Nothing Special   »   [go: up one dir, main page]

JP6736950B2 - Steel wire and method for manufacturing the steel wire - Google Patents

Steel wire and method for manufacturing the steel wire Download PDF

Info

Publication number
JP6736950B2
JP6736950B2 JP2016078200A JP2016078200A JP6736950B2 JP 6736950 B2 JP6736950 B2 JP 6736950B2 JP 2016078200 A JP2016078200 A JP 2016078200A JP 2016078200 A JP2016078200 A JP 2016078200A JP 6736950 B2 JP6736950 B2 JP 6736950B2
Authority
JP
Japan
Prior art keywords
steel wire
wire
steel
wire drawing
twisting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016078200A
Other languages
Japanese (ja)
Other versions
JP2017186632A (en
Inventor
誠 小坂
誠 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016078200A priority Critical patent/JP6736950B2/en
Publication of JP2017186632A publication Critical patent/JP2017186632A/en
Application granted granted Critical
Publication of JP6736950B2 publication Critical patent/JP6736950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、鋼線、及びその製造方法に関するものである。 The present invention relates to a steel wire and a method for manufacturing the steel wire.

高強度で、線径0.38mm以下の極細な鋼線は、ゴム又は有機材料の補強用に使用される。例えば、一般に、タイヤの補強材として使用される極細な鋼線(以下「フィラメント」とも称する)は、熱間圧延後、パーライト変態した高炭素線材に、中間パテンティングと乾式による伸線加工を施し、目標とする引張強さに調整するのに適した線径とした後、最終パテンティング、銅めっきまたはブラスめっき処理を施し、さらに湿式伸線を行って製造される。 An ultra-fine steel wire having a high strength and a wire diameter of 0.38 mm or less is used for reinforcing a rubber or an organic material. For example, in general, ultra-fine steel wire (also referred to as “filament” below) used as a reinforcing material for tires is obtained by subjecting pearlite-transformed high-carbon wire to intermediate patenting and dry drawing by hot rolling. After the wire diameter is adjusted to be adjusted to a target tensile strength, final patenting, copper plating or brass plating treatment is performed, and then wet drawing is performed.

このように製造されたフィラメントを補強材として使用するため、構造的な伸びを付与する目的で、一般的に複数本のフィラメントを撚り合わせる撚り線加工が行われる。このため、個々のフィラメント単体の形状としては、ゆるやかならせん状(コイル状)となる。 Since the filaments thus produced are used as a reinforcing material, a twisted wire process for twisting a plurality of filaments is generally performed for the purpose of imparting structural elongation. For this reason, the shape of each individual filament is a loose spiral (coil).

この形態の撚り線をゴム中に包埋したタイヤを実走行に供した場合、撚り線には主に引っ張りの繰り返し荷重が付与される。このとき、フィラメント単体としてみれば、正逆のねじりが繰り返して付与される状態となる。そのため、らせん状の形態を持つフィラメントには、正逆の繰り返しのねじりに対する耐久性が求められる。 When a tire in which a stranded wire of this form is embedded in rubber is subjected to actual running, the stranded wire is mainly subjected to repeated tensile loads. At this time, when viewed as a filament alone, a state in which forward and reverse twists are repeatedly applied is obtained. Therefore, the filament having a spiral shape is required to have durability against repeated twists in the forward and reverse directions.

これまで、フィラメントの正逆の繰り返しのねじりに対する耐久性について、一方向のみにねじる際に発生するデラミネーションを評価指標として鋼線の特性を改善する開発が多くなされている。 With respect to the durability against repeated forward and reverse twists of the filament, many developments have been made to improve the characteristics of the steel wire using delamination that occurs when twisting only in one direction as an evaluation index.

例えば、特許文献1では、パテンティングの際の加熱温度上限を規定し、冷却段階開始以降パーライト変態前に線材の表層部温度がその内部温度よりも低くすることで、表層部の平均パーライトノジュールサイズが内部よりも0.3μm以上小さい組織とすることで鋼線の捻回特性を向上させる技術を提案している。 For example, in Patent Document 1, the heating temperature upper limit during patenting is specified, and the surface layer portion temperature of the wire rod is made lower than the internal temperature thereof after the start of the cooling step and before the pearlite transformation, whereby the average pearlite nodule size of the surface layer portion. Has proposed a technique for improving the twisting characteristic of the steel wire by making the structure smaller than the inside by 0.3 μm or more.

また、特許文献2では、パテンティング時のオーステナイト化温度からの強制冷却段階において、一度500〜560℃まで冷却した後、復熱させてからパーライト変態を行わせることで、伸線材の横断面におけるフェライト粒の長軸長さ(Da)、短軸長さ(Db)の積(Da×Db)を一定値以下に制御し、高強度材での縦割れを抑制する技術を提案している。 Further, in Patent Document 2, in the forced cooling stage from the austenitizing temperature at the time of patenting, after cooling to 500 to 560° C. once and then reheating and then performing pearlite transformation, a cross-section of the drawn wire is obtained. A technique is proposed in which the product (Da×Db) of the major axis length (Da) and the minor axis length (Db) of ferrite grains is controlled to a certain value or less to suppress vertical cracking in a high strength material.

また、特許文献3では、鋼線に含まれるボイドの最大径を鋼線のせん断降伏応力との関係で上限を規定し、かつ表層の引張残留応力値とその周方向のバラツキの上限値をそれぞれ規定することで耐デラミネーション特性に優れた鋼線を製造する技術を提案している。 Further, in Patent Document 3, the maximum diameter of the voids contained in the steel wire is defined as an upper limit in relation to the shear yield stress of the steel wire, and the tensile residual stress value of the surface layer and the upper limit value of the variation in the circumferential direction thereof are respectively set. By prescribing it, we propose a technology to manufacture steel wire with excellent delamination resistance.

また、特許文献4には、最終パテンティング材の強度と初析フェライト/セメンタイトの面積率、およびパテンティング後の伸線加工方法を規定することで、鋼線表面の引張残留応力を線径に応じた値以下に抑え、デラミネーションを抑制する技術を提案している。 Further, in Patent Document 4, the tensile residual stress of the steel wire surface is defined as the wire diameter by defining the strength of the final patenting material, the area ratio of pro-eutectoid ferrite/cementite, and the wire drawing method after patenting. We propose a technology that suppresses delamination by keeping the value below the corresponding value.

一方、これまで、フィラメントの正逆の繰り返しのねじりに対する耐久性について、表層と中心の組織差、集積度に着目して鋼線の特性を改善する開発も多くなされている。 On the other hand, there have been many developments to improve the characteristics of the steel wire by focusing on the difference in structure between the surface layer and the center and the degree of integration, regarding the durability of the filament against repeated twists.

例えば、特許文献5では、パテンティング処理と550〜650℃の温間加工領域での適切な塑性変形を加えることにより、伸線加工前の高炭素鋼線材の表層、中心の組織の差異を造り込み、伸線加工性にすぐれた高炭素鋼線材の製造法を提案している。 For example, in Patent Document 5, by applying a patenting treatment and an appropriate plastic deformation in a warm working region of 550 to 650° C., a difference in the surface layer and the center structure of the high carbon steel wire rod before wire drawing is created. We have proposed a method for manufacturing high carbon steel wire rods that have excellent wire drawing workability.

また、特許文献6では、線材・棒鋼製造プロセスにおける加熱温度、圧延温度、冷却速度を規定して、特開2011−219829と同様に再表層とD/4部の組織差を造り込み、低温ねじれ特性にすぐれた線材・棒鋼の製造方法を提案している。 Further, in Patent Document 6, the heating temperature, rolling temperature, and cooling rate in the wire rod/bar steel manufacturing process are regulated to create a structural difference between the resurface layer and the D/4 part in the same manner as in JP 2011-219829 A, and twist at low temperature. We propose a method for manufacturing wire rods and steel bars with excellent characteristics.

また、特許文献7では、圧延プロセスにおいて成分範囲と仕上げ圧延温度を規定し、パーライトブロックサイズの表層と中心の差異を規定するとともに、{110}面集積度を規定して、メカニカルデスケーリング性にすぐれた線材・棒鋼の組織を規定している。 Further, in Patent Document 7, the component range and the finish rolling temperature are defined in the rolling process, the difference between the surface layer and the center of the pearlite block size is defined, and the {110} plane integration degree is defined to improve the mechanical descaling property. It specifies the structure of excellent wire rods and steel bars.

特開平11−241280号公報JP-A-11-241280 特開平11−199978号公報JP-A-11-199978 特開2001−279380号公報JP 2001-279380 A 特開2001−279381号公報JP 2001-279381 A 特開2011−219829号公報JP, 2011-219829, A 特開2009−120906号公報JP, 2009-120906, A WO2011/05574WO2011/05574

ところで、線径0.38mm以下の鋼線は曲げに対する剛性が非常に低く、ねじり試験を実施する際、回転中心軸に正確に把持することが非常に困難であり、実際の使用状況(例えば鋼線が補強材として使用されているタイヤの実走行中での状況等)で求められる、正逆の繰り返しのねじりに対する耐久性(つまり耐縦割れ性)を正確に評価することができていない。 By the way, a steel wire having a wire diameter of 0.38 mm or less has a very low rigidity against bending, and it is very difficult to accurately grip the center axis of rotation when carrying out a torsion test. It has not been possible to accurately evaluate the durability (that is, vertical cracking resistance) against repeated twists in the forward and reverse directions, which is required in the actual running of a tire in which a wire is used as a reinforcing material.

そのため、上記いずれの技術文献をもってしても、正逆の繰り返しのねじりに対する耐縦割れ性に優れた鋼線及びその製造方法を提案するには至っていない。つまり、上記いずれの技術をもってしても、線径0.38mm以下の鋼線に3300MPa以上の引っ張り強さを付与し、かつ、正逆の繰り返しのねじりに対する耐縦割れ性を十分に確保することはできておらず、本来の鋼線が有する引っ張り強さを、撚り線中の鋼線として、十分に発揮することができていないのが現状である。 Therefore, none of the above technical documents has proposed a steel wire excellent in longitudinal crack resistance against repeated forward and reverse twists and a manufacturing method thereof. That is, with any of the above techniques, it is necessary to impart a tensile strength of 3300 MPa or more to a steel wire having a wire diameter of 0.38 mm or less, and sufficiently secure longitudinal cracking resistance against repeated forward and reverse twists. In reality, the tensile strength of the original steel wire cannot be fully exerted as a steel wire in a stranded wire.

そこで、本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、正逆の繰り返しのねじりに対する耐縦割れ性に優れた鋼線及びその製造方法を提供することである。 Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide a steel wire excellent in vertical crack resistance against repeated forward and reverse twists, and a method for manufacturing the same. ..

本発明者らは、鋼線を正確に回転軸にあわせて把持し、繰り返して正逆のねじりを加え、かつ、その間の鋼線の応答特性(トルク変動)を連続的に記録する機構を開発し、正逆の繰り返しのねじりに対する鋼線の耐縦割れ性を定量的に評価することをはじめて可能にした。 The present inventors have developed a mechanism for accurately gripping a steel wire in accordance with the rotation axis, repeatedly applying forward and reverse twists, and continuously recording the response characteristics (torque fluctuation) of the steel wire during that time. For the first time, it has become possible to quantitatively evaluate the longitudinal crack resistance of steel wire against repeated forward and reverse twists.

そして、本発明者らは、その評価方法をもって、種々の加工方法によって試作した鋼線について評価実験を行った。これにより、本発明者らは、正逆の繰り返しのねじりに対する優れた耐縦割れ性を鋼線に付与するためには、鋼線の中心部と鋼線の表面との中間に位置する金属組織において、伸長した結晶粒の幅、隣接した結晶粒間の結晶方位の傾角差、及び、鉄立方晶{110}面の正極点図の大円上で、鉄立方晶{110}面の集積度が最大を示す方向と鋼線の長さ方向とのなす角度とを一定の範囲にすることが重要であることを見出すに至った。
さらに、本発明者らは、この特定の金属組織を鋼線に付与するためには、伸線加工以外の塑性変形モードである、ねじり加工を実施し、伸長した結晶粒の集合組織を変化させることが重要であることも見出すに至った。
Then, the inventors conducted an evaluation experiment on the steel wire prototyped by various processing methods with the evaluation method. Thereby, the present inventors have found that in order to impart excellent longitudinal crack resistance to repeated forward and reverse twisting to the steel wire, a metal structure located between the center of the steel wire and the surface of the steel wire. In, the width of the elongated crystal grain, the inclination difference of the crystal orientation between adjacent crystal grains, and the degree of integration of the iron cubic {110} plane on the great circle of the positive point diagram of the iron cubic {110} plane. It has been found that it is important to keep the angle between the maximum value and the length direction of the steel wire within a certain range.
Furthermore, in order to impart this specific metallographic structure to the steel wire, the present inventors carry out twisting, which is a plastic deformation mode other than wire drawing, to change the texture of the elongated crystal grains. We have also found that is important.

