Nothing Special   »   [go: up one dir, main page]

JP6733650B2 - Ultrasonic flaw detection method, ultrasonic flaw detection equipment, steel production equipment row, and steel production method - Google Patents

Ultrasonic flaw detection method, ultrasonic flaw detection equipment, steel production equipment row, and steel production method Download PDF

Info

Publication number
JP6733650B2
JP6733650B2 JP2017241477A JP2017241477A JP6733650B2 JP 6733650 B2 JP6733650 B2 JP 6733650B2 JP 2017241477 A JP2017241477 A JP 2017241477A JP 2017241477 A JP2017241477 A JP 2017241477A JP 6733650 B2 JP6733650 B2 JP 6733650B2
Authority
JP
Japan
Prior art keywords
ultrasonic
signal
defect
flaw detection
sound pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017241477A
Other languages
Japanese (ja)
Other versions
JP2019109107A (en
JP2019109107A5 (en
Inventor
一貴 寺田
一貴 寺田
穣 松井
穣 松井
松本 実
実 松本
義則 大谷
義則 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017241477A priority Critical patent/JP6733650B2/en
Publication of JP2019109107A publication Critical patent/JP2019109107A/en
Publication of JP2019109107A5 publication Critical patent/JP2019109107A5/ja
Application granted granted Critical
Publication of JP6733650B2 publication Critical patent/JP6733650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、超音波探傷方法、超音波探傷装置、鋼材の製造設備列、鋼材の製造方法、及び鋼材の品質保証方法に関するものである。 The present invention relates to an ultrasonic flaw detection method, an ultrasonic flaw detection device, a steel product manufacturing equipment line, a steel product manufacturing method, and a steel product quality assurance method.

丸棒体の内部欠陥は、その丸棒体を素材とする機械部品を製造する際に割れの起点となることがあり、製造後には機械部品の強度や寿命を低下させる。このため、丸棒体の内部を超音波探傷し、丸棒体の内部欠陥を評価することが従来から行われている。従来の丸棒体の超音波探傷装置では、垂直用及び斜角用の単一の超音波探触子を丸棒体の周方向及び軸方向に沿って相対的に移動させることによって、丸棒体の全面探傷を行っている。ところが、超音波探触子に非集束プローブを用いた場合、超音波探触子から遠方になるほど超音波信号が拡散するために、丸棒体の内部で反射された超音波信号(以下、この信号を欠陥信号と呼ぶ)の強度が小さくなる。一方、超音波探触子に集束プローブを用いた場合には、焦点付近での欠陥信号の強度は大きくなるが、焦点から離れると超音波信号が拡散するために欠陥信号の強度は小さくなる。このような背景から、特許文献1には、超音波探触子を走査しながら欠陥信号を受信し、受信した複数の欠陥信号に対してその受信位置に応じた遅延時間を設定して開口合成処理を行うことによって、小口径の超音波探触子を用いて欠陥の検出能及び分解能を向上させる方法が記載されている。 The internal defect of the round bar may be a starting point of cracks when manufacturing a machine part using the round bar as a raw material, and reduces strength and life of the machine part after manufacturing. Therefore, it has been conventionally practiced to ultrasonically detect the inside of the round bar and evaluate the internal defects of the round bar. In the conventional ultrasonic testing device for a round bar, a single ultrasonic probe for vertical and oblique angles is relatively moved along the circumferential direction and the axial direction of the round bar, thereby The entire body is inspected. However, when a non-focus probe is used for the ultrasonic probe, the ultrasonic signal is diffused as the distance from the ultrasonic probe increases, so the ultrasonic signal reflected inside the round rod (hereinafter, this Signal is called a defect signal). On the other hand, when a focusing probe is used for the ultrasonic probe, the intensity of the defect signal near the focus increases, but the intensity of the defect signal decreases because the ultrasonic signal spreads away from the focus. From such a background, Patent Document 1 discloses that aperture signals are synthesized by receiving a defect signal while scanning an ultrasonic probe and setting a delay time corresponding to the reception position for a plurality of received defect signals. A method of improving the detectability and resolution of defects by using a small-diameter ultrasonic probe by performing the treatment is described.

特開2005−233874号公報JP, 2005-233874, A

しかしながら、特許文献1に記載の方法では、開口合成処理における合成幅が一定であるため、焦点位置から離れた位置では焦点位置に比べ欠陥信号のS/N比が低くなる。さらに、従来、合成幅は実験的又は経験的に決定されてきたが、最適な合成幅は超音波探触子の形状や寸法、探傷ピッチや探傷深さ等の探傷条件、検査材の形状や寸法に応じて変化する。このため、合成幅を逐一実験的又は経験的に決定することは非常に負荷が大きい。さらに、本発明の発明者らが詳細に検討したところ、上記の問題は丸棒体だけでなく厚板のような矩形体でも同様に存在することが明らかになった。 However, in the method described in Patent Document 1, since the synthesis width in the aperture synthesis processing is constant, the S/N ratio of the defect signal becomes lower at the position away from the focus position than at the focus position. Further, conventionally, the synthetic width has been experimentally or empirically determined, but the optimum synthetic width is the shape and size of the ultrasonic probe, flaw detection conditions such as flaw pitch and flaw depth, and the shape of the inspection material. Varies according to size. Therefore, it is very burdensome to experimentally or empirically determine the combined width. Furthermore, the inventors of the present invention have made a detailed study, and have found that the above-mentioned problem is present not only in the round rod body but also in the rectangular body such as a thick plate.

本発明は、上記課題に鑑みてなされたものであって、その目的は、実験的又は経験的な決定方法によらずに理論的に決定した合成幅を用いた開口合成処理によって、検査材の各深さで高い検出能及び分解能の超音波探傷を実行可能な超音波探傷方法及び超音波探傷装置を提供することにある。また、本発明の他の目的は、鋼材を歩留まりよく製造可能な鋼材の製造設備列及び鋼材の製造方法を提供することにある。さらに、本発明の他の目的は、高品質の鋼材を提供可能な鋼材の品質保証方法を提供することにある。 The present invention has been made in view of the above-mentioned problems, and the object thereof is to perform inspection or empirical determination by an aperture synthesizing process using a theoretically determined synthetic width without depending on the determination method. An object is to provide an ultrasonic flaw detection method and an ultrasonic flaw detection device capable of executing ultrasonic flaw detection with high detectability and resolution at each depth. Another object of the present invention is to provide a steel material manufacturing equipment line and a steel material manufacturing method capable of manufacturing steel materials with a high yield. Further, another object of the present invention is to provide a method of quality assurance of a steel product capable of providing a high quality steel product.

本発明に係る超音波探傷方法は、超音波探触子から検査材に超音波信号を送信し、前記検査材の内部で反射された超音波信号を欠陥信号として超音波探触子において受信することによって、前記検査材の内部を検査する超音波探傷方法であって、前記検査材と前記超音波探触子との位置関係を変化させながら超音波探触子において複数の欠陥信号を受信する受信ステップと、前記検査材と前記超音波探触子との各位置関係において、基準位置における欠陥信号の受信音圧に対する欠陥信号の受信音圧の比を受信音圧比として算出し、算出された受信音圧比に基づいて、検査材の各深さ位置での開口合成処理における合成幅を決定する決定ステップと、決定した合成幅に従って複数の欠陥信号を用いて開口合成処理を実行することによって前記検査材の内部を検査する検査ステップと、を含むことを特徴とする。 The ultrasonic flaw detection method according to the present invention transmits an ultrasonic signal from the ultrasonic probe to the inspection material, and receives the ultrasonic signal reflected inside the inspection material as a defect signal in the ultrasonic probe. By the ultrasonic flaw detection method for inspecting the inside of the inspection material, the ultrasonic probe receives a plurality of defect signals while changing the positional relationship between the inspection material and the ultrasonic probe. In the receiving step and each positional relationship between the inspection material and the ultrasonic probe, the ratio of the received sound pressure of the defect signal to the received sound pressure of the defect signal at the reference position is calculated as the received sound pressure ratio, and is calculated. Based on the received sound pressure ratio, a determining step of determining a synthesis width in the aperture synthesis processing at each depth position of the inspection material, and by performing the aperture synthesis processing using a plurality of defect signals according to the determined synthesis width And an inspection step of inspecting the inside of the inspection material.

本発明に係る超音波探傷方法は、上記発明において、前記決定ステップは、前記受信音圧比の変化率から開口合成処理による欠陥信号のS/N比の変化率を算出し、欠陥信号のS/N比の変化率が所定値以上になる合成幅を開口合成処理における合成幅に決定するステップを含むことを特徴とする。 In the ultrasonic flaw detection method according to the present invention, in the above invention, the determining step calculates the change rate of the S/N ratio of the defect signal by the aperture synthesis processing from the change rate of the received sound pressure ratio, and calculates the S/N ratio of the defect signal. The method is characterized by including a step of determining a combined width in which the rate of change of the N ratio is equal to or more than a predetermined value as a combined width in the opening combining process.

本発明に係る超音波探傷方法は、上記発明において、前記決定ステップは、前記超音波探触子が円形の超音波探触子である場合、以下に示す数式(1)及び数式(2)を利用して超音波信号の指向角ψを用いて受信音圧比Rを算出し、前記超音波探触子が矩形の超音波探触子である場合には、以下に示す数式(1)及び数式(3)を利用して超音波信号の指向角ψを用いて受信音圧比Rを算出するステップを含むことを特徴とする。但し、数式(2)及び数式(3)におけるパラメータmは、指向角ψによって決定される係数である。
In the ultrasonic flaw detection method according to the present invention, in the above invention, in the determining step, when the ultrasonic probe is a circular ultrasonic probe, the following formulas (1) and (2) are shown. The received sound pressure ratio R is calculated using the directivity angle ψ of the ultrasonic signal, and when the ultrasonic probe is a rectangular ultrasonic probe, the following formula (1) and formula It is characterized by including the step of calculating the reception sound pressure ratio R using the directivity angle ψ of the ultrasonic signal by utilizing (3). However, the parameter m in Expressions (2) and (3) is a coefficient determined by the directivity angle ψ.

本発明に係る超音波探傷方法は、上記発明において、前記検査ステップは、以下に示す数式(4),(5)を用いて、開口合成処理により得られた欠陥信号AをN点の受信音圧比R(n=0〜N)を加算平均した開口合成後受信音圧比Sで除算することにより、欠陥信号Aの強度を補正するステップを含むことを特徴とする。
In the ultrasonic flaw detection method according to the present invention, in the above invention, the inspection step uses the following formulas (4) and (5) to calculate the defect signal A obtained by the aperture synthesis process at the reception sound of N points. The method is characterized by including a step of correcting the intensity of the defect signal A by dividing the pressure ratio R n (n=0 to N) by the aperture-synthesized received sound pressure ratio S obtained by averaging.

本発明に係る超音波探傷方法は、上記発明において、前記決定ステップは、前記超音波探触子と内部欠陥の深さ位置との位置関係から検査材における任意の超音波信号の入射範囲を設定し、設定した超音波信号の入射範囲内においてスネルの法則に基づいて超音波信号の伝搬経路を算出し、座標計算によって超音波信号の伝搬経路が内部欠陥を通過するか否かを判定する計算を繰り返し行うことにより内部欠陥の各深さ位置に対する超音波信号の伝搬経路を算出し、算出された各深さ位置に対する超音波信号の伝搬経路に基づいて開口合成処理に必要な複数の欠陥信号の遅延時間を算出するステップを含むことを特徴とする。 In the ultrasonic flaw detection method according to the present invention, in the above invention, the determining step sets an incident range of an arbitrary ultrasonic signal on an inspection material from a positional relationship between the ultrasonic probe and a depth position of an internal defect. Then, calculate the propagation path of the ultrasonic signal based on Snell's law within the set incident range of the ultrasonic signal, and calculate by coordinate calculation to determine whether the propagation path of the ultrasonic signal passes through the internal defect. By calculating the propagation path of the ultrasonic signal for each depth position of the internal defect by repeating the above, a plurality of defect signals required for aperture synthesis processing based on the calculated propagation path of the ultrasonic signal for each depth position. And a step of calculating a delay time of.

本発明に係る超音波探傷方法は、上記発明において、前記決定ステップは、前記超音波探触子と内部欠陥の深さ位置との位置関係から検査材における任意の超音波信号の入射範囲を設定し、設定した超音波信号の入射範囲内において超音波信号の入射点における検査材の法線と、超音波探触子と超音波信号の入射点とを結ぶ線分とがなす角度及び想定欠陥位置と超音波信号の入射点とを結ぶ線分とのなす角度がスネルの法則を満たすか否かを判定する計算を繰り返し行うことにより内部欠陥の各深さ位置に対する超音波信号の伝搬経路を算出し、算出された各深さ位置に対する超音波信号の伝搬経路に基づいて開口合成処理に必要な複数の欠陥信号の遅延時間を算出するステップを含むことを特徴とする。 In the ultrasonic flaw detection method according to the present invention, in the above invention, the determining step sets an incident range of an arbitrary ultrasonic signal on an inspection material from a positional relationship between the ultrasonic probe and a depth position of an internal defect. However, the angle formed by the normal line of the inspection material at the incident point of the ultrasonic signal within the set incident range of the ultrasonic signal and the line segment connecting the ultrasonic probe and the incident point of the ultrasonic signal and the assumed defect The propagation path of the ultrasonic signal for each depth position of the internal defect is determined by repeating the calculation to determine whether the angle formed by the line segment connecting the position and the incident point of the ultrasonic signal satisfies Snell's law. And a step of calculating delay times of a plurality of defect signals necessary for the aperture synthesis processing based on the calculated propagation path of the ultrasonic signal for each depth position.

