲン又はその一部を前記免疫刺激オリゴヌクレオチド複合体と連続して或いは同時に投与することを含む、[18]に記載の方法;
[20]アレルギー治療又は予防用医薬製造における、[5]〜[8]のいずれか1項に記載の免疫刺激オリゴヌクレオチド複合体の使用;
[21]アレルギー治療又は予防のための、[5]〜[8]のいずれか1項に記載の免疫刺激オリゴヌクレオチド複合体の使用。
[18] A method for treating or preventing allergies.
To activate allergen-specific helper 1T (Th1) cells more than helper 2T (Th2) cells by administering the immunostimulatory oligonucleotide complex according to any one of [5] to [8]. How to treat or prevent allergies;
[19] The method of [18], further comprising administering the allergen or a portion thereof continuously or simultaneously with the immunostimulating oligonucleotide complex;
[20] Use of the immunostimulatory oligonucleotide complex according to any one of [5] to [8] in the manufacture of a pharmaceutical for allergy treatment or prevention;
[21] Use of the immunostimulatory oligonucleotide complex according to any one of [5] to [8] for the treatment or prevention of allergies.

上記本発明の2本鎖オリゴヌクレオチドは、ヌクレオチド間の結合の90%以上がホスホジエステル結合であり、ホスホロチオエート結合を実質的に含まないので、副作用の懸念がない。また、複合体化も容易であり、得られる複合体は、構造及び大きさが制御されており、アジュバントとしての応用が期待される。該複合体は、抗原提示細胞のTLR9によって認識され、主にI型IFNを誘導し、その誘導量はCpG-B ODNを同じ担体に同じ方法で担持させたときに比べて有意に高い。 In the double-stranded oligonucleotide of the present invention, 90% or more of the bonds between nucleotides are phosphodiester bonds, and substantially no phosphorothioate bond is contained, so that there is no concern about side effects. In addition, complexation is easy, and the resulting complex has a controlled structure and size, and is expected to be applied as an adjuvant. The complex is recognized by TLR9 in antigen-presenting cells and mainly induces type I IFN, the amount of which is significantly higher than when CpG-B ODN is supported on the same carrier in the same way.

図1は、実施例1に示す、マウスマクロファージ様細胞からのIFN-βの誘導(相対的発現量)を示すグラフである。本発明のCpG ODN複合体であるB24-PDとリポフェクトアミン2000は、2本鎖において高いIFN-β誘導能を示した。*, p < 0.05FIG. 1 is a graph showing the induction (relative expression level) of IFN-β from mouse macrophage-like cells shown in Example 1. The CpG ODN complex of the present invention, B24-PD and lipofectamine 2000, showed high IFN-β inducibility at the double strand. *, p <0.05 図2は、実施例2に示す、マウスマクロファージ様細胞からのIFN-βの誘導を示すグラフである。本発明の2本鎖CpG ODN複合体は、48塩基対以上で高いIFN-β誘導能を示した。*, p < 0.05FIG. 2 is a graph showing the induction of IFN-β from mouse macrophage-like cells shown in Example 2. The double-stranded CpG ODN complex of the present invention showed high IFN-β inducibility at 48 base pairs or more. *, p <0.05 図3は、実施例3に示す、マウスマクロファージ様細胞からのIL-12の誘導を示すグラフである。本発明の2本鎖CpG ODN複合体はIFN-βのみならず、IL-12誘導能も保持していることが示された。*, p < 0.05FIG. 3 is a graph showing the induction of IL-12 from mouse macrophage-like cells shown in Example 3. It was shown that the double-stranded CpG ODN complex of the present invention retains not only IFN-β but also IL-12 inducibility. *, p <0.05 図4は、実施例4に示す、マウスマクロファージ様細胞からのIFN-βの誘導を示す。本発明のホスホジエステル2本鎖線状CpG ODNからのIFN-β誘導には担体との複合体化が必須であることが示された。*, p < 0.05FIG. 4 shows the induction of IFN-β from mouse macrophage-like cells shown in Example 4. It was shown that complexing with a carrier is essential for the induction of IFN-β from the phosphodiester double-stranded linear CpG ODN of the present invention. *, p <0.05 図5は、実施例5に示す、マウスマクロファージ様細胞からのIFN-βの誘導を示す。リポフェクトアミン2000以外のカチオン性リポソームにおいても、本発明の2本鎖CpG ODN複合体はIFN-βを誘導することが示された。*, p < 0.05FIG. 5 shows the induction of IFN-β from mouse macrophage-like cells shown in Example 5. It was shown that the double-stranded CpG ODN complex of the present invention also induces IFN-β in cationic liposomes other than Lipofectamine 2000. *, p <0.05 図6は、図4に示すリポフェクトアミン2000との複合体と図5に示すDOTAPとの複合体のIFN-β誘導量を比較して示す。本発明の2本鎖CpG ODNは、リポフェクトアミン2000と複合化したときの方が、DOTAPと複合化するよりも高いIFN-β誘導能を示した。*, p < 0.05FIG. 6 shows a comparison of the IFN-β induction amount of the complex with lipofectamine 2000 shown in FIG. 4 and the complex with DOTAP shown in FIG. The double-stranded CpG ODN of the present invention showed higher IFN-β inducibility when combined with Lipofectamine 2000 than when combined with DOTAP. *, p <0.05 図7は、実施例6に示す、マウスマクロファージ様細胞からのIFN-βの誘導を示す。リン酸カルシウム粒子においても、本発明の2本鎖CpG ODN複合体は高いIFN-β誘導能を示した。*, p < 0.05FIG. 7 shows the induction of IFN-β from mouse macrophage-like cells shown in Example 6. The double-stranded CpG ODN complex of the present invention also showed high IFN-β inducibility in calcium phosphate particles. *, p <0.05 図8は、実施例7に示す、ヒト形質細胞様樹状細胞からのIFN-αの誘導を示す。本発明の2本鎖CpG ODNをDOTAPと複合化したときに高いIFN-α誘導能を示した。*, p < 0.05FIG. 8 shows the induction of IFN-α from human plasmacytoid dendritic cells, as shown in Example 7. When the double-stranded CpG ODN of the present invention was combined with DOTAP, it showed high IFN-α inducibility. *, p <0.05 図9は、実施例7に示す、ヒトB細胞からのIL-6の誘導を示す。ホスホジエステル2本鎖線状CpG ODNは、遊離の状態でも、DOTAPと複合体化してもIL-6の誘導量は1本鎖に比べて低いことが示された。また、1本鎖および2本鎖のホスホロチオエートCpG ODNに比べても低いことが示された。*, p < 0.05FIG. 9 shows the induction of IL-6 from human B cells as shown in Example 7. It was shown that the phosphodiester double-stranded linear CpG ODN, both in the free state and in the complex with DOTAP, had a lower amount of IL-6 induced than the single-strand. It was also shown to be lower than single-stranded and double-stranded phosphorothioate CpG ODN. *, p <0.05 図10は、実施例7に示す、ヒト単球からのIFN-αの誘導を示す。本発明の2本鎖CpG ODN複合体は、細胞質DNA受容体にも認識されIFN-αを誘導することが示された。*, p < 0.05FIG. 10 shows the induction of IFN-α from human monocytes, as shown in Example 7. The double-stranded CpG ODN complex of the present invention was also recognized by the cytoplasmic DNA receptor and was shown to induce IFN-α. *, p <0.05 図11は時間経過によるリポフェクトアミン2000のサイズの変化を示したグラフである。リポフェクトアミン2000は、時間経過とともに集塊を形成することが示された。FIG. 11 is a graph showing the change in the size of Lipofectamine 2000 over time. Lipofectamine 2000 has been shown to form agglomerates over time. 図12はds B72-PDとリポフェクトアミン2000の複合体サイズとIFN-β誘導量の関係を示したグラフである。複合体サイズが700 nm以上でマウスマクロファージ様細胞への刺激において、高いIFN-β誘導能があることが示された。FIG. 12 is a graph showing the relationship between the complex size of ds B72-PD and lipofectamine 2000 and the amount of IFN-β induction. It was shown that the complex size is 700 nm or more and that it has a high ability to induce IFN-β in stimulation of mouse macrophage-like cells. 図13はリポフェクトアミン2000へのds B72-PDの結合量がIFN-β誘導に及ぼす影響を示したグラフである。培養液中のリポフェクトアミン2000の濃度が5 μg/ml のとき、ds B72-PDの結合量は、リポフェクトアミン2000の重量に対して少なくとも0.5以上であれば、マウスマクロファージ様細胞に対する刺激において高いIFN-β誘導能が得られることが示された。FIG. 13 is a graph showing the effect of the amount of ds B72-PD bound to lipofectamine 2000 on IFN-β induction. When the concentration of lipofectamine 2000 in the culture medium is 5 μg / ml, if the binding amount of ds B72-PD is at least 0.5 or more based on the weight of lipofectamine 2000, the stimulation to mouse macrophage-like cells It was shown that high IFN-β inducibility was obtained. 図14はds B72-PDとリポフェクトアミン2000の複合体の添加濃度がIFN-βに及ぼす影響を示したグラフである。マウスマクロファージ様細胞からのIFN-β誘導量はds B72-PDとリポフェクトアミン2000複合体の添加量に依存することが示された。FIG. 14 is a graph showing the effect of the addition concentration of the complex of ds B72-PD and lipofectamine 2000 on IFN-β. It was shown that the amount of IFN-β induced from mouse macrophage-like cells depends on the amount of ds B72-PD and the lipofectamine 2000 complex added. 図15はds B72-PDの配列を一部改変した2本鎖CpG ODNとリポフェクトアミン2000の複合体によるマウスマクロファージ様細胞からのIFN-β誘導を示したグラフである。いずれの2本鎖CpG ODN (ds B72M1-PD、ds B72M2-PD、ds B72M3-PD、ds B72M4-PD、ds B72M5-PD)複合体においてもds B72-PD複合体と同様に高いIFN-β誘導能を示した。FIG. 15 is a graph showing IFN-β induction from mouse macrophage-like cells by a complex of double-stranded CpG ODN and lipofectamine 2000 in which the sequence of ds B72-PD was partially modified. Both double-stranded CpG ODN (ds B72M1-PD, ds B72M2-PD, ds B72M3-PD, ds B72M4-PD, ds B72M5-PD) complexes have the same high IFN-β as the ds B72-PD complex. It showed inducibility. 図16はds B72-PDの配列を一部改変した2本鎖CpG ODNとDOTAPの複合体によるマウスマクロファージ様細胞からのIFN-β誘導を示したグラフである。いずれの2本鎖CpG ODN (ds B72M1-PD、ds B72M2-PD、ds B72M3-PD、ds B72M4-PD、ds B72M5-PD)複合体においてもds B72-PD複合体よりも高いIFN-β誘導能を示した。FIG. 16 is a graph showing IFN-β induction from mouse macrophage-like cells by a complex of double-stranded CpG ODN and DOTAP in which the sequence of ds B72-PD was partially modified. IFN-β induction higher in any double-stranded CpG ODN (ds B72M1-PD, ds B72M2-PD, ds B72M3-PD, ds B72M4-PD, ds B72M5-PD) complex than in the ds B72-PD complex Showed noh. 図17はds B48-PDの配列を一部改変した2本鎖CpG ODNとリポフェクトアミン2000の複合体によるマウスマクロファージ様細胞からのIFN-β誘導を示したグラフである。いずれの2本鎖CpG ODN (ds 48M1-PD、dsB48M2-PD、ds B48M3-PD、ds B48M4-PD、ds B48M5-PD、ds CpG48-PD)複合体においてもTLR9を介したIFN-β誘導が示された。FIG. 17 is a graph showing IFN-β induction from mouse macrophage-like cells by a complex of double-stranded CpG ODN and lipofectamine 2000 in which the sequence of ds B48-PD was partially modified. TLR9-mediated IFN-β induction in any double-stranded CpG ODN (ds 48M1-PD, dsB48M2-PD, ds B48M3-PD, ds B48M4-PD, ds B48M5-PD, ds CpG48-PD) complex Shown. 図18はds B72-PDとリポフェクトアミン2000の複合体によるOVA特異的CD8陽性T細胞の誘導効果を示したグラフである。6匹のマウスにおける血液中のCD8陽性T細胞中のOVA特異的CD8陽性T細胞の割合の平均値は、OVAとともにds B72-PD複合体を投与した群で有意に増加していることが示された。**, p < 0.05; NS,有意性なしFIG. 18 is a graph showing the inducing effect of OVA-specific CD8-positive T cells by the complex of ds B72-PD and lipofectamine 2000. Mean values of the proportion of OVA-specific CD8-positive T cells in blood CD8-positive T cells in 6 mice were shown to be significantly increased in the group receiving the ds B72-PD complex with OVA. Was done. **, p <0.05; NS, no significance 図19はds B72-PDとリポフェクトアミン2000の複合体によるOVA特異的IgG1抗体の産生効果を示したグラフである。6匹のマウスにおける血清中のOVA特異的IgG1抗体量の平均値は、OVAのみの投与に比べて、OVAとともにds B72-PD複合体を投与した群で有意に増加していることが示された。**, p < 0.05FIG. 19 is a graph showing the effect of the complex of ds B72-PD and lipofectamine 2000 on the production of OVA-specific IgG1 antibody. Mean values of serum OVA-specific IgG1 antibody levels in 6 mice were shown to be significantly increased in the ds B72-PD complex with OVA compared to OVA alone. It was. **, p <0.05 図20はds B72-PDとリポフェクトアミン2000の複合体によるOVA特異的IgG2a抗体の産生効果を示したグラフである。6匹のマウスにおける血清中のOVA特異的IgG2a抗体量の平均値は、OVAのみの投与に比べて、OVAとともにds B72-PD複合体を投与した群で有意に増加していることが示された。**, p < 0.05;NS,有意性なしFIG. 20 is a graph showing the effect of the complex of ds B72-PD and lipofectamine 2000 on the production of OVA-specific IgG2a antibody. Mean values of serum OVA-specific IgG2a antibody levels in 6 mice were shown to be significantly increased in the ds B72-PD complex with OVA compared to OVA alone. It was. **, p <0.05; NS, no significance 図21はds B72-PDとリポフェクトアミン2000の複合体によるOVA特異的IgE抗体の産生効果を示したグラフである。6匹のマウスにおける血清中のOVA特異的IgE抗体量の平均値は、OVAとともにds B72-PD複合体を投与した群で増加しているが、有意な増加ではないことが示された。NS,有意性なしFIG. 21 is a graph showing the effect of the complex of ds B72-PD and lipofectamine 2000 on the production of OVA-specific IgE antibody. Mean values of serum OVA-specific IgE antibody levels in 6 mice were shown to be increased in the group receiving the ds B72-PD complex with OVA, but not significantly. NS, no significance 図22はヒト末梢血単核球中のCD80陽性細胞の割合を示したグラフである。CD80は抗原提示に必要な共刺激因子のひとつである。ds B72-PD複合体におけるCD80誘導能はds CpG-free72-PD複合体より高く、その誘導能はCpG-AであるODN2216(図中のA2216)の複合体と同程度であった。FIG. 22 is a graph showing the proportion of CD80-positive cells in human peripheral blood mononuclear cells. CD80 is one of the co-stimulators required for antigen presentation. The CD80 inducibility of the ds B72-PD complex was higher than that of the ds CpG-free72-PD complex, and its inducibility was similar to that of the CpG-A ODN2216 (A2216 in the figure) complex. 図23はds B72-PDとリポフェクトアミン2000の複合体によるRAW264.7細胞のIFN-β誘導能を、プラスミドベクターpAcGFP-N1とリポフェクトアミン2000の複合体と比較したグラフである。線状構造であるds B72-PDの複合体の方が、環状構造であるプラスミドベクターの複合体よりも高いIFN-β誘導能を有することが示された。*, p < 0.05FIG. 23 is a graph comparing the IFN-β inducibility of RAW264.7 cells with the complex of ds B72-PD and lipofectamine 2000 with the complex of plasmid vector pAcGFP-N1 and lipofectamine 2000. It was shown that the linear structure ds B72-PD complex has higher IFN-β inducibility than the cyclic structure plasmid vector complex. *, p <0.05 図24はds B72-PDとリポフェクトアミン2000の複合体によるRAW264.7細胞のIL-12誘導能を、プラスミドベクターpAcGFP-N1とリポフェクトアミン2000の複合体と比較したグラフである。線状構造であるds B72-PDの複合体の方が、環状構造であるプラスミドベクターの複合体よりも高いIL-12誘導能を有することが示された。*, p < 0.05FIG. 24 is a graph comparing the IL-12 inducibility of RAW264.7 cells with the complex of ds B72-PD and lipofectamine 2000 with the complex of plasmid vector pAcGFP-N1 and lipofectamine 2000. It was shown that the linear structure ds B72-PD complex has higher IL-12 inducibility than the cyclic structure plasmid vector complex. *, p <0.05