本発明は、上記知見に基づいてなされたものであり、その要旨とするところは、以下の通りである。 The present invention was made based on the above findings, and the gist thereof is as follows.

<1>
線径が50〜380μmの円形断面を有し、引張り強さが3300〜3900MPaである鋼線において、
質量%で、C:0.85〜1.20%,Si:0.05〜2.00%,Mn:0.2〜2.0%、Cr:0.01〜1.30%、Nb:0〜0.5%、V:0〜0.5%、及びMo:0〜0.2%を含有し、かつ残部がFe及び不純物からなり、
鋼線の長さ方向に平行で且つ鋼線の中心部を含む鋼線の断面であって、鋼線の中心部と鋼線の表面との中間に位置する鋼線の断面で観察される金属組織は、鋼線の径方向の線分上で測定した結晶粒の幅が50〜200nmであり、隣接した結晶粒間の結晶方位の傾角差が5〜30°であり、且つ鉄立方晶{110}面の正極点図の大円上で、鉄立方晶{110}面の集積度が最大を示す方向と鋼線の長さ方向とのなす角度が1°〜45°である鋼線。
<1>
In a steel wire having a circular cross section with a wire diameter of 50 to 380 μm and a tensile strength of 3300 to 3900 MPa,
In mass %, C: 0.85 to 1.20%, Si: 0.05 to 2.00%, Mn: 0.2 to 2.0%, Cr: 0.01 to 1.30%, Nb: 0 to 0.5%, V: 0 to 0.5%, and Mo: 0 to 0.2%, and the balance consisting of Fe and impurities,
Metal observed in a cross section of the steel wire which is parallel to the length direction of the steel wire and includes the center of the steel wire, and which is located between the center of the steel wire and the surface of the steel wire. The structure has a crystal grain width of 50 to 200 nm measured on a radial line segment of a steel wire, a crystal orientation inclination difference of 5 to 30° between adjacent crystal grains, and an iron cubic crystal { A steel wire having an angle of 1° to 45° between the direction in which the degree of integration of the iron cubic {110} face is maximum and the length direction of the steel wire, on the great circle of the positive electrode point diagram of the 110} face.

<2>
1方向ねじり試験で測定される鋼線の0.2%耐力点に相当するひずみの90%で行う定ひずみ振幅の繰り返しねじり試験で、鋼線の破断までの繰り返し数が100回以上である<1>に記載の鋼線。
<2>
In the repeated twist test of constant strain amplitude performed at 90% of the strain corresponding to the 0.2% proof stress point of the steel wire measured in the one-way twist test, the number of repetitions until the steel wire breaks is 100 times or more. The steel wire according to 1>.

<3>
質量%で、C:0.85〜1.20%,Si:0.05〜2.00%,Mn:0.2〜2.0%、Cr:0.01〜1.30%、Nb:0〜0.5%、V:0〜0.5%、及びMo:0〜0.2%を含有し、かつ残部がFe及び不純物からなる鋼線材に、1回又は複数回の第一伸線加工を施し、伸線材を得る第一伸線加工工程と、
前記伸線材に、伸線材の径Dに100を乗じた前記伸線材の長さあたり10〜200回のねじり加工を施し、中間伸線材を得るねじり加工工程と、
前記中間伸線材に、伸線加工真ひずみにして1.2以上の条件で、1回又は複数回の第二伸線加工を施し、鋼線を得る第二伸線加工と、
を有する鋼線の製造方法。
<3>
In mass %, C: 0.85 to 1.20%, Si: 0.05 to 2.00%, Mn: 0.2 to 2.0%, Cr: 0.01 to 1.30%, Nb: A steel wire rod containing 0 to 0.5%, V: 0 to 0.5%, and Mo: 0 to 0.2%, and the balance being Fe and impurities, was subjected to one or more first elongations. A first wire drawing process in which wire drawing is performed to obtain a wire drawn material;
A twisting step of subjecting the drawn wire to a twisting process of 10 to 200 times per length of the drawn wire obtained by multiplying the diameter D of the drawn wire by 100; and
A second wire drawing process for obtaining a steel wire by subjecting the intermediate wire drawing material to a second wire drawing process once or a plurality of times under conditions of 1.2 or more as a true wire drawing line strain, and
A method for manufacturing a steel wire having:

<4>
前記ねじり加工工程において、伸線材の径Dに100を乗じた前記伸線材の長さあたり25〜75回のねじり加工を施す<3>に記載の鋼線の製造方法。
<4>
The method for manufacturing a steel wire according to <3>, wherein in the twisting step, twisting is performed 25 to 75 times per length of the drawn wire obtained by multiplying the diameter D of the drawn wire by 100.

本発明によれば、正逆の繰り返しのねじりに対する耐縦割れ性に優れた鋼線及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a steel wire excellent in longitudinal crack resistance against repeated twists in the forward and reverse directions, and a manufacturing method thereof.

金属組織を観察する鋼線の断面(観察面)を説明するための模式図である。It is a schematic diagram for demonstrating the cross section (observation surface) of the steel wire which observes a metal structure. 結晶粒を識別する方法を説明するための模式図である。It is a schematic diagram for demonstrating the method of identifying a crystal grain. 金属組織を観察する鋼線の断面(観察面)では、結晶粒がほぼ矩形状と捉えられることを説明するための模式図である。It is a schematic diagram for demonstrating that a crystal grain is regarded as a substantially rectangular shape in the cross section (observation surface) of the steel wire for observing the metal structure. 鉄立方晶{110}面の正極点図の大円上で、鉄立方晶{110}面の集積度が最大を示す方向と鋼線の長さ方向とのなす角度を説明するための模式図である。A schematic diagram for explaining the angle formed by the direction in which the degree of integration of the iron cubic {110} plane is the maximum and the length direction of the steel wire on the great circle of the positive point diagram of the iron cubic {110} plane. Is. 本実施形態に係る鋼線の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the steel wire which concerns on this embodiment. ねじり加工を説明するための模式図である。It is a schematic diagram for demonstrating twist processing. 本実施形態に係る耐縦割れ性の評価方法(ねじり試験)に使用する評価装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the evaluation apparatus used for the longitudinal cracking resistance evaluation method (torsion test) which concerns on this embodiment. 鋼線に対して、1方向のねじりを加えたときに得られるトルク曲線を示す模式図である。It is a schematic diagram which shows the torque curve obtained when a one-way twist is added with respect to a steel wire. 正逆方向へのねじりの付与動作を行ったときの「ねじり(回転角)とトルクの関係」を示す模式図である。It is a schematic diagram which shows the "relationship between a twist (rotation angle) and a torque" at the time of performing the operation|movement of giving a twist to a normal direction. 正逆方向へのねじりの付与動作を繰り返し行ったときの「正逆方向へのねじりの付与動作とトルクの関係」を示す模式図である。It is a schematic diagram which shows "the relationship between the operation|movement of the twist|twisting in the forward/reverse direction and torque" when the operation|movement of the twist|twisting in the normal direction is repeated. 図8〜図10の関係を示す模式図である。It is a schematic diagram which shows the relationship of FIGS.

以下、本発明の一例である実施形態について説明する。 Hereinafter, an embodiment which is an example of the present invention will be described.

<鋼線>
本実施形態に係る鋼線は、線径が50〜380μmの円形断面を有し、引張り強さが3300〜3900MPaである鋼線であって、質量%で、C:0.85〜1.20%,Si:0.05〜2.00%,Mn:0.2〜2.0%、Cr:0.01〜1.30%、Nb:0〜0.5%、V:0〜0.5%、及びMo:0〜0.2%を含有し、かつ残部がFe及び不純物からなる鋼線(伸線パーライト鋼)である
そして、鋼線の長さ方向に平行で且つ鋼線の中心部を含む鋼線の断面であって、鋼線の中心部と鋼線の表面との中間に位置する鋼線の断面で観察される金属組織は、鋼線の径方向の線分上で測定した結晶粒の幅が50〜200nmであり、隣接した結晶粒間の結晶方位の傾角差が5〜30°であり、且つ鉄立方晶{110}面の正極点図の大円上で、鉄立方晶{110}面の集積度が最大を示す方向と鋼線の長さ方向とのなす角度が1°〜45°である。
<Steel wire>
The steel wire according to the present embodiment is a steel wire having a circular cross section with a wire diameter of 50 to 380 μm and a tensile strength of 3300 to 3900 MPa, and in mass%, C: 0.85 to 1.20. %, Si: 0.05 to 2.00%, Mn: 0.2 to 2.0%, Cr: 0.01 to 1.30%, Nb: 0 to 0.5%, V: 0 to 0. A steel wire (drawn perlite steel) containing 5% and Mo: 0 to 0.2%, and the balance being Fe and impurities. And, the center of the steel wire is parallel to the length direction of the steel wire. The metallographic structure observed in the cross section of the steel wire including the part, which is located between the center of the steel wire and the surface of the steel wire, is measured on the radial line segment of the steel wire. The width of the formed crystal grains is 50 to 200 nm, the tilt angle difference of the crystal orientations between the adjacent crystal grains is 5 to 30°, and the iron The angle formed by the direction in which the degree of integration of the cubic {110} plane is maximum and the length direction of the steel wire is 1° to 45°.

本実施形態に係る鋼線は、上記構成により、正逆の繰り返しのねじりに対する耐縦割れ性に優れた鋼線となる。この理由は、金属組織において、伸長した結晶粒の幅と、隣接した結晶粒間の結晶方位の傾角差、鉄立方晶{110}面の正極点図の大円上で、鉄立方晶{110}面の集積度が最大を示す方向と鋼線の長さ方向とのなす角度を上記範囲とすることで、割れの発生しやすい方向が鋼線の長手方向からずれ、鋼線の耐縦割れ性を向上させるためと推測される。 With the above configuration, the steel wire according to the present embodiment is a steel wire having excellent resistance to longitudinal cracking against repeated forward and reverse twists. The reason for this is that in the metallographic structure, the width of the elongated crystal grains, the tilt angle difference of the crystal orientation between adjacent crystal grains, the iron cubic {110} plane on the great circle of the positive electrode dot diagram of the iron cubic {110} By setting the angle between the direction in which the degree of accumulation of the plane is maximum and the length direction of the steel wire within the above range, the direction in which cracks tend to occur shifts from the longitudinal direction of the steel wire, and vertical cracking resistance of the steel wire It is presumed to improve the sex.

そして、本実施形態に係る鋼線は、タイヤなどの補強材として使用された場合、正逆の繰り返しのねじりによる応力変動によく耐え、縦割れが発生しにくいため、本来の鋼線が有する引っ張り強さに見合う疲労強度を発揮させることができるので、補強材としての耐久性が向上する。 When the steel wire according to the present embodiment is used as a reinforcing material for a tire, etc., it withstands stress fluctuations due to repeated forward and reverse twists well, and vertical cracks are less likely to occur. Since the fatigue strength corresponding to the strength can be exerted, the durability as a reinforcing material is improved.

(化学成分)
以下に、鋼線の化学成分の各元素の作用について述べる。なお、特に記載の無い限り、「%」は質量%を示す。
(Chemical composition)
The action of each element of the chemical composition of the steel wire will be described below. In addition, "%" indicates mass% unless otherwise specified.

「C:0.85〜1.20%」
C含有量が0.85%未満であるとパテンティング時の十分な強度と、伸線加工硬化率を得ることができないため、本発明の対象である3300MPa以上の強度を安定して得ることができない。このため、C含有量は0.85%以上とする。逆にC含有量が1.20%を超えると、もとの強度が高い上に、伸線加工硬化量が大きくなり、鋼線の延性の確保が難しくなるため、C含有量は1.20%以下とする。
"C: 0.85 to 1.20%"
If the C content is less than 0.85%, sufficient strength during patenting and a wire-drawing work hardening rate cannot be obtained, so that the strength of 3300 MPa or more, which is the object of the present invention, can be stably obtained. Can not. Therefore, the C content is 0.85% or more. On the other hand, when the C content exceeds 1.20%, the original strength is high, and the work hardening amount increases, which makes it difficult to secure the ductility of the steel wire. Therefore, the C content is 1.20. % Or less.