本発明に係る超音波探傷装置は、超音波探触子から検査材に超音波信号を送信し、前記検査材の内部で反射された超音波信号を欠陥信号として超音波探触子において受信することによって、前記検査材の内部を検査する超音波探傷装置であって、前記検査材と前記超音波探触子との位置関係を変化させながら超音波探触子において複数の欠陥信号を受信する受信手段と、前記検査材と前記超音波探触子との各位置関係において、基準位置における欠陥信号の受信音圧に対する欠陥信号の受信音圧の比を受信音圧比として算出し、算出された受信音圧比に基づいて、検査材の各深さ位置での開口合成処理における合成幅を決定する決定手段と、決定した合成幅に従って複数の欠陥信号を用いて開口合成処理を実行することによって前記検査材の内部を検査する検査手段と、を備えることを特徴とする。 The ultrasonic flaw detector according to the present invention transmits an ultrasonic signal from the ultrasonic probe to the inspection material, and receives the ultrasonic signal reflected inside the inspection material as a defect signal in the ultrasonic probe. An ultrasonic flaw detector for inspecting the inside of the inspection material by receiving a plurality of defect signals in the ultrasonic probe while changing the positional relationship between the inspection material and the ultrasonic probe. In the positional relationship between the receiving means, the inspection material and the ultrasonic probe, the ratio of the received sound pressure of the defect signal to the received sound pressure of the defect signal at the reference position was calculated as the received sound pressure ratio, and was calculated. Based on the received sound pressure ratio, the determining means for determining the synthetic width in the aperture synthetic processing at each depth position of the inspection material, and by performing the aperture synthetic processing using a plurality of defect signals according to the determined synthetic width, And an inspection means for inspecting the inside of the inspection material.

本発明に係る鋼材の製造設備列は、鋼材を製造する製造装置と、前記製造装置によって製造された前記鋼材の内部を検査する、本発明に係る超音波探傷装置と、を備えることを特徴とする。 A steel material manufacturing equipment row according to the present invention includes a manufacturing apparatus for manufacturing a steel material, and an ultrasonic flaw detection apparatus according to the present invention for inspecting the inside of the steel material manufactured by the manufacturing apparatus, To do.

本発明に係る鋼材の製造方法は、鋼材を製造する製造ステップと、本発明に係る超音波探傷方法で、前記製造ステップにおいて製造された鋼材の内部を探傷する探傷ステップと、を含むことを特徴とする。 A method for manufacturing a steel material according to the present invention includes a manufacturing step for manufacturing a steel material, and an ultrasonic flaw detection method according to the present invention, including a flaw detection step for flaw detection inside the steel material manufactured in the manufacturing step. And

本発明に係る鋼材の品質保証方法は、本発明に係る超音波探傷方法で、鋼材の内部を探傷する探傷ステップと、前記探傷ステップで得られた探傷結果から前記鋼材の品質保証を行う品質保証ステップと、を含むことを特徴とする。 The quality assurance method of the steel material according to the present invention is the ultrasonic flaw detection method according to the present invention, and a quality assurance step of performing a quality assurance of the steel material from the flaw detection step for flaw detection inside the steel material and the flaw detection result obtained in the flaw detection step. And a step.

本発明に係る超音波探傷方法及び超音波探傷装置によれば、実験的又は経験的な決定方法によらずに理論的に決定した合成幅を用いた開口合成処理によって、検査材の各深さで高い検出能及び分解能の超音波探傷を実行できる。また、本発明に係る鋼材の製造設備列及び鋼材の製造方法によれば、鋼材を歩留まりよく製造することができる。さらに、本発明に係る鋼材の品質保証方法によれば、高品質の鋼材を提供することができる。 According to the ultrasonic flaw detection method and the ultrasonic flaw detection device according to the present invention, the depth of each inspection material is increased by the aperture synthesis processing using the synthetic width theoretically determined without using the experimental or empirical determination method. Therefore, ultrasonic flaw detection with high detectability and resolution can be performed. Further, according to the steel product manufacturing equipment row and the steel product manufacturing method of the present invention, the steel product can be manufactured with a high yield. Furthermore, according to the quality assurance method for steel products of the present invention, high quality steel products can be provided.

図1は、本発明の第1の実施形態である超音波探傷装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of an ultrasonic flaw detector according to a first embodiment of the present invention. 図2は、本発明の第1の実施形態である開口合成処理条件の決定の流れを示すフローチャートである。FIG. 2 is a flowchart showing a flow of determining the aperture synthesis processing condition according to the first embodiment of the present invention. 図3は、本発明の第1の実施形態である伝搬経路算出処理の一態様を説明するための模式図である。FIG. 3 is a schematic diagram for explaining one aspect of the propagation route calculation processing according to the first embodiment of this invention. 図4は、本発明の第1の実施形態である伝搬経路算出処理の他の態様を説明するための模式図である。FIG. 4 is a schematic diagram for explaining another aspect of the propagation route calculation processing according to the first embodiment of this invention. 図5は、本発明の第1の実施形態である遅延時間算出処理を説明するための模式図である。FIG. 5 is a schematic diagram for explaining the delay time calculation process according to the first embodiment of the present invention. 図6は、合成幅の違いに伴う欠陥深さと欠陥信号のS/N比との関係の変化の一例を示す図である。FIG. 6 is a diagram showing an example of a change in the relationship between the defect depth and the S/N ratio of the defect signal due to the difference in the combined width. 図7は、本発明の第1の実施形態である最適合成幅算出処理を説明するための模式図である。FIG. 7 is a schematic diagram for explaining the optimum combined width calculation process according to the first embodiment of the present invention. 図8は、本発明の第1の実施形態である最適合成幅算出処理の流れを示すフローチャートである。FIG. 8 is a flowchart showing the flow of the optimum combined width calculation processing according to the first embodiment of the present invention. 図9は、受信音圧比と回転角度との関係の一例を示す図である。FIG. 9 is a diagram showing an example of the relationship between the received sound pressure ratio and the rotation angle. 図10は、図9に示す受信音圧比の分布に基づき計算した合成幅とS/N比向上係数Eとの関係を示す図である。FIG. 10 is a diagram showing the relationship between the combined width calculated based on the distribution of the received sound pressure ratio shown in FIG. 9 and the S/N ratio improvement coefficient E. 図11は、本発明による信号処理をせずに超音波探傷を行った結果を示す図である。FIG. 11 is a diagram showing the result of ultrasonic flaw detection without the signal processing according to the present invention. 図12は、本発明による信号処理を行って超音波探傷を行った結果を示す図である。FIG. 12 is a diagram showing a result of performing ultrasonic flaw detection by performing signal processing according to the present invention. 図13は、本発明の第2の実施形態である超音波探傷装置の構成を示す模式図である。FIG. 13 is a schematic diagram showing the configuration of the ultrasonic flaw detector according to the second embodiment of the present invention. 図14は、本発明の第2の実施形態である伝搬経路算出処理の一態様を説明するための模式図である。FIG. 14 is a schematic diagram for explaining one aspect of the propagation route calculation process according to the second embodiment of the present invention. 図15は、本発明の第2の実施形態である伝搬経路算出処理の他の態様を説明するための模式図である。FIG. 15 is a schematic diagram for explaining another aspect of the propagation route calculation processing according to the second embodiment of the present invention. 図16は、本発明の第2の実施形態である遅延時間算出処理を説明するための模式図である。FIG. 16 is a schematic diagram for explaining the delay time calculation process according to the second embodiment of the present invention. 図17は、合成幅とS/N比向上係数Eとの関係をシミュレーションした結果を示す図である。FIG. 17 is a diagram showing a result of simulating the relationship between the combined width and the S/N ratio improvement coefficient E. 図18は、本発明の第2の実施形態である最適合成幅算出処理を説明するための模式図である。FIG. 18 is a schematic diagram for explaining the optimum combined width calculation process according to the second embodiment of the present invention.

以下、図面を参照して、本発明の第1及び第2の実施形態である超音波探傷装置の構成及びその動作について詳しく説明する。 Hereinafter, the configuration and operation of the ultrasonic flaw detectors according to the first and second embodiments of the present invention will be described in detail with reference to the drawings.

〔第1の実施形態〕
[構成]
まず、図1を参照して、本発明の第1の実施形態である超音波探傷装置の構成について説明する。
[First Embodiment]
[Constitution]
First, with reference to FIG. 1, a configuration of an ultrasonic flaw detector according to a first embodiment of the present invention will be described.

図1は、本発明の第1の実施形態である超音波探傷装置の構成を示す模式図である。図1に示すように、本発明の第1の実施形態である超音波探傷装置1は、水浸探傷法を利用した超音波探傷方法によって、鋳造された鋼片を圧延して製造された丸棒体RBを超音波探傷する装置である。この超音波探傷装置1は、複数の超音波探触子11、プローブヘッド12、架台13、回転駆動装置14、パルサ15、レシーバ16、A/Dコンバータ17、記録装置18、信号処理装置19、及び表示装置20を主な構成要素として備えている。 FIG. 1 is a schematic diagram showing a configuration of an ultrasonic flaw detector according to a first embodiment of the present invention. As shown in FIG. 1, an ultrasonic flaw detection apparatus 1 according to a first embodiment of the present invention is a circle manufactured by rolling a cast steel slab by an ultrasonic flaw detection method using a water immersion flaw detection method. It is an apparatus for ultrasonic flaw detection of the rod RB. This ultrasonic flaw detector 1 includes a plurality of ultrasonic probes 11, a probe head 12, a mount 13, a rotation driving device 14, a pulser 15, a receiver 16, an A/D converter 17, a recording device 18, a signal processing device 19, And the display device 20 as a main component.

本発明に係る超音波探傷装置は、検査材と超音波探触子との位置関係を変化させながら超音波探触子において欠陥信号を受信する受信手段を備える。上記図1に示された超音波探傷装置1においては、レシーバ16、A/Dコンバータ17、及び記録装置18が受信手段に該当する。さらに、本発明に係る超音波探傷装置は、検査材と超音波探触子との各位置関係において、基準位置における欠陥信号の受信音圧に対する欠陥信号の受信音圧の比を受信音圧比として算出し、算出された受信音圧比に基づいて、検査材の各深さ位置での開口合成処理における合成幅を決定する決定手段を備える。さらに加えて、本発明に係る超音波探傷装置は、決定した合成幅に従って複数の欠陥信号を用いて開口合成処理を実行することによって検査材の内部を検査する検査手段を備える。上記図1に示された超音波探傷装置1においては、信号処理装置19が決定手段及び検査手段に該当する。 The ultrasonic flaw detector according to the present invention includes a receiving unit that receives a defect signal in the ultrasonic probe while changing the positional relationship between the inspection material and the ultrasonic probe. In the ultrasonic flaw detector 1 shown in FIG. 1, the receiver 16, the A/D converter 17, and the recording device 18 correspond to receiving means. Further, the ultrasonic flaw detector according to the present invention, in each positional relationship between the inspection material and the ultrasonic probe, the ratio of the received sound pressure of the defect signal to the received sound pressure of the defect signal at the reference position is used as the received sound pressure ratio. A determining unit that determines the combined width in the aperture combining process at each depth position of the inspection material is calculated based on the calculated received sound pressure ratio. In addition, the ultrasonic flaw detector according to the present invention includes an inspection unit that inspects the inside of the inspection material by performing an aperture synthesis process using a plurality of defect signals according to the determined synthesis width. In the ultrasonic flaw detector 1 shown in FIG. 1, the signal processor 19 corresponds to the determining means and the inspecting means.

超音波探傷子11は、水浸探傷法における媒質である水を介して丸棒体RBから所定距離離れた位置に配置されており、超音波探傷中はパルサ15から出力されるパルス信号によって励振されることにより超音波信号を丸棒体RBに送信する。そして、丸棒体RBの内部を伝搬し反射された超音波信号(以下、欠陥信号と表記)は超音波探触子11を介してレシーバ16によって受信される。 The ultrasonic flaw detector 11 is arranged at a position separated from the round bar RB by a predetermined distance via water as a medium in the water immersion flaw detection method, and is excited by a pulse signal output from the pulsar 15 during the ultrasonic flaw detection. Then, the ultrasonic signal is transmitted to the round bar RB. Then, the ultrasonic signal (hereinafter, referred to as a defect signal) propagated and reflected inside the round bar RB is received by the receiver 16 via the ultrasonic probe 11.