<2本鎖オリゴヌクレオチド>
本発明において、「オリゴヌクレオチド」は、オリゴデオキシヌクレオチド(ODN)であり、アデニン(A)、グアニン(G)、シトシン(C)、及びチミン(T)から選ばれる塩基に、デオキシリボースを介してリン酸が結合された構成単位の複数からなる。
<Double-stranded oligonucleotide>
In the present invention, the "oligonucleotide" is an oligonucleotide (ODN), which is a base selected from adenine (A), guanine (G), cytosine (C), and thymine (T) via deoxyribose. It consists of a plurality of structural units to which phosphoric acid is bound.

本発明の2本鎖CpG ODNは10〜100塩基対、好ましくは20〜80塩基対を含む。該2本鎖を構成する各1本鎖CpG ODNは、互いに塩基長が異なっていてもよく、又、完全に相補的な塩基配列を有していなくてもよい。少なくとも、CpGおよびCpGの前後それぞれ3塩基が相補的であることが好ましい。より好ましくは、1本鎖CpG ODN同士が80%以上の相補性を有し、さらに好ましくは90%以上の相補性を有する。最も好ましくは各1本鎖CpG ODNの塩基長が等しく、100%の相補性を有し、3’および5’末端においても2本鎖を形成している。 The double-stranded CpG ODN of the present invention contains 10 to 100 base pairs, preferably 20 to 80 base pairs. Each single-strand CpG ODN constituting the double-strand may have different base lengths from each other, or may not have a completely complementary base sequence. It is preferable that at least 3 bases of CpG and 3 bases before and after CpG are complementary. More preferably, the single-strand CpG ODNs have 80% or more complementarity, and even more preferably 90% or more complementarity. Most preferably, each single-stranded CpG ODN has the same base length, has 100% complementarity, and also forms double strands at the 3'and 5'ends.

該2本鎖CpG ODNは線状である。線状構造の代表例としては、2重らせん構造の中心線が線状である構造が挙げられる。但し、本発明において「線状」とは、2重らせん構造の中心線の両端が閉じた環状構造、例えばプラスミドDNAのような2本鎖環状構造及び1本鎖DNAに非相補的配列が連続することによって形成される大きなループ構造、又は塊状構造、例えばCpG-A ODNの四量体構造、を除く広い構造を包含する。また、線状構造の一部又は端部に、数塩基〜10塩基長程度の2本鎖を形成していない直線状もしくは小さいループ状の部分を含んでいてもよい。 The double-stranded CpG ODN is linear. A typical example of the linear structure is a structure in which the center line of the double helix structure is linear. However, in the present invention, "linear" means a cyclic structure in which both ends of the center line of the double helix structure are closed, for example, a double-stranded cyclic structure such as plasmid DNA and a sequence non-complementary to the single-stranded DNA are continuous. Includes a wide range of structures, excluding large loop structures or massive structures formed by doing so, such as the tetrameric structure of CpG-A ODN. Further, a part or an end of the linear structure may include a linear or small loop-shaped portion that does not form a double strand having a length of several bases to 10 bases.

各1本鎖CpG ODNは、ホスホジエステルを介して結合されたシトシン-グアニン配列(CpG)を2〜20個、好ましくは4個以上、より好ましくは6個以上含む。CpG以外のヌクレオチドは任意であってよい。塩基配列中のCpGの位置は特に限定されないが、3’および5’末端から1ヌクレオチド以上離れていることが好ましい。また、CpG同士は1以上のヌクレオチドにより分離されていることが好ましい。 Each single-strand CpG ODN contains 2 to 20, preferably 4 or more, more preferably 6 or more cytosine-guanine sequences (CpG) linked via a phosphodiester. Nucleotides other than CpG may be arbitrary. The position of CpG in the base sequence is not particularly limited, but is preferably 1 nucleotide or more away from the 3'and 5'ends. Further, it is preferable that CpGs are separated from each other by one or more nucleotides.

各1本鎖CpG ODNにおけるヌクレオチド間の結合は、全結合数の90%以上、好ましくは95%以上、最も好ましくは100%の結合がホスホジエステル結合である。ホスホジエステル結合として、例えば前述したヌクレオチドのリン酸基の酸素原子が硫黄原子に置換されたホスホロチオエート結合、ヌクレオチドの糖が修飾された2'-O,4'-C-methano-bridged nucleic acid (2',4'-BNA)やその誘導体である3’-amino-BNA、5’-amino-BNA構造などを全結合数の10%以下で含んでもよい。 The bonds between nucleotides in each single-strand CpG ODN are 90% or more, preferably 95% or more, and most preferably 100% of the total number of bonds are phosphodiester bonds. Phosphodiester bonds include, for example, a phosphorothioate bond in which the oxygen atom of the phosphate group of the nucleotide is replaced with a sulfur atom, and a 2'-O, 4'-C-methano-bridged nucleic acid (2) in which the sugar of the nucleotide is modified. ', 4'-BNA) and its derivatives such as 3'-amino-BNA and 5'-amino-BNA structures may be contained in 10% or less of the total number of bonds.

各1本鎖CpG ODNは、パリンドローム配列を含まずともI型IFNを誘導する効果を奏し、好ましくはパリンドローム配列を含まない。 Each single-strand CpG ODN has the effect of inducing type I IFN even if it does not contain a palindrome sequence, and preferably does not contain a palindrome sequence.

本発明における1本鎖CpG ODNの好ましい例は、下記の塩基配列、及び該配列においてCpG以外の1〜3塩基が欠損、置換もしくは付加された配列のいずれかの配列を有する:

5’-TCGTCGTTTTGTCGTTTTGTCGTT-3’( 配列番号1)
5’-TCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTT-3’(配列番号2)
5’-TCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTT-3’(配列番号3)
5’-ATCGACTCTCGAGCGTTCTC-3’(配列番号4)

上記配列は、ヌクレオチド間の全ての結合がホスホジエステル結合であるが、上述のとおり、一部がホスホロチオエート結合等であってもよい。また、他の1本鎖CpG ODNは、上記配列と相補性である配列を有する。なお、表1に関して説明したとおり、本明細書において大文字の塩基はホスホジエステルにより結合されていることを意味する。
A preferred example of the single-stranded CpG ODN in the present invention has the following base sequence and any sequence in which 1 to 3 bases other than CpG are deleted, substituted or added.

5'-TCGTCGTTTTGTCGTTTTGTCGTT-3'(SEQ ID NO: 1)
5'-TCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTT-3'(SEQ ID NO: 2)
5'-TCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTT-3'(SEQ ID NO: 3)
5'-ATCGACTCTCGAGCGTTCTC-3' (SEQ ID NO: 4)

In the above sequence, all the bonds between nucleotides are phosphodiester bonds, but as described above, some of them may be phosphodiester bonds or the like. In addition, the other single-stranded CpG ODN has a sequence that is complementary to the above sequence. As described with respect to Table 1, the uppercase bases in the present specification are bound by phosphodiester bonds.

線状2本鎖CpG ODNの調製は、それぞれの1本鎖CpG ODNを核酸合成装置により別々に合成した後、バッファ中で等モルずつ混合し、約88〜約98℃で、約5〜約30分間加熱後、約0.1〜約2℃/分で徐々に温度を降下させることによって得ることができる。このとき、それぞれの1本鎖CpG ODNはお互い相補的な塩基配列をもち、それぞれの1本鎖CpG ODNの相補的な塩基が水素結合を形成することによって2本鎖CpG ODNとなる。
線状2本鎖CpG ODNを得る別法としては、バクテリアやウイルスのゲノムODNを鋳型として、CpGを含む領域をPCRによって増幅させる方法がある。さらには、環状プラスミドODNを宿主細胞中で増幅させ、回収した環状プラスミドを制限酵素で切断して得ることもできる。
To prepare linear double-stranded CpG ODN, each single-stranded CpG ODN is synthesized separately by a nucleic acid synthesizer, then equimolarly mixed in a buffer, and at about 88 to about 98 ° C., about 5 to about. It can be obtained by heating for 30 minutes and then gradually lowering the temperature at about 0.1 to about 2 ° C./min. At this time, each single-stranded CpG ODN has a base sequence complementary to each other, and the complementary bases of each single-stranded CpG ODN form a hydrogen bond to form a double-stranded CpG ODN.
Another method for obtaining linear double-stranded CpG ODN is to amplify the region containing CpG by PCR using the bacterial or viral genome ODN as a template. Furthermore, the circular plasmid ODN can be amplified in the host cell, and the recovered circular plasmid can be cleaved with a restriction enzyme to obtain it.

<免疫刺激オリゴヌクレオチド複合体>
本発明の第2の側面は、上記のようにして調製された2本鎖CpG ODNと生理学的に許容しうる担体とが複合体化された免疫刺激オリゴヌクレオチド複合体である。複合体化させることによって、I型IFN誘導能が顕著となる。「生理学的に許容しうる担体」とは、体内の細胞、組織あるいは器官に、本発明の目的を阻害するような障害を及ぼさない物質を指す。このような担体の例には、たとえば、高分子化合物、エマルション、リポソーム、無機化合物粒子、金属粒子、金属酸化物粒子、炭素系粒子、およびこれらの修飾物が包含され、好ましくはカチオン性である。
<Immune-stimulated oligonucleotide complex>
A second aspect of the present invention is an immunostimulatory oligonucleotide complex in which the double-stranded CpG ODN prepared as described above and a physiologically acceptable carrier are complexed. By complexing, the type I IFN inducing ability becomes remarkable. "Physiologically acceptable carrier" refers to a substance that does not impair cells, tissues or organs in the body in a manner that impairs the object of the present invention. Examples of such carriers include, for example, polymeric compounds, emulsions, liposomes, inorganic compound particles, metal particles, metal oxide particles, carbon-based particles, and modifications thereof, preferably cationic. ..

高分子化合物としては、カチオン性ポリマーであるポリエチレンイミン、キトサン、ポリリシン、LL-37、Tatなどが例示される。これらのカチオン性ポリマーは本発明の2本鎖CpG ODNと静電的に結合する。生分解性ポリマーであるpoly(lactic-co-glycolic acid) (PLGA)にDNAを内包する方法もある。また、デンドリマー等の多量体も担体として利用しうる。 Examples of the polymer compound include cationic polymers such as polyethyleneimine, chitosan, polylysine, LL-37, and Tat. These cationic polymers electrostatically bind to the double-stranded CpG ODN of the present invention. There is also a method of encapsulating DNA in poly (lactic-co-glycolic acid) (PLGA), which is a biodegradable polymer. In addition, a multimer such as a dendrimer can also be used as a carrier.

エマルションとしては、水/油型エマルションや水/油/水型エマルションが例示され、その水相に2本鎖CpG ODNを内包する方法などがありうる。リポソームとしては、脂質二重膜で構成されたリポソームに2本鎖CpG ODNを内包する方法や、カチオン性リポソーム、例えば長鎖アルキル基とアミノ基もしくはアンモニウム基を含むもの、に2本鎖CpG ODNを静電的に結合する方法などがある。 Examples of the emulsion include a water / oil type emulsion and a water / oil / water type emulsion, and there may be a method of including a double-stranded CpG ODN in the aqueous phase. Liposomes include double-stranded CpG ODN in a liposome composed of a lipid bilayer membrane, and cationic liposomes, for example, those containing a long-chain alkyl group and an amino group or an ammonium group. There is a method of electrostatically coupling the two.

無機化合物粒子としては、たとえばリン酸カルシウム粒子、水酸化アパタイト粒子、炭酸アパタイト粒子、シリカナノ粒子などが例示される。金属粒子としては、金粒子、銀粒子、白金粒子、シリコンナノ粒子などがある。金属酸化物粒子としては、酸化亜鉛粒子や二酸化チタン粒子、アルミナ粒子、ジルコニア粒子などが例示される。炭素系粒子には、フラーレン、カーボンナノチューブ、カーボンナノホーンなどが例示される。 Examples of the inorganic compound particles include calcium phosphate particles, hydroxide apatite particles, carbonic acid apatite particles, silica nanoparticles and the like. Examples of the metal particles include gold particles, silver particles, platinum particles, and silicon nanoparticles. Examples of the metal oxide particles include zinc oxide particles, titanium dioxide particles, alumina particles, and zirconia particles. Examples of carbon-based particles include fullerenes, carbon nanotubes, and carbon nanohorns.