「Si:0.05〜2.00%」
Siは、パーライト中のフェライトを強化させるためと鋼の脱酸のために有効な元素である。しかしながら、Si含有量が0.05%未満では上記の効果が期待できず、Si含有量が2.00%を越えるとその効果が飽和する。このため、Si含有量は0.05〜2.00%とする。
"Si: 0.05-2.00%"
Si is an element effective for strengthening ferrite in pearlite and for deoxidizing steel. However, if the Si content is less than 0.05%, the above effect cannot be expected, and if the Si content exceeds 2.00%, the effect is saturated. Therefore, the Si content is set to 0.05 to 2.00%.

「Mn:0.2〜2.0%」
Mnは、脱酸、脱硫のために必要であるばかりでなく、鋼の焼入性を向上させ熱処理後の鋼線の引張強度を高めるために有効な元素である。しかしながら、Mn含有量が0.2%未満では上記の効果が得られず、一方、Mn含有量が2.0%を超えるとMn偏析が生じ安く鋼線材の加工性が劣化し、伸線加工中の破断原因となるだけでなく、延性を劣化させてしまう。このため、Mn含有量は0.2〜2.0%とする。
"Mn: 0.2-2.0%"
Mn is an element effective not only for deoxidation and desulfurization but also for improving the hardenability of steel and increasing the tensile strength of the steel wire after heat treatment. However, if the Mn content is less than 0.2%, the above effect cannot be obtained. On the other hand, if the Mn content exceeds 2.0%, Mn segregation occurs and the workability of the steel wire rod deteriorates, and the wire drawing work is performed. It not only causes breakage, but also deteriorates ductility. Therefore, the Mn content is 0.2 to 2.0%.

「Cr:0.01〜1.30%」
Crは、パーライトのラメラー間隔を微細化し、熱処理後の引張強度を高めるとともに、特に冷間加工硬化率を向上させる有効な元素である。しかし、Cr含有量が0.01%未満では効果が小さく、一方、Cr含有量が1.30%を超えると熱処理処理時のパーライト変態終了時間が長くなり生産性が低下してしまう。このため、Cr含有量は、0.01〜1.30%とする。好ましいCr含有量は、0.01〜1.00%がより好ましい。
"Cr: 0.01-1.30%"
Cr is an effective element that refines the lamellar spacing of pearlite, increases the tensile strength after heat treatment, and particularly improves the cold work hardening rate. However, if the Cr content is less than 0.01%, the effect is small. On the other hand, if the Cr content exceeds 1.30%, the pearlite transformation end time during the heat treatment is long and the productivity is reduced. Therefore, the Cr content is 0.01 to 1.30%. The preferable Cr content is more preferably 0.01 to 1.00%.

「残部」
鋼線の残部は、Feおよび不純物である。ここで、不純物とは、原材料に含まれる成分、または、製造の過程で混入する成分であって、意図的に鋼線に含有させたものではない成分を指す。
"The rest"
The balance of the steel wire is Fe and impurities. Here, the impurity means a component contained in the raw material or a component mixed in the manufacturing process and not intentionally contained in the steel wire.

「その他元素」
本実施形態に係る鋼線は、上記元素及び残部がFe及び不純物からなる化学組成を基本とするが、強度、靭性、延性等の機械的特性の向上を目的として、質量%で、Nb:0〜0.5%、V:0〜0.5%、及びMo:0〜0.2%の1種または2種以上を含有していてもよい。
"Other elements"
The steel wire according to the present embodiment is based on a chemical composition in which the above elements and the balance are Fe and impurities, but for the purpose of improving mechanical properties such as strength, toughness, and ductility, Nb:0 in mass%. .About.0.5%, V:0 to 0.5%, and Mo:0 to 0.2% may be contained alone or in combination.

(金属組織)
本実施形態に係る鋼線の金属組織について説明する。
(Metal structure)
The metallographic structure of the steel wire according to this embodiment will be described.

−金属組織を観察する鋼線の断面−
金属組織を観察する鋼線の断面は、図1に示すように、鋼線の長さ方向に平行で且つ鋼線の中心部を含む鋼線の断面であって、鋼線の中心部と鋼線の表面との中間に位置する鋼線の断面(以下「観察面」とも称する)である。ただし、観察面は、鋼線の長手方向(Z方向)4μm×鋼線の径方向(r方向)40μmの大きさの領域とする。そして、観察面は、この大きさの領域の鋼線の径方向(r方向)長さの中心部が、鋼線の中心部と鋼線の表面との中間に位置する領域とする。
-Cross section of steel wire for observing metal structure-
As shown in FIG. 1, the cross section of the steel wire for observing the metallographic structure is a cross section of the steel wire that is parallel to the length direction of the steel wire and includes the central portion of the steel wire. It is a cross section of a steel wire located in the middle of the surface of the wire (hereinafter also referred to as "observation surface"). However, the observation surface is an area having a size of 4 μm in the longitudinal direction (Z direction) of the steel wire×40 μm in the radial direction (r direction) of the steel wire. The observation surface is an area in which the center portion of the length of the steel wire in the radial direction (r direction) of the area of this size is located between the center portion of the steel wire and the surface of the steel wire.

観察面は、対象となる鋼線を湿式切断により、30℃以上に温度が上昇しないように切断後、Arイオンビームで、削りしろ(ミリング厚み)を約50〜100μmで削り落として形成する。そして、Arイオンビームで削りだす時間を調整し、少なくとも観察面からデータ採取可能なようにArイオンミリングを実施する。結晶方位データ採取はFE―SEMに付属したEBSD(電子後方散乱回折像)測定装置を用いて行うことができる。本実施形態では、日本電子社製FE−SEMであるJSM−7100Fを用い、SEM鏡筒中に設置したCCDカメラで電子後方散乱パターンを撮影し、TSL社データ採取ソフトウエアOIM−DC(Data Collection)により結晶方位データを集計した。採取したデータから結晶粒の結晶方位マップ等を作成する処理はTSL社のEBSD解析ソフトウエアのOIM−Analysis上で行った。 The observation surface is formed by cutting the target steel wire by wet cutting so that the temperature does not rise above 30° C., and then cutting off the shaving margin (milling thickness) by about 50 to 100 μm with an Ar ion beam. Then, the time for shaving with an Ar ion beam is adjusted, and Ar ion milling is performed so that data can be collected at least from the observation surface. The crystal orientation data can be collected by using an EBSD (electron backscattering diffraction image) measuring device attached to the FE-SEM. In the present embodiment, a JSM-7100F, which is an FE-SEM manufactured by JEOL Ltd., is used to photograph an electron backscattering pattern with a CCD camera installed in the SEM lens barrel, and TSL data acquisition software OIM-DC (Data Collection). The crystal orientation data was collected by. The processing of creating a crystal orientation map of crystal grains from the collected data was performed on OIM-Analysis of ESL analysis software of TSL.

ここで、フェライトのような体芯立方晶を有する鋼線材を伸線加工して得られた鋼線は、強い{110}//DD集合組織、すなわち、多くの結晶粒が長手方向に体芯立方晶{110}面が配向した組織を有する。しかし、観察面である鋼線の縦断面の結晶粒の結晶方位は、素材となる鋼線材(パテンティング材又は圧延線材等)の結晶粒に相当する単位で異なっていることが、調査の結果、わかっている。 Here, a steel wire obtained by drawing a steel wire rod having a body-centered cubic crystal such as ferrite has a strong {110}//DD texture, that is, many crystal grains are longitudinally body-centered. It has a structure in which cubic {110} planes are oriented. However, as a result of the investigation, the crystal orientation of the crystal grains in the longitudinal section of the steel wire, which is the observation surface, differs in units corresponding to the crystal grains of the steel wire rod (patenting material or rolled wire rod, etc.) that is the raw material. ,know.

鋼線材の伸線後、観察面である鋼線の縦断面でも、概ね同一の結晶方位を有する伸長した矩形の1区画として、結晶方位マップ上で結晶粒境界を明確に識別することが可能となるため、結晶粒の識別として、この方法を使用する。
具体的には、結晶粒は、以下のごとく識別される。EBSD法では一般に観察面を正六角形要素(ピクセル)に区切り、正六角形要素の中心位置のフェライトの結晶方位情報を取得して、そのピクセルの方位情報を代表させる。解析ソフトウエア上ではこれらの方位情報に結晶方位に応じた色彩を付与する。
二つのピクセル間で、色彩が明確に異なると目視で判断できる場合、それらのピクセルは異なる結晶粒に属するものと判断し、結晶粒の境界を定義する。
Even after the wire drawing of the steel wire, it is possible to clearly identify the crystal grain boundaries on the crystal orientation map as one stretched rectangular section having substantially the same crystal orientation even in the longitudinal section of the steel wire which is the observation surface. Therefore, this method is used to identify the crystal grains.
Specifically, the crystal grains are identified as follows. In the EBSD method, generally, the observation surface is divided into regular hexagonal elements (pixels), the crystal orientation information of the ferrite at the center position of the regular hexagonal elements is acquired, and the orientation information of the pixels is represented. On the analysis software, a color corresponding to the crystal orientation is added to these orientation information.
When it is possible to visually determine that the two pixels have different colors, the pixels are determined to belong to different crystal grains, and the boundaries of the crystal grains are defined.

このような操作で得られた結晶粒の境界線は、EBSD法の六角要素(EBSDピクセル)に沿ったものであるため、詳細にみると折れ線状となるが、折れ線を目視でなめらかに結ぶことにより、結晶粒界面が得られる。この結晶粒界面で識別された領域を結晶粒(伸長パーライトコロニー)とする(図2参照)。
このような操作で得られた結晶粒(伸長パーライトコロニー)は、観察面である鋼線の縦断面(鋼線の周方向面(θ面))においては概ね鋼線の長手方向へ伸長した紡錘状の形状をしている。ただし、ひとつながりの結晶粒の長さは、観察面の大きさである「4μm程度の鋼線の長手方向(Z方向)長さ」に対して十分に長く、観察面の領域内においては、結晶粒はほぼ矩形状と捉えることができる(図3参照)。
Since the boundary line of the crystal grains obtained by such an operation is along the hexagonal element (EBSD pixel) of the EBSD method, it looks like a polygonal line in detail, but the polygonal line should be connected smoothly by visual observation. Thereby, a crystal grain interface is obtained. The region identified at this crystal grain interface is defined as a crystal grain (extended pearlite colony) (see FIG. 2).
The crystal grains (extended pearlite colonies) obtained by such an operation are the spindles that are elongated in the longitudinal direction of the steel wire in the longitudinal section (circumferential surface of the steel wire (θ surface)) of the steel wire that is the observation surface. It has a shape like. However, the length of one continuous crystal grain is sufficiently long with respect to the length of the observation surface, that is, the length of the steel wire in the longitudinal direction (Z direction) of about 4 μm, and within the area of the observation surface, The crystal grains can be regarded as a substantially rectangular shape (see FIG. 3).

−結晶粒の幅−
上記操作により観察面で観察される結晶粒の幅(鋼線の径方向の線分上で測定した結晶粒の幅)は、50〜200nmである。なお、結晶粒の幅は、観察面で観察される全ての結晶粒の幅の平均値とする。
結晶粒の幅が50nm未満の場合、鋼線の表層近傍の変形能が低下して、側方偏応力の付与に対して、初期き裂が早期に導入されてしまうため、側方偏応力緩和性が低下し、本来、鋼線が有している強度を発揮できずに、低応力で破断に至ることが多い。逆に、結晶粒の幅が200nmを超える場合は、伸線加工による加工硬化の効果が十分に得られておらず、引っ張り強さが3300MPaに満たない。よって、結晶粒の幅は、50〜200nmとする。
また、結晶粒の幅は、側方偏応力緩和性を向上させ、鋼線が有している強度をより発揮するためには、70μm以上とすることが好ましい。一方、結晶粒の幅は、伸線加工による加工硬化の効果が十分に得るためには、120μm以下とすることが好ましい。
-Crystal grain width-
The width of the crystal grain observed on the observation surface by the above operation (the width of the crystal grain measured on the line segment in the radial direction of the steel wire) is 50 to 200 nm. The width of the crystal grains is the average value of the widths of all the crystal grains observed on the observation surface.
If the width of the crystal grains is less than 50 nm, the deformability near the surface layer of the steel wire will be reduced, and the initial crack will be introduced early in response to the application of lateral eccentric stress. In many cases, the strength of the steel wire is deteriorated, and the strength originally possessed by the steel wire cannot be exhibited, resulting in fracture with low stress. On the other hand, when the width of the crystal grain exceeds 200 nm, the effect of work hardening by wire drawing is not sufficiently obtained, and the tensile strength is less than 3300 MPa. Therefore, the width of the crystal grain is 50 to 200 nm.
In addition, the width of the crystal grains is preferably 70 μm or more in order to improve the lateral eccentric stress relaxation property and more exert the strength of the steel wire. On the other hand, the width of the crystal grains is preferably 120 μm or less in order to sufficiently obtain the effect of work hardening by wire drawing.