プローブヘッド12は、複数の超音波探触子11を備え、丸棒体RBの上部に配置された架台13上を移動することによって丸棒体RBの軸方向に走査される。丸棒体RBを回転駆動装置14によって矢印で示す円周方向に回転させながらプローブヘッド12を走査し、欠陥信号をレシーバ16で受信することにより、丸棒体RBの全体積を超音波探傷することができる。回転駆動装置14の回転速度及びプローブヘッド12の走査速度は、丸棒体RBの全体積が不足なく超音波探傷されるように設定されている。 The probe head 12 is provided with a plurality of ultrasonic probes 11 and moves on a pedestal 13 arranged above the round bar RB to scan the round bar RB in the axial direction. By scanning the probe head 12 while rotating the round rod RB in the circumferential direction indicated by the arrow by the rotation driving device 14 and receiving a defect signal by the receiver 16, ultrasonic detection of the entire volume of the round rod RB is performed. be able to. The rotation speed of the rotary drive device 14 and the scanning speed of the probe head 12 are set so that the total volume of the round rod RB is not insufficient for ultrasonic flaw detection.

レシーバ16によって受信されたアナログ形態の欠陥信号は、パルサ15から出力されるパルス信号に同期しながらA/Dコンバータ17によってデジタルデータに変換され、記録装置18に保存される。これにより、丸棒体RBの全体積の欠陥信号が記録装置18に保存される。保存された欠陥信号は、信号処理装置19によって信号処理され、信号処理結果は表示装置20に表示される。信号処理は、超音波探傷中に保存される欠陥信号に対して随時行われる場合や全ての欠陥信号が保存された後に行われる場合がある。 The analog defect signal received by the receiver 16 is converted into digital data by the A/D converter 17 in synchronization with the pulse signal output from the pulser 15, and is stored in the recording device 18. As a result, the defect signal of the total volume of the round bar RB is stored in the recording device 18. The stored defect signal is subjected to signal processing by the signal processing device 19, and the signal processing result is displayed on the display device 20. The signal processing may be performed on a defect signal stored during ultrasonic flaw detection at any time, or may be performed after all defect signals are stored.

信号処理装置19は、信号処理の一つとして開口合成処理条件の決定を実行する。開口合成処理条件の決定では、信号処理装置19は、超音波探触子11の指向角から欠陥信号の受信音圧比を計算し、計算した受信音圧比に基づき超音波探傷範囲毎に最適な合成幅を決定する。そして、信号処理装置19は、信号処理の一つとして開口合成処理を実行する。決定した合成幅に従って複数の欠陥信号を用いた開口合成処理を行うことにより、丸棒体RBの内部を検査し、丸棒体RBの内部欠陥を検出することで丸棒体RBの内部を探傷する。 The signal processing device 19 executes determination of aperture synthesis processing conditions as one of signal processing. In determining the aperture synthesis processing condition, the signal processing device 19 calculates the reception sound pressure ratio of the defect signal from the directivity angle of the ultrasonic probe 11, and optimally synthesizes for each ultrasonic flaw detection range based on the calculated reception sound pressure ratio. Determine the width. Then, the signal processing device 19 executes aperture synthesis processing as one of the signal processing. The inside of the round bar RB is inspected by performing the opening synthesis process using a plurality of defect signals according to the determined combined width, and the inside of the round bar RB is detected by detecting the internal defect of the round bar RB. To do.

次に、本発明に係る超音波探傷方法について説明する。本発明に係る超音波探傷方法は、(I)受信ステップ、(II)決定ステップ、及び(III)検査ステップの3つのステップを含む。また、各ステップは、(I)受信ステップの次に(II)決定ステップ、(II)決定ステップの次に(III)検査ステップの順に実行される。 Next, the ultrasonic flaw detection method according to the present invention will be described. The ultrasonic flaw detection method according to the present invention includes three steps: (I) receiving step, (II) determining step, and (III) inspecting step. Further, each step is executed in the order of (I) receiving step, (II) determining step, (II) determining step, and (III) inspection step.

受信ステップでは、検査材と超音波探触子との位置関係を変化させながら超音波探触子において複数の欠陥信号を受信する。受信ステップには、公知の超音波探触子による欠陥信号の受信方法を用いることができる。一例としては、上述したレシーバ16、A/Dコンバータ17、及び記録装置18の動作により実現させることができる。 In the receiving step, the ultrasonic probe receives a plurality of defect signals while changing the positional relationship between the inspection material and the ultrasonic probe. A known method for receiving a defect signal by an ultrasonic probe can be used in the receiving step. As an example, it can be realized by the operations of the receiver 16, the A/D converter 17, and the recording device 18 described above.

決定ステップでは、検査材と超音波探触子との各位置関係において、基準位置における欠陥信号の受信音圧に対する欠陥信号の受信音圧の比を受信音圧比として算出し、算出された受信音圧比に基づいて、検査材の各深さ位置での開口合成処理における合成幅を決定する。検査材の各深さ位置での合成幅の算出は、本発明において最も重要な技術である。このため、合成幅の算出方法は、後程詳細に説明する。 In the determination step, in each positional relationship between the inspection material and the ultrasonic probe, the ratio of the received sound pressure of the defect signal to the received sound pressure of the defect signal at the reference position is calculated as the received sound pressure ratio, and the calculated received sound pressure is calculated. Based on the pressure ratio, the combined width in the opening combining process at each depth position of the inspection material is determined. Calculation of the combined width at each depth position of the inspection material is the most important technique in the present invention. Therefore, the method of calculating the combined width will be described later in detail.

決定ステップでは、加えて、開口合成処理に用いる遅延時間の算出も行う。また、合成幅と遅延時間は、決定ステップにより欠陥深さ毎に算出されることが、検出能の向上の点で望ましい。なお、遅延時間の算出は、開口合成処理として公知の方法を用いることができる。本明細書においては、送信された超音波信号の検査体中での伝搬経路を算出し、この算出された伝搬経路に基づいて遅延時間の決定を行う例を、後程説明する。 In the determination step, the delay time used for the aperture synthesis processing is additionally calculated. In addition, it is desirable that the combined width and the delay time be calculated for each defect depth in the determination step in terms of improvement in detectability. Note that the delay time can be calculated by using a known method as aperture synthesis processing. In the present specification, an example in which the propagation path of the transmitted ultrasonic signal in the inspection body is calculated and the delay time is determined based on the calculated propagation path will be described later.

検査ステップでは、受信ステップにおいて受信された探傷信号に対して、決定ステップにより決定された遅延時間と合成幅に従い開口合成処理を実行し、開口合成処理の結果に基づき検査材の内部を検査する。検査ステップで行われる開口合成処理は、公知の方法を用いることができる。本明細書では、決定ステップによって決定された合成幅に含まれる複数波形に対して、同じく決定ステップによって決定された遅延時間をかけて足し合わせる処理を行う例を、後程説明する。 In the inspection step, the aperture synthesis processing is executed on the flaw detection signal received in the reception step according to the delay time and the synthesis width determined in the determination step, and the inside of the inspection material is inspected based on the result of the aperture synthesis processing. A known method can be used for the aperture synthesis processing performed in the inspection step. In the present specification, an example of performing a process of adding up a plurality of waveforms included in the combined width determined in the determining step by applying the delay time also determined in the determining step will be described later.

得られた開口合成処理の結果に基づき、検査材内部を検査し、検査材内部の状態を知ることで探傷することができる。探傷することができる検査材内部の状態の一例としては、欠陥からの反射信号の強度や受信時間等から、欠陥の有無、欠陥位置、欠陥サイズ等があげられる。得られた開口合成処理の結果の出力方法は、結果の利用目的等によって適宜決定すればよいが、位置(幅方向、圧延方向、深さ、厚さ等)に対する波形又は画像の形式で出力されるのが視認性も高いため望ましい。 Based on the result of the obtained aperture synthesis processing, the inside of the inspection material is inspected, and the state inside the inspection material is known, so that flaw detection can be performed. Examples of the state of the inside of the inspection material that can be subjected to flaw detection include the presence/absence of a defect, the defect position, the defect size, etc., from the intensity of the reflection signal from the defect, the reception time, and the like. The method of outputting the result of the obtained aperture synthesis processing may be appropriately determined according to the purpose of use of the result, etc., but is output in the form of a waveform or an image with respect to the position (width direction, rolling direction, depth, thickness, etc.). It is desirable that it be highly visible.

本発明に係る超音波探傷方法によって、欠陥信号に対するノイズの比(S/N比)が改善されるため、検出能を向上させることができる。 By the ultrasonic flaw detection method according to the present invention, the ratio of noise to defect signal (S/N ratio) is improved, so that the detectability can be improved.

[開口合成処理条件の決定]
図2を参照して、決定ステップにおいて開口合成処理条件、即ち、合成幅と遅延時間を決定する際の信号処理装置19の動作について説明する。加えて、決定ステップにおいて、遅延時間の決定に用いる超音波信号伝搬経路を算出する方法の例について説明する。ここで、伝搬経路とは、検査体中における超音波信号の伝搬経路である。必要に応じて、検査体中と媒体中とにおける超音波信号の伝搬経路としてもよい。また、以下では、合成幅の決定に用いる基準位置における欠陥信号の受信音圧に対する欠陥信号の受信音圧の比である受信音圧比を算出する方法の例についても説明する。
[Determination of aperture synthesis processing conditions]
With reference to FIG. 2, the operation of the signal processing device 19 when determining the aperture synthesis processing condition, that is, the synthesis width and the delay time in the determination step will be described. In addition, an example of a method of calculating the propagation path of the ultrasonic signal used in the determination of the delay time in the determination step will be described. Here, the propagation path is a propagation path of the ultrasonic signal in the inspection body. If necessary, it may be a propagation path of an ultrasonic signal in the inspection body and in the medium. Also, an example of a method of calculating a received sound pressure ratio, which is a ratio of the received sound pressure of the defective signal to the received sound pressure of the defective signal at the reference position , which is used for determining the combined width, will be described below.

図2は、本発明の第1の実施形態である開口合成処理条件の決定の流れを示すフローチャートである。開口合成処理条件の決定は、超音波探傷前に行われる場合だけでなく、超音波信号による丸棒体RBの厚み計測のように超音波探傷中に得られた値に基づいて超音波探傷開始後に行われる場合もある。 FIG. 2 is a flowchart showing a flow of determining the aperture synthesis processing condition according to the first embodiment of the present invention. The determination of the aperture synthesis processing condition is performed not only before the ultrasonic flaw detection but also based on the value obtained during the ultrasonic flaw detection such as the thickness measurement of the round bar RB by the ultrasonic signal. It may be done later.

開口合成処理条件の決定は、探傷条件入力ステップ(S1)、伝搬経路算出ステップ(S2)、遅延時間算出ステップ(S3)、受信音圧比計算ステップ(S4)、及び最適合成幅算出ステップ(S5)の順で実行される。検査体を丸棒体RBとして、各ステップについて詳しく説明する。 The determination of the aperture synthesis processing condition is performed by the flaw detection condition input step (S1), the propagation path calculation step (S2), the delay time calculation step (S3), the reception sound pressure ratio calculation step (S4), and the optimum synthesis width calculation step (S5). Are executed in this order. Each step will be described in detail with the inspection body as a round bar RB.

ステップS1の処理では、信号処理装置19が、丸棒体RBの寸法、超音波探触子11の寸法及び形状、測定ピッチ、丸棒体RBとの位置関係、超音波探傷範囲等の超音波探傷条件を取得する。なお、超音波探傷条件は、超音波探傷前に取得される場合だけでなく、超音波探傷中若しくは超音波探傷後に取得される場合もある。これにより、ステップS1の処理は完了し、開口合成処理条件の決定はステップS2の処理に進む。 In the process of step S1, the signal processing device 19 uses the size of the round rod RB, the size and shape of the ultrasonic probe 11, the measurement pitch, the positional relationship with the round rod RB, the ultrasonic flaw detection range, and other ultrasonic waves. Acquire flaw detection conditions. The ultrasonic flaw detection conditions may be acquired not only before the ultrasonic flaw detection but also during the ultrasonic flaw detection or after the ultrasonic flaw detection. As a result, the process of step S1 is completed, and the determination of the aperture synthesis process condition proceeds to the process of step S2.

ステップS2の処理では、信号処理装置19が、ステップS1の処理において取得した超音波探傷条件を用いて、スネルの法則に従って超音波探触子11から丸棒体RBに入射して想定欠陥位置を通過する超音波信号の伝搬経路を算出する(伝搬経路算出処理)。この伝搬経路算出処理の詳細については後述する。これにより、ステップS2の処理は完了し、開口合成処理条件の決定はステップS3の処理に進む。 In the processing of step S2, the signal processing device 19 uses the ultrasonic flaw detection conditions acquired in the processing of step S1 to enter the assumed defect position from the ultrasonic probe 11 into the round rod RB according to Snell's law. The propagation path of the ultrasonic signal passing therethrough is calculated (propagation path calculation processing). Details of this propagation route calculation processing will be described later. As a result, the processing of step S2 is completed, and the determination of the aperture synthesis processing condition proceeds to the processing of step S3.