これらの担体粒子のサイズは特に限定しないが、長さ又は最も長い径の平均(D50)が10nm〜1μmであることが好ましく、より好ましくは100〜800nmである。粒子形状は特に限定されず、球状、フレーク状、円柱状等であってよい。The size of these carrier particles is not particularly limited, but the average length or longest diameter (D 50 ) is preferably 10 nm to 1 μm, more preferably 100 to 800 nm. The particle shape is not particularly limited, and may be spherical, flake-shaped, columnar, or the like.

上記担体のうち、カチオン性リポソーム及び無機化合物粒子が好ましく、長鎖アルキル基とアミノ基もしくはアンモニウム基を含むカチオン性リポソーム、例えばリポフェクトアミン(Lipofectamine)(商標)、DOTAP(N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium methylsulfate)、 DMTAP(dimyristoyltrimethylammonium propane)、DOAB(dimethyldioctadecylammonium (bromide salt))、DODAP(1,2-dioleoyl-3-dimethylammonium-propane)、DC-CHOL(3b-[N-(N’,N’-dimethylaminoethane)-caramoyl]cholesterol hycrochloride)、DOSPA(N-[2-[(1,5,10,14-Tetraazatetradecane-1-yl)carbonylamino]ethyl]-N,N-dimethyl-2,3-bis(oleoyloxy)-1-propanaminium)等あるいは、電荷を持たないDOPE(1,2-dioleoyl-sn-glycero-3-phosphoethanolamin)等との混合物であってもよく(たとえば、DOSPA/DOPE (3:1 wt/wt))、無機化合物としてリン酸カルシウムやDEAEデキストランが好ましい。或いはこれらの混合物が好ましい。 Among the above carriers, cationic liposomes and inorganic compound particles are preferable, and cationic liposomes containing a long-chain alkyl group and an amino group or an ammonium group, for example, Lipofectamine ™, DOTAP (N- [1-(). 2,3-Dioleoyloxy) propyl] -N, N, N-trimethylammonium methylsulfate), DMTAP (dimyristoyltrimethylammonium propane), DOAB (dimethyldioctadecylammonium (bromide salt)), DODAP (1,2-dioleoyl-3-dimethylammonium-propane), DC -CHOL (3b- [N', N'-dimethylaminoethane) -caramoyl] cholesterol hycrochloride), DOSPA (N- [2-[(1,5,10,14-Tetraazatetradecane-1-yl) carbonylamino] ethyl ] -N, N-dimethyl-2,3-bis (oleoyloxy) -1-propanaminium), etc., or a mixture with uncharged DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamin), etc. It may be (for example, DOSPA / DOPE (3: 1 wt / wt)), and calcium phosphate or DEAE dextran is preferable as the inorganic compound. Alternatively, a mixture thereof is preferable.

本発明の2本鎖CpG ODNのこれらの担体との複合体化方法は特に限定されない。表面が正に帯電している担体には2本鎖CpG ODNを適当なバッファ中で混合することによって静電的に結合させることができる。2本鎖CpG ODNはリン酸カルシウム粒子、水酸化アパタイト粒子、炭酸アパタイト粒子、フラーレン、カーボンナノチューブ、カーボンナノホーンに吸着する。また、表面が正に帯電していない担体への担持方法としては、担体粒子の表面を、正電荷をもつ物質、たとえばポリエチレンイミン、キトサン、ポリリシンなど、で修飾して2本鎖CpG ODNを静電的に結合させる、あるいは、担体粒子表面にマレイミド基を導入し、一方、線状2本鎖CpG ODNの末端にチオール基を導入することによって共有結合を形成させることなどの方法がある。 The method for complexing the double-stranded CpG ODN of the present invention with these carriers is not particularly limited. A carrier whose surface is positively charged can be electrostatically bound by mixing double-stranded CpG ODN in a suitable buffer. Double-stranded CpG ODN is adsorbed on calcium phosphate particles, hydroxide apatite particles, carbonate apatite particles, fullerenes, carbon nanotubes, and carbon nanohorns. As a method of supporting the carrier on a carrier whose surface is not positively charged, the surface of the carrier particles is modified with a substance having a positive charge, for example, polyethyleneimine, chitosan, polylysine, etc. There are methods such as electrically bonding or introducing a maleimide group on the surface of the carrier particle, while introducing a thiol group at the end of the linear double-stranded CpG ODN to form a covalent bond.

該2本鎖CpG ODNと担体との重量比は、2本鎖CpG ODNの塩基鎖長、担体の性状、共に使用する抗原等に応じて、適宜調整することが好ましい。典型的には、2本鎖CpG ODN:担体の重量比を0.05:1〜10:1とする。 The weight ratio of the double-stranded CpG ODN to the carrier is preferably adjusted as appropriate according to the base chain length of the double-stranded CpG ODN, the properties of the carrier, the antigen used together, and the like. Typically, the weight ratio of the double-stranded CpG ODN: carrier is 0.05: 1 to 10: 1.

オリゴヌクレオチド複合体の効果は、TLR9を有する細胞、たとえばヒト及びマウスの形質細胞様樹状細胞、マウスマクロファージ、マウス定常型樹状細胞、に与えた後、I型IFNや炎症性サイトカインの遺伝子の発現量を定量すること、あるいはI型IFNや炎症性サイトカインの分泌量を定量することによって求めることができる。たとえば、遺伝子発現量はリアルタイム定量PCRなどによって、分泌量はELISA法などによって定量することができる。 The effect of the oligonucleotide complex is on cells carrying TLR9, such as human and mouse plasmacytoid dendritic cells, mouse macrophages, mouse stationary dendritic cells, and then on type I IFN and inflammatory cytokine genes. It can be determined by quantifying the expression level or by quantifying the secretion amount of type I IFN and inflammatory cytokines. For example, the gene expression level can be quantified by real-time quantitative PCR or the like, and the secretion amount can be quantified by the ELISA method or the like.

該複合体は、抗原やアレルゲンとともに与えることによってアジュバント効果を発揮することが期待できる。該複合体は、遊離の抗原やアレルゲンと混合して投与することができる。また、抗原やアレルゲンを該複合体と同一の担体に複合化させて投与する方法、あるいは抗原やアレルゲンを予め2本鎖CpG ODNと結合させてから担体に複合化させて投与する方法がある。さらに、抗原やアレルゲンを該複合体と別の担体に複合化し、該複合体と混合して投与する方法などがある。 The complex can be expected to exert an adjuvant effect when given together with an antigen or an allergen. The complex can be administered in admixture with a free antigen or allergen. Further, there is a method in which the antigen or allergen is complexed to the same carrier as the complex and administered, or a method in which the antigen or allergen is previously bound to the double-stranded CpG ODN and then complexed to the carrier for administration. Further, there is a method in which an antigen or an allergen is complexed with a carrier different from the complex, mixed with the complex, and administered.

抗原やアレルゲンの担体との複合体化方法は特に限定されないが、たとえば、カチオン性リポソームの中空に抗原やアレルゲンを内包した後、カチオン性リポソームの表面に線状2本鎖CpG ODNを静電的に結合する方法や、リン酸カルシウム粒子、水酸化アパタイト粒子、炭酸アパタイト粒子の表面に線状2本鎖CpG ODNと抗原あるいはアレルゲンを同時に吸着させる方法などがある。 The method of complexing the antigen or allergen with the carrier is not particularly limited. For example, after encapsulating the antigen or allergen in the hollow of the cationic liposome, a linear double-stranded CpG ODN is electrostatically applied to the surface of the cationic liposome. There are a method of adsorbing a linear double-stranded CpG ODN and an antigen or an allergen on the surface of calcium phosphate particles, hydroxyapatite particles, and carbonate apatite particles at the same time.

また、リン酸カルシウム粒子、水酸化アパタイト粒子、炭酸アパタイト粒子を調製する際の原料液に線状2本鎖CpG ODNと抗原あるいはアレルゲンを混合しておくことによって、これらの粒子の中に線状2本鎖CpG ODNと抗原あるいはアレルゲンを同時に内包することもできる。予め線状2本鎖CpG ODNに抗原やアレルゲンを結合させてから担体に担持する場合には、線状2本鎖CpG ODNの末端をチオール基で修飾し、一方、抗原やアレルゲンのアミノ基にマレイミド基を導入し、チオール基とマレイミド基を共有結合させる方法などがある。 In addition, by mixing linear double-stranded CpG ODN with an antigen or allergen in the raw material liquid for preparing calcium phosphate particles, hydroxide apatite particles, and carbonate apatite particles, two linear particles are contained in these particles. The chain CpG ODN and the antigen or allergen can be included at the same time. When an antigen or allergen is bound to a linear double-stranded CpG ODN in advance and then supported on a carrier, the terminal of the linear double-stranded CpG ODN is modified with a thiol group, while the amino group of the antigen or allergen is used. There is a method of introducing a maleimide group and covalently bonding a thiol group and a maleimide group.

抗原の例としては、手足口病ウイルス抗原、デング熱ウイルス抗原、及びウエストナイル熱ウイルス抗原などが挙げられる。また、アレルゲンの例としては、スギ花粉アレルゲン、ブタクサアレルゲン、イネアレルゲン、及びダニアレルゲンなどが挙げられる。また、癌細胞の抗原なども挙げられる。 Examples of the antigen include hand-foot-and-mouth disease virus antigen, dengue virus antigen, West Nile fever virus antigen and the like. Examples of allergens include cedar pollen allergens, ragweed allergens, rice allergens, and mite allergens. In addition, antigens of cancer cells and the like can also be mentioned.

ワクチンとは、感染症の予防に用いる医薬品を指す。無毒化あるいは弱毒化された抗原を投与することで、体内に病原体に対する抗体産生を促し、感染症に対する免疫を獲得する。特に限定しないが、毒性を弱めた微生物やウイルスを使用する生ワクチンとしては、BCG、経口生ポリオ(OPV)ワクチン、痘苗(天然痘)、麻疹ワクチン、風疹ワクチン、麻疹・風疹混合ワクチン(MRワクチン)、流行性耳下腺炎(おたふく)、ワクチン水痘ワクチン、黄熱ワクチン、ロタウイルスワクチン、帯状疱疹ワクチンなどが実用化されている。化学処理などにより死んだウイルス、細菌、リケッチア、或いは抗原部分のみを培養したものを含めた不活化ワクチンとしては、インフルエンザウイルスワクチン、肺炎球菌ワクチン、狂犬病ワクチン、コレラワクチン、二種混合(DT)ワクチン(ジフテリア・破傷風混合ワクチン)、三種混合(DPT)ワクチン(ジフテリア・百日咳・破傷風混合ワクチン)、四種混合(DPT-IPV)ワクチン(ジフテリア・百日咳・破傷風・不活化ポリオ混合ワクチン)、日本脳炎ワクチン、百日咳ワクチンなどが実用化されている。 Vaccines refer to medicines used to prevent infectious diseases. By administering a detoxified or attenuated antigen, the body promotes the production of antibodies against pathogens and acquires immunity against infectious diseases. Although not particularly limited, live vaccines using microorganisms and viruses with weakened toxicity include BCG, oral live polio (OPV) vaccine, sputum seedlings (natural pox), measles vaccine, rubella vaccine, measles / rubella mixed vaccine (MR vaccine). ), Mumps, vaccine varicella vaccine, yellow fever vaccine, rotavirus vaccine, herpes zoster vaccine, etc. have been put into practical use. Inactivated vaccines including those obtained by culturing only the virus, bacteria, liquettia, or antigen part that died due to chemical treatment include influenza virus vaccine, pneumonia vaccine, mad dog disease vaccine, cholera vaccine, and DPT vaccine. (Difteria / tetanus mixed vaccine), DPT vaccine (difteria / pertussis / tetanus mixed vaccine), quadruple (DPT-IPV) vaccine (difteria / pertussis / tetanus / inactivated polio mixed vaccine), Japanese encephalitis vaccine , DPT vaccine, etc. have been put into practical use.

がんワクチンは、がんの治療又は予防目的で使用されるワクチンのことを指す。抗原(がん抗原)としては、正常細胞ではまったく発現していないか、発現していても少量であり、癌細胞においては過剰に発現している抗原タンパク質の全長または一部分(ペプチド)を用いる。特に限定しないが、悪性黒色腫(メラノーマ)におけるMAGE、乳癌などにおけるHER2/neu、大腸癌におけるCEA、各種白血病や各種癌におけるWT1、悪性黒色腫、食道癌、胃癌、卵巣癌などにおけるNY-ESO-1などが挙げられる。これらのがん抗原タンパク質(又はその分解ペプチド)を体内の細胞傷害性T細胞(CTL)が認識し、癌細胞を攻撃する(細胞性免疫)。癌抗原(ペプチド)を人為的に投与し、特異的なCTLを誘導(分化増殖)することでがんを治療するのが、がんワクチン療法である。
なお、発がんウイルスの感染阻止を目的とするワクチンもがんワクチンに含まれる。B型肝炎ウィルスワクチン(肝硬変を経て肝がんを引き起こす)やヒトパピローマウイルス(子宮頸がんを引き起こす)などが実用化されている。
Cancer vaccine refers to a vaccine used for the treatment or prevention of cancer. As the antigen (cancer antigen), the full length or a part (peptide) of the antigen protein that is not expressed at all in normal cells or is expressed in a small amount even if it is expressed in normal cells and is overexpressed in cancer cells is used. Although not particularly limited, MAGE in malignant melanoma, HER2 / neu in breast cancer, CEA in colorectal cancer, WT1 in various leukemias and various cancers, NY-ESO in malignant melanoma, esophageal cancer, gastric cancer, ovarian cancer, etc. -1 etc. can be mentioned. These cancer antigen proteins (or their degradation peptides) are recognized by cytotoxic T cells (CTL) in the body and attack cancer cells (cell-mediated immunity). Cancer vaccine therapy treats cancer by artificially administering a cancer antigen (peptide) and inducing (differentiating and proliferating) specific CTLs.
Vaccines aimed at preventing carcinogenic virus infection are also included in cancer vaccines. Hepatitis B virus vaccine (which causes liver cancer through cirrhosis) and human papillomavirus (which causes cervical cancer) have been put into practical use.

花粉症やハウスダストアレルギーの患者は、それぞれのアレルゲンに特異的なヘルパー2T(Th2)経路がヘルパー1T(Th1)経路に対して優勢になっている。すなわち、アレルゲン特異的なTh1経路を活性化し、Th2経路に対して優勢にすることが治療戦略のひとつである。マウスにおいてはIgG2a/IgG1の比がTh1/Th2の比の指標となるが、ヒトにおいてはIgG4/IgG1の比がTh1/Th2の比の指標となる場合もある。 In patients with pollinosis and house dust allergies, the helper 2T (Th2) pathway specific to each allergen predominates over the helper 1T (Th1) pathway. That is, one of the therapeutic strategies is to activate the allergen-specific Th1 pathway and make it dominant over the Th2 pathway. In mice, the IgG2a / IgG1 ratio is an index of the Th1 / Th2 ratio, but in humans, the IgG4 / IgG1 ratio may be an index of the Th1 / Th2 ratio.