−結晶粒間の結晶方位の傾角差−
上記操作により観察面で観察される、隣接する結晶粒間の結晶方位の傾角差は、5〜30°である。なお、結晶方位の傾角差は、観察面で観察される、全ての隣接する結晶粒間の傾角差の平均値とする。ただし、観察面中に長さ方向に伸長した結晶粒の端部が含まれる場合は、端部を測定対象としない。
結晶粒間の結晶方位の傾角差が5°未満の場合、伸線加工が不十分で加工硬化が十分に得られていないため、引張り強さが3300MPaに満たないことがある。逆に、結晶粒間の傾角差が30°を超える場合、伸長した結晶粒間で剥離しやすく、正逆の繰り返しのねじりに対縦割れし易い状態になる。よって、結晶粒間の結晶方位の傾角差は、5〜30°とする。
また、結晶粒間の結晶方位の傾角差は、引張り強さをより安定的に得るためには、9°以上とすることが好ましい。一方、結晶粒間の結晶方位の傾角差は、伸長した結晶粒間がより剥離し難くして、正逆の繰り返しのねじりに対して縦割れし難くするためには、20°以下とすることが好ましい。
− Difference in crystal orientation between crystal grains −
The tilt difference in crystal orientation between adjacent crystal grains observed on the observation surface by the above operation is 5 to 30°. Note that the tilt difference of the crystal orientation is the average value of the tilt differences between all the adjacent crystal grains observed on the observation surface. However, when the observation surface includes an end portion of a crystal grain that extends in the length direction, the end portion is not a measurement target.
When the difference in crystal orientation between crystal grains is less than 5°, the drawing strength is insufficient and work hardening is not sufficiently obtained, so that the tensile strength may be less than 3300 MPa. On the contrary, when the tilt angle difference between the crystal grains exceeds 30°, peeling is likely to occur between the elongated crystal grains, and longitudinal cracking is likely to occur against repeated forward and reverse twists. Therefore, the tilt angle difference of the crystal orientation between the crystal grains is set to 5 to 30°.
The difference in crystal orientation between crystal grains is preferably 9° or more in order to obtain tensile strength more stably. On the other hand, the difference in crystal orientation between crystal grains is set to 20° or less in order to make it more difficult for the elongated crystal grains to separate and to prevent vertical cracking due to repeated forward and reverse twists. Is preferred.

−鉄立方晶{110}面の極点図−
伸線加工等の冷間での塑性変形を付与した鋼線では、鉄立方晶{110}面の正極点図上に鉄立方晶{110}面の集積度が極大となる部位が、鋼線の長さ方向(Z方向)側に明確に現れる。そして、鉄立方晶{110}面の正極点図の大円上で、鉄立方晶{110}面の集積度が最大を示す方向と鋼線の長さ方向(Z方向)とのなす角度(以下「鉄立方晶{110}面の最大集積度の角度」とも称する)は、1°〜45°である。
-Pole figure of iron cubic {110} plane-
In a steel wire that has undergone cold plastic deformation such as wire drawing, the part where the degree of integration of the iron cubic {110} plane is maximum on the positive pole diagram of the iron cubic {110} plane is the steel wire. Clearly appears in the length direction (Z direction) side. Then, on the great circle of the positive point diagram of the iron cubic {110} plane, the angle formed by the direction in which the degree of accumulation of the iron cubic {110} plane is maximum and the length direction of the steel wire (Z direction) ( Hereinafter, it is also referred to as “angle of maximum integration degree of iron cubic {110} plane”) is 1° to 45°.

鉄立方晶{110}面の最大集積度の角度が1未満の場合、正逆の繰り返しのねじりに対して縦割れが起こりやすくなる。逆に、鉄立方晶{110}面の最大集積度の角度が45°超えの場合、鋼線の特性である3300MPa以上の引張り強さが得にくくなる。よって、鉄立方晶{110}面の最大集積度の角度は、1°〜45°とする。
また、鉄立方晶{110}面の最大集積度の角度は、正逆の繰り返しのねじりに対して縦割れし難い効果をより明確に得るためには、5°以上とすることが好ましく、10°以上とすることがより好ましい。一方、鉄立方晶{110}面の最大集積度の角度は、鋼線の引張り強さをより効率的に得るためには、30°未満とすることが好ましい。
When the angle of the maximum degree of integration of the iron cubic {110} plane is less than 1, vertical cracking is likely to occur due to repeated forward and reverse twists. On the contrary, when the angle of the maximum integration degree of the iron cubic {110} plane exceeds 45°, it becomes difficult to obtain the tensile strength of 3300 MPa or more, which is the characteristic of the steel wire. Therefore, the angle of the maximum integration degree of the iron cubic {110} plane is 1° to 45°.
In addition, the angle of maximum integration degree of the iron cubic {110} plane is preferably 5° or more in order to more clearly obtain the effect that vertical cracking is less likely to occur with respect to forward and reverse repeated twists. It is more preferable that the angle is not less than °. On the other hand, the angle of the maximum degree of integration of the iron cubic {110} plane is preferably less than 30° in order to obtain the tensile strength of the steel wire more efficiently.

ここで、正極点図(集積度分布)は、次のようにして得られるものである。
まず、評価しようとする集合組織の結晶方位マップの、個々のピクセルの特定の結晶面の極点を、材料座標を表現したステレオ投影図上に投影する(1ピクセルについて1個)。なお、ステレオ投影図は、材料座標空間(3次元)を平面上(円形、2次元)に表現したものである。
次に、ステレオ投影図上の位置を中心としたある範囲中に存在する極点の数を数える((A)値)。なお、本実施形態では、立体角5°以内の範囲で集計する。
一方、完全にランダム方位を向いている組織のある特定の結晶面の極点をステレオ投影図上に投影し、上記と同様に極点の数を数える((B)値))。
そして、上記で求めた(A)値/(B)値を計算する。
このような操作をステレオ投影図全体(材料座標の全方向)について行い、(A)/(B)の分布を求めたものが、正極点図(集積度の分布)である。
Here, the positive electrode diagram (integration degree distribution) is obtained as follows.
First, in the crystal orientation map of the texture to be evaluated, the pole point of the specific crystal plane of each pixel is projected on the stereo projection diagram expressing the material coordinates (one for each pixel). Note that the stereo projection diagram is a representation of the material coordinate space (three-dimensional) on a plane (circular, two-dimensional).
Next, the number of poles existing in a certain range centered on the position on the stereo projection is counted ((A) value). In the present embodiment, the total is calculated within the range of the solid angle of 5° or less.
On the other hand, the poles of a specific crystal plane of the texture, which are oriented completely in random directions, are projected on a stereo projection diagram, and the number of poles is counted in the same manner as above ((B) value)).
Then, the (A) value/(B) value obtained above is calculated.
Such an operation is performed for the entire stereo projection diagram (all directions of material coordinates), and the distribution of (A)/(B) is obtained, which is the positive electrode point diagram (distribution of integration degree).

つまり、鉄立方晶{110}面の正極点図における鉄立方晶{110}面の集積度とは、結晶粒が完全にランダムな方位を向いている場合に対して、鉄立方晶{110}面が何倍の密度で存在するのかという指標である。
そして、鉄立方晶{110}面の集積度が最大を示す方向とは、鉄立方晶{110}面の正極点図において、鉄立方晶{110}面の集積度が最大を示す色で区画される領域うち正極点図の大円上に位置する弧の中心部と正極点図の大円の中心部とを通る直線Xに沿う方向である。つまり、鉄立方晶{110}面の最大集積度の角度は、直線Xが鋼線の長手方向(Z方向)となす角度Aを示している(図4参照)。なお、図4中、θは鋼線の周方向、rは鋼線の径方向を示している。
That is, the degree of integration of the iron cubic {110} plane in the positive electrode diagram of the iron cubic {110} plane is the iron cubic {110} when the crystal grains are oriented in completely random directions. It is an index of how many times the surface exists.
The direction in which the degree of integration of the iron cubic {110} plane is maximum is defined by a color in which the degree of integration of the iron cubic {110} plane is maximum in the positive pole figure of the iron cubic {110} plane. It is a direction along a straight line X that passes through the center of the arc located on the great circle in the positive pole figure and the center of the great circle in the positive pole figure. That is, the angle of the maximum degree of integration of the iron cubic {110} plane indicates the angle A formed by the straight line X and the longitudinal direction (Z direction) of the steel wire (see FIG. 4 ). In FIG. 4, θ indicates the circumferential direction of the steel wire and r indicates the radial direction of the steel wire.

なお、鉄立方晶{110}面の最大集積度は、次のように定義される。
正極点図(集積度分布)により求められた集積度の分布を元に、1°きざみの集積度の等高線(等高線モード)を描画する。最大集積度の最大点は、地形図の中で山の頂上が示されるように、正極点図(集積度分布)の中の極大点として1°の精度で表示される。正極点図(集積度分布)の中ではいくつかの極大点が現れる。そして、この中で最も大きい点の集積度を集積度の最大点(つまり、最大集積度)とする。
The maximum integration degree of the iron cubic {110} plane is defined as follows.
Based on the distribution of the degree of integration obtained from the positive point diagram (distribution of degree of integration), contour lines (contour line mode) of the degree of integration in 1° steps are drawn. The maximum point of the maximum degree of integration is displayed with an accuracy of 1° as the maximum point in the positive point map (integration degree distribution), as the top of the mountain is shown in the topographic map. Several local maximum points appear in the positive point diagram (accumulation degree distribution). Then, the integration degree of the largest point is set as the maximum integration point (that is, the maximum integration degree).

−鋼線の特性等−
本実施形態に係る鋼線は、線径50〜380μmの円形断面である。線径50〜380μmの鋼線において、上記特定の金属組織を付与すると、正逆の繰り返しのねじりに対する耐縦割れ性の効果が発現しやすい。また、線径50〜380μmの鋼線は、タイヤ、ベルトコード、高圧ホース等の用途であって、ゴム及び有機材料の補強用に使用されているスチールコードに求められる鋼線である。
-Characteristics of steel wire-
The steel wire according to the present embodiment has a circular cross section with a wire diameter of 50 to 380 μm. When a steel wire having a wire diameter of 50 to 380 μm is provided with the above-mentioned specific metal structure, the effect of vertical crack resistance against repeated forward and reverse twists is easily exhibited. A steel wire having a wire diameter of 50 to 380 μm is a steel wire required for a steel cord used for reinforcement of rubber and organic materials in applications such as tires, belt cords and high pressure hoses.

本実施形態に係る鋼線の引張り強さは、3300〜3900MPaである。鋼線の引張り強さが3300〜3900MPaの鋼線において、上記特定の金属組織を付与すると、正逆の繰り返しのねじりに対する耐縦割れ性の効果が発現しやすい。また、引張り強さが3300〜3900MPaの鋼線は、タイヤ、ベルトコード、高圧ホース等の用途であって、ゴム及び有機材料の補強用に使用されているスチールコードに求められる鋼線である。 The tensile strength of the steel wire according to this embodiment is 3300 to 3900 MPa. When a steel wire having a tensile strength of 3300 to 3900 MPa is imparted with the above-mentioned specific metallographic structure, the effect of longitudinal cracking resistance against repeated forward and reverse torsion is likely to be exhibited. A steel wire having a tensile strength of 3300 to 3900 MPa is a steel wire required for a steel cord used for reinforcing tires, belt cords, high pressure hoses and the like, and for reinforcing rubber and organic materials.