ステップS3の処理では、信号処理装置19が、基準となる欠陥信号に対する他の複数の欠陥信号の各受信位置での遅延時間を算出する(遅延時間算出処理)。この遅延時間算出処理の詳細については後述する。これにより、ステップS3の処理は完了し、開口合成処理条件の決定はステップS4の処理に進む。 In the process of step S3, the signal processing device 19 calculates a delay time at each reception position of a plurality of other defect signals with respect to a reference defect signal (delay time calculation process). Details of this delay time calculation processing will be described later. As a result, the processing of step S3 is completed, and the determination of the aperture synthesis processing condition proceeds to the processing of step S4.

ステップS4の処理では、信号処理装置19が、丸棒体RBと超音波探触子11との各位置関係での欠陥信号の受信音圧比を算出する(受信音圧比算出処理)。この受信音圧比算出処理の詳細については後述する。これにより、ステップS4の処理は完了し、開口合成処理条件の決定はステップS5の処理に進む。 In the process of step S4, the signal processing device 19 calculates the reception sound pressure ratio of the defect signal in each positional relationship between the round bar RB and the ultrasonic probe 11 (reception sound pressure ratio calculation process). Details of the received sound pressure ratio calculation processing will be described later. As a result, the processing of step S4 is completed, and the determination of the aperture synthesis processing condition proceeds to the processing of step S5.

ステップS5の処理では、信号処理装置19が、ステップS4の処理において算出された受信音圧比に基づいて、丸棒体RBの各深さ位置での開口合成処理における最適な合成幅を決定する。これにより、ステップS5の処理は完了し、一連の開口合成処理条件の決定は終了する。 In the processing of step S5, the signal processing device 19 determines the optimum synthesis width in the aperture synthesis processing at each depth position of the round bar RB based on the received sound pressure ratio calculated in the processing of step S4. As a result, the process of step S5 is completed, and the determination of the series of aperture synthesis processing conditions is completed.

<伝搬経路算出処理>
次に、図3,図4を参照して、ステップS2の伝搬経路算出処理について詳しく説明する。
<Propagation route calculation processing>
Next, the propagation route calculation processing in step S2 will be described in detail with reference to FIGS.

開口合成処理よって高いS/N比の欠陥信号を得るためには、合成する各欠陥信号の遅延時間を正確に算出するのが望ましい。特に丸棒体RBのような曲面形状を有する鋼材を超音波探傷する場合には、曲面上での屈折現象によって超音波信号の伝搬経路が大きく変化するので、合成する各欠陥信号の遅延時間を正確に算出するのが望ましい。そこで、本実施形態では、超音波探触子11及び想定欠陥位置の座標に基づき、スネルの法則を満たしながら超音波探触子11から丸棒体RBに入射して想定欠陥位置を通過する超音波信号の伝搬経路を算出する。 In order to obtain a defect signal having a high S/N ratio by the aperture synthesizing process, it is desirable to accurately calculate the delay time of each defective signal to be synthesized. In particular, when ultrasonically flaw-detecting a steel material having a curved surface such as the round bar RB, the propagation time of the ultrasonic signal greatly changes due to the refraction phenomenon on the curved surface. Accurate calculation is desirable. Therefore, in the present embodiment, based on the coordinates of the ultrasonic probe 11 and the assumed defect position, the ultrasonic probe 11 enters the round rod RB while satisfying Snell's law and passes through the assumed defect position. The propagation path of the sound wave signal is calculated.

以下、図3及び図4を参照して、本発明の第1の実施形態である伝搬経路算出処理の一態様及び他の態様について説明する。 Hereinafter, one mode and another mode of the propagation route calculation process according to the first embodiment of the present invention will be described with reference to FIGS. 3 and 4.

図3は、本発明の第1の実施形態である伝搬経路算出処理の一態様を説明するための模式図である。以下、超音波探触子11の位置をP、想定欠陥位置をP、丸棒体RBの中心位置をO、水浸探傷法における媒質である水中での音速をVw、丸棒体RB中での音速をVsと表記する。また、図3に示すように、想定欠陥位置Pは線分ORを半径とする円周上にあるものとする。 FIG. 3 is a schematic diagram for explaining one aspect of the propagation route calculation processing according to the first embodiment of this invention. Hereinafter, the position of the ultrasonic probe 11 is P, the assumed defect position is P F , the center position of the round bar RB is O, the sound velocity in water as a medium in the water immersion flaw detection method is Vw, and the round bar RB is in the middle. The speed of sound at is written as Vs. Further, as shown in FIG. 3, the assumed defect position P F is assumed to be on the circumference having a radius of the line segment OR.

本態様では、まず、超音波信号の入射点Xを設定し、線分PXと線分OXとのなす角度から超音波信号の入射角θwを求める。次に、スネルの法則によれば、超音波信号の屈折角θsは以下に示す数式(6)を満足する。従って、数式(6)に超音波信号の入射角θwを代入することによって超音波信号の屈折角θsを求めることができる。また、超音波信号の入射点Xを通過して屈折角θsで屈折する直線と線分ORを半径とする円の交点Cも求めることができる。従って、超音波信号の入射点Xを変化させながら交点Cと想定欠陥位置Pとが一致する超音波の入射点Xを探索することによって、入射点Xに入射して想定欠陥位置Pを通過する超音波信号の伝搬経路を算出することができる。 In this aspect, first, the incident point X of the ultrasonic signal is set, and the incident angle θw of the ultrasonic signal is obtained from the angle formed by the line segment PX and the line segment OX. Next, according to Snell's law, the refraction angle θs of the ultrasonic signal satisfies the following expression (6). Therefore, by substituting the incident angle θw of the ultrasonic signal into the equation (6), the refraction angle θs of the ultrasonic signal can be obtained. Further, an intersection C of a straight line passing through the incident point X of the ultrasonic signal and refracted at the refraction angle θs and a circle having a radius of the line segment OR can be obtained. Therefore, by searching the incident point X of the ultrasonic wave where the intersection C and the assumed defect position P F match while changing the incident point X of the ultrasonic signal, the incident point X is incident and the assumed defect position P F is determined. It is possible to calculate the propagation path of the passing ultrasonic signal.

図4は、本発明の第1の実施形態である伝搬経路算出処理の他の態様を説明するための模式図である。本態様では、まず、超音波信号の入射点Xを設定し、線分PXと線分OXとのなす角度から超音波信号の入射角θwを求める。そして、超音波信号の入射点Xを変化させながら線分OXと線分PXとのなす角度θが以下の数式(7)に示すスネルの法則を満たす角度θを探索することによって、入射点Xに入射して想定欠陥位置Pを通過する超音波信号の伝搬経路を算出することができる。 FIG. 4 is a schematic diagram for explaining another aspect of the propagation route calculation processing according to the first embodiment of this invention. In this aspect, first, the incident point X of the ultrasonic signal is set, and the incident angle θw of the ultrasonic signal is obtained from the angle formed by the line segment PX and the line segment OX. Then, by searching the angle θ that satisfies the Snell's law given by Equation (7) the angle θ is less formed between the ultrasonic signal line OX and the line segment P F X while changing the incidence point X of the incident It is possible to calculate the propagation path of the ultrasonic signal that enters the point X and passes through the assumed defect position P F.

なお、上述した伝搬経路算出処理では、丸棒体RBの回転に伴う想定欠陥位置Pの移動のみを考慮しているが、超音波探触子11が軸方向に走査される場合には、超音波探触子11の軸方向の移動量を考慮して超音波信号の伝搬経路を算出することが望ましい。また、上述した伝搬経路算出処理は基本的に丸棒体RBの寸法や探傷条件に基づいて超音波探傷を開始する前に行うが、丸棒体RBの表面形状や周速の不均一によって超音波信号の伝搬経路が事前計算結果と大きく異なる可能性がある場合には、超音波探傷中に得られる情報に基づいてリアルタイムで超音波信号の伝搬経路を算出することが望ましい。 In the propagation path calculation process described above, only the movement of the assumed defect position P F accompanying the rotation of the round rod RB is considered, but when the ultrasonic probe 11 is scanned in the axial direction, It is desirable to calculate the propagation path of the ultrasonic signal in consideration of the amount of axial movement of the ultrasonic probe 11. Further, the above-described propagation path calculation process is basically performed before ultrasonic flaw detection is started based on the size and flaw detection conditions of the round rod RB. When there is a possibility that the propagation path of the ultrasonic signal differs greatly from the result of the pre-calculation, it is desirable to calculate the propagation path of the ultrasonic signal in real time based on the information obtained during ultrasonic flaw detection.

<遅延時間算出処理>
次に、図5を参照して、ステップS3の遅延時間算出処理について詳しく説明する。
<Delay time calculation process>
Next, the delay time calculation process of step S3 will be described in detail with reference to FIG.

図5は、本発明の第1の実施形態である遅延時間算出処理を説明するための模式図である。図5に示すように、丸棒体RBの回転に伴い白丸印で示す内部欠陥の位置が移動するために、超音波探触子11によって受信される欠陥信号の強度及び受信時間は変化する。具体的には、図5に示す第1欠陥信号RW1及び第2欠陥信号RW2はそれぞれ、超音波探触子11によって受信された第1欠陥位置P1及び第2欠陥位置P2における欠陥からの超音波信号の反射信号である。ここで、水浸探傷法における媒質である水中の音速をVw、丸棒体RB中の音速をVsと表すと、第1欠陥信号RW1の伝搬時間T1は以下に示す数式(8)、第2欠陥信号RW2の伝搬時間T2は以下に示す数式(9)、伝搬時間T1と伝搬時間T2との差である遅延時間ΔTは以下に示す数式(10)で表される。 FIG. 5 is a schematic diagram for explaining the delay time calculation process according to the first embodiment of the present invention. As shown in FIG. 5, the position of the internal defect indicated by the white circle moves with the rotation of the round rod RB, so that the intensity and the reception time of the defect signal received by the ultrasonic probe 11 change. Specifically, the first defect signal RW1 and the second defect signal RW2 shown in FIG. 5 are the ultrasonic waves from the defects at the first defect position P1 and the second defect position P2 received by the ultrasonic probe 11, respectively. It is a reflected signal of the signal. Here, when the sound velocity in water, which is a medium in the water immersion flaw detection method, is represented by Vw, and the sound velocity in the round bar RB is represented by Vs, the propagation time T1 of the first defect signal RW1 is represented by the following equation (8), The propagation time T2 of the defect signal RW2 is represented by the following formula (9), and the delay time ΔT which is the difference between the propagation time T1 and the propagation time T2 is represented by the following formula (10).

ここで、基準となる欠陥信号に対する他の複数の欠陥信号の各受信位置での遅延時間を計算して複数の欠陥信号を合成することによってランダムなノイズは打ち消しあうため、欠陥信号のS/N比は改善される。なお、第2欠陥信号RW2を基準とした場合、第1欠陥信号RW1は数式(10)で示される遅延時間ΔTだけ遅延されて足し合わされる。これにより、ランダムなノイズは打ち消し合い、位相が揃えられた欠陥信号は強め合うため、開口合成処理前と比べ欠陥信号のS/N比は高くなる。また、超音波探触子11の位置や丸棒体RBの深さ位置毎にそれぞれ遅延時間を計算して開口合成処理を行うことによって、丸棒体RB内のどの深さに欠陥がある場合でも高いS/N比で欠陥信号を検出することができる。 Here, random noises cancel each other out by calculating the delay time at each reception position of a plurality of other defective signals with respect to the reference defective signal and synthesizing the plurality of defective signals. The ratio is improved. When the second defect signal RW2 is used as a reference, the first defect signal RW1 is delayed by the delay time ΔT shown in Expression (10) and added. As a result, random noises cancel each other out and defect signals whose phases are aligned strengthen each other, so that the S/N ratio of the defect signals becomes higher than that before the aperture synthesis processing. Further, when the delay time is calculated for each position of the ultrasonic probe 11 and the depth position of the round rod RB and the aperture synthesis processing is performed, the depth in the round rod RB is defective. However, the defect signal can be detected with a high S/N ratio.

<受信音圧比算出処理及び最適合成幅算出処理>
次に、図6〜図9を参照して、図2に示すステップS4の受信音圧比算出処理及びステップS5の最適合成幅算出処理について詳しく説明する。
<Received sound pressure ratio calculation process and optimum combined width calculation process>
Next, with reference to FIGS. 6 to 9, the reception sound pressure ratio calculation process of step S4 and the optimum synthesis width calculation process of step S5 shown in FIG. 2 will be described in detail.