本願に係る治療対象として、ヒトを含む哺乳動物(サルなどの霊長類;イヌ、ネコなどのコンパニオンアニマル;馬、ブタ、牛、ヤギ、羊などの家畜;ラット、マウスなどの実験動物)、鳥類(野鳥又は鶏や七面鳥などの家禽)或いは魚類(水産養殖の生物種:例えば、アユやサケ科魚類などの淡水魚や、ブリ、カンパチなどの海水魚)が挙げられが、TLR9が発現している種であれば特に限定しなくてよい。 The treatment targets according to the present application include mammals including humans (primates such as monkeys; companion animals such as dogs and cats; domestic animals such as horses, pigs, cows, goats and sheep; experimental animals such as rats and mice), and birds. (Wild birds or poultry such as chickens and turkeys) or fish (fish-cultured species: freshwater fish such as ayu and salmon, and saltwater fish such as bristle and campachi), but TLR9 is expressed. If it is a species, it does not have to be particularly limited.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
<1本鎖CpG ODN及び線状2本鎖CpG ODNの調製>
表2に示した各配列を有する1本鎖CpG ODN、及び該塩基配列と相補する配列を有する1本鎖ODNを合成し、ハイブリダイゼーションさせることによって2本鎖CpG ODNを調製した。ハイブリダイゼーションは、表2に示した各配列番号の1本鎖CpG ODNと、これと相補する1本鎖CpG ODNをTESバッファ(10 mM Tris-HCl pH8.0、1 mM EDTAおよび0.25 mM NaCl)中で等モル比で混合し、95℃で10分間インキュベーション後、温度を30℃ まで60 分かけて下げることにより行った。このハイブリダイゼーションにより完全な線状2本鎖ODNを得た。
Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples.
<Preparation of single-strand CpG ODN and linear double-stranded CpG ODN>
A double-stranded CpG ODN having each sequence shown in Table 2 and a single-stranded ODN having a sequence complementary to the base sequence were synthesized and hybridized to prepare a double-stranded CpG ODN. Hybridization was performed by using the single-stranded CpG ODN of each SEQ ID NO: shown in Table 2 and the complementary single-stranded CpG ODN in a TES buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA and 0.25 mM NaCl). The mixture was mixed in an equimolar ratio, incubated at 95 ° C. for 10 minutes, and then lowered to 30 ° C. over 60 minutes. This hybridization gave a complete linear double-stranded ODN.

比較用に、表3に示した各配列番号の1本鎖及び2本鎖ODNを、及び、参考用に表4に示した各配列番号の1本鎖及び2本鎖ODNを、上記と同様の手順で調製した。なお、表3のB24-PT(配列番号5)は、表1のODN2006と同じである。 For comparison, the single-stranded and double-stranded ODNs of each SEQ ID NO: shown in Table 3 and for reference, the single-stranded and double-stranded ODNs of each SEQ ID NO: shown in Table 4 are the same as above. It was prepared according to the procedure of. B24-PT (SEQ ID NO: 5) in Table 3 is the same as ODN2006 in Table 1.

1本鎖ODNであるB24-PT(配列番号5)、K3-PT(配列番号8)、B24-PD(配列番号1)、K3-PD(配列番号4)、CpG-free24-PD(配列番号9)、およびこれらの線状2本鎖ODNを、カチオン性リポソームであるリポフェクトアミン(登録商標)2000 (Life Technologies) に重量比が1:1になるようにそれぞれを混合して静電的に結合させた。
TLR9を含む細胞としてマウスのマクロファージの細胞株であるRAW264.7を用いた。該細胞株を、3.3 x 105 cells/mlの密度でイーグル最小必須培地(MEM)に播種した。24時間後、B24-PT、K3-PT、B24-PD、K3-PD、CpG-free24-PD、およびこれらの2本鎖ODNとリポフェクトアミン2000の複合体を、リポフェクトアミン2000の濃度が5μg/mlになるように添加した。すなわち、リポフェクトアミン2000に結合しているODN(B24-PT、K3-PT、B24-PD、K3-PD、およびこれらの2本鎖DNA)は、5μg/mlの濃度で添加されたことになる。6時間後、細胞を回収し、ISOGEN(日本ジーン製)で全RNAを抽出した後、逆転写酵素(TaKaRa Bio)でcDNAを合成した。このcDNAを鋳型として、IFN-β遺伝子の発現量をリアルタイム定量PCRによって測定した。IFN-β遺伝子の発現量は、GAPDH遺伝子の発現量によりノーマライゼーションした。リアルタイム定量PCRによるIFN-β発現量測定のためのプライマー配列は、forward, 5’-GGTCCGAGCAGAGATCTTCA-3’(配列番号29); reverse, 5’-TCACTACCAGTCCCAGAGTCC-3’ (配列番号30)、GAPDH遺伝子発現量測定のためのプライマー配列は、forward, 5’-GTGGACCTCATGGCCTACAT-3’ (配列番号31); reverse, 5’-TGTGAGGGAGATGCTCAGTG-3’ (配列番号32)であった。
Single-stranded ODN B24-PT (SEQ ID NO: 5), K3-PT (SEQ ID NO: 8), B24-PD (SEQ ID NO: 1), K3-PD (SEQ ID NO: 4), CpG-free24-PD (SEQ ID NO: 4) 9), and these linear double-stranded ODNs are electrostatically mixed with the cationic liposome Lipofectamine® 2000 (Life Technologies) so that the weight ratio is 1: 1. Combined with.
As a cell containing TLR9, RAW264.7, which is a mouse macrophage cell line, was used. The cell lines were seeded in Eagle's minimal essential medium (MEM) at a density of 3.3 x 10 5 cells / ml. After 24 hours, B24-PT, K3-PT, B24-PD, K3-PD, CpG-free24-PD, and a complex of these double-stranded ODN and lipofectamine 2000, were added to the concentration of lipofectamine 2000. It was added to 5 μg / ml. That is, the ODN (B24-PT, K3-PT, B24-PD, K3-PD, and their double-stranded DNA) bound to Lipofectamine 2000 was added at a concentration of 5 μg / ml. Become. After 6 hours, the cells were collected, total RNA was extracted with ISOGEN (manufactured by Japan Gene), and then cDNA was synthesized with reverse transcriptase (TaKaRa Bio). Using this cDNA as a template, the expression level of the IFN-β gene was measured by real-time quantitative PCR. The expression level of the IFN-β gene was normalized by the expression level of the GAPDH gene. Primer sequences for measuring IFN-β expression by real-time quantitative PCR are forward, 5'-GGTCCGAGCAGAGATCTTCA-3'(SEQ ID NO: 29); reverse, 5'-TCACTACCAGTCCCAGAGTCC-3' (SEQ ID NO: 30), GAPDH gene expression. The primer sequence for quantification was forward, 5'-GTGGACCTCATGGCCTACAT-3'(SEQ ID NO: 31); reverse, 5'-TGTGAGGGAGATGCTCAGTG-3' (SEQ ID NO: 32).

図1に示すように、B24-PTおよびK3-PTのリポフェクトアミン2000との複合体は1本鎖でも2本鎖でも、IFN-βの誘導は認められなかった。一方、B24-PDおよびK3-PDにおいては、2本鎖で顕著に高いIFN-βが誘導された。また、2本鎖B24-PDの方が、2本鎖K3-PDに比べて、高いIFN-β誘導能を有していた。 As shown in FIG. 1, no induction of IFN-β was observed in either the single-stranded or double-stranded complex of B24-PT and K3-PT with lipofectamine 2000. On the other hand, in B24-PD and K3-PD, significantly higher IFN-β was induced in the double strand. In addition, double-stranded B24-PD had higher IFN-β-inducing ability than double-stranded K3-PD.

上記のとおり、実施例1において、2本鎖B24-PDとリポフェクトアミン2000の複合体で、RAW264.7細胞からのTLR9を介した高いIFN-β誘導が観察された。2本鎖B24-PDは24塩基対で、それぞれの鎖にCpGを4つ含んでいる。2本鎖B24-PDを2つつなげた2本鎖B48-PDは、48塩基対で、それぞれの鎖にCpGを8つ含んでいる。また、2本鎖B24-PDを3つつなげた2本鎖B72-PDは、72塩基対で、それぞれの鎖にCpGを12個含んでいる。これらの2本鎖CpG ODNを、実施例1と同様な方法でリポフェクトアミン2000に結合させ、RAW264.7細胞を刺激した。 As described above, in Example 1, high IFN-β induction via TLR9 from RAW264.7 cells was observed in the complex of double-stranded B24-PD and lipofectamine 2000. Double-stranded B24-PD is 24 base pairs and contains four CpG in each strand. The double-stranded B48-PD, which is a combination of two double-stranded B24-PDs, is 48 base pairs and contains eight CpG in each strand. In addition, the double-stranded B72-PD in which three double-stranded B24-PDs are connected is 72 base pairs and contains 12 CpG in each strand. These double-stranded CpG ODNs were bound to Lipofectamine 2000 in the same manner as in Example 1 to stimulate RAW264.7 cells.

結果を図2に示す。図2において、「ds」は2本鎖であること、「PT」はホスホチオエート骨格であること、及び「PD」はホスホジエステル骨格であることを示す。図2に示すように、2本鎖B48-PDによるIFN-β誘導量は、2本鎖B24-PDよりも顕著に高かった。しかしながら、2本鎖B72-PDによるIFN-β誘導量は、2本鎖B48-PDと変わりなかった。ここから、高いIFN-β誘導量とCpG配列数とは単純な比例関係にはなく、最適な数があることが示唆された。一方、ホスホロチオエート化した2本鎖B72-PTは、IFN-βをほとんど誘導しなかった。これは、ホスホロチオエート化した2本鎖CpG ODNでは、CpGの数を増やしてもIFN-β誘導能は向上しないことを意味している。 The results are shown in FIG. In FIG. 2, "ds" indicates that it is a double strand, "PT" is a phosphothioate skeleton, and "PD" is a phosphodiester skeleton. As shown in FIG. 2, the amount of IFN-β induction by the double-stranded B48-PD was significantly higher than that of the double-stranded B24-PD. However, the amount of IFN-β induction by double-stranded B72-PD was the same as that of double-stranded B48-PD. From this, it was suggested that the high IFN-β induction amount and the number of CpG sequences are not in a simple proportional relationship, but that there is an optimum number. On the other hand, phosphorothioated double-stranded B72-PT hardly induced IFN-β. This means that in phosphorothioated double-stranded CpG ODN, increasing the number of CpG does not improve the IFN-β inducibility.

RAW264.7細胞はTLR9のみならずDAI、IFI16、DDX41、cGASのような細胞質DNA受容体をもっている。細胞質DNA受容体は、塩基配列に関係なく2本鎖DNAを認識してI型IFNを誘導する。したがって、2本鎖B24-PD、2本鎖B48-PDおよび2本鎖B72-PDによるIFN-βは、TLR9と細胞質DNA受容体の両方を介して誘導されたと考えられる。そこで、それぞれ24塩基対、48塩基対および72塩基対の、CpGを含まない2本鎖CpG-free24-PD 、2本鎖CpG-free48-PDと2本鎖B72-PDからのIFN-β誘導量を調べた。 RAW264.7 cells have cytoplasmic DNA receptors such as DAI, IFI16, DDX41 and cGAS as well as TLR9. The cytoplasmic DNA receptor recognizes double-stranded DNA and induces type I IFN regardless of the base sequence. Therefore, IFN-β by double-stranded B24-PD, double-stranded B48-PD and double-stranded B72-PD is considered to be induced via both TLR9 and cytoplasmic DNA receptors. Therefore, IFN-β induction from CpG-free double-stranded CpG-free24-PD, double-stranded CpG-free48-PD, and double-stranded B72-PD at 24 base pairs, 48 base pairs, and 72 base pairs, respectively. I checked the amount.

図2に示すように、それぞれ24塩基対、48塩基対および72塩基対の、CpGを含まない2本鎖CpG-free24-PD 、2本鎖CpG-free48-PDと2本鎖B72-PDからのIFN-β誘導量は、2本鎖CpG-free24-PD 、2本鎖B48-PDおよび2本鎖B72-PDに比べて有意に低かった。ここから、2本鎖CpG-free24-PD 、2本鎖B48-PDおよび2本鎖B72-PDからのIFN-β誘導の大部分はTLR9を介していることが分かった。 As shown in FIG. 2, from CpG-free double-stranded CpG-free24-PD, double-stranded CpG-free48-PD, and double-stranded B72-PD, which are 24 base pairs, 48 base pairs, and 72 base pairs, respectively. The amount of IFN-β induction was significantly lower than that of double-stranded CpG-free24-PD, double-stranded B48-PD and double-stranded B72-PD. From this, it was found that most of the IFN-β induction from double-stranded CpG-free24-PD, double-stranded B48-PD and double-stranded B72-PD is mediated by TLR9.

実施例2と同じ条件において、炎症性サイトカインであるIL-12の誘導量をリアルタイム定量PCRによって測定した。IL-12誘導量測定のためのプライマー配列は、forward, 5’-GAAAGGCTGGGTATCGG-3’ (配列番号33); reverse, 5’-GGCTGTCCTCAAACTCAC-3’ (配列番号34)であった。図3に示すように、2本鎖B24-PD、2本鎖B48-PD、および2本鎖B72-PDとリポフェクトアミン2000の複合体は、いずれもRAW264.7細胞からIL-12を誘導した。また、その誘導量は、IFN-βと異なり、2本鎖B24-PDの方が、2本鎖B48-PDおよび2本鎖B72-PDよりも高かった。この結果は、ホスホジエステルの2本鎖CpG ODNの複合体には、IFN-βのみならず、IL-12誘導能も保持していることを示している。 Under the same conditions as in Example 2, the amount of induction of IL-12, which is an inflammatory cytokine, was measured by real-time quantitative PCR. The primer sequence for IL-12 induction measurement was forward, 5'-GAAAGGCTGGGTATCGG-3'(SEQ ID NO: 33); reverse, 5'-GGCTGTCCTCAAACTCAC-3' (SEQ ID NO: 34). As shown in FIG. 3, double-stranded B24-PD, double-stranded B48-PD, and the complex of double-stranded B72-PD and lipofectamine 2000 all induce IL-12 from RAW264.7 cells. did. In addition, unlike IFN-β, the amount of induction was higher in double-stranded B24-PD than in double-stranded B48-PD and double-stranded B72-PD. This result indicates that the phosphodiester double-stranded CpG ODN complex retains not only IFN-β but also IL-12 inducibility.