本実施形態に係る鋼線において、1方向ねじり試験で測定される鋼線の0.2%耐力点に相当するひずみの90%で行う定ひずみ振幅の繰り返しねじり試験で、鋼線の破断までの繰り返し数は、100回以上が好ましく、150回以上がより好ましい。鋼線の破断までの繰り返し数が100回以上となることで、正逆の繰り返しねじりに対する耐縦割れ性が更に優れた鋼線となる。
なお、鋼線の破断までの繰り返し数の測定方法については、後述する本実施形態に係る耐縦割れ性の評価方法で説明する。
In the steel wire according to the present embodiment, a repeated twisting test with a constant strain amplitude performed at 90% of the strain corresponding to the 0.2% proof stress point of the steel wire measured in the one-way twisting test is performed until the steel wire breaks. The number of repetitions is preferably 100 times or more, more preferably 150 times or more. When the number of repetitions until the steel wire is broken is 100 or more, the steel wire has further excellent vertical cracking resistance against forward and reverse repeated twists.
The method for measuring the number of repetitions until the steel wire is broken will be described in the method for evaluating vertical crack resistance according to this embodiment described later.

本実施形態に係る鋼線は、ブラスめっき等の周知のめっき処理が表面に施されていてもよい。 The steel wire according to the present embodiment may be subjected to a well-known plating treatment such as brass plating on the surface.

<鋼線の製造方法>
本実施形態に係る鋼線の製造方法は、質量%で、C:0.85〜1.20%,Si:0.05〜2.0%,Mn:0.2〜2.0%、及びCr:0.01〜1.30%を含有し、かつ残部がFe及び不純物からなる鋼線材に、1回又は複数回の伸線加工を施し、伸線材を得る第一伸線加工工程と、伸線材に、伸線材の径Dに100を乗じた伸線材の長さあたり10〜200回のねじり加工を施し、中間伸線材を得るねじり加工工程と、中間伸線材に、伸線加工真ひずみにして1.2以上の条件で、1回又は複数回の第二伸線加工を施し、鋼線を得る第二伸線加工と、を有する(図5参照)。
<Steel wire manufacturing method>
The manufacturing method of the steel wire according to the present embodiment is, in mass %, C: 0.85 to 1.20%, Si: 0.05 to 2.0%, Mn: 0.2 to 2.0%, and A first wire drawing step in which a steel wire containing Cr: 0.01 to 1.30% and the balance consisting of Fe and impurities is subjected to wire drawing one or more times to obtain a wire drawn material; The wire drawing material is subjected to a twisting process 10 to 200 times per length of the wire drawing material obtained by multiplying the diameter D of the wire drawing material by 100, and a twisting process for obtaining an intermediate wire drawing material and a true wire drawing strain Then, the second wire drawing is performed once or a plurality of times under the condition of 1.2 or more to obtain a steel wire (see FIG. 5 ).

本実施形態に係る鋼線の製造方法では、上記化学組成の鋼線材を伸線した第一伸線材に、所定のねじり加工及び第二伸線加工を施すことにより、上記本実施形態に係る鋼線(つまり、上記特定の金属組織を有する鋼線)が得られる。すなわち、本実施形態に係る鋼線の製造方法では、正逆の繰り返しのねじりに対する耐縦割れ性に優れた鋼線が得られる。 In the method for manufacturing a steel wire according to the present embodiment, the first wire drawing material obtained by drawing the steel wire material having the above chemical composition is subjected to predetermined twisting and second wire drawing to obtain the steel according to the present embodiment. A wire (that is, a steel wire having the above-mentioned specific metal structure) is obtained. That is, in the method for manufacturing a steel wire according to the present embodiment, it is possible to obtain a steel wire having excellent resistance to longitudinal cracking against repeated forward and reverse twists.

以下、各工程の詳細について説明する。 The details of each step will be described below.

−第一伸線加工工程−
第一伸線加工工程では、鋼線材に1回又は複数回の第一伸線加工を施す。なお、鋼線材の化学組成について、上記本実施形態に係る鋼線で説明した化学組成と同様である。
-First wire drawing process-
In the first wire drawing process, the steel wire rod is subjected to the first wire drawing process once or plural times. The chemical composition of the steel wire rod is the same as the chemical composition described for the steel wire according to the present embodiment.

第一伸線加工工程において、第一伸線加工に供する鋼線材は、特に制限はないが、一例として、例えば、次の方法により製造する。 In the first wire drawing step, the steel wire rod used for the first wire drawing is not particularly limited, but as an example, it is manufactured by the following method.

まず、熱間圧延により、素材となる鋼片(ビレット)を1100〜1200℃に加熱して、金属組織をオーステナイト組織とした熱間圧延線材を得る。熱間圧延では、圧延の各スタンド毎に90度づつ交互に圧下方向を変えることで、徐々に断面積を減じ、目的とする最終線径(例えば最終線径5.5mm)にまで、鋼片を圧延する。このとき、非常に高い加工ひずみ速度により、鋼片は、加工発熱して非常に高温となるが、鋼片の最高到達温度を表面で1050〜1150℃の範囲内に制御する。 First, by hot rolling, a steel slab (billet) as a raw material is heated to 1100 to 1200° C. to obtain a hot rolled wire rod having a metal structure of an austenite structure. In hot rolling, the cross-sectional area is gradually reduced by alternately changing the rolling direction by 90 degrees for each stand of rolling, and the steel strip is cut to a desired final wire diameter (for example, final wire diameter of 5.5 mm). To roll. At this time, the steel slab is heated to a very high temperature due to the processing heat due to a very high processing strain rate, but the maximum temperature reached by the steel slab is controlled within the range of 1050-1150° C. on the surface.

次に、得られたオーステナイト組織の熱間圧延線材を、巻取り機に到達するまでの5sec以内に、800〜750℃の範囲に水冷する。この後、冷却コンベア上でパーライト変態温度が620℃〜660℃の範囲となるように衝風冷却の風量および搬送速度を調整する。 Next, the hot-rolled wire rod having the obtained austenite structure is water-cooled within a range of 800 to 750° C. within 5 seconds before reaching the winding machine. After that, the air flow of the airflow cooling and the conveying speed are adjusted so that the pearlite transformation temperature is in the range of 620° C. to 660° C. on the cooling conveyor.

次に、冷却後の熱間圧延線材の表面の酸化スケールを除去するため、塩酸により熱間圧延線材を酸洗する。その後、乾式潤滑剤を用いた伸線とパテンティングを適宜組合せ、目的の鋼線に仕上げるのに適した線径とする。所定の線径とした伸線材に対して、最終のパテンティング、酸洗、湿式の電気めっきとしてCuめっき及びZnめっきをこの順序で行った後、高周波加熱により、熱拡散処理してパテンティング材の表面にブラスめっきを形成する。 Next, in order to remove the oxide scale on the surface of the hot rolled wire rod after cooling, the hot rolled wire rod is pickled with hydrochloric acid. After that, wire drawing using a dry lubricant and patenting are appropriately combined to obtain a wire diameter suitable for finishing the target steel wire. After the final patenting, pickling, and Cu electroplating and Zn plating as wet electroplating are performed in this order on the drawn material having a predetermined wire diameter, the patenting material is subjected to thermal diffusion treatment by high frequency heating. Brass plating is formed on the surface of.

そして、ブラスめっきを形成後、シュウ酸により酸化皮膜を除去して、第一伸線加工に供するめっき線材を得る。
なお、熱間圧延線材を製造するとき、熱間圧延時の加熱温度を1050〜1150℃とし、パーライト変態温度を620℃〜660℃とすることにより、鋼線材の結晶粒の大きさ(パーライトコロニーサイズ)を円相当径で15〜25μmに制御することがよい。これにより、目的とする金属組織が得られやすくなり、正逆の繰り返しねじりに対する耐縦割れ性が向上しやすくなる。
Then, after forming the brass plating, the oxide film is removed with oxalic acid to obtain a plated wire rod to be subjected to the first wire drawing process.
When producing a hot rolled wire rod, the heating temperature during hot rolling is set to 1050 to 1150° C. and the pearlite transformation temperature is set to 620° C. to 660° C., so that the size of the crystal grains of the steel wire rod (pearlite colony). It is preferable to control the size) to be 15 to 25 μm in terms of equivalent circle diameter. This makes it easier to obtain the desired metallographic structure and to improve the vertical cracking resistance against repeated forward and reverse torsion.

次に、得られためっき線材に第一伸線加工を施す。第一伸線加工は、例えば、湿式で行う。湿式の伸線加工では、例えば、微細な固体潤滑剤を水中にエマルションとして分散した潤滑剤中に完全にダイスを水没させる方式で伸線加工を実施する。 Next, the plated wire thus obtained is subjected to first wire drawing. The first wire drawing process is performed, for example, by a wet method. In the wet wire drawing, for example, wire drawing is performed by a method in which a die is completely submerged in a lubricant in which a fine solid lubricant is dispersed as an emulsion in water.

第一伸線加工工程では、第一伸線加工を1回又は複数回実施するが、各回(各段)の加工減面率は15〜22%となるように選定し、ベアリング長さが線径Dに対して公称0.3Dのダイスを使用して行うことがよい。なお、ダイス角度の管理はConoptica社製ダイス形状測定装置で使用前に点検を行い、概ね上記の範囲に収まっていることを確認の上、使用することがよい。 In the first wire drawing process, the first wire drawing process is carried out once or a plurality of times, but it is selected that the work area reduction rate at each time (each stage) is 15 to 22%, and the bearing length is the line length. This may be done using a nominal 0.3D die for diameter D. It should be noted that the management of the die angle is preferably performed by inspecting it with a die shape measuring device manufactured by Conoptica before use and confirming that it is within the above range.

第一伸線加工工程では、伸線加工中の発熱を低減する観点から、例えば、ダイスのアプローチ角度は全角で10〜12°とし、湿式伸線の後半の線径0.9mm以降の伸線ではダイヤモンドダイスを使用することがよい。また、伸線加工の各回(各段)の加工減面率を15〜22%とすることで、鋼線の温度を100℃以下とすることがよい。 In the first wire drawing process, from the viewpoint of reducing heat generation during wire drawing, for example, the approach angle of the die is 10 to 12° in all angles, and wire drawing in the latter half of wet drawing is 0.9 mm or more. It is better to use diamond dies. In addition, it is preferable that the temperature of the steel wire is 100° C. or less by setting the work area reduction ratio of each wire drawing process (each step) to 15 to 22%.

−ねじり加工工程−
ねじり加工工程では、第一伸線加工により得られた伸線材に、ねじり加工を施す。具体的には、例えば、第一伸線加工後、巻き取られた伸線材の一端を治具により把持し、伸線材を回転させながら引き出して、伸線材にねじり加工を施す。このねじり加工により、伸線材にねじりの塑性変形を付与する。
-Twisting process-
In the twisting process, the wire drawing material obtained by the first wire drawing is twisted. Specifically, for example, after the first wire drawing process, one end of the wound wire drawing material is gripped by a jig, the wire drawing material is pulled out while being rotated, and the wire drawing material is twisted. This twisting process imparts a twisting plastic deformation to the drawn wire.

ねじり加工工程において、伸線材のねじり回数は、伸線材の径Dに100を乗じた伸線材の長さあたり(つまり100×Dの伸線材の長さあたり)、10〜200回である(図6参照)。
ねじり回数が10回に満たないと、正逆の繰り返しのねじりに対する縦割れが発生する。逆に、ねじり回数が200回を超えると、ねじり加工の最中に延性破壊を起こして伸線材が破断してしまう。よって、ねじり回数は、10〜200回とする。
また、ねじり回数は、正逆の繰り返しのねじりに対する縦割れをより効果的に抑制するためには、25回以上が好ましく、40回以上がより好ましい。一方、ねじり回数は、ねじり加工の最中での伸線材の破断をより効果的に抑制するためには、100回以下が好ましく、75回以下がより好ましい。
In the twisting process, the number of twists of the wire drawing material is 10 to 200 times per length of the wire drawing material obtained by multiplying the diameter D of the wire drawing material by 100 (that is, per length of the wire drawing material of 100×D) (Fig. 6).
If the number of twists is less than 10, vertical cracks will occur due to repeated twists. On the other hand, if the number of twists exceeds 200, ductile fracture occurs during the twisting process and the wire drawing material breaks. Therefore, the number of twists is 10 to 200.
Further, the number of twists is preferably 25 times or more, more preferably 40 times or more in order to more effectively suppress vertical cracking due to repeated forward and reverse twists. On the other hand, the number of twists is preferably 100 times or less, and more preferably 75 times or less in order to more effectively suppress breakage of the drawn wire during twisting.