欠陥信号の強度は、超音波探触子11と内部欠陥との位置関係に応じて変化する。具体的には、遠距離音場においては、超音波探触子11の中心軸上に欠陥が存在する場合に最も欠陥信号の強度が強くなり、超音波探触子11の中心軸と内部欠陥を通過する超音波の伝搬経路とのなす角が大きくなるに従って欠陥信号の強度は小さくなっていく。開口合成処理によって高いS/N比の欠陥信号を得るためには、欠陥信号が十分な強度を有する範囲内で複数の欠陥信号を足し合わせる必要があり、強度が小さい欠陥信号を足し合わせた場合にはS/N比の向上効果は小さくなる。また、超音波探触子11から出力された超音波信号は、拡散しながら伝搬していくため、遠距離になるほどその音圧分布は広がって形成される。このとき、音圧分布内に欠陥が存在する場合、十分な強度の欠陥信号を得ることができる。つまり、超音波信号の音圧分布と音圧分布内での欠陥の移動位置によって十分な強度を持つ合成幅(足し合わせる欠陥信号数)は変化する。従って、開口合成処理によって高いS/N比の欠陥信号を得るためには、内部欠陥の位置及び探傷条件に基づいて合成幅を適切に設定する必要がある。そこで、本実施形態では、欠陥信号の受信音圧比に基づき内部欠陥の深さ位置毎に適切な合成幅を算出する。 The intensity of the defect signal changes according to the positional relationship between the ultrasonic probe 11 and the internal defect. Specifically, in the far field, when the defect exists on the central axis of the ultrasonic probe 11, the intensity of the defect signal becomes the strongest, and the central axis of the ultrasonic probe 11 and the internal defect The intensity of the defect signal becomes smaller as the angle formed by the propagation path of the ultrasonic wave passing through becomes larger. In order to obtain a defect signal with a high S/N ratio by the aperture synthesis process, it is necessary to add a plurality of defect signals within a range in which the defect signals have sufficient intensity. Therefore, the effect of improving the S/N ratio becomes small. In addition, since the ultrasonic signal output from the ultrasonic probe 11 propagates while being diffused, the sound pressure distribution is formed so as to widen as the distance increases. At this time, if there is a defect in the sound pressure distribution, a defect signal with sufficient intensity can be obtained. That is, the synthetic width (the number of defect signals to be added) having sufficient strength changes depending on the sound pressure distribution of the ultrasonic signal and the moving position of the defect within the sound pressure distribution. Therefore, in order to obtain a defect signal with a high S/N ratio by the aperture synthesis process, it is necessary to appropriately set the synthesis width based on the position of the internal defect and the flaw detection condition. Therefore, in this embodiment, an appropriate combined width is calculated for each depth position of the internal defect based on the received sound pressure ratio of the defect signal.

図6は、合成幅の違いに伴う欠陥深さと欠陥信号のS/N比との関係の変化の一例を示す図である。具体的には、図6は、直径φ169mmの丸棒鋼の内部深さ5mm,21mm,42mm,63mmの位置に加工された直径φ0.2mmの4つの人工欠陥を探傷し、合成幅2.4°、合成幅8.4°、合成幅22.8°、及び本発明により開口合成処理を行った実験結果を示す。本実験では、超音波探触子11として、直径6.4mm、周波数5MHzの丸型超音波探触子を用いた。また、合成幅2.4°、合成幅8.4°、合成幅22.8°のプロットは、内部深さの異なる4つの人工欠陥信号に対して、それぞれ一定の合成幅(2.4°、8.4°、22.8°)で開口合成処理を行った結果を示す。但し、合成幅2.4°、8.4°、22.8°はそれぞれ、本発明によって決定された内部深さ5mm、21mm、42mmでの最適な合成幅である。 FIG. 6 is a diagram showing an example of a change in the relationship between the defect depth and the S/N ratio of the defect signal due to the difference in the combined width. Specifically, in FIG. 6, four artificial defects with a diameter of φ0.2 mm, which were machined at internal depths of 5 mm, 21 mm, 42 mm, and 63 mm of a round steel bar with a diameter of φ169 mm, were flaw-detected, and a synthetic width of 2.4°. , A synthetic width of 8.4°, a synthetic width of 22.8°, and experimental results of performing the aperture synthetic processing according to the present invention. In this experiment, a circular ultrasonic probe having a diameter of 6.4 mm and a frequency of 5 MHz was used as the ultrasonic probe 11. In addition, the plots of the combined width 2.4°, the combined width 8.4°, and the combined width 22.8° show the constant combined width (2.4°) for four artificial defect signals with different internal depths. , 8.4°, 22.8°). However, the combined widths of 2.4°, 8.4°, and 22.8° are the optimum combined widths at the internal depths of 5 mm, 21 mm, and 42 mm determined by the present invention, respectively.

図6に示すように、深さ5mmの欠陥信号に対しては、合成幅2.4°であるときにS/N比が最も大きくなり、深さ21mmの欠陥信号に対しては、合成幅8.4°であるときにS/N比が最も大きくなり、深さ42mmの欠陥信号に対しては、合成幅22.8°であるときにS/N比が最も大きくなる。よって、各欠陥深さでS/N比を最大とする合成幅が異なり、欠陥深さ毎に適切な合成幅を設定することにより、全ての欠陥深さで最大のS/N比が得られることがわかる。実際、本発明では、全て欠陥深さで合成幅を一定に設定した場合と比べ、深さ位置によっては10dB以上のS/N比の向上が確認でき、本発明の有効性が示された。 As shown in FIG. 6, for a defect signal with a depth of 5 mm, the S/N ratio becomes the largest when the combined width is 2.4°, and for a defect signal with a depth of 21 mm, the combined width is The maximum S/N ratio is obtained at 8.4°, and the maximum S/N ratio is obtained at a combined width of 22.8° for a defect signal having a depth of 42 mm. Therefore, the combined width that maximizes the S/N ratio differs for each defect depth, and the maximum S/N ratio can be obtained for all the defect depths by setting an appropriate combined width for each defect depth. I understand. In fact, in the present invention, an improvement in the S/N ratio of 10 dB or more could be confirmed depending on the depth position, as compared with the case where the combined width was set constant by the defect depth, demonstrating the effectiveness of the present invention.

図7は、本発明の第1の実施形態である最適合成幅算出処理を説明するための模式図である。図7に示すように、本実施形態では、伝搬経路算出処理によって算出された超音波信号の伝搬経路から超音波信号の指向角ψを算出し、想定欠陥位置が回転した時の欠陥信号の受信音圧比の変化を計算し、欠陥信号の受信音圧比の分布から合成幅を算出する。ここで、丸棒体RBの直径をR、丸棒体RBの回転速度をV1、丸棒体RB中の超音波の伝搬速度をVs、超音波探触子11のPRFをf、超音波探触子11の周波数をF、超音波探触子11の長さをD(丸型の場合は半径、矩形の場合は辺長)、超音波探触子11と丸棒体RB表面との間の距離をW、水浸探傷法における媒質である水中の音速をVw、超音波探触子11の中心軸上に存在する想定欠陥位置をP、想定欠陥位置Pの丸棒体RB表面からの深さをd、想定欠陥位置Pから角度θだけ回転移動した回転後の想定欠陥位置をP’、超音波探触子11の位置Pと想定欠陥位置P’について伝搬経路算出処理を行った場合の超音波信号の伝搬経路と超音波探触子11の中心軸とのなす角(指向角)をψとする。 FIG. 7 is a schematic diagram for explaining the optimum combined width calculation process according to the first embodiment of the present invention. As shown in FIG. 7, in the present embodiment, the directivity angle ψ of the ultrasonic signal is calculated from the propagation path of the ultrasonic signal calculated by the propagation path calculation processing, and the defect signal is received when the assumed defect position is rotated. The change in the sound pressure ratio is calculated, and the combined width is calculated from the distribution of the received sound pressure ratio of the defective signal. Here, the diameter of the round bar RB is R, the rotation speed of the round bar RB is V1, the propagation velocity of the ultrasonic wave in the round bar RB is Vs, the PRF of the ultrasonic probe 11 is f, and the ultrasonic probe The frequency of the probe 11 is F, the length of the ultrasonic probe 11 is D (radius in the case of a round shape, side length in the case of a rectangle), and between the ultrasonic probe 11 and the surface of the round bar RB. Is W, the sound velocity in water, which is the medium in the water immersion flaw detection method, is Vw, the assumed defect position existing on the central axis of the ultrasonic probe 11 is P F , and the assumed defect position P F is the round bar RB surface. From the assumed defect position P F to the assumed defect position P F ′ after rotation by an angle θ, and the propagation path is calculated for the position P of the ultrasonic probe 11 and the assumed defect position P F ′. The angle (directivity angle) formed by the propagation path of the ultrasonic signal and the central axis of the ultrasonic probe 11 when the processing is performed is ψ.

受信音圧の計算は基本的には遠距離音場を仮定して行うため、想定欠陥位置Pが以下に示す数式(11)を満たすことが条件となる。ここで、近距離音場限界距離x0は以下に示す数式(12)で表される。但し、想定欠陥位置Pが数式(11)を満たさない場合には、近距離音場の音圧計算を適応することで合成幅を算出することができる。 Since the calculation of the received sound pressure is basically performed on the assumption of the far-field sound field, it is a condition that the assumed defect position P F satisfies the following formula (11). Here, the near field limit distance x0 is represented by the following mathematical expression (12). However, when the assumed defect position P F does not satisfy the mathematical expression (11), the combined width can be calculated by applying the sound pressure calculation of the near field.

超音波探触子11が丸型である場合、想定欠陥位置Pからの欠陥信号の受信音圧に対する回転後想定欠陥位置P’からの欠陥信号の受信音圧の比(受信音圧比)Rは指向角ψを用いて以下に示す数式(13)〜(15)により表すことができる。但し、数式(14)に示すJ1はベッセル関数を示し、数式(14),(15)に示すmは、指向角ψによって決定される係数である。 When the ultrasonic probe 11 is round, the ratio of the received sound pressure of the defect signal from the rotation after assumed defect position P F 'for receiving sound pressure of the defect signal from the assumed defect position P F (ratio reception sound) R can be represented by the following formulas (13) to (15) using the directivity angle ψ. However, J1 shown in Expression (14) represents a Bessel function, and m shown in Expressions (14) and (15) is a coefficient determined by the directivity angle ψ.

一方、超音波探触子11が矩形形状である場合には、受信音圧比Rは指向角ψを用い、数式(13),(15)及び以下に示す数式(16)により表すことができる。なお、超音波探触子11が円形形状や矩形形状でない複雑な形状を有する場合には、実験や有限要素法等を用いた物理解析の結果を用いて受信音圧比Rを決定してもよい。また、検出対象とする欠陥が強い指向性を有する場合には、数式(13)に欠陥の反射指向性関数を乗じたものを受信音圧比Rとすることがある。本実施形態では、上記手順により計算した受信音圧比Rを用いて合成幅を算出する。 On the other hand, when the ultrasonic probe 11 has a rectangular shape, the reception sound pressure ratio R can be represented by the equations (13) and (15) and the following equation (16) using the directivity angle ψ. When the ultrasonic probe 11 has a complicated shape other than a circular shape or a rectangular shape, the reception sound pressure ratio R may be determined using the results of experiments or physical analysis using the finite element method or the like. .. If the defect to be detected has a strong directivity, the received sound pressure ratio R may be obtained by multiplying the expression (13) by the reflection directivity function of the defect. In the present embodiment, the combined width is calculated using the received sound pressure ratio R calculated by the above procedure.

具体的には、超音波探触子11によって、想定欠陥位置Pが角度ピッチΔθ回転する毎に欠陥信号が受信される。角度ピッチΔθは以下に示す数式(17)により表される。 Specifically, the ultrasonic probe 11 receives a defect signal every time the assumed defect position P F rotates by the angular pitch Δθ. The angular pitch Δθ is represented by the following mathematical expression (17).

想定欠陥位置Pが−nΔθからnΔθまで回転した範囲内で取得した欠陥信号に対して遅延時間をかけて加算平均をする開口合成処理を行った場合の開口合成後受信音圧比Sは、以下に示す数式(18)により表される。ここで、数式(18)において、R(nΔθ)は想定欠陥位置PからnΔθ回転した位置での受信音圧比を示す。想定欠陥位置Pは、超音波探触子11の中心軸上に限定されるものではなく、探傷条件に合わせて設定することができる。 Received sound pressure ratio after aperture synthesis in the case where aperture synthesis processing is performed in which a defect signal acquired within a range in which the assumed defect position P F is rotated from −n 1 Δθ to n 2 Δθ is subjected to addition average over delay time is performed. S is represented by the following formula (18). Here, in Expression (18), R(nΔθ) represents the received sound pressure ratio at a position rotated by nΔθ from the assumed defect position P F. The assumed defect position P F is not limited to the central axis of the ultrasonic probe 11, and can be set according to the flaw detection conditions.

加算回数N(=n+n+1)の加算平均によってノイズが1/N1/2になると仮定すると、想定欠陥位置PでのS/N比に対する開口合成処理後のS/N比向上係数Eは以下に示す数式(19)で表される。 Assuming that the noise becomes 1/N 1/2 by the arithmetic mean of the number of additions N (=n 1 +n 2 +1), the S/N ratio after the aperture synthesis process is improved with respect to the S/N ratio at the assumed defect position P F. The coefficient E is expressed by the following mathematical expression (19).

そこで、数式(19)によりS/N比向上係数Eが最大となる合成幅Nを設定し、開口合成処理を行うことで、欠陥信号のS/N比を最大化することができる。また、以下に示す数式(20)を満たす加算回数Nを決定し、開口合成処理を行うことで十分に欠陥信号のS/N比を向上することができる。 Therefore, the S/N ratio of the defect signal can be maximized by setting the synthesis width N that maximizes the S/N ratio improvement coefficient E by using Expression (19) and performing the aperture synthesis process. In addition, the S/N ratio of the defect signal can be sufficiently improved by determining the number of additions N that satisfies the following mathematical expression (20) and performing the aperture synthesis processing.