複合体を形成していない、遊離の2本鎖B72-PD及び2本鎖B72-PDと、それらとリポフェクトアミン2000の複合体とのIFN-β誘導量を比較した。2本鎖B72-PDとリポフェクトアミン2000の複合体は実施例1と同様な方法で調製した。RAW264.7細胞の培養も実施例1と同様に行った。リポフェクトアミン2000と複合体を形成していない遊離の2本鎖B72-PDは50μg/mlの濃度になるように培地に添加した。この濃度は、リポフェクトアミン2000と複合体化した2本鎖B72-PDの濃度 (5μg/ml)の10倍である。 The IFN-β induction amounts of free double-stranded B72-PD and double-stranded B72-PD, which did not form a complex, and the complex of lipofectamine 2000 with them were compared. The complex of double-stranded B72-PD and lipofectamine 2000 was prepared in the same manner as in Example 1. Culturing of RAW264.7 cells was also carried out in the same manner as in Example 1. Free double-stranded B72-PD, which did not form a complex with Lipofectamine 2000, was added to the medium to a concentration of 50 μg / ml. This concentration is 10 times higher than the concentration of double-stranded B72-PD complexed with Lipofectamine 2000 (5 μg / ml).

図4に示すように、2本鎖B72-PDは、リポフェクトアミン2000と複合体化させたときのみIFN-βを誘導した。これは、ホスホジエステルの2本鎖CpG ODNによるIFN-β誘導のためには、複合体化が必須であることを意味している。 As shown in FIG. 4, double-stranded B72-PD induced IFN-β only when complexed with lipofectamine 2000. This means that complexation is essential for IFN-β induction by the double-stranded CpG ODN of phosphodiesters.

2本鎖B72-PDおよび2本鎖CpG-free72-PDを、カチオン性リポソームであるDOTAP (Roche Life Science) に重量比が1:6になるようにそれぞれを混合して静電的に結合させた。実施例1と同様な方法でRAW264.7細胞を培養し、DOTAPが30μg/mlの濃度になるように培地中に添加した。すなわち、培地中で、DOTAPと複合体化されている2本鎖B72-PDおよび2本鎖CpG-free72-PDの濃度は5μg/mlである。一方、DOTAPと複合体化していない遊離の2本鎖B72-PDおよび2本鎖CpG-free72-PDは50μg/mlの濃度になるように培地に添加した。この濃度は、DOTAPと複合体化した2本鎖B72-PDの濃度 (5μg/ml)の10倍である。 Double-stranded B72-PD and double-stranded CpG-free72-PD are electrostatically bound to DOTAP (Roche Life Science), which is a cationic liposome, by mixing them so that the weight ratio is 1: 6. It was. RAW264.7 cells were cultured in the same manner as in Example 1 and added to the medium so that DOTAP had a concentration of 30 μg / ml. That is, the concentration of double-stranded B72-PD and double-stranded CpG-free72-PD complexed with DOTAP in the medium is 5 μg / ml. On the other hand, free double-stranded B72-PD and double-stranded CpG-free72-PD not complexed with DOTAP were added to the medium to a concentration of 50 μg / ml. This concentration is 10 times the concentration of double-stranded B72-PD complexed with DOTAP (5 μg / ml).

図5に示すように、DOTAPと複合体化した2本鎖B72-PDもIFN-βを誘導した。DOTAPと複合体化した2本鎖CpG-free72-PDはIFN-βをほとんど誘導しないことから、DOTAPと複合体化した2本鎖B72-PDによるIFN-βは、細胞質DNA受容体ではなく、TLR9を介していることがわかる。 As shown in FIG. 5, double-stranded B72-PD complexed with DOTAP also induced IFN-β. Since double-stranded CpG-free72-PD complexed with DOTAP hardly induces IFN-β, IFN-β by double-stranded B72-PD complexed with DOTAP is not a cytoplasmic DNA receptor. It can be seen that it is via TLR9.

図6は、2本鎖B72-PD について、図5に示すDOTAPとの複合体と、図4に示すリポフェクトアミン2000との複合体のIFN-β誘導量を比較して示す。図6に示すように、DOTAPと複合体化した2本鎖B72-PDからのIFN-β誘導量は、リポフェクトアミン2000と複合体化したときに比べ、有意に低かった。これは、ホスホジエステルの2本鎖CpG ODNを複合体化させる担体が、IFN-β誘導に大きく影響することを示している。 FIG. 6 shows a comparison of the IFN-β induction amount of the double-stranded B72-PD complex with DOTAP shown in FIG. 5 and the complex with lipofectamine 2000 shown in FIG. As shown in FIG. 6, the amount of IFN-β induction from the double-stranded B72-PD complexed with DOTAP was significantly lower than that when complexed with Lipofectamine 2000. This indicates that the carrier complexing the double-stranded CpG ODN of the phosphodiester has a significant effect on IFN-β induction.

1本鎖B72-PD、2本鎖B72-PDおよび2本鎖CpG-free72-PDをリン酸カルシウム粒子の表面に結合し、RAW264.7細胞からのTLR9に依存したIFN-β誘導を調べた。2モル/lのCaCl2溶液2.48μlに蒸留水を17.52 μl加え、全体を20μlとした。この溶液12.5μlを2x Hank’s Balanced Salt Solution (Life Technologies社製) 100μlに添加し、リン酸カルシウムの沈殿を得た。このリン酸カルシウムの沈殿は、長さ約150 nmのロッド状の粒子からなっていた。得られたリン酸カルシウムの粒子(約11.6μg)に、1本鎖B72-PD、2本鎖B72-PDおよび2本鎖CpG-free72-PDをそれぞれ5μgずつ吸着させた。これを、RAW264.7細胞にODN濃度が5μg/mlとなるように添加し、6時間後にIFN-βの誘導量を測定した。Single-stranded B72-PD, double-stranded B72-PD and double-stranded CpG-free72-PD were bound to the surface of calcium phosphate particles and TLR9-dependent IFN-β induction from RAW264.7 cells was investigated. 17.52 μl of distilled water was added to 2.48 μl of a 2 mol / l CaCl 2 solution to make a total of 20 μl. 12.5 μl of this solution was added to 100 μl of 2 x Hank's Balanced Salt Solution (manufactured by Life Technologies) to obtain a calcium phosphate precipitate. This calcium phosphate precipitate consisted of rod-shaped particles about 150 nm in length. The obtained calcium phosphate particles (about 11.6 μg) were adsorbed with 5 μg each of single-stranded B72-PD, double-stranded B72-PD, and double-stranded CpG-free72-PD. This was added to RAW264.7 cells so that the ODN concentration was 5 μg / ml, and the amount of IFN-β induced was measured 6 hours later.

図7に示すように、リン酸カルシウムの粒子と複合体化した2本鎖B72-PDは、1本鎖B72-PDに比べ顕著に高いIFN-β誘導能を示した。また、リン酸カルシウムの粒子と複合体化した2本鎖CpG-free72-PDはIFN-βをほとんど誘導しないことから、リン酸カルシウムの粒子と複合体化した2本鎖B72-PDによるIFN-βは、細胞質DNA受容体ではなく、TLR9を介していることがわかる。さらに、この結果は、カチオン性リポソーム以外の粒子にホスホジエステル線状2本鎖CpG ODNを結合させても、IFN-βを誘導できることを示している。 As shown in FIG. 7, the double-stranded B72-PD complexed with the calcium phosphate particles showed a significantly higher IFN-β inducibility than the single-stranded B72-PD. In addition, since double-stranded CpG-free72-PD complexed with calcium phosphate particles hardly induces IFN-β, IFN-β complexed with calcium phosphate particles is cytoplasmic. It can be seen that it is mediated by TLR9, not by the DNA receptor. Furthermore, this result indicates that IFN-β can be induced by binding phosphodiester linear double-stranded CpG ODN to particles other than cationic liposomes.

Cellular Technology Limited (OH, USA)から購入したヒト末梢血単核球 (Cellular Technology Limited., OH, USA)を遠心で回収し、800μlのautoMACS Rincing Solution (Militenyi Biotech, Bergisch Gladbach, Germany)に懸濁した後、200μlのCD14 MicroBeads (Militenyi Biotech)を加え6℃で15分間 インキュベートした。このMicro Beadsを遠心で集め、1000μlのautoMACS Rincing Solutionに懸濁した後、この懸濁液を磁場下(MidiMACS Separation Unit, Militenyi Biotech)でLS column (Militenyi Biotech)に通した。CD14+ 単球はこのカラムから回収された。このカラムの溶出液から、CD304 MicroBeads (Militenyi Biotech)およびCD20 MicroBeads (Militenyi Biotech)を使用して上記と同様な方法によってCD304+形質細胞様樹状細胞およびCD20+ B細胞をそれぞれ単離した。また、単離したB細胞、形質細胞様樹状細胞および単球のヒト末梢血単核球中の割合は、それぞれ1.2〜2.0%、0.1〜0.63%、および12〜20%であった。
ヒト末梢血単核球から単離したB細胞および形質細胞様樹状細胞を、96-well flat-bottom plateに2x104cells/wellの密度になるように播種した。これらの細胞は、200μlのRPMI 1640 (Invitrogen, Life Technologies, CA, USA)に 10% (v/v) FBS, 1 ml L-glutamine, 100 U/ml penicillin, 100 μg/mlstreptomycineを添加した培地で培養した。
B24-PT、B72-PT、B72-PD、CpG-free72-PD、およびこれらの2本鎖DNAを、実施例5と同様な方法でDOTAPと複合体化し、形質細胞様樹状細胞の播種と同時に添加した。48時間後、IFN-αの誘導量をIFN-α Enzyme-linked immunosorbent assay kit (IFN-α ELISA kit, Affymetrix, CA, USA)にて測定した。
Human peripheral blood mononuclear cells (Cellular Technology Limited., OH, USA) purchased from Cellular Technology Limited (OH, USA) are collected by centrifugation and suspended in 800 μl of autoMACS Rincing Solution (Militenyi Biotech, Bergisch Gladbach, Germany). After that, 200 μl of CD14 MicroBeads (Militenyi Biotech) was added and incubated at 6 ° C. for 15 minutes. The Micro Beads were collected by centrifugation, suspended in 1000 μl of autoMACS Rincing Solution, and then passed through an LS column (Militenyi Biotech) under a magnetic field (MidiMACS Separation Unit, Militenyi Biotech). CD14 + monocytes were recovered from this column. From the eluate of this column, CD304 + plasmacytoid dendritic cells and CD20 + B cells were isolated using CD304 MicroBeads (Militenyi Biotech) and CD20 MicroBeads (Militenyi Biotech) by the same method as described above. The proportions of isolated B cells, plasmacytoid dendritic cells and monocytes in human peripheral blood mononuclear cells were 1.2-2.0%, 0.1-0.63% and 12-20%, respectively.
B cells and plasmacytoid dendritic cells isolated from human peripheral blood mononuclear cells were seeded on a 96-well flat-bottom plate to a density of 2x10 4 cells / well. These cells were prepared in 200 μl RPMI 1640 (Invitrogen, Life Technologies, CA, USA) with 10% (v / v) FBS, 1 ml L-glutamine, 100 U / ml penicillin, 100 μg / ml streptomycin. It was cultured.
B24-PT, B72-PT, B72-PD, CpG-free72-PD, and their double-stranded DNA were complexed with DOTAP in the same manner as in Example 5 to seed plasmacytoid dendritic cells. Added at the same time. After 48 hours, the amount of IFN-α induced was measured by the IFN-α Enzyme-linked immunosorbent assay kit (IFN-α ELISA kit, Affymetrix, CA, USA).

図8に示すように、B24-PTおよびB72-PTでは、2本鎖にしてもIFN-α誘導量は大きく変わらないが、B72-PDは2本鎖にすることにより1本鎖に比べて顕著にIFN-α誘導量が増加した。また、2本鎖CpG-free72-PDからのIFN-α誘導がないことから、2本鎖B72-PDとDOTAPの複合体からのIFN-αは、TLR9に依存していることを意味している。 As shown in FIG. 8, in B24-PT and B72-PT, the amount of IFN-α induction does not change significantly even if it is double-stranded, but in B72-PD, it is compared with single-strand by making it double-stranded. The amount of IFN-α induction increased remarkably. In addition, since there is no IFN-α induction from double-stranded CpG-free72-PD, it means that IFN-α from the complex of double-stranded B72-PD and DOTAP is dependent on TLR9. There is.

次に、B24-PT、B72-PD、CpG-free72-PD、およびこれらの2本鎖DNAを、実施例1と同様な方法でDOTAPと複合体化し、B細胞の播種と同時に添加した。また、DOTAPと複合体化していない遊離のB24-PT、B72-PD、CpG-free72-PD、およびこれらの2本鎖DNA は、50μg/mlの濃度になるように培地中に添加した。48時間後、IL-6の誘導量をIL-6 ELISA kit (Affymetrix)によって測定した。 Next, B24-PT, B72-PD, CpG-free72-PD, and their double-stranded DNA were complexed with DOTAP in the same manner as in Example 1 and added at the same time as B cell seeding. In addition, free B24-PT, B72-PD, CpG-free72-PD, which were not complexed with DOTAP, and their double-stranded DNA were added to the medium at a concentration of 50 μg / ml. After 48 hours, the amount of IL-6 induced was measured by IL-6 ELISA kit (Affymetrix).

図9に示すように、DOTAPと複合体化していない、遊離の1本鎖B24-PTおよび1本鎖B72-PDは、ともにIL-6を誘導した。しかし、2本鎖においては、B24-PTがIL-6を誘導したが、B24-PDはIL-6を誘導しなかった。DOTAPとの複合体においても、1本鎖B72-PDはIL-6を誘導したが、2本鎖B72-PDはIL-6を誘導しなかった。一方、2本鎖B24-PTとDOTAPとの複合体はIL-6を誘導した。2本鎖B72-PDにIL-6のような炎症性サイトカイン誘導能がないことは、ホスホジエステルの2本鎖CpG ODNの副作用が小さいことを示唆している。 As shown in FIG. 9, free single-strand B24-PT and single-strand B72-PD, which were not complexed with DOTAP, both induced IL-6. However, in the double strand, B24-PT induced IL-6, but B24-PD did not. In the complex with DOTAP, single-stranded B72-PD induced IL-6, but double-stranded B72-PD did not. On the other hand, the complex of double-stranded B24-PT and DOTAP induced IL-6. The lack of ability to induce inflammatory cytokines like IL-6 in double-stranded B72-PD suggests that the side effects of double-stranded CpG ODN of phosphodiesters are small.

B24-PT、B72-PT、B72-PD、CpG-free72-PD、およびこれらの2本鎖DNAを、実施例1と同様な方法でDOTAPと複合体化し、単球の播種と同時に添加した。48時間後、IFN-αの誘導量を測定した。 B24-PT, B72-PT, B72-PD, CpG-free72-PD, and their double-stranded DNA were complexed with DOTAP in the same manner as in Example 1 and added at the same time as monocyte seeding. After 48 hours, the amount of IFN-α induced was measured.