ここで、100×Dの伸線材の長さあたりのねじり回数は、ねじり加工をするために把持する伸線材の一端部が一回転したときを「1回」と数え、この回転数を100×Dの伸線材の長さで割って算出する(つまり、式:ねじり回数=伸線材の一端部の回転数/100×Dの伸線材の長さで算出する)。 Here, the number of twists per length of a wire drawing material of 100×D is counted as “1 time” when one end of the wire drawing material to be gripped for twisting is rotated once, and the number of rotations is 100×. It is calculated by dividing by the length of the drawn wire material of D (that is, the formula: number of twists=rotation speed of one end of the drawn wire material/100×D length of the drawn wire material).

ねじり加工工程において、伸線材をねじり加工するときに伸線材を回転させる回転数(回転速度)については、特に制限はなく、例えば、10〜300rpmの範囲とすればよい。 In the twisting step, the number of rotations (rotational speed) for rotating the wire drawn material when twisting the wire drawn material is not particularly limited, and may be, for example, in the range of 10 to 300 rpm.

−第二伸線加工工程−
第二伸線加工工程では、伸線加工真ひずみにして1.2以上の条件で、1回又は複数回の第二伸線加工を施す。
第二伸線加工の真ひずみが1.2未満である場合、正逆の繰り返しのねじりに対して縦割れが発生する。よって、第二伸線加工の真ひずみは1.2以上とする。
また、第二伸線加工の真ひずみは、正逆の繰り返しのねじりに対して縦割れをより効果的に抑制するためには、1.5以上が好ましい。一方、第二伸線加工の真ひずみは、大きくなりすぎると、第二伸線加工の途中で、ねじり加工の効果が希薄になり、正逆の繰り返しのねじりに対する耐縦割れ性の効果が発現されにくくなることがあるため、2.3未満に抑えるのが好ましい。
-Second wire drawing process-
In the second wire drawing process, the second wire drawing process is performed once or a plurality of times under the condition that the true wire drawing strain is 1.2 or more.
When the true strain of the second wire drawing is less than 1.2, vertical cracking occurs due to repeated twists in the forward and reverse directions. Therefore, the true strain of the second wire drawing is 1.2 or more.
In addition, the true strain of the second wire drawing is preferably 1.5 or more in order to more effectively suppress vertical cracking against repeated twists in the forward and reverse directions. On the other hand, if the true strain of the second wire drawing becomes too large, the effect of twisting will be diminished during the second wire drawing, and the effect of vertical cracking resistance against repeated forward and reverse twisting will appear. Since it may be difficult to be carried out, it is preferable to suppress it to less than 2.3.

ここで、第二伸線加工の真ひずみは、下記式により算出される。
式: 真ひずみε=2×ln(DT/DF)
(式中、DTは、ねじり加工を施す前の伸線材(第一伸線加工により得られた伸線材)の線径を示す。DFは、第二伸線加工後の伸線材の線径(目的とする鋼線の最終線径)を示す。)
Here, the true strain of the second wire drawing is calculated by the following formula.
Formula: True strain ε=2×ln (DT/DF)
(In the formula, DT represents the wire diameter of the drawn wire (twisted wire obtained by the first wire drawing) before twisting. DF is the wire diameter of the drawn wire after the second wire drawing ( The target final wire diameter) is shown.)

ただし、第二伸線加工を複数回実施する場合、第二伸線加工の真ひずみは、各伸線加工での真ひずみの合計とする。
具体的には、例えば、2回の第二伸線加工を実施する場合、1回目の伸線加工の真ひずみは、DTを「ねじり加工を施す前の伸線材の線径」とし、DFを「1回目の伸線加工後の伸線材の線径」として、上記式により算出する。一方、2回目の伸線加工の真ひずみは、DTを「1回目の伸線加工後の伸線材の線径」とし、DFを2回目の伸線加工後の伸線材の線径(目的とする鋼線の最終線径)」として、上記式により算出する。そして、第二伸線加工の真ひずみは、1回目及び2回目の伸線加工の真ひずみの合計として算出する。
However, when the second wire drawing is carried out a plurality of times, the true strain of the second wire drawing is the total of the true strains in each wire drawing.
Specifically, for example, when performing the second wire drawing process twice, the true strain of the first wire drawing process is DT is "the wire diameter of the wire drawing material before the twisting process", and DF is It is calculated by the above formula as "the wire diameter of the wire drawing material after the first wire drawing". On the other hand, the true strain of the second wire drawing is DT as "the wire diameter of the wire drawing material after the first wire drawing", and DF is the wire diameter of the wire drawing material after the second wire drawing ( The final wire diameter of the steel wire)” is calculated by the above formula. Then, the true strain of the second wire drawing is calculated as the sum of the true strains of the first and second wire drawing.

なお、第二伸線加工工程の条件は、真ひずみ以外は特に制限はなく、例えば、周知の乾式のダイス伸線加工を実施すればよい。 The conditions of the second wire drawing process are not particularly limited except for true strain, and for example, a well-known dry die drawing process may be performed.

以上の工程を経て、目的とする線径、引張り強さ及び金属組織を有する鋼線が得られる。 Through the above steps, a steel wire having a desired wire diameter, tensile strength and metallic structure can be obtained.

<耐縦割れ性の評価方法>
本実施形態に係る耐縦割れ性の評価方法は、正逆の繰り返しねじりに対する鋼線の耐縦割れ性を評価する方法である。つまり、1方向ねじり試験で測定される鋼線の0.2%耐力点に相当するひずみの90%で行う定ひずみ振幅の繰り返しねじり試験により、正逆の繰り返しねじりに対する鋼線の耐縦割れ性を評価する方法である。
<Evaluation method of vertical crack resistance>
The longitudinal cracking resistance evaluation method according to the present embodiment is a method for evaluating the vertical cracking resistance of a steel wire against repeated forward and reverse twists. In other words, the resistance to longitudinal cracking of the steel wire against forward and reverse repeated twists is confirmed by the repeated twist test with a constant strain amplitude performed at 90% of the strain corresponding to the 0.2% proof stress point of the steel wire measured in the one-way twist test. Is a method of evaluating.

具体的には、本実施形態に係る耐縦割れ性の評価方法は、鋼線に対して、1方向ねじり試験で測定される鋼線の0.2%耐力点に相当するひずみの90%のねじりを正逆方向に繰り返し付与し、鋼線が破断に至るまでの「正逆方向へのねじりの付与動作の繰り返し数」を求め、これを正逆の繰り返しねじりに対する鋼線の耐縦割れ性の評価指標とする方法である Specifically, the longitudinal cracking resistance evaluation method according to the present embodiment is performed on a steel wire with 90% of the strain corresponding to the 0.2% proof stress point of the steel wire measured by the one-way torsion test. By repeatedly applying twist in the forward and reverse directions and obtaining the "number of repetitions of the twisting motion in the forward and reverse directions" until the steel wire breaks, the resistance to longitudinal cracking of the steel wire against forward and reverse repeated twists is calculated. Is a method of using

本実施形態に係る耐縦割れ性の評価方法(ねじり試験)に使用する評価装置12は、例えば、図7に示すように、鋼線10の一端を回転軸に一致するように把持する回転チャック14と、鋼線10の他端をその回転軸の延長線上で回転自在に把持するトルクセンサ付きチャック16と、回転チャック14を回転させる回転機18と、トルクセンサ付きチャック16を載せ、把持された鋼線10の長手方向に移動可能な移動台20(車輪付き台等)と、移動台20に線材24を介して連結され、移動台20を移動させて把持した鋼線10に張力を付与するための錘22と、を備えている。評価装置12には、装置の各部と接続し、各部の制御を行う制御部26も備えている。 The evaluation device 12 used in the method for evaluating vertical cracking resistance (torsion test) according to the present embodiment is, for example, a rotary chuck that grips one end of a steel wire 10 so as to match the rotation axis, as shown in FIG. 7. 14, a chuck 16 with a torque sensor that rotatably grips the other end of the steel wire 10 on an extension line of its rotation axis, a rotating machine 18 that rotates the rotary chuck 14, and a chuck 16 with a torque sensor. A movable base 20 (a base with wheels) that is movable in the longitudinal direction of the steel wire 10 is connected to the movable base 20 via a wire rod 24, and the movable base 20 is moved to apply tension to the gripped steel wire 10. And a weight 22 for The evaluation device 12 also includes a control unit 26 that is connected to each unit of the device and controls each unit.

そして、この評価装置12を使用して、次に示す方法により、1方向ねじり試験で測定される0.2%耐力点に相当するひずみの90%で行う定ひずみ振幅の繰り返しねじり試験を実施し、正逆の繰り返しねじりに対する鋼線の耐縦割れ性を評価する。 Then, using this evaluation device 12, a repeated torsion test of a constant strain amplitude performed at 90% of the strain corresponding to the 0.2% proof stress point measured by the one-way torsion test was carried out by the following method. Evaluate the vertical cracking resistance of steel wire against forward and reverse repeated twisting.

まず、予備試験として、評価対象の鋼線10を破断するまでねじる1方向ねじり試験を実施する。具体的には、例えば、キンク(よじれ、ねじれ、もつれ等)が発生しないように鋼線10の一端及び他端を各々回転チャック14及びトルクセンサ付きチャック16により把持し、錘22の重荷により移動台20を移動させて、予め測定された鋼線10の引張り破断荷重の1%の張力を付与する。
この状態で、回転機18により回転チャック14を回転させ、鋼線10に1方向のねじりを加える。1方向のねじりを鋼線10に加えると、例えば、所定のトルク曲線(図8参照:横軸:回転角(ねじり)[rad]、縦軸:トルク[N・m])が得られ、鋼線10の弾性変形の範囲を超え、形状が元に戻らなくなる点が出てくる。
そして、1方向のねじりを鋼線10に加え、せん断ひずみにして、0.2%以上の塑性変形が導入される点を、塑性変形の開始点と見なし、この点を鋼線10の0.2%耐力点として記録する(図8参照)。
First, as a preliminary test, a one-way twist test is performed in which the steel wire 10 to be evaluated is twisted until it breaks. Specifically, for example, one end and the other end of the steel wire 10 are respectively held by the rotary chuck 14 and the chuck 16 with the torque sensor so that kinks (twisting, twisting, entanglement, etc.) do not occur, and the weight 22 moves the load. The table 20 is moved to apply a tension of 1% of the tensile breaking load of the steel wire 10 measured in advance.
In this state, the rotating chuck 14 is rotated by the rotating machine 18, and the steel wire 10 is twisted in one direction. When twisting in one direction is applied to the steel wire 10, for example, a predetermined torque curve (see FIG. 8: horizontal axis: rotation angle (torsion) [rad], vertical axis: torque [N·m]) is obtained. There is a point beyond the elastic deformation range of the line 10 where the shape cannot be restored.
Then, a point at which 0.2% or more of plastic deformation is introduced by applying a twist in one direction to the steel wire 10 to make it a shear strain is regarded as a starting point of plastic deformation, and this point is set to 0. Record as 2% proof point (see Figure 8).