なお、超音波探傷において欠陥信号を評価する場合、S/N比だけでなく欠陥信号の強度が重要となる。開口合成処理の前後で、欠陥信号の強度が大きく変動すると正確な内部欠陥の評価をすることができない。そこで、開口合成処理によって低減した強度を処理前の強度に復元することが望ましい。具体的には、開口合成処理後の出力値Aに対して、数式(18)で示される開口合成後受信音圧比Sを用いて以下に示す数式(21)により補正された補正出力値Bを出力することにより、開口合成処理前と開口合成処理後の欠陥信号の強度を一致させることができる。開口合成処理前と開口合成処理後の欠陥信号の強度を一致させることで、欠陥径や欠陥長に対して定量的な評価が可能となる。 When evaluating a defect signal in ultrasonic flaw detection, not only the S/N ratio but also the intensity of the defect signal is important. If the intensity of the defect signal fluctuates greatly before and after the aperture synthesis process, it is not possible to accurately evaluate the internal defect. Therefore, it is desirable to restore the intensity reduced by the aperture synthesis process to the intensity before the process. Specifically, for the output value A after aperture synthesis processing, the corrected output value B corrected by the following equation (21) using the received sound pressure ratio S after aperture synthesis shown in equation (18) is used. By outputting, the strengths of the defect signals before the aperture synthesis processing and after the aperture synthesis processing can be matched. By matching the intensities of the defect signals before the aperture synthesis process and after the aperture synthesis process, the defect diameter and the defect length can be quantitatively evaluated.

以上の処理をまとめると、最適合成幅算出処理は図8に示すフローチャートのようになる。図8は、本発明の第1の実施形態である最適合成幅算出処理の流れを示すフローチャートである。図8に示すように、本実施形態の最適合成幅算出処理では、まず、信号処理装置19が、開口合成処理における合成幅を仮設定する(ステップS51)。次に、信号処理装置19が、仮設定した合成幅と数式(18)とを用いて欠陥信号の受信音圧比を加算平均することにより開口合成後受信音圧比(受信音圧比変化率)Sを算出する(ステップS52)。次に、信号処理装置19が、数式(19)を用いて開口合成後受信音圧比Sとノイズの変化率との比をとることで開口合成処理によるS/N比向上係数E(S/N比変化率)を計算する(ステップS53)。そして、信号処理装置19が、S/N比向上係数Eが数式(20)に示す条件等の所定の条件を満足するか否かを判断し(ステップS54)、S/N比向上係数Eが所定の条件を満足する場合、信号処理装置19は、ステップS51の処理において仮設定した合成幅を最適な合成幅に決定する(ステップS55)。一方、S/N比向上係数Eが所定の条件を満足しない場合には、信号処理装置19は、最適合成幅算出処理をステップS51の処理に戻す。 Summarizing the above processing, the optimum combined width calculation processing is as shown in the flowchart in FIG. FIG. 8 is a flowchart showing the flow of the optimum combined width calculation processing according to the first embodiment of the present invention. As shown in FIG. 8, in the optimum synthesis width calculation process of the present embodiment, first, the signal processing device 19 temporarily sets the synthesis width in the aperture synthesis process (step S51). Next, the signal processing device 19 calculates the reception sound pressure ratio (reception sound pressure ratio change rate) S after aperture combination by averaging the reception sound pressure ratios of the defect signals using the temporarily set combination width and the mathematical expression (18). Calculate (step S52). Next, the signal processing device 19 obtains the ratio of the received sound pressure ratio S after aperture synthesis and the rate of change of noise by using the mathematical expression (19) to obtain the S/N ratio improvement coefficient E(S/N) by the aperture synthesis process. The ratio change ratio is calculated (step S53). Then, the signal processing device 19 determines whether or not the S/N ratio improvement coefficient E satisfies a predetermined condition such as the condition shown in Expression (20) (step S54), and the S/N ratio improvement coefficient E is determined. When the predetermined condition is satisfied, the signal processing device 19 determines the combined width temporarily set in the process of step S51 to be the optimum combined width (step S55). On the other hand, when the S/N ratio improvement coefficient E does not satisfy the predetermined condition, the signal processing device 19 returns the optimal synthesis width calculation process to the process of step S51.

[実施例]
本発明に係る超音波探傷方法の優れた結果を実施例で説明する。本実施例では、人工欠陥を設けた丸棒体サンプルを超音波探傷し、本発明に係る超音波探傷方法による開口合成処理を行った。超音波探触子は、直径6.4mm、周波数5MHzの丸型超音波探触子を用い、丸棒体サンプルとして直径φ169mmの丸棒体内部にφ0.2mmの人工欠陥が加工されたものを用いた。超音波探触子と丸棒体サンプルは、局部水浸探傷法により音響結合を行い、水距離は50mm、測定角度ピッチは0.6°とした。また、超音波探触子の近距離音場限界距離は34.5mmであり、水距離50mmよりも短く、本手法の適用条件を満たしていた。
[Example]
The excellent results of the ultrasonic flaw detection method according to the present invention will be described in Examples. In this example, a round bar sample provided with an artificial defect was subjected to ultrasonic flaw detection, and an aperture synthesis treatment was performed by the ultrasonic flaw detection method according to the present invention. As the ultrasonic probe, a circular ultrasonic probe with a diameter of 6.4 mm and a frequency of 5 MHz was used, and a round rod sample with a diameter of φ169 mm and an artificial defect of φ0.2 mm was processed. Using. The ultrasonic probe and the round rod sample were acoustically coupled by the local water immersion flaw detection method, and the water distance was 50 mm and the measurement angle pitch was 0.6°. Also, the near-field limit distance of the ultrasonic probe was 34.5 mm, which was shorter than the water distance of 50 mm, and satisfied the application conditions of this method.

図9は、表面深さ21mm、φ0.2mmの人工欠陥からの欠陥信号の受信音圧比と回転角度との関係を示す図である。受信音圧比の実測値と計算値とは概ね一致しており、本発明手法における受信音圧比の計算の有効性が示された。図10は、図9に示す受信音圧比の分布に基づき計算した合成幅とS/N比向上係数Eとの関係を示す図である。但し、図10における計算値(曲線L1)は、図9に示す受信音圧比の計算値を用いて回転角度0°を中心として正負対称な合成幅で開口合成処理を行った結果得られた値である。 FIG. 9 is a diagram showing a relationship between a received sound pressure ratio of a defect signal from an artificial defect having a surface depth of 21 mm and φ0.2 mm and a rotation angle. The measured value and the calculated value of the received sound pressure ratio are almost in agreement, which shows the effectiveness of the calculation of the received sound pressure ratio in the method of the present invention. FIG. 10 is a diagram showing the relationship between the combined width calculated based on the distribution of the received sound pressure ratio shown in FIG. 9 and the S/N ratio improvement coefficient E. However, the calculated value (curve L1) in FIG. 10 is a value obtained as a result of performing aperture synthesis processing with a synthetic width symmetrical with positive and negative symmetry about the rotation angle of 0° using the calculated value of the reception sound pressure ratio shown in FIG. Is.

図10に示す計算値の曲線L1において、S/N比向上係数Eは合成幅8.4°で最大値9.2dBをとるため、合成幅NはS/N比向上係数E≧6.4dBを満たす2.4°≦N≦21.6°を満たすNを設定した。また、実測値の曲線L2は計算値の曲線L1の傾向とほぼ一致しており、合成幅8.4°でS/N比向上係数Eが最大となっており、本発明による合成幅の決定方法の有効性が示された。 In the calculated curve L1 shown in FIG. 10, the S/N ratio improvement coefficient E has a maximum value of 9.2 dB with a combined width of 8.4°, so the combined width N is an S/N ratio improvement coefficient E≧6.4 dB. N that satisfies 2.4°≦N≦21.6° that satisfies the above condition is set. Further, the curve L2 of the actual measurement value is substantially in agreement with the tendency of the curve L1 of the calculated value, and the S/N ratio improvement coefficient E is the maximum at the composite width of 8.4°, and the composite width is determined by the present invention. The effectiveness of the method was demonstrated.

図11(a),(b)は、表面深さ21mm、φ0.2mmの人工欠陥に対して、本発明による信号処理をせずに超音波探傷を行った結果を示す図である。図12(a),(b)は、表面深さ21mm、φ0.2mmの人工欠陥に対して、本発明による信号処理を行って超音波探傷を行った結果を示す図である。本実験では、S/N比が最大となる合成幅を計算し、合成幅は8.4°とした。図12(a),(b)に示すように、本発明による信号処理によれば、S/N比が6dB向上し、φ0.2mmの欠陥をS/N比21dBで検出することができた。 11(a) and 11(b) are diagrams showing the results of ultrasonic flaw detection performed on an artificial defect having a surface depth of 21 mm and φ0.2 mm without performing signal processing according to the present invention. 12(a) and 12(b) are diagrams showing the results of ultrasonic flaw detection by performing signal processing according to the present invention on an artificial defect having a surface depth of 21 mm and φ0.2 mm. In this experiment, the combined width that maximizes the S/N ratio was calculated, and the combined width was set to 8.4°. As shown in FIGS. 12A and 12B, according to the signal processing of the present invention, the S/N ratio was improved by 6 dB, and the defect of φ0.2 mm could be detected with the S/N ratio of 21 dB. ..

〔第2の実施形態〕
次に、図13〜図18を参照して、本発明の第2の実施形態である超音波探傷装置の構成及びその動作について説明する。
[Second Embodiment]
Next, with reference to FIGS. 13 to 18, the configuration and operation of the ultrasonic flaw detector according to the second embodiment of the present invention will be described.

[構成]
まず、図13を参照して、本発明の第2の実施形態である超音波探傷装置の構成について説明する。
[Constitution]
First, with reference to FIG. 13, a configuration of an ultrasonic flaw detector according to a second embodiment of the present invention will be described.

図13は、本発明の第2の実施形態である超音波探傷装置の構成を示す模式図である。図13に示すように、本発明の第2の実施形態である超音波探傷装置1は、(1)鋳造された鋼片を圧延して製造された鋼板SPが検査材である点、及び(2)鋼板SPが搬送ライン21によって鋼板SPの長手方向に沿って超音波探触子11の下方を通過するように搬送される点が、図1に示した本発明の第1の実施形態である超音波探傷装置1の構成と異なっている。その他の点は、図1に示した本発明の第1の実施形態である超音波探傷装置1の構成と同じであるので、以下ではその説明を省略する。 FIG. 13 is a schematic diagram showing the configuration of the ultrasonic flaw detector according to the second embodiment of the present invention. As shown in FIG. 13, in the ultrasonic flaw detector 1 according to the second embodiment of the present invention, (1) a steel plate SP manufactured by rolling a cast steel slab is an inspection material, and ( 2) In the first embodiment of the present invention shown in FIG. 1, the steel plate SP is transported by the transport line 21 so as to pass below the ultrasonic probe 11 along the longitudinal direction of the steel plate SP. This is different from the configuration of a certain ultrasonic flaw detector 1. Since the other points are the same as the configuration of the ultrasonic flaw detector 1 according to the first embodiment of the present invention shown in FIG. 1, the description thereof will be omitted below.

[開口合成処理条件の決定]
次に、図14〜図18を参照して、開口合成処理条件の決定を実行する際の信号処理装置19の動作について説明する。なお、開口合成処理条件の決定の全体の流れは、図2に示した本発明の第1の実施形態である開口合成処理条件の決定の流れと同じである。但し、検査材が丸棒体RBから鋼板SPに変わることによって、伝搬経路算出処理、遅延時間算出処理、受信音圧比算出処理、及び最適合成幅算出処理の内容の一部が第1の実施形態における内容とは異なっている。そこで、以下では、これら各処理の異なる点についてのみ説明する。
[Determination of aperture synthesis processing conditions]
Next, with reference to FIGS. 14 to 18, the operation of the signal processing device 19 when determining the aperture synthesis processing condition will be described. The overall flow of determining the aperture synthesis processing condition is the same as the flow of determining the aperture synthesis processing condition according to the first embodiment of the present invention shown in FIG. However, when the inspection material is changed from the round bar RB to the steel plate SP, a part of the contents of the propagation path calculation processing, the delay time calculation processing, the received sound pressure ratio calculation processing, and the optimum combined width calculation processing is part of the first embodiment. It is different from the content in. Therefore, only the differences between these processes will be described below.

<伝搬経路算出処理>
図14は、本発明の第2の実施形態である伝搬経路算出処理の一態様を説明するための模式図である。以下、鋼板SPの長手方向に移動する超音波探触子11の位置をP,P’、想定欠陥位置をP、超音波探触子11の位置Pと想定欠陥位置Pとを結ぶ線分と鋼板SPの表面との交点をO、水浸探傷法における媒質である水中での音速をVw、鋼板SP中での音速をVsと表記する。
<Propagation route calculation processing>
FIG. 14 is a schematic diagram for explaining one aspect of the propagation route calculation process according to the second embodiment of the present invention. Hereinafter, the positions of the ultrasonic probe 11 moving in the longitudinal direction of the steel plate SP are P and P′, the assumed defect position is P F , and the line connecting the position P of the ultrasonic probe 11 and the assumed defect position P F. The point of intersection between the minute and the surface of the steel plate SP is represented by O, the speed of sound in water as a medium in the water immersion flaw detection method is represented by Vw, and the speed of sound in the steel plate SP is represented by Vs.