図10に示すように、2本鎖B72-PDはIFN-αを誘導した。ヒトの単球はTLR9をもっていないこと、2本鎖CpG-free72-PDもIFN-αを誘導することから、2本鎖B72-PDからのIFN-αの誘導は細胞質DNA受容体を介していると考えられる。これは、2本鎖B72-PDのようなホスホジエステルの2本鎖CpG ODNの複合体が、TLR9をもたない細胞に取り込まれた場合にもIFN-αを誘導することを示している。 As shown in FIG. 10, double-stranded B72-PD induced IFN-α. Since human monocytes do not have TLR9 and double-stranded CpG-free72-PD also induces IFN-α, the induction of IFN-α from double-stranded B72-PD is mediated by the cytoplasmic DNA receptor. it is conceivable that. This indicates that a double-stranded CpG ODN complex of phosphodiesters, such as double-stranded B72-PD, also induces IFN-α when taken up by cells lacking TLR9.

リポフェクトアミン2000を50 μg/mlの濃度でOptiMEM (Thermo Fisher Scientific Ltd.)に分散させ動的光散乱計でサイズを測定すると、図11に示すように時間経過とともにサイズが大きくなった。次に、時間経過の異なる様々なサイズのリポフェクトアミン2000とds B72-PD(配列番号3の2本鎖)との複合体を実施例1に記載の方法で調製した。形成された複合体のサイズは安定で、元のリポフェクトアミン2000のサイズとほぼ同じであった。これらサイズの異なる複合体によって実施例1に記載の方法でRAW264.7細胞を刺激した。RAW264.7細胞に与えた複合体のサイズと複合体を添加して6時間後のIFN-β誘導量の関係を図12に示す。リポフェクトアミン2000と2本鎖B72-PDの複合体は、700 nm以上で高いIFN-β誘導能を示した。 When Lipofectamine 2000 was dispersed in OptiMEM (Thermo Fisher Scientific Ltd.) at a concentration of 50 μg / ml and the size was measured with a dynamic light scattering meter, the size increased with the passage of time as shown in FIG. Next, complexes of various sizes of lipofectamine 2000 and ds B72-PD (double strand of SEQ ID NO: 3) with different lapses of time were prepared by the method described in Example 1. The size of the complex formed was stable and was about the same as the size of the original Lipofectamine 2000. RAW264.7 cells were stimulated by the method described in Example 1 with these complexes of different sizes. Figure 12 shows the relationship between the size of the complex given to RAW264.7 cells and the amount of IFN-β induced 6 hours after the addition of the complex. The complex of lipofectamine 2000 and double-stranded B72-PD showed high IFN-β inducibility above 700 nm.

表2配列番号3のB72-PDと、これと完全に相補する1本鎖ODNを用いて実施例1に記載した方法で2本鎖のds B72-PDを調製した。このds B72-PDとリポフェクトアミン2000を重量比が1:2および1:1になるように混合し、それぞれのサイズが737±213 nmおよび692±129 nmの複合体を得た。3.4x105cells/mlの細胞密度で播種し、16時間培養したRAW264.7細胞をリポフェクトアミン2000の濃度が5 μg/mlになるようにこれらの複合体で6時間刺激したときのIFN-β誘導量を図13に示す。IFN-β誘導量はどちらの複合体においても同程度であった。この結果から、培養液中におけるリポフェクトアミン2000の濃度が5 μg/mlのとき、ds B72-PDの結合量はリポフェクトアミン2000の重量に対し0.5以上あればよいことがわかる。Double-stranded ds B72-PD was prepared by the method described in Example 1 using B72-PD of SEQ ID NO: 3 in Table 2 and a single-stranded ODN completely complementary thereto. The ds B72-PD and Lipofectamine 2000 were mixed in a weight ratio of 1: 2 and 1: 1 to obtain complexes having sizes of 737 ± 213 nm and 692 ± 129 nm, respectively. IFN- when RAW264.7 cells seeded at a cell density of 3.4x10 5 cells / ml and cultured for 16 hours were stimulated with these complexes for 6 hours so that the concentration of lipofectamine 2000 was 5 μg / ml. The β-induction amount is shown in FIG. The amount of IFN-β induction was similar in both complexes. From this result, it can be seen that when the concentration of lipofectamine 2000 in the culture medium is 5 μg / ml, the binding amount of ds B72-PD should be 0.5 or more with respect to the weight of lipofectamine 2000.

表2配列番号3のB72-PDと、これと完全に相補する1本鎖CpG ODNを用いて実施例1に記載した方法で2本鎖のds B72-PDを調製した。このds B72-PDとリポフェクトアミン2000を重量比が1:2になるように混合し複合体を形成させた。この複合体のサイズは737±213 nmであった。3.4x105 cells/mlの細胞密度で播種し、16時間培養したRAW264.7細胞にリポフェクトアミン2000の濃度が1、2および5 μg/mlになるようにこの複合体を添加し、6時間後のIFN-β誘導量を測定した。図14に示すように複合体の添加量が多くなるほどIFN-βの誘導量も高くなった。Double-stranded ds B72-PD was prepared by the method described in Example 1 using B72-PD of SEQ ID NO: 3 in Table 2 and a single-stranded CpG ODN completely complementary thereto. This ds B72-PD and Lipofectamine 2000 were mixed so as to have a weight ratio of 1: 2 to form a complex. The size of this complex was 737 ± 213 nm. This complex was added to RAW264.7 cells seeded at a cell density of 3.4x10 5 cells / ml and cultured for 16 hours so that the concentration of lipofectamine 2000 was 1, 2 and 5 μg / ml for 6 hours. Later, the amount of IFN-β induction was measured. As shown in FIG. 14, as the amount of the complex added increased, the amount of IFN-β induced also increased.

表5に示したホスホジエステルからなる72塩基の1本鎖CpG ODN、及び該塩基配列と相補する配列を有する1本鎖ODNを合成し、実施例1に記載した方法で2本鎖CpG ODNを調製した。表5に示した配列番号18〜22のCpG ODNは表2配列番号3のB72-PDの塩基配列を一部改変したものであり、改変した塩基を二重下線で示す。表5配列番号18のB72M1-PDは表2配列番号3のB72-PDとは5個の塩基配列が異なっている。表5配列番号19のB72M2-PDは表2配列番号3のB72-PDとは7個の塩基配列が異なっている。表5配列番号20および配列番号21のB72M3-PDおよびB72M4-PDは表2配列番号3のB72-PDとは12個の塩基配列が異なっている。表5配列番号22のB72M5-PDは表2配列番号3のB72-PDとは14個の塩基配列が異なっている。 A 72-base single-stranded CpG ODN composed of the phosphodiesters shown in Table 5 and a single-stranded ODN having a sequence complementary to the base sequence were synthesized, and the double-stranded CpG ODN was prepared by the method described in Example 1. Prepared. The CpG ODNs of SEQ ID NOs: 18 to 22 shown in Table 5 are partially modified base sequences of B72-PD of Table 2 SEQ ID NO: 3, and the modified bases are double underlined. Table 5 B72M1-PD of SEQ ID NO: 18 differs from B72-PD of Table 2 SEQ ID NO: 3 in five nucleotide sequences. Table 5 B72M2-PD of SEQ ID NO: 19 differs from B72-PD of Table 2 SEQ ID NO: 3 in seven nucleotide sequences. Table 5 B72M3-PD and B72M4-PD of SEQ ID NO: 20 and SEQ ID NO: 21 differ in 12 base sequences from B72-PD of Table 2 SEQ ID NO: 3. Table 5 B72M5-PD of SEQ ID NO: 22 differs from B72-PD of Table 2 SEQ ID NO: 3 in 14 nucleotide sequences.


これらの2本鎖CpG ODNとリポフェクトアミン2000との複合体の調製、およびこれらの複合体によるRAW264.7細胞の刺激は実施例1に記載した方法にて行った。結果を図15に示す。表5に示したいずれの2本鎖CpG ODNとリポフェクトアミン2000との複合体においても、ds B72-PDとリポフェクトアミンの複合体と同様に高いIFN-β誘導能を示した。また、これらの2本鎖CpG ODN複合体はCpGを含まない2本鎖のCpG-free72-PD複合体よりも顕著に高いIFN-βを誘導したことから、IFN-βの誘導の大部分はTLR9に依存していることがわかる。 Preparation of a complex of these double-stranded CpG ODN and lipofectamine 2000 and stimulation of RAW264.7 cells with these complex were performed by the method described in Example 1. The results are shown in Fig. 15. The complex of any of the double-stranded CpG ODNs shown in Table 5 and lipofectamine 2000 showed high IFN-β inducibility as in the complex of ds B72-PD and lipofectamine. In addition, most of the IFN-β induction was due to the fact that these double-stranded CpG ODN complexes induced significantly higher IFN-β than the CpG-free double-stranded CpG-free72-PD complex. It turns out that it depends on TLR9.

次に、実施例5に記載の方法で、これらの2本鎖CpG ODNとDOTAPとの複合体を調製し、これらの複合体でRAW264.7細胞を刺激した。結果を図16に示す。表5に示したいずれの2本鎖CpG ODNとDOTAPとの複合体においても、ds B72-PDとDOTAPの複合体と同等以上のIFN-β誘導能を示した。 Next, a complex of these double-stranded CpG ODN and DOTAP was prepared by the method described in Example 5, and RAW264.7 cells were stimulated with these complex. The results are shown in Fig. 16. Any of the double-stranded CpG ODN and DOTAP complexes shown in Table 5 showed IFN-β inducibility equal to or higher than that of the ds B72-PD and DOTAP complex.

表6に示したホスホジエステルからなる48塩基の1本鎖CpG ODN、及び該塩基配列と相補する配列を有する1本鎖ODNを合成し、実施例1に記載した方法で2本鎖CpG ODNを調製した。表6に示した配列番号23〜27のCpG ODNは表2配列番号2のB48-PDの塩基配列を一部改変したものであり、改変した塩基を二重下線で示す。表6配列番号23のB48M1-PDは表2配列番号2のB48-PDとは5個の塩基配列が異なっている。表6配列番号24のB48M2-PDは表2配列番号2のB48-PDとは7個の塩基配列が異なっている。表6配列番号25および配列番号26のB48M3-PDおよびB48M4-PDは表2配列番号2のB48-PDとは12個の塩基配列が異なっている。表6配列番号27のB48M5-PDは表2配列番号2のB48-PDとは14個の塩基配列が異なっている。表6配列番号28のCpG48-PDはCpGを10個含みCpGの前後の2塩基の配列が表2配列番号2のB48-PDおよび表6配列番号23〜27と異なっている。 A 48-base single-stranded CpG ODN composed of the phosphodiesters shown in Table 6 and a single-stranded ODN having a sequence complementary to the base sequence were synthesized, and the double-stranded CpG ODN was prepared by the method described in Example 1. Prepared. The CpG ODNs of SEQ ID NOs: 23 to 27 shown in Table 6 are partially modified base sequences of B48-PD of Table 2 SEQ ID NO: 2, and the modified bases are double underlined. Table 6 B48M1-PD of SEQ ID NO: 23 differs from B48-PD of Table 2 SEQ ID NO: 2 in five base sequences. Table 6 B48M2-PD of SEQ ID NO: 24 differs from B48-PD of Table 2 SEQ ID NO: 2 in seven nucleotide sequences. B48M3-PD and B48M4-PD of SEQ ID NO: 25 and SEQ ID NO: 26 in Table 6 differ in 12 base sequences from B48-PD in Table 2 SEQ ID NO: 2. Table 6 B48M5-PD of SEQ ID NO: 27 differs from B48-PD of Table 2 SEQ ID NO: 2 by 14 nucleotide sequences. CpG48-PD of SEQ ID NO: 28 in Table 6 contains 10 CpGs, and the sequences of the two bases before and after CpG are different from those of B48-PD in SEQ ID NO: 2 in Table 2 and SEQ ID NOs: 23 to 27 in Table 6.

これらの2本鎖CpG ODNとリポフェクトアミン2000との複合体の調製、およびこれらの複合体によるRAW264.7細胞の刺激は実施例1に記載した方法にて行った。結果を図17に示す。ds B48M1-PD、ds 48M2-PDおよびds B48M3-PDはds B48-PDよりもIFN-β誘導量は低下したが、依然、高いレベルのIFN-β誘導能を有していることがわかる。また、ds B48M4-PD、ds B48M5-PDおよびds CpG48-PDではさらにIFN-β誘導能が低下したが、ds CpG-free72-PDよりも高いことから、これらによるIFN-βの誘導もTLR9を介していることがわかる。 Preparation of a complex of these double-stranded CpG ODN and lipofectamine 2000 and stimulation of RAW264.7 cells with these complex were performed by the method described in Example 1. The results are shown in FIG. It can be seen that ds B48M1-PD, ds 48M2-PD and ds B48M3-PD have a lower amount of IFN-β inducing than ds B48-PD, but still have a high level of IFN-β inducing ability. In addition, ds B48M4-PD, ds B48M5-PD and ds CpG48-PD further reduced the ability to induce IFN-β, but since it was higher than ds CpG-free72-PD, the induction of IFN-β by these also resulted in TLR9. You can see that it is through.