次に、本試験として、評価対象の鋼線10を正逆方向にねじる、ねじり試験を実施する。具体的には、上記予備試験と同様の状態となるように、鋼線10の一端及び他端を各々回転チャック14及びトルクセンサ付きチャック16により把持する。
次に、鋼線10に対して、予備試験で測定した鋼線10の0.2%耐力点の90%のトルク(定ひずみ)に相当するねじり(以下「鋼線10の0.2%耐力点に相当するひずみの90%のねじり」と称する)を正逆方向に繰り返し付与する。
具体的には、鋼線10に対して、予備試験で測定した鋼線10の0.2%耐力点に相当するひずみの90%のねじりを正方向に付与する。次に、逆方向に鋼線10をねじって中立点(ねじり開始点)を過ぎて、鋼線10に対して、予備試験で測定した鋼線10の0.2%耐力点に相当するひずみの90%のねじりを逆方向に付与する。そして、再度、正方向に鋼線10をねじって中立点(ねじり開始点)まで戻す。この正逆方向へのねじりの付与動作(ねじりの定ひずみ振幅)を1セットとして、繰り返し行い、トルクセンサにより、この間に生じたトルクの最大点を検出し、記録し続ける。
なお、正逆方向へのねじりの付与動作(ねじりの定ひずみ振幅)を行ったときの「ねじり(回転角)とトルクの関係」を図9に示す。
Next, as a main test, a twisting test is performed in which the steel wire 10 to be evaluated is twisted in the forward and reverse directions. Specifically, one end and the other end of the steel wire 10 are gripped by the rotary chuck 14 and the chuck 16 with the torque sensor, respectively, so that the steel wire 10 is in a state similar to the preliminary test.
Next, with respect to the steel wire 10, a twist corresponding to 90% torque (constant strain) of the 0.2% proof stress point of the steel wire 10 measured in the preliminary test (hereinafter referred to as “0.2% proof stress of the steel wire 10”). "Twist of 90% of strain corresponding to a point" is repeatedly applied in the forward and reverse directions.
Specifically, a 90% twist of the strain corresponding to the 0.2% proof stress point of the steel wire 10 measured in the preliminary test is applied to the steel wire 10 in the positive direction. Next, the steel wire 10 is twisted in the opposite direction and past the neutral point (twisting start point), and the strain corresponding to the 0.2% proof stress point of the steel wire 10 measured in the preliminary test is applied to the steel wire 10. A 90% twist is applied in the opposite direction. Then, the steel wire 10 is twisted in the forward direction again and returned to the neutral point (twisting start point). This twisting operation in the forward and reverse directions (constant strain amplitude of twisting) is set as one set and repeated, and the torque sensor detects the maximum point of the torque generated during this period and continues recording.
Note that FIG. 9 shows the “relationship between twist (rotation angle) and torque” when the action of imparting twist in the forward and reverse directions (constant strain amplitude of twist) is performed.

そして、正逆方向へのねじりの付与動作を繰り返し付与し続けると、鋼線10はその耐縦割れ性に応じてダメージが導入され、耐縦割れ性が劣位の鋼線10(劣位材)程、少ない繰り返し数でトルクの最大点が明確に低下し始める。一方、耐縦割れ性が優位の鋼線10(優位材)程、トルクの最大点が明確に低下し始める繰り返し数が多くなる。このときの鋼線10の径Dに100を乗じた鋼線10の長さ(つまり100×Dの鋼線10の長さ)あたりの「正逆方向へのねじりの付与動作の繰り返し数」を、鋼線の0.2%耐力点に相当するひずみの90%で行う定ひずみ振幅の繰り返しねじり試験で、トルクが低下するまでの繰り返し数(「トルク低下点」)として記録する(図10参照)。 Then, when the operation of imparting the twist in the forward and reverse directions is repeatedly applied, the steel wire 10 is damaged depending on the vertical crack resistance thereof, and the steel wire 10 is inferior in vertical crack resistance (inferior material). , The maximum point of torque clearly starts to decrease with a small number of repetitions. On the other hand, the more the steel wire 10 (predominant material) which is superior in vertical cracking resistance, the greater the number of repetitions in which the maximum point of torque starts to clearly decrease. At this time, the “number of repetitions of the twisting motion in the forward and reverse directions” per length of the steel wire 10 (that is, the length of the 100×D steel wire 10) obtained by multiplying the diameter D of the steel wire 10 by 100 , Repeated torsion test of constant strain amplitude performed at 90% of strain corresponding to 0.2% proof stress point of steel wire, and recorded as the number of repetitions until the torque decreases (“torque lowering point”) (see FIG. 10). ).

さらに、正逆方向へのねじりの付与動作を繰り返し付与し続けると、鋼線10は破断に至る。このときの鋼線10の径Dに100を乗じた鋼線10の長さ(つまり100×Dの鋼線10の長さ)あたりの「正逆方向へのねじりの付与動作の繰り返し数」を、鋼線の0.2%耐力点に相当するひずみの90%で行う定ひずみ振幅の繰り返しねじり試験で、鋼線の破断までの繰り返し数(「破断点」)として記録する(図10参照)。 Further, if the operation of applying the twist in the forward and reverse directions is repeatedly applied, the steel wire 10 will be broken. At this time, the “number of repetitions of the twisting motion in the forward and reverse directions” per length of the steel wire 10 (that is, the length of the 100×D steel wire 10) obtained by multiplying the diameter D of the steel wire 10 by 100 , Repeated torsion test of constant strain amplitude performed at 90% of strain corresponding to 0.2% proof stress point of steel wire, and recorded as the number of repetitions until the steel wire breaks ("break point") (see FIG. 10). ..

このように、本実施形態に係る耐縦割れ性の評価方法では、正逆方向へのねじりの付与動作を繰り返し付与し、鋼線に掛かるトルクを連続的に計測して、トルク低下点、破断点を求め、正逆の繰り返しねじりに対する鋼線の耐縦割れ性を評価する(図11参照)。なお、図11は、図8〜図10の関係を示す模式図である。 As described above, in the longitudinal cracking resistance evaluation method according to the present embodiment, the operation of applying the twist in the forward and reverse directions is repeatedly applied, the torque applied to the steel wire is continuously measured, and the torque lowering point and the fracture The points are determined and the vertical crack resistance of the steel wire against forward and reverse repeated twists is evaluated (see FIG. 11). Note that FIG. 11 is a schematic diagram showing the relationship between FIGS. 8 to 10.

以下、本発明を、実施例を挙げてさらに具体的に説明する。ただし、これら各実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples. However, each of these examples does not limit the present invention.

(鋼線の作製)
まず、表1に示す化学組成を有し、122mm四方の角断面で長さ18mの鋼片(ビレット)を約1100℃まで加熱して、金属組織をオーステナイト組織とし、熱間圧延により線径5.5mmの熱間圧延線材を得る。この熱間圧延では、仕上げ圧延速度にして80m/secとなるように圧延した。また、圧延後の組織が粗大化しないよう圧延と圧延の中間で水冷を行い、仕上げ圧延中の最高到達温度が1050℃程度となるように調整した。
(Production of steel wire)
First, a steel slab (billet) having a chemical composition shown in Table 1 and a square cross section of 122 mm square and a length of 18 m was heated to about 1100° C. to change the metal structure to an austenite structure, and a wire diameter of 5 was obtained by hot rolling. A 0.5 mm hot rolled wire rod is obtained. In this hot rolling, the finishing rolling speed was 80 m/sec. In addition, water cooling was performed between rolling to prevent the structure after rolling from becoming coarse, and the maximum temperature reached during finish rolling was adjusted to about 1050°C.

次に、得られたオーステナイト組織の熱間圧延線材を、巻取り機に到達するまでの5sec以内に、850℃の範囲に水冷した。この後、冷却コンベア上でパーライト変態温度が620℃〜660℃の範囲となるように衝風冷却の風量および搬送速度を調整した。
次に、冷却後の熱間圧延線材の表面の酸化スケールを除去するため、塩酸濃度18質量%で温度60℃の塩酸水溶液を用いて、熱間圧延線材を酸洗した。その後、乾式潤滑剤を用いた複数回の伸線と、伸線と伸線の間の580℃の熱浴投入によるパテンティングにより、線径1.5mmの伸線材とした。線径1.5mmの伸線材に対して、580℃の熱浴投入による最終のパテンティング、酸洗、湿式の電気めっきとしてCuめっき及びZnめっきをこの順序で行った後、高周波加熱により500℃に加熱し、熱拡散処理して熱間圧延線材の表面にブラスめっきを形成した。
ブラスめっきを形成後、シュウ酸により酸化皮膜を除去して、第一伸線加工に供するめっき線材を得た。
Next, the hot-rolled wire rod having the obtained austenite structure was water-cooled within a range of 850° C. within 5 seconds before reaching the winder. After that, the air volume and the conveying speed of the blast cooling were adjusted so that the pearlite transformation temperature was in the range of 620°C to 660°C on the cooling conveyor.
Next, in order to remove the oxide scale on the surface of the hot-rolled wire rod after cooling, the hot-rolled wire rod was pickled using an aqueous hydrochloric acid solution having a hydrochloric acid concentration of 18 mass% and a temperature of 60°C. Then, a wire drawing material having a wire diameter of 1.5 mm was obtained by performing drawing a plurality of times using a dry lubricant and patenting by introducing a hot bath at 580° C. between the drawing wires. Final drawing, pickling, and Cu plating and Zn plating as wet electroplating are performed in this order on a drawn wire having a wire diameter of 1.5 mm by introducing a hot bath at 580°C, and then 500°C by high frequency heating. Then, the surface of the hot-rolled wire was brass-plated by heat diffusion treatment.
After forming the brass plating, the oxide film was removed with oxalic acid to obtain a plated wire rod for the first wire drawing process.

次に、得られためっき線材に対して、微細な固体潤滑剤(ワックス)を水中にエマルションとして分散した潤滑剤中に完全に水没させたダイスにより、湿式伸線加工(第一伸線加工)を施し、線径200μmの伸線材を得た。
なお、湿式伸線加工(第一伸線加工)は1回実施した。伸線加工条件は、加工減面率を20%とし、アプローチ角度10°、ベアリング長さが線径Dに対して公称0.3Dのダイスを使用して行った。なお、ダイス角度の管理はConoptica社製ダイス形状測定装置で使用前に点検を行い、概ね上記の範囲に収まっていることを確認の上、使用した。
Next, the obtained plated wire is wet-drawn (first wire drawing) with a die that is completely submerged in a lubricant in which a fine solid lubricant (wax) is dispersed as an emulsion in water. Then, a wire drawing material having a wire diameter of 200 μm was obtained.
The wet wire drawing process (first wire drawing process) was performed once. The wire drawing conditions were such that the area reduction rate was 20%, the approach angle was 10°, and the bearing length was nominally 0.3D with respect to the wire diameter D. In addition, the management of the die angle was carried out by inspecting the die shape measuring device manufactured by Conoptica before use, and after confirming that it was generally within the above range, it was used.

次に、湿式伸線加工(第一伸線加工)で得られた伸線材に対して、表1に示す「100×Dの伸線材の長さあたりのねじり回数(表中「ねじり回数」と表記)」、回転数20〜300rpmで、ねじり加工を施した。 Next, with respect to the wire drawing material obtained by the wet wire drawing (first wire drawing), the number of twists per length of the 100×D wire drawn material shown in Table 1 (“twisting number” in the table Notation)", and the twisting process was performed at a rotation speed of 20 to 300 rpm.

次に、ねじり加工で得られた中間伸線材に対して、表1に示す伸線加工真ひずみとなる条件で、乾式伸線加工(第二伸線加工)を施した。
なお、乾式伸線加工(第二伸線加工)は、1回実施した。伸線加工条件は、伸線加工真ひずみ以外は、第一伸線工程と同条件に行った。
Next, the intermediate wire drawing material obtained by the twisting was subjected to dry wire drawing (second wire drawing) under the conditions that the wire drawing true strain shown in Table 1 was obtained.
The dry wire drawing process (second wire drawing process) was performed once. The wire drawing conditions were the same as those of the first wire drawing step except for the true strain in the wire drawing process.

このようにして、表1に示す線径を有する鋼線を得た。 In this way, steel wires having the wire diameters shown in Table 1 were obtained.

(測定/評価)
−各種測定−
得られた鋼線に対して、伸長した結晶粒の幅(表中「結晶粒幅」と表記)と、隣接した結晶粒間の結晶方位の傾角差(表中「隣接結晶粒間の結晶方位傾角差」と表記)、鉄立方晶{110}面の正極点図の大円上で、鉄立方晶{110}面の集積度が最大を示す方向と鋼線の長さ方向とのなす角度(表中「鉄立方晶{110}面の最大集積度の角度」と表記)を各々既述の方法に従って測定した。
また、得られた鋼線の引張り強さも、JIS−Z2241(2015年)に従って測定した。
(Measurement/Evaluation)
-Various measurements-
With respect to the obtained steel wire, the width of the elongated crystal grains (indicated as "crystal grain width" in the table) and the tilt angle difference of the crystal orientations between adjacent crystal grains ("Crystal orientation between adjacent crystal grains in the table" Inclination difference"), the angle between the direction in which the degree of integration of the iron cubic {110} plane shows the maximum and the length direction of the steel wire on the great circle of the positive point diagram of the iron cubic {110} plane. (Indicated as "angle of maximum integration degree of iron cubic {110} plane" in the table) was measured according to the method described above.
The tensile strength of the obtained steel wire was also measured according to JIS-Z2241 (2015).