本実施形態では、まず、超音波信号の入射点Xを設定し、線分P’Xと線分XYとのなす角度から超音波信号の入射角θwを求める。なお、線分XYは、入射点Xを通る鋼板SPの法線を示す。次に、スネルの法則によれば、超音波信号の屈折角θsは上述した数式(6)を満足する。従って、数式(6)に超音波信号の入射角θwを代入することによって超音波信号の屈折角θsを求めることができる。また、超音波信号の入射点Xを通過して屈折角θsで屈折する直線と線分OPとの交点Cも求めることができる。従って、超音波の入射点Xを変化させながら交点Cと想定欠陥位置Pとが一致する超音波信号の入射点Xを探索することによって、入射点Xに入射して想定欠陥位置Pを通過する超音波信号の伝搬経路を算出することができる。 In the present embodiment, first, the incident point X of the ultrasonic signal is set, and the incident angle θw of the ultrasonic signal is obtained from the angle formed by the line segment P′X and the line segment XY. The line segment XY indicates the normal line of the steel plate SP passing through the incident point X. Next, according to Snell's law, the refraction angle θs of the ultrasonic signal satisfies the above equation (6). Therefore, by substituting the incident angle θw of the ultrasonic signal into the equation (6), the refraction angle θs of the ultrasonic signal can be obtained. Further, it is also possible to obtain an intersection point C between a straight line that passes through the incident point X of the ultrasonic signal and is refracted at the refraction angle θs and the line segment OP. Therefore, by searching the incident point X of the ultrasonic signal where the intersection C and the assumed defect position P F match while changing the incident point X of the ultrasonic wave, the incident point X is incident and the assumed defect position P F is determined. It is possible to calculate the propagation path of the passing ultrasonic signal.

図15は、本発明の第2の実施形態である伝搬経路算出処理の他の態様を説明するための模式図である。本実施形態では、まず、超音波信号の入射点Xを設定し、線分P’Xと線分XYとのなす角度から超音波信号の入射角θwを求める。そして、超音波信号の入射点Xを変化させながら線分XYと線分PXとのなす角度θが上述した数式(7)に示すスネルの法則を満たす角度θを探索することによって、入射点Xに入射して想定欠陥位置Pを通過する超音波信号の伝搬経路を算出することができる。 FIG. 15 is a schematic diagram for explaining another aspect of the propagation route calculation processing according to the second embodiment of the present invention. In the present embodiment, first, the incident point X of the ultrasonic signal is set, and the incident angle θw of the ultrasonic signal is obtained from the angle formed by the line segment P′X and the line segment XY. Then, by searching the angle θ that satisfies the Snell's law shown in formula (7) where the angle θ is above the line XY and the line segment P F X while changing the incident point X of the ultrasonic signals, the incident It is possible to calculate the propagation path of the ultrasonic signal that enters the point X and passes through the assumed defect position P F.

<遅延時間算出処理>
図16は、本発明の第2の実施形態である遅延時間算出処理を説明するための模式図である。図16に示すように、超音波探触子11と想定欠陥位置Pに位置する内部欠陥との位置関係が変化すると、超音波探触子11によって受信される欠陥信号の強度及び受信時間は変化する。具体的には、第3欠陥信号RW3及び第4欠陥信号RW4はそれぞれ、超音波探触子11が位置P4及び位置P5にあるときに受信された欠陥からの超音波の反射信号である。ここで、水浸探傷法における媒質である水中の音速をVw、丸棒体RB中の音速をVsと表すと、第3欠陥信号RW3の伝搬時間T3は上述した数式(8)(T1をT3に置き換え)、第4欠陥信号RW4の伝搬時間T4は上述した数式(9)(T2をT4に置き換え)、伝搬時間T3と伝搬時間T4との差である遅延時間ΔT1は上述した数式(10)(ΔTをΔT1に置き換え)を用いて算出することができる。
<Delay time calculation process>
FIG. 16 is a schematic diagram for explaining the delay time calculation process according to the second embodiment of the present invention. As shown in FIG. 16, when the positional relationship between the ultrasonic probe 11 and the internal defect located at the assumed defect position P F changes, the intensity and the reception time of the defect signal received by the ultrasonic probe 11 become Change. Specifically, the third defect signal RW3 and the fourth defect signal RW4 are reflection signals of ultrasonic waves from the defects received when the ultrasonic probe 11 is at the position P4 and the position P5, respectively. Here, when the sound velocity in water, which is a medium in the water immersion flaw detection method, is represented by Vw, and the sound velocity in the round bar RB is represented by Vs, the propagation time T3 of the third defect signal RW3 is represented by the above-described formula (8) (T1 is T3 , And the propagation time T4 of the fourth defect signal RW4 is the above-mentioned formula (9) (T2 is replaced by T4), and the delay time ΔT1 which is the difference between the propagation time T3 and the propagation time T4 is the above-mentioned formula (10). It can be calculated using (replace ΔT with ΔT1).

ここで、基準となる欠陥信号に対する複数の欠陥信号の各受信位置での遅延時間を計算して複数の欠陥信号を合成することによってランダムなノイズは打ち消しあうため、欠陥信号のS/N比は改善される。なお、第4欠陥信号RW4を基準とした場合、第3欠陥信号RW3は遅延時間ΔT1だけ遅延されて足し合わされる。これにより、ランダムなノイズは打ち消し合い、位相が揃えられた欠陥信号は強め合うため、信号処理前と比べ欠陥信号のS/N比は高くなる。また、超音波探触子11の位置や鋼板SPの深さ位置毎にそれぞれ遅延時間を計算して開口合成処理を行うことによって、鋼板SP内のどの深さ位置に欠陥がある場合でも高いS/N比で欠陥信号を検出できる。 Here, random noises cancel each other out by calculating the delay time at each reception position of a plurality of defective signals with respect to a reference defective signal and synthesizing the plurality of defective signals, so that the S/N ratio of the defective signals is Be improved. When the fourth defect signal RW4 is used as a reference, the third defect signal RW3 is delayed by the delay time ΔT1 and added. As a result, random noises cancel each other out and defect signals whose phases are aligned strengthen each other, so that the S/N ratio of the defect signals becomes higher than that before signal processing. Further, by calculating the delay time for each position of the ultrasonic probe 11 and the depth position of the steel plate SP and performing the aperture synthesis processing, it is possible to obtain a high S value even if there is a defect at any depth position in the steel plate SP. The defect signal can be detected by the /N ratio.

<受信音圧比算出処理及び最適合成幅算出処理>
図17は、合成幅とS/N比向上係数Eとの関係をシミュレーションした結果を示す図である。具体的には、図17は、周波数5MHz、直径12.6mmの丸型超音波探触子を0.05mmピッチで鋼板SPの幅方向に移動させながら板厚150mmの鋼板SPの超音波探傷を行い、深さ25,50,75,100,125mm(depth25,50,75,100,125)の位置にある内部欠陥に対し開口合成処理を行った時の合成幅とS/N比向上係数Eとの関係をシミュレーションした結果を示す。図17に示すように、各深さ位置でS/N比向上係数Eを最大とする合成幅は異なり、全深さ位置で合成幅を0.8,2.6mmで一定とした場合には、全深さ位置でそれぞれ最適な合成幅を設定した場合と比べてS/N比が最大4dB減少する。但し、合成幅0.8,2.6mmはそれぞれ深さ25,125mmの位置で開口合成処理を行う場合の合成幅の最適値である。
<Received sound pressure ratio calculation process and optimum combined width calculation process>
FIG. 17 is a diagram showing a result of simulating the relationship between the combined width and the S/N ratio improvement coefficient E. Specifically, FIG. 17 shows ultrasonic flaw detection of a steel plate SP having a plate thickness of 150 mm while moving a circular ultrasonic probe having a frequency of 5 MHz and a diameter of 12.6 mm at a pitch of 0.05 mm in the width direction of the steel plate SP. Then, the relationship between the synthetic width and the S/N ratio improvement coefficient E when the aperture synthetic processing is performed on the internal defect at the depths of 25, 50, 75, 100, 125 mm (depth25, 50, 75, 100, 125) is shown. The simulation results are shown. As shown in FIG. 17, the combined width that maximizes the S/N ratio improvement coefficient E is different at each depth position, and when the combined width is constant at 0.8 and 2.6 mm at all depth positions, , The S/N ratio is reduced by up to 4 dB as compared with the case where the optimum combined width is set at all depth positions. However, the combined widths of 0.8 and 2.6 mm are the optimum values of the combined width when the aperture combining process is performed at the depths of 25 and 125 mm, respectively.

図18は、本発明の第2の実施形態である最適合成幅算出処理を説明するための模式図である。本実施形態では、伝搬経路算出処理によって算出された超音波信号の伝搬経路から超音波信号の指向角ψを算出し、超音波探触子11と欠陥の位置関係が変化した時の欠陥信号の受信音圧比の変化を計算し、受信音圧比の分布から合成幅を算出する。ここで、超音波探触子11の幅方向の移動速度をV1、鋼板SP中の音速をVs、超音波探触子11のPRFをf、超音波探触子11の周波数をF、超音波探触子11の長さをD(丸型の場合は半径、矩形の場合は辺長)、超音波探触子11と鋼板SP表面との間の距離をW、水浸探傷法における媒質である水中での音速をVw、超音波探触子11の中心軸上に存在する想定欠陥位置をP、想定欠陥位置Pの鋼板SP表面からの深さをd、超音波探触子11の初期位置Pからxだけ移動した時の超音波探触子11の位置をP’、超音波探触子11の位置P’と想定欠陥位置Pについて、伝搬経路算出処理を行った場合の超音波信号の伝搬経路と超音波探触子11の中心軸とのなす角をψ(指向角)とする。 FIG. 18 is a schematic diagram for explaining the optimum combined width calculation process according to the second embodiment of the present invention. In the present embodiment, the directivity angle ψ of the ultrasonic signal is calculated from the propagation path of the ultrasonic signal calculated by the propagation path calculation processing, and the defect signal when the positional relationship between the ultrasonic probe 11 and the defect changes The change in the received sound pressure ratio is calculated, and the combined width is calculated from the distribution of the received sound pressure ratio. Here, the moving speed of the ultrasonic probe 11 in the width direction is V1, the sound velocity in the steel plate SP is Vs, the PRF of the ultrasonic probe 11 is f, the frequency of the ultrasonic probe 11 is F, and the ultrasonic wave is The length of the probe 11 is D (radius in the case of a round shape, side length in the case of a rectangle), W is the distance between the ultrasonic probe 11 and the steel plate SP surface, and is a medium in the water immersion flaw detection method. The sound velocity in a certain water is Vw, the assumed defect position existing on the central axis of the ultrasonic probe 11 is P F , the depth of the assumed defect position P F from the steel plate SP surface is d, the ultrasonic probe 11 Of the position of the ultrasonic probe 11 when moved by x from the initial position P of P, and the position P′ of the ultrasonic probe 11 and the assumed defect position P F The angle between the propagation path of the ultrasonic signal and the central axis of the ultrasonic probe 11 is ψ (directivity angle).

受信音圧の計算は基本的には遠距離音場を仮定して行うため、想定欠陥位置Pが上述した数式(11)を満たすことが条件となる。ここで、近距離音場限界距離x0は上述した数式(12)で表される。但し、想定欠陥位置Pが上述した数式(11)を満たさない場合には、近距離音場の音圧計算を適応することで合成幅を算出することができる。 The calculation of the received sound pressure is basically performed on the assumption of a long-distance sound field, and therefore, it is a condition that the assumed defect position P F satisfies the above formula (11). Here, the short-range sound field limit distance x0 is represented by the above-mentioned mathematical expression (12). However, when the assumed defect position P F does not satisfy the above-described mathematical expression (11), the synthetic width can be calculated by applying the sound pressure calculation of the near field.

超音波探触子11が丸型である場合、位置Pにおける欠陥信号の受信音圧に対する位置P’における欠陥信号の受信音圧の比(受信音圧比)Rは指向角ψを用いて上述した数式(13)〜(15)により表すことができる。一方、超音波探触子11が矩形形状である場合には、受信音圧比Rは指向角ψを用い、上述した数式(13),(15),(16)により表すことができる。 When the ultrasonic probe 11 has a round shape, the ratio of the received sound pressure of the defect signal at the position P′ to the received sound pressure of the defect signal at the position P (received sound pressure ratio) R is described above using the directivity angle ψ. It can be expressed by equations (13) to (15). On the other hand, when the ultrasonic probe 11 has a rectangular shape, the reception sound pressure ratio R can be represented by the above-described formulas (13), (15), and (16) using the directivity angle ψ.