表2配列番号3のB72-PDと、これと完全に相補する1本鎖ODNを用いて実施例1に記載した方法で2本鎖のds B72-PDを調製した。このds B72-PDとリポフェクトアミン2000を重量比が1:1になるように混合し、複合体を形成させた。この複合体溶液をAmicon Ultra 0.5mL Centrifugal Filter (Merck Millipore, Darmstadt, Germany)を用いて10倍濃縮することによって100μl中にds B72-PDを50μg含む複合体溶液を調製した。すなわち、この濃縮溶液100μlには、50μgのds B72-PDが50μgのリポフェクトアミン2000に静電的に結合している複合体が含まれている。50μgのds B72-PDを含む複合体溶液100μlと、200μgのモデル抗原卵白アルブミン (OVA)を含む100μl溶液を混合し、6匹の6週令マウス (C57BL/6J)の背部皮下に投与した。同様にして調製したds B72-PD複合体とOVAを7日後に再度、マウス背部皮下に投与した。採血は、2回目の投与から7日後、すなわち1回目の投与から14日後に、インフルラン吸入麻酔下で後大静脈より行った。採血した血液の一部をEDTA処理し、残りは遠心分離後、血清を採取した。EDTA処理した血液は、溶血および固定処理後、PE-Cy5 hamster anti-mouse CD3抗体、FITC-rat anti-mouse CD8抗体、およびH2-Kb SIINFEKL Class I iTAgTM MHC tetramerで反応させ、FACSによりOVA特異的CD8陽性T細胞の割合を調べた。血清に含まれるOVA特異的IgG1、OVA特異的IgG2aおよびOVA特異的IgEはELISAにより定量した。OVA特異的CD8陽性T細胞の割合、OVA特異的IgG1、OVA特異的IgG2aおよびOVA特異的IgEの産生量は、200μgのOVAを含む100μl溶液を7日毎に2回、背部皮下投与した6匹のマウスおよび何も投与していない6匹のマウスと比較した。 Double-stranded ds B72-PD was prepared by the method described in Example 1 using B72-PD of SEQ ID NO: 3 in Table 2 and a single-stranded ODN completely complementary thereto. This ds B72-PD and Lipofectamine 2000 were mixed so as to have a weight ratio of 1: 1 to form a complex. This complex solution was concentrated 10-fold with an Amicon Ultra 0.5 mL Centrifugal Filter (Merck Millipore, Darmstadt, Germany) to prepare a complex solution containing 50 μg of ds B72-PD in 100 μl. That is, 100 μl of this concentrated solution contains a complex in which 50 μg of ds B72-PD is electrostatically bound to 50 μg of lipofectamine 2000. A 100 μl solution containing 50 μg of ds B72-PD and a 100 μl solution containing 200 μg of model antigen ovalbumin (OVA) were mixed and administered subcutaneously to the back of 6 6-week-old mice (C57BL / 6J). The ds B72-PD complex and OVA prepared in the same manner were administered subcutaneously to the back of the mouse 7 days later. Blood was collected from the posterior vena cava under influenza inhalation anesthesia 7 days after the second administration, that is, 14 days after the first administration. A part of the collected blood was treated with EDTA, and the rest was centrifuged, and then serum was collected. After hemolysis and fixation treatment, EDTA-treated blood is reacted with PE-Cy5 hamster anti-mouse CD3 antibody, FITC-rat anti-mouse CD8 antibody, and H2-Kb SIINFEKL Class I iTAgTM MHC tetramer, and is OVA-specific by FACS. The proportion of CD8-positive T cells was examined. OVA-specific IgG1, OVA-specific IgG2a and OVA-specific IgE contained in serum were quantified by ELISA. The proportion of OVA-specific CD8-positive T cells and the production of OVA-specific IgG1, OVA-specific IgG2a and OVA-specific IgE were as follows: 6 animals in which 100 μl solution containing 200 μg OVA was subcutaneously administered to the back twice every 7 days. It was compared with mice and 6 untreated mice.

OVA特異的CD8陽性T細胞の割合の結果を図18に示す。ds B72-PD複合体とOVAを投与したマウス群における血液中のCD8陽性T細胞に対するOVA特異的CD8陽性T細胞の割合は、OVAのみを投与したマウス群よりも有意に増加し、ds B72-PD複合体の抗原特異的CD8陽性T細胞の誘導効果が示された。一方、OVAのみを投与したマウスにおいて、OVA特異的CD8陽性T細胞の割合の有意な増加は認められず、抗原のみの投与では抗原特異的なCD8陽性T細胞の誘導が困難であることが示された。 The results of the proportion of OVA-specific CD8-positive T cells are shown in FIG. The ratio of OVA-specific CD8-positive T cells to CD8-positive T cells in the blood in the group of mice treated with the ds B72-PD complex and OVA was significantly higher than that of the group of mice treated with OVA alone, and ds B72- The effect of inducing antigen-specific CD8-positive T cells of the PD complex was shown. On the other hand, no significant increase in the proportion of OVA-specific CD8-positive T cells was observed in mice administered with OVA alone, indicating that it is difficult to induce antigen-specific CD8-positive T cells with antigen-only administration. Was done.

血清中のOVA特異的IgG1抗体の産生量を図19に示す。OVA特異的IgG1抗体の産生量は、OVAのみを投与したマウス群においても有意に増加した。ds B72-PD複合体とOVAを投与したマウス群では、OVAのみを投与したマウス群よりも、さらにOVA特異的IgG1抗体の産生量が有意に増加していた。 The amount of OVA-specific IgG1 antibody produced in serum is shown in FIG. The amount of OVA-specific IgG1 antibody produced was also significantly increased in the group of mice to which OVA alone was administered. In the group of mice administered with the ds B72-PD complex and OVA, the amount of OVA-specific IgG1 antibody produced was significantly increased as compared with the group of mice administered with OVA alone.

血清中のOVA特異的IgG2a抗体の産生量を図20に示す。OVA特異的IgG2a抗体の産生量は、ds B72-PD複合体とOVAを投与したマウス群では、OVAのみを投与したマウス群よりも、OVA特異的IgG2a抗体の産生量が有意に増加していた。一方、OVAのみを投与したマウス群において、OVA特異的IgG2aの有意な増加は認められず、抗原のみの投与ではOVA特異的IgG2aの誘導が困難であることが示された。 The amount of OVA-specific IgG2a antibody produced in serum is shown in FIG. Regarding the production amount of OVA-specific IgG2a antibody, the production amount of OVA-specific IgG2a antibody was significantly increased in the group of mice administered with the ds B72-PD complex and OVA than in the group of mice administered with OVA alone. .. On the other hand, in the mouse group to which only OVA was administered, no significant increase in OVA-specific IgG2a was observed, indicating that it is difficult to induce OVA-specific IgG2a by administration of antigen alone.

血清中のOVA特異的IgE抗体の産生量を図21に示す。ds B72-PD複合体とOVAを投与したマウス群では、OVAのみを投与したマウス群よりも、OVA特異的IgE抗体の産生量の平均値が増加したが、有意な増加は観察されなかった。 The amount of OVA-specific IgE antibody produced in serum is shown in FIG. In the group of mice administered with the ds B72-PD complex and OVA, the mean value of the production of OVA-specific IgE antibody was increased as compared with the group of mice administered with OVA alone, but no significant increase was observed.

IgGは遅発性の免疫反応に関与し、IgEは即効性の免疫反応に関与する。従って、 ds B72-PD複合体は、抗原と共に投与された場合、抗原性を増強することが出来、ワクチン抗原と併用することにより、その効果を増強するために使用することが可能である。一方、即効性の免疫反応(アナフィラキシーなど)に影響を与えないため、安全性が高いことが示唆できた。 IgG is involved in a delayed immune response and IgE is involved in a fast-acting immune response. Therefore, the ds B72-PD complex can enhance the antigenicity when administered together with the antigen, and can be used to enhance its effect when used in combination with the vaccine antigen. On the other hand, it does not affect the immediate immune response (anaphylaxis, etc.), suggesting that it is highly safe.

ヒト末梢血単核球 (Cellular Technology Limited., OH, USA)を96-well flat-bottom plateに1x106 cells/wellの密度になるように播種し、DOTAPに静電的相互作用で結合させたds B72-PD、ds CpG-free72-PD、ODN2216 (図中ではA2216)、B24-PTを5μg/ml (DOTAP濃度は30μg/ml)の濃度になるように添加した。これらの細胞をRPMI1640に10% (v/v) FBS、10 mM HEPES、2 mM L-glutamineを加えた培地で培養した。6時間後に細胞を回収し、PerCP/Cy5.5 anti-human CD303 (BDCA-2)、FITC anti-human CD14、Alexa Fluor 700 anti-human CD20, PE anti-human CD80と室温で15分間反応させ、PBSで洗浄した後、セルアナライザー (SP6800, SONY)で、共刺激因子であるCD80を発現しているCD80陽性細胞の割合を解析した。Human peripheral blood mononuclear cells (Cellular Technology Limited., OH, USA) were seeded on a 96-well flat-bottom plate at a density of 1x10 6 cells / well and bound to DOTAP by electrostatic interaction. ds B72-PD, ds CpG-free72-PD, ODN2216 (A2216 in the figure), and B24-PT were added to a concentration of 5 μg / ml (DOTAP concentration is 30 μg / ml). These cells were cultured in RPMI 1640 with 10% (v / v) FBS, 10 mM HEPES, and 2 mM L-glutamine. After 6 hours, cells were harvested and reacted with PerCP / Cy5.5 anti-human CD303 (BDCA-2), FITC anti-human CD14, Alexa Fluor 700 anti-human CD20, PE anti-human CD80 for 15 minutes at room temperature. After washing with PBS, the proportion of CD80-positive cells expressing the co-stimulator CD80 was analyzed with a cell analyzer (SP6800, SONY).

ヒト末梢血単核球中のCD80陽性細胞の割合を図22に示す。いずれのDOTAP複合体においてもCD80陽性細胞の割合は、無処理に比べて増加していた。ds B72-PD複合体におけるCD80陽性細胞の割合はCpG-AであるA2216とDOTAPの複合体と同程度であった。ds CpG-free72-PD複合体におけるCD80陽性細胞の割合は、ds B72-PD複合体あるいはA2216複合体よりも低かった。また、CD80陽性細胞の割合の増加は、B24-PT複合体においても観察された。 The proportion of CD80-positive cells in human peripheral blood mononuclear cells is shown in FIG. The proportion of CD80-positive cells in each DOTAP complex was increased compared to untreated cells. The proportion of CD80-positive cells in the ds B72-PD complex was similar to that of the CpG-A A2216-DOTAP complex. The proportion of CD80-positive cells in the ds CpG-free72-PD complex was lower than that of the ds B72-PD complex or the A2216 complex. An increase in the proportion of CD80-positive cells was also observed in the B24-PT complex.

ヒト末梢血単核球において、CD80を発現している主な細胞種はB細胞、単球、および樹状細胞であると考えられるので、CD20陽性細胞(主にB細胞)、CD14陽性細胞(主に単球)、CD303陽性細胞(主に樹状細胞)におけるCD80陽性細胞の割合を調べた。結果を表7に示す。CD20陽性細胞中のCD80陽性細胞の割合はds B72-PD複合体で最も高く、ds B72-PD複合体がB細胞を活性化していることが示唆されたが、ds CpG-free72-PD複合体におけるCD80陽性細胞の割合は無処理に比べて大きな増加は認められなかった。CD14陽性細胞中のCD80陽性細胞の割合はA2216複合体で最も高かったが、ds B72-PD複合体においても、CD80陽性細胞の大幅な増加が観察された。さらに、CD303陽性細胞中のCD80陽性細胞の割合においては、いずれの複合体においても高いCD80誘導能が認められたが、ds B72-PD複合体が最も高い誘導能を示した。 In human peripheral blood mononuclear cells, the main cell types expressing CD80 are considered to be B cells, monocytes, and dendritic cells, so CD20-positive cells (mainly B cells) and CD14-positive cells ( The proportion of CD80-positive cells among mainly monocytes) and CD303-positive cells (mainly dendritic cells) was examined. The results are shown in Table 7. The proportion of CD80-positive cells among CD20-positive cells was highest in the ds B72-PD complex, suggesting that the ds B72-PD complex activates B cells, but the ds CpG-free72-PD complex. The proportion of CD80-positive cells in the cells was not significantly increased as compared with the untreated cells. The proportion of CD80-positive cells in CD14-positive cells was highest in the A2216 complex, but a significant increase in CD80-positive cells was also observed in the ds B72-PD complex. Furthermore, in the proportion of CD80-positive cells among CD303-positive cells, high CD80-inducing ability was observed in all the complexes, but the ds B72-PD complex showed the highest inducible ability.

抗原提示細胞が免疫反応を開始するには,2種類のシグナルが必要である。第一のシグナルはT細胞レセプターを介した抗原特異的なシグナルであり、第二のシグナルは共刺激分子を介した非抗原特異的なシグナルである。ds B72-PD複合体は効率よく、共刺激分子であるCD80を誘導することから、ds B72-PD複合体が抗原性補強剤(アジュバンド)として有効であることが示唆された。 Two types of signals are required for antigen-presenting cells to initiate an immune response. The first signal is an antigen-specific signal mediated by a T cell receptor, and the second signal is a non-antigen-specific signal mediated by a co-stimulating molecule. The ds B72-PD complex efficiently induces the co-stimulating molecule CD80, suggesting that the ds B72-PD complex is effective as an antigenic enhancer (adjuvant).

実施例1に記載した方法でリポフェクトアミン2000とds B72-PD、ds CpG-free72-PD、およびプラスミドベクターpAcGFP-N1 (TaKaRa Bio, Siga, Japan)の複合体を調製し、それぞれの複合体でRAW264.7細胞を刺激した。6時間後にIFN-β誘導量を測定した結果を図23に、IL-12誘導量を測定した結果を図24に示す。IFN-βおよびIL-12のいずれも、ds B72-PD複合体による誘導能はpAcGFP-N1複合体よりも有意に高かった。4700塩基対からなるpAcGFP-N1は、CpGを含むホスホジエステル2本鎖環状DNAであるが、線状のds B72-PD複合体は環状の2本鎖DNAよりも高いIFN-β誘導能およびIL-12誘導能を有していることが示された。 A complex of lipofectamine 2000 and ds B72-PD, ds CpG-free72-PD, and the plasmid vector pAcGFP-N1 (TaKaRa Bio, Siga, Japan) was prepared by the method described in Example 1, and each complex was prepared. Stimulated RAW264.7 cells with. The result of measuring the IFN-β induction amount after 6 hours is shown in FIG. 23, and the result of measuring the IL-12 induction amount is shown in FIG. 24. Both IFN-β and IL-12 were significantly more inducible by the ds B72-PD complex than the pAcGFP-N1 complex. The 4700 base pair pAcGFP-N1 is a phosphodiester double-stranded circular DNA containing CpG, whereas the linear ds B72-PD complex has higher IFN-β inducibility and IL than the circular double-stranded DNA. It was shown to have -12 inducibility.

本発明の2本鎖オリゴヌクレオチド複合体は、TLR9を介した高いI型IFN誘導活性を有し、且つ、炎症性サイトカイン誘導活性が低い。該複合体は、ホスホロチオエートによる副作用の懸念が無く、調製も容易であり、アレルギー等の治療薬、ワクチンアジュバント等として有用である。 The double-stranded oligonucleotide complex of the present invention has high TLR9-mediated type I IFN-inducing activity and low inflammatory cytokine-inducing activity. The complex has no concern about side effects due to phosphorothioate, is easy to prepare, and is useful as a therapeutic agent for allergies, vaccine adjuvants, and the like.