−繰り返しねじり試験の評価−
得られた鋼線に対して、既述の本実施形態に係る耐縦割れ性の評価方法に従って、繰り返しねじり試験を実施した。そして、1方向ねじり試験で測定される鋼線の0.2%耐力点に相当するひずみの90%で行う定ひずみ振幅の繰り返しねじり試験で、鋼線の破断までの繰り返し数を求め、評価した。評価基準は評価の通りである。
−評価基準−
A(◎):鋼線の破断までの繰り返し数が140回以上
B(○):鋼線の破断までの繰り返し数が120回以上140回未満
C(△):鋼線の破断までの繰り返し数が100回以上120回未満
D(×):鋼線の破断までの繰り返し数が100回未満
-Evaluation of repeated torsion test-
The obtained steel wire was repeatedly subjected to a torsion test according to the above-described evaluation method for longitudinal crack resistance according to the present embodiment. Then, in a repeated twist test of constant strain amplitude performed at 90% of the strain corresponding to the 0.2% proof stress point of the steel wire measured in the one-way twist test, the number of repetitions until the steel wire was broken was obtained and evaluated. .. The evaluation criteria are as evaluated.
-Evaluation criteria-
A (◎): The number of repetitions until the steel wire breaks is 140 times or more B (○): The number of repetitions until the steel wire breaks is 120 times or more and less than 140 times C (△): The number of repetitions until the steel wire breaks Is 100 times or more and less than 120 times D(x): The number of repetitions until the steel wire is broken is less than 100 times

表記結果から、本実施例1〜16の鋼線では、引張り強さが3300〜3900MPaで満足しながらも、繰り返しねじり試験で鋼線の破断までの繰り返し数が多く、正逆の繰り返しのねじりに対する鋼線の耐縦割れ性が高いことがわかる。
一方、比較例1、2の鋼線では、ねじり加工でのねじり回数が少なかったため、繰り返しねじり試験で鋼線の破断までの繰り返し数が100回に満たず、正逆の繰り返しのねじりに対する鋼線の耐縦割れ性が低い。
また、比較例3の鋼線では、ねじり加工後の第二伸線加工の真ひずみが不足していたため、繰り返しねじり試験で鋼線の破断までの繰り返し数が100回に満たず、正逆の繰り返しのねじりに対する鋼線の耐縦割れ性が低く、また引張り強さが低い。い
比較例4〜9の鋼線でも、繰り返しねじり試験で鋼線の破断までの繰り返し数が100回に満たず、正逆の繰り返しのねじりに対する鋼線の耐縦割れ性が高いことがわかる。比較例10の鋼線は、鋼のC含有量が高く、引張り強さが高すぎるため、耐縦割れ性が低い。比較例11の鋼線は、鋼のC含有量が低いため、耐縦割れ性は高いが、引張り強さが低い。
From the notation results, with the steel wires of Examples 1 to 16, the tensile strength was satisfied at 3300 to 3900 MPa, but the number of repetitions until the steel wire ruptured in the repeated torsion test was large, and against the forward and reverse torsions. It can be seen that the steel wire has high vertical crack resistance.
On the other hand, in the steel wires of Comparative Examples 1 and 2, the number of twists in the twisting process was small, and therefore the number of repetitions until the steel wire was broken was less than 100 in the repeated twist test, and the steel wire was not twisted in the forward and reverse twists. Has low vertical cracking resistance.
Further, in the steel wire of Comparative Example 3, the true strain of the second wire drawing after the twisting was insufficient, so the number of repetitions until the steel wire was broken was less than 100 times in the repeated twisting test. Low resistance to vertical cracking of steel wire against repeated twisting and low tensile strength. Even in the steel wires of Comparative Examples 4 to 9, the number of repetitions until the steel wire was broken was less than 100 in the repeated twist test, and it was found that the vertical resistance to longitudinal cracking of the steel wire against forward and reverse repeated twists was high. The steel wire of Comparative Example 10 has a high C content of steel and an excessively high tensile strength, and therefore has a low resistance to longitudinal cracking. The steel wire of Comparative Example 11 has a high resistance to longitudinal cracking because of the low C content of steel, but has a low tensile strength.

以上、本発明の好適な実施形態及び実施例について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments and examples of the present invention have been described above, but the present invention is not limited to such examples. It is obvious to those skilled in the art that various changes or modifications can be conceived within the scope of the idea described in the claims, and naturally, they also belong to the technical scope of the present invention. Understood.

10 鋼線
14 回転チャック
16 トルクセンサ付きチャック
18 回転機
20 移動台
22 錘
10 Steel Wire 14 Rotating Chuck 16 Chuck with Torque Sensor 18 Rotating Machine 20 Moving Stand 22 Weight

Claims (4)

線径が50〜380μmの円形断面を有し、引張り強さが3300〜3900MPaである鋼線において、
質量%で、C:0.85〜1.20%,Si:0.05〜2.00%,Mn:0.2〜2.0%、Cr:0.01〜1.30%、Nb:0〜0.5%、V:0〜0.5%、及びMo:0〜0.2%を含有し、かつ残部がFe及び不純物からなり、
鋼線の長さ方向に平行で且つ鋼線の中心部を含む鋼線の断面であって、鋼線の中心部と鋼線の表面との中間に位置する鋼線の断面で観察される金属組織は、鋼線の径方向の線分上で測定した結晶粒の幅が50〜200nmであり、隣接した結晶粒間の結晶方位の傾角差が5〜30°であり、且つ鉄立方晶{110}面の正極点図の大円上で、鉄立方晶{110}面の集積度が最大を示す方向と鋼線の長さ方向とのなす角度が1°〜45°である鋼線。
In a steel wire having a circular cross section with a wire diameter of 50 to 380 μm and a tensile strength of 3300 to 3900 MPa,
In mass %, C: 0.85 to 1.20%, Si: 0.05 to 2.00%, Mn: 0.2 to 2.0%, Cr: 0.01 to 1.30%, Nb: 0 to 0.5%, V: 0 to 0.5%, and Mo: 0 to 0.2%, and the balance consisting of Fe and impurities,
Metal observed in a cross section of the steel wire which is parallel to the length direction of the steel wire and includes the center of the steel wire, and which is located between the center of the steel wire and the surface of the steel wire. The structure has a crystal grain width of 50 to 200 nm measured on a radial line segment of a steel wire, a crystal orientation inclination difference of 5 to 30° between adjacent crystal grains, and an iron cubic crystal { A steel wire having an angle of 1° to 45° between the direction in which the degree of integration of the iron cubic {110} face is maximum and the length direction of the steel wire, on the great circle of the positive electrode point diagram of the 110} face.
1方向ねじり試験で測定される鋼線の0.2%耐力点に相当するひずみの90%で行う定ひずみ振幅の繰り返しねじり試験で、鋼線の破断までの繰り返し数が100回以上である請求項1に記載の鋼線。 A repeated twist test of a constant strain amplitude performed at 90% of the strain corresponding to a 0.2% proof stress point of the steel wire measured by the one-way twist test, and the number of repetitions until the steel wire breaks is 100 times or more. Item 1. The steel wire according to Item 1. 質量%で、C:0.85〜1.20%,Si:0.05〜2.00%,Mn:0.2〜2.0%、Cr:0.01〜1.30%、Nb:0〜0.5%、V:0〜0.5%、及びMo:0〜0.2%を含有し、かつ残部がFe及び不純物からなる鋼線材に、1回又は複数回の第一伸線加工を施し、伸線材を得る第一伸線加工工程と、
前記伸線材に、伸線材の径Dに100を乗じた前記伸線材の長さあたり10〜200回のねじり加工を施し、中間伸線材を得るねじり加工工程と、
前記中間伸線材に、伸線加工真ひずみにして1.2以上の条件で、1回又は複数回の第二伸線加工を施し、鋼線を得る第二伸線加工と、
を有する、請求項1又は請求項2に記載の鋼線の製造方法。
In mass %, C: 0.85 to 1.20%, Si: 0.05 to 2.00%, Mn: 0.2 to 2.0%, Cr: 0.01 to 1.30%, Nb: A steel wire rod containing 0 to 0.5%, V: 0 to 0.5%, and Mo: 0 to 0.2%, and the balance being Fe and impurities, was subjected to one or more first elongations. A first wire drawing process in which wire drawing is performed to obtain a wire drawn material;
A twisting step of subjecting the drawn wire to a twisting process of 10 to 200 times per length of the drawn wire obtained by multiplying the diameter D of the drawn wire by 100; and
A second wire drawing process for obtaining a steel wire by subjecting the intermediate wire drawing material to a second wire drawing process once or a plurality of times under conditions of 1.2 or more as a true wire drawing line strain, and
The method for manufacturing a steel wire according to claim 1 or 2, further comprising :
前記ねじり加工工程において、伸線材の径Dに100を乗じた前記伸線材の長さあたり25〜75回のねじり加工を施す請求項3に記載の鋼線の製造方法。 The method for manufacturing a steel wire according to claim 3, wherein in the twisting step, twisting is performed 25 to 75 times per length of the drawn wire obtained by multiplying the diameter D of the drawn wire by 100.
JP2016078200A 2016-04-08 2016-04-08 Steel wire and method for manufacturing the steel wire Active JP6736950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016078200A JP6736950B2 (en) 2016-04-08 2016-04-08 Steel wire and method for manufacturing the steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016078200A JP6736950B2 (en) 2016-04-08 2016-04-08 Steel wire and method for manufacturing the steel wire

Publications (2)

Publication Number Publication Date
JP2017186632A JP2017186632A (en) 2017-10-12
JP6736950B2 true JP6736950B2 (en) 2020-08-05

Family

ID=60046199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016078200A Active JP6736950B2 (en) 2016-04-08 2016-04-08 Steel wire and method for manufacturing the steel wire

Country Status (1)

Country Link
JP (1) JP6736950B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192846A (en) * 1987-02-04 1988-08-10 Nippon Steel Corp High tensile strength steel wire for ultra-fine steel wire and method for producing ultra-fine steel wire
JP3299857B2 (en) * 1995-04-19 2002-07-08 新日本製鐵株式会社 High-strength extra-fine steel wire with excellent fatigue properties and method for producing the same
JPH08295932A (en) * 1995-04-21 1996-11-12 Nippon Steel Corp High strength steel wire with excellent fatigue properties
JP2000063990A (en) * 1998-08-19 2000-02-29 Nippon Steel Corp High strength extra fine steel wire and stranded wire with excellent corrosion fatigue properties
EP3181713B1 (en) * 2014-08-15 2019-05-01 Nippon Steel & Sumitomo Metal Corporation Steel wire for drawing

Also Published As

Publication number Publication date
JP2017186632A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
JP5939359B2 (en) High carbon steel wire and method for producing the same
JP4842408B2 (en) Wire, steel wire, and method for manufacturing wire
JP4970562B2 (en) High strength steel wire rod excellent in ductility and method for manufacturing steel wire
KR101318009B1 (en) Wire rod, steel wire, and manufacturing method thereof
JP5092749B2 (en) High ductility high carbon steel wire
JP6264462B2 (en) Steel wire for wire drawing
JP5154694B2 (en) High carbon steel wire rod with excellent workability
JP6394708B2 (en) High carbon steel wire rod with excellent wire drawing workability
JP5879897B2 (en) Ultra fine steel wire with excellent delamination resistance and its manufacturing method
JP6485612B1 (en) High strength steel wire
JP6736951B2 (en) Steel wire and method for manufacturing the steel wire
JP4377715B2 (en) High strength PC steel wire with excellent twisting characteristics
JPH08325964A (en) Steel wire and steel cord for rubber reinforcement
JP7513885B2 (en) Steel wire and its manufacturing method
JP6614005B2 (en) Hot rolled wire rod for high-strength steel wire and method for producing the same
JP6736950B2 (en) Steel wire and method for manufacturing the steel wire
JP6922726B2 (en) Hot rolled wire
JP2906025B2 (en) High strength steel wire and steel cord for reinforcing rubber products and method for producing high strength steel
JP6724435B2 (en) Hot rolled wire rod and method for manufacturing the same
JP6558255B2 (en) High-strength ultrafine steel wire and method for producing the same
JPH11241280A (en) Steel wire and its production
JP6688615B2 (en) High-strength ultrafine steel wire and method for manufacturing the same
JP6501036B2 (en) Steel wire
JP5005409B2 (en) Recovery method for breakage resistance of high strength extra fine steel wire
JPH06346190A (en) Extra fine steel wire excellent in fatigue characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R151 Written notification of patent or utility model registration

Ref document number: 6736950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151