本実施形態では、上記手順により計算した受信音圧比Rを用いて合成幅を算出する。具体的には、超音波探触子11によって、超音波探触子11が位置Δx移動する毎に欠陥信号が受信される。移動ピッチΔxは以下に示す数式(22)により表される。 In the present embodiment, the combined width is calculated using the received sound pressure ratio R calculated by the above procedure. Specifically, the ultrasonic probe 11 receives a defect signal every time the ultrasonic probe 11 moves by the position Δx. The movement pitch Δx is represented by the following mathematical expression (22).

超音波探触子11の位置が−nΔxからnΔxまで移動する範囲内で取得した欠陥信号に対して遅延時間をかけて加算平均をする開口合成処理を行った場合の開口合成後受信音圧比Sは、以下に示す数式(23)により表される。ここで、数式(23)において、R(nΔx)は超音波探触子11が位置PからnΔx移動した位置での受信音圧比を示す。超音波探触子11の位置Pは、超音波探触子11の中心軸上に限定されるものではなく、探傷条件に合わせて設定することができる。 After aperture synthesis in the case where aperture synthesis processing is performed in which the defect signal acquired within the range in which the position of the ultrasonic probe 11 moves from -n 1 Δx to n 2 Δx is subjected to delay time and averaged The received sound pressure ratio S is expressed by the following mathematical expression (23). Here, in the mathematical expression (23), R(nΔx) represents the received sound pressure ratio at the position where the ultrasonic probe 11 moves from the position P by nΔx. The position P of the ultrasonic probe 11 is not limited to the center axis of the ultrasonic probe 11, and can be set according to the flaw detection conditions.

加算回数N(=n+n+1)の加算平均によってノイズが1/N1/2になると仮定すると、超音波探触子11の位置PでのS/N比に対する開口合成処理後のS/N比向上係数Eは上述した数式(19)で表される。 Assuming that the noise becomes 1/N 1/2 due to the addition average of the number of additions N (=n 1 +n 2 +1), the S after the aperture synthesis processing with respect to the S/N ratio at the position P of the ultrasonic probe 11 is calculated. The /N ratio improvement coefficient E is represented by the above-mentioned mathematical expression (19).

そこで、数式(19)によりS/N比向上係数Eが最大となる合成幅Nを設定し、開口合成処理を行うことで、欠陥信号のS/N比を最大化することができる。また、上述した数式(20)を満たす加算回数Nを決定し、開口合成処理を行うことで十分に欠陥信号のS/N比を向上することができる。なお、第1の実施形態と同様、開口合成処理によって低減した強度を処理前の強度に補正することが望ましい。 Therefore, the S/N ratio of the defect signal can be maximized by setting the synthesis width N that maximizes the S/N ratio improvement coefficient E by using Expression (19) and performing the aperture synthesis process. In addition, the S/N ratio of the defect signal can be sufficiently improved by determining the number of additions N that satisfies the above-described mathematical expression (20) and performing the aperture synthesis processing. Note that, similarly to the first embodiment, it is desirable to correct the intensity reduced by the aperture synthesis process to the intensity before the process.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。例えば、本発明を鋼材の製造設備列を構成する検査装置として適用し、本発明に係る超音波探傷装置において製造装置によって製造された鋼材の内部を検査し探傷するようにしてもよい。また、本発明を鋼材の製造方法に含まれる検査ステップとして適用し、製造ステップにおいて製造された鋼材の内部を検査し探傷するようにしてもよい。探傷ステップでは、検査ステップにおける開口合成処理の結果に基づき鋼材内部の欠陥を探傷し、欠陥の有無、欠陥位置、欠陥サイズ等についての結果を得る。 Although the embodiments to which the invention made by the present inventors has been described have been described above, the present invention is not limited to the description and the drawings that form a part of the disclosure of the present invention according to the present embodiment. For example, the present invention may be applied as an inspection device that constitutes a steel product manufacturing equipment row, and the inside of the steel product manufactured by the manufacturing device may be inspected and detected in the ultrasonic testing device according to the present invention. Further, the present invention may be applied as an inspection step included in the method for manufacturing a steel product, and the inside of the steel product manufactured in the manufacturing step may be inspected and flaw-detected. In the flaw detection step, defects inside the steel material are detected based on the result of the opening synthesis processing in the inspection step, and results regarding presence/absence of defects, defect position, defect size, etc. are obtained.

さらに、本発明を鋼材の品質保証方法に適用し、鋼材の内部を検査し探傷することにより鋼材の品質保証を行うようにしてもよい。具体的には、本発明で鋼材の内部を探傷ステップで探傷し、探傷ステップで得られた探傷結果から鋼材の品質保証を行うことができる。探傷ステップでは、検査ステップにおける開口合成処理の結果に基づき鋼材内部の欠陥を探傷し、欠陥の有無、欠陥位置、欠陥サイズ等についての結果を得る。次に続く品質保証ステップでは、探傷ステップにより得られた、欠陥有無、欠陥位置、欠陥サイズに関わる結果に基づき、製造された鋼材が予め指定された基準を満たしているかどうか判定し、鋼材の品質を保証する。このように、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。 Furthermore, the present invention may be applied to a quality assurance method for steel products, and the quality of the steel products may be guaranteed by inspecting the inside of the steel products and performing flaw detection. Specifically, according to the present invention, the inside of a steel material can be inspected in a flaw detection step, and the quality of the steel material can be guaranteed from the flaw detection result obtained in the flaw detection step. In the flaw detection step, defects inside the steel material are detected based on the result of the opening synthesis processing in the inspection step, and results regarding presence/absence of defects, defect position, defect size, etc. are obtained. In the quality assurance step that follows, it is determined whether the manufactured steel material meets the criteria specified in advance based on the results related to the presence/absence of defects, the defect position, and the defect size obtained in the flaw detection step. Guarantee. As described above, all other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the present embodiment are included in the scope of the present invention.

1 超音波探傷装置
11 超音波探触子
12 プローブヘッド
13 架台
14 回転駆動装置
15 パルサ
16 レシーバ
17 A/Dコンバータ
18 記録装置
19 信号処理装置
20 表示装置
RB 丸棒体
DESCRIPTION OF SYMBOLS 1 Ultrasonic flaw detector 11 Ultrasonic probe 12 Probe head 13 Frame 14 Rotation drive device 15 Pulser 16 Receiver 17 A/D converter 18 Recording device 19 Signal processing device 20 Display device RB Round bar

Claims (9)

超音波探触子から検査材に超音波信号を送信し、前記検査材の内部で反射された超音波信号を欠陥信号として超音波探触子において受信することによって、前記検査材の内部を検査する超音波探傷方法であって、
前記検査材と前記超音波探触子との位置関係を変化させながら超音波探触子において複数の欠陥信号を受信する受信ステップと、
前記検査材と前記超音波探触子との各位置関係において、基準位置における欠陥信号の受信音圧に対する欠陥信号の受信音圧の比を受信音圧比として算出し、算出された受信音圧比に基づいて、検査材の各深さ位置での開口合成処理における合成幅を決定する決定ステップと、
決定した合成幅に従って複数の欠陥信号を用いて開口合成処理を実行することによって前記検査材の内部を検査する検査ステップと、
を含むことを特徴とする超音波探傷方法。
The inside of the inspection material is inspected by transmitting an ultrasonic signal from the ultrasonic probe to the inspection material and receiving the ultrasonic signal reflected inside the inspection material as a defect signal in the ultrasonic probe. An ultrasonic flaw detection method for
A receiving step of receiving a plurality of defect signals in the ultrasonic probe while changing the positional relationship between the inspection material and the ultrasonic probe;
In each positional relationship between the inspection material and the ultrasonic probe, the ratio of the received sound pressure of the defect signal to the received sound pressure of the defect signal at the reference position is calculated as the received sound pressure ratio, and the calculated received sound pressure ratio Based on the determination step of determining the combined width in the opening combination process at each depth position of the inspection material,
An inspection step of inspecting the inside of the inspection material by executing an aperture synthesis process using a plurality of defect signals according to the determined synthesis width;
An ultrasonic flaw detection method comprising:
前記決定ステップは、前記受信音圧比の変化率から開口合成処理による欠陥信号のS/N比の変化率を算出し、欠陥信号のS/N比の変化率が所定値以上になる合成幅を開口合成処理における合成幅に決定するステップを含むことを特徴とする請求項1に記載の超音波探傷方法。 In the determining step, the rate of change of the S/N ratio of the defect signal by the aperture synthesis processing is calculated from the rate of change of the received sound pressure ratio, and a synthesis width in which the rate of change of the S/N ratio of the defect signal is equal to or more than a predetermined value is calculated. The ultrasonic flaw detection method according to claim 1, further comprising a step of determining a synthetic width in the aperture synthetic processing. 前記決定ステップは、前記超音波探触子が円形の超音波探触子である場合、以下に示す数式(1)及び数式(2)を利用して超音波信号の指向角ψを用いて受信音圧比Rを算出し、前記超音波探触子が矩形の超音波探触子である場合には、以下に示す数式(1)及び数式(3)を利用して超音波信号の指向角ψを用いて受信音圧比Rを算出するステップを含むことを特徴とする請求項1又は2に記載の超音波探傷方法。但し、数式(2)及び数式(3)におけるパラメータmは、指向角ψによって決定される係数である。
In the determining step, when the ultrasonic probe is a circular ultrasonic probe, the ultrasonic wave is received using the directivity angle ψ of the ultrasonic signal by using the following formulas (1) and (2). When the sound pressure ratio R is calculated and the ultrasonic probe is a rectangular ultrasonic probe, the directivity angle ψ of the ultrasonic signal is calculated by using the following formulas (1) and (3). The ultrasonic flaw detection method according to claim 1 or 2, further comprising the step of calculating the reception sound pressure ratio R by using. However, the parameter m in Expressions (2) and (3) is a coefficient determined by the directivity angle ψ.
前記検査ステップは、以下に示す数式(4),(5)を用いて、開口合成処理により得られた欠陥信号AをN点の受信音圧比R(n=0〜N)を加算平均した開口合成後受信音圧比Sで除算することにより、欠陥信号Aの強度を補正するステップを含むことを特徴とする請求項1〜3のうち、いずれか1項に記載の超音波探傷方法。
In the inspecting step, the defect signal A obtained by the aperture synthesis processing is arithmetically averaged with the reception sound pressure ratios R n (n=0 to N) at N points by using the following mathematical expressions (4) and (5). The ultrasonic flaw detection method according to claim 1, further comprising a step of correcting the intensity of the defect signal A by dividing the received sound pressure ratio S after aperture synthesis.
前記決定ステップは、前記超音波探触子と内部欠陥の深さ位置との位置関係から検査材における任意の超音波信号の入射範囲を設定し、設定した超音波信号の入射範囲内においてスネルの法則に基づいて超音波信号の伝搬経路を算出し、座標計算によって超音波信号の伝搬経路が内部欠陥を通過するか否かを判定する計算を繰り返し行うことにより内部欠陥の各深さ位置に対する超音波信号の伝搬経路を算出し、算出された各深さ位置に対する超音波信号の伝搬経路に基づいて開口合成処理に必要な複数の欠陥信号の遅延時間を算出するステップを含むことを特徴とする請求項1〜4のうち、いずれか1項に記載の超音波探傷方法。 The determining step sets the incident range of any ultrasonic signal in the inspection material from the positional relationship between the ultrasonic probe and the depth position of the internal defect, and the snell of the ultrasonic signal within the set incident range of the ultrasonic signal. The ultrasonic signal propagation path is calculated based on the law, and the calculation is repeated to determine whether the ultrasonic signal propagation path passes through the internal defect by coordinate calculation. A step of calculating a propagation path of the sound wave signal, and calculating delay times of a plurality of defect signals necessary for aperture synthesis processing based on the calculated propagation path of the ultrasonic wave signal for each depth position. The ultrasonic flaw detection method according to any one of claims 1 to 4. 前記決定ステップは、前記超音波探触子と内部欠陥の深さ位置との位置関係から検査材における任意の超音波信号の入射範囲を設定し、設定した超音波信号の入射範囲内において超音波信号の入射点における検査材の法線と、超音波探触子と超音波信号の入射点とを結ぶ線分とがなす角度及び想定欠陥位置と超音波信号の入射点とを結ぶ線分とのなす角度がスネルの法則を満たすか否かを判定する計算を繰り返し行うことにより内部欠陥の各深さ位置に対する超音波信号の伝搬経路を算出し、算出された各深さ位置に対する超音波信号の伝搬経路に基づいて開口合成処理に必要な複数の欠陥信号の遅延時間を算出するステップを含むことを特徴とする請求項1〜4のうち、いずれか1項に記載の超音波探傷方法。 The determining step sets the incident range of an arbitrary ultrasonic signal in the inspection material from the positional relationship between the ultrasonic probe and the depth position of the internal defect, and the ultrasonic wave is set within the set incident range of the ultrasonic signal. The angle formed by the normal line of the inspection material at the signal incident point and the line segment connecting the ultrasonic probe and the ultrasonic signal incident point, and the line segment connecting the assumed defect position and the ultrasonic signal incident point The propagation