Claims (21)

10〜100塩基対を含む線状の2本鎖オリゴヌクレオチドであって、該2本鎖を構成する各1本鎖オリゴヌクレオチドは、ホスホジエステルを介したシトシン-グアニン配列(CpG)を2〜20個含み、各1本鎖オリゴヌクレオチドのヌクレオチド間の結合の90%以上がホスホジエステル結合であり、上記1本鎖オリゴヌクレオチドが下記塩基配列及び該配列においてCpG以外の1〜3塩基が欠損、置換もしくは付加された配列のいずれかの配列を有する、2本鎖オリゴヌクレオチド:
5’-TCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTT-3’(配列番号2)
5’-TCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTT-3’(配列番号3)
It is a linear double-stranded oligonucleotide containing 10 to 100 base pairs, and each single-stranded oligonucleotide constituting the double strand has a phosphodiester-mediated citocin-guanine sequence (CpG) of 2 to 20. pieces comprises 90% or more phosphodiester linkages der bonds between nucleotides of the single-stranded oligonucleotide is, the single-stranded oligonucleotide is 1-3 bases other than CpG in the following nucleotide sequence and sequence-deficient, that having a sequence of any of a substituted or added in the sequence, double-stranded oligonucleotide:
5'-TCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTT-3'(SEQ ID NO: 2)
5'-TCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTT-3'(SEQ ID NO: 3) .
前記各1本鎖オリゴヌクレオチドが、パリンドローム配列を含まない、請求項1記載の2本鎖オリゴヌクレオチド。 The double-stranded oligonucleotide according to claim 1, wherein each single-stranded oligonucleotide does not contain a palindrome sequence. 各1本鎖オリゴヌクレオチドのヌクレオチド間の結合が全てホスホジエステル結合である、請求項1又は2記載の2本鎖オリゴヌクレオチド。 The double-stranded oligonucleotide according to claim 1 or 2, wherein the bonds between the nucleotides of each single-stranded oligonucleotide are all phosphodiester bonds. 1本鎖オリゴヌクレオチドが、下記いずれかの配列を有する、請求項1〜3のいずれか1記載の2本鎖オリゴヌクレオチド。
5’-TCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTT-3’(配列番号2)
5’-TCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTT-3’(配列番号3)
The double-stranded oligonucleotide according to any one of claims 1 to 3, wherein the single-stranded oligonucleotide has any of the following sequences.
5'-TCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTT-3'(SEQ ID NO: 2)
5'-TCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTTTCGTCGTTTTGTCGTTTTGTCGTT-3'(SEQ ID NO: 3)
担体と、該担体と複合体化された請求項1〜4のいずれか1項記載の2本鎖オリゴヌクレオチドとを含む、免疫刺激オリゴヌクレオチド複合体。 An immunostimulating oligonucleotide complex comprising a carrier and the double-stranded oligonucleotide according to any one of claims 1 to 4, which is complexed with the carrier. 該担体が、リポソーム、高分子化合物、及び無機化合物から選択される、請求項5記載の免疫刺激オリゴヌクレオチド複合体。 The immunostimulating oligonucleotide complex according to claim 5, wherein the carrier is selected from liposomes, polymeric compounds, and inorganic compounds. 平均粒径が100nm以上である、請求項5又は6記載の免疫刺激オリゴヌクレオチド複合体。 The immunostimulating oligonucleotide complex according to claim 5 or 6, wherein the average particle size is 100 nm or more. 2本鎖オリゴヌクレオチドと担体との重量比が0.05:1〜10:1である、請求項5又は6に記載の免疫刺激オリゴヌクレオチド複合体。 The immunostimulating oligonucleotide complex according to claim 5 or 6, wherein the weight ratio of the double-stranded oligonucleotide to the carrier is 0.05: 1 to 10: 1. 請求項5〜8のいずれか1項記載の免疫刺激オリゴヌクレオチド複合体を含む、ワクチンのアジュバント。 A vaccine adjuvant comprising the immunostimulatory oligonucleotide complex according to any one of claims 5 to 8. ヒトを含む哺乳動物、鳥類或いは魚類の感染症予防に用いるための請求項5〜8のいずれか1項に記載の免疫刺激オリゴヌクレオチド複合体であって、感染症の原因となる病原体由来の無毒化あるいは弱毒化された抗原と連続して或いは同時に投与することにより、体内に病原体に対する抗体産生を促し、感染症に対する免疫を獲得するための、免疫刺激オリゴヌクレオチド複合体 The immunostimulatory oligonucleotide complex according to any one of claims 5 to 8 for use in preventing infectious diseases of mammals including humans, birds or fish, and is nontoxic from a pathogen causing an infectious disease. An immunostimulatory oligonucleotide complex for promoting the production of an antibody against a pathogen in the body and acquiring immunity against an infectious disease by continuously or simultaneously administering the attenuated or attenuated antigen. ヒトを含む哺乳動物、鳥類或いは魚類の感染症予防用ワクチン製造における、請求項5〜8のいずれか1項に記載の免疫刺激オリゴヌクレオチド複合体の使用。 Use of the immunostimulatory oligonucleotide complex according to any one of claims 5 to 8 in the production of a vaccine for preventing infectious diseases in mammals including humans, birds or fish. ヒトを含む哺乳動物、鳥類或いは魚類の感染症予防のための、請求項5〜8のいずれか1項に記載の免疫刺激オリゴヌクレオチド複合体 The immunostimulatory oligonucleotide complex according to any one of claims 5 to 8, for the prevention of infectious diseases in mammals including humans, birds or fish. ガンの治療又は予防に用いるための請求項5〜8のいずれか1項に記載の免疫刺激オリゴヌクレオチド複合体、
ガン抗原又はその一部分と、請求項5〜8のいずれか1項に記載の免疫刺激オリゴヌクレオチド複合体を、連続して或いは同時に投与することにより、体内にがん抗原に対する細胞傷害性T細胞(CTL)を誘導し、ガン抗原を提示するがん細胞を攻撃させることにより、ガンを治療または予防する、免疫刺激オリゴヌクレオチド複合体
The immunostimulatory oligonucleotide complex according to any one of claims 5 to 8 for use in the treatment or prevention of cancer.
By continuously or simultaneously administering the cancer antigen or a part thereof and the immunostimulatory oligonucleotide complex according to any one of claims 5 to 8, cytotoxic T cells against the cancer antigen (cell-damaging T cells) ( An immunostimulatory oligonucleotide complex that treats or prevents cancer by inducing CTL) and attacking cancer cells that present cancer antigens.
ガン治療又は予防用ワクチン製造における、請求項5〜8のいずれか1項に記載の免疫刺激オリゴヌクレオチド複合体の使用。 Use of the immunostimulatory oligonucleotide complex according to any one of claims 5 to 8 in the production of a vaccine for treating or preventing cancer. ガン治療又は予防のための、請求項5〜8のいずれか1項に記載の免疫刺激オリゴヌクレオチド複合体 The immunostimulatory oligonucleotide complex according to any one of claims 5 to 8 for treating or preventing cancer. 請求項5〜8のいずれか1項記載の免疫刺激オリゴヌクレオチド複合体を含む、アレルギー治療又は予防のための医薬組成物。 A pharmaceutical composition for treating or preventing allergies, which comprises the immunostimulatory oligonucleotide complex according to any one of claims 5 to 8. さらにアレルゲン又はその一部を含む、請求項16に記載の医薬組成物。 The pharmaceutical composition according to claim 16, further comprising an allergen or a part thereof. アレルギーの治療又は予防のための請求項5〜8のいずれか1項に記載の免疫刺激オリゴヌクレオチド複合体であって、
アレルゲン特異的なヘルパー1T(Th1)細胞をヘルパー2T(Th2)細胞よりも活性化させることによって、アレルギーを治療または予防するための免疫刺激オリゴヌクレオチド複合体
The immunostimulatory oligonucleotide complex according to any one of claims 5 to 8 for the treatment or prevention of allergies.
An immunostimulatory oligonucleotide complex for treating or preventing allergies by activating allergen-specific helper 1T (Th1) cells more than helper 2T (Th2) cells.
さらにアレルゲン又はその一部を前記免疫刺激オリゴヌクレオチド複合体と連続して或いは同時に投与するための、請求項18に記載の免疫刺激オリゴヌクレオチド複合体The immunostimulating oligonucleotide complex according to claim 18, further for administering the allergen or a part thereof continuously or simultaneously with the immunostimulating oligonucleotide complex . アレルギー治療又は予防用医薬製造における、請求項5〜8のいずれか1項に記載の疫刺激オリゴヌクレオチド複合体の使用。 Use of the epidemic oligonucleotide complex according to any one of claims 5 to 8 in the manufacture of a pharmaceutical for treating or preventing allergies. アレルギー治療又は予防のための、請求項5〜8のいずれか1項に記載の免疫刺激オリゴヌクレオチド複合体 The immunostimulatory oligonucleotide complex according to any one of claims 5 to 8 for treating or preventing allergies.
JP2017527515A 2015-07-09 2016-07-08 Immunostimulatory oligonucleotide complex Active JP6840332B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015138004 2015-07-09
JP2015138004 2015-07-09
PCT/JP2016/070293 WO2017007027A1 (en) 2015-07-09 2016-07-08 Immune-stimulating oligonucleotide complex

Publications (2)

Publication Number Publication Date
JPWO2017007027A1 JPWO2017007027A1 (en) 2018-04-19
JP6840332B2 true JP6840332B2 (en) 2021-03-10

Family

ID=57685070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017527515A Active JP6840332B2 (en) 2015-07-09 2016-07-08 Immunostimulatory oligonucleotide complex

Country Status (4)

Country Link
US (1) US10449212B2 (en)
EP (1) EP3301179B1 (en)
JP (1) JP6840332B2 (en)
WO (1) WO2017007027A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016081911A2 (en) 2014-11-21 2016-05-26 Northwestern University The sequence-specific cellular uptake of spherical nucleic acid nanoparticle conjugates
JP7016317B2 (en) * 2016-08-08 2022-02-21 浩文 山本 Adjuvant composition
US11364304B2 (en) 2016-08-25 2022-06-21 Northwestern University Crosslinked micellar spherical nucleic acids
WO2018209270A1 (en) 2017-05-11 2018-11-15 Northwestern University Adoptive cell therapy using spherical nucleic acids (snas)
WO2018231752A1 (en) * 2017-06-12 2018-12-20 University Of Miami Sting-dependent activators for treatment of disease
US11897888B1 (en) 2020-04-30 2024-02-13 Stinginn Llc Small molecular inhibitors of sting signaling compositions and methods of use

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207646B1 (en) 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US7585847B2 (en) * 2000-02-03 2009-09-08 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids for the treatment of asthma and allergy
ATE529512T1 (en) * 2002-02-01 2011-11-15 Life Technologies Corp DOUBLE STRANDED OLIGONUCLEOTIDES
AR040996A1 (en) * 2002-08-19 2005-04-27 Coley Pharm Group Inc IMMUNE STIMULATING NUCLEIC ACIDS
ES2569927T3 (en) 2003-06-11 2016-05-13 Idera Pharmaceuticals, Inc. Stabilized immunomodulatory oligonucleotides
US20050001055A1 (en) 2003-07-01 2005-01-06 Jens Gebhardt Fuel injector assembly
EP1646427A1 (en) * 2003-07-22 2006-04-19 Cytos Biotechnology AG Cpg-packaged liposomes
US7615539B2 (en) 2003-09-25 2009-11-10 Coley Pharmaceutical Group, Inc. Nucleic acid-lipophilic conjugates
MY159370A (en) 2004-10-20 2016-12-30 Coley Pharm Group Inc Semi-soft-class immunostimulatory oligonucleotides
US20080045473A1 (en) 2006-02-15 2008-02-21 Coley Pharmaceutical Gmbh Compositions and methods for oligonucleotide formulations
CN101288770A (en) * 2008-03-14 2008-10-22 浙江省医学科学院 New herpes simplex virus type II DNA vaccine
JP5930146B2 (en) 2011-03-28 2016-06-08 国立研究開発法人物質・材料研究機構 Immunostimulatory oligonucleotide and therapeutic agent comprising said immunostimulatory oligonucleotide

Also Published As

Publication number Publication date
WO2017007027A1 (en) 2017-01-12
EP3301179B1 (en) 2019-06-05
US10449212B2 (en) 2019-10-22
EP3301179A1 (en) 2018-04-04
EP3301179A4 (en) 2018-04-04
JPWO2017007027A1 (en) 2018-04-19
US20180193371A1 (en) 2018-07-12

Similar Documents

Publication Publication Date Title
JP6840332B2 (en) Immunostimulatory oligonucleotide complex
JP6993649B2 (en) Oligonucleotide-containing complexes with immunostimulatory activity and their uses
Pradhan et al. The effect of combined IL10 siRNA and CpG ODN as pathogen-mimicking microparticles on Th1/Th2 cytokine balance in dendritic cells and protective immunity against B cell lymphoma
CA2570786C (en) Modified cpg-containing oligonucleotide multimers in immune stimulation
JP3976742B2 (en) Immunostimulatory oligonucleotides that induce interferon alpha
JP5161770B2 (en) Immunostimulatory oligonucleotide and its pharmaceutical use
WO2006035939A1 (en) Immune stimulating oligonucleotide and use thereof in pharmaceutical
EA030096B1 (en) Methods, compositions and nucleic acids for stimulating a humoral immune response
JP2004530629A (en) Immunostimulatory RNA / DNA hybrid molecule
BR112013015816B1 (en) construction of non-coding, linear open-chain dna for immunomodulation, pharmaceutical composition, vaccine, and use of a dna construct
Takahashi et al. Carbonate apatite nanoparticles act as potent vaccine adjuvant delivery vehicles by enhancing cytokine production induced by encapsulated cytosine-phosphate-guanine oligodeoxynucleotides
Jung et al. CpG incorporated DNA microparticles for elevated immune stimulation for antigen presenting cells
JP2009028031A (en) Phosphate-modified oligonucleotide analog with enhanced immunostimulatory activity
Rattanakiat et al. Self-assembling CpG DNA nanoparticles for efficient antigen delivery and immunostimulation
Tomai et al. TLR agonists as vaccine adjuvants
Hanagata et al. Double-stranded phosphodiester cytosine-guanine oligodeoxynucleotide complexed with calcium phosphate as a potent vaccine adjuvant for activating cellular and Th1-type humoral immunities
Reljic et al. Hideki Takahashi1, Kazuki Misato1, Taiki Aoshi2, 3, Yasuyuki Yamamoto4, Yui Kubota5, Xin Wu5, Etsushi Kuroda6, 7, Ken J. Ishii6, 7, Hirofumi Yamamoto5 and Yasuo Yoshioka1, 4, 8, 9
JP2022038517A (en) Immunostimulative oligonucleotides
US20220305119A1 (en) Dna nanostructure-based vaccines
US20220370490A1 (en) Synergistic immunostimulation through the dual activation of tlr3/9 with spherical nucleic acids
WO2024077214A1 (en) Dna barrel nanostructure vaccines
Singh Design and development of an injectable, polymer-based immune priming center

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210128

R150 Certificate of patent or registration of utility model

Ref document number: 6840332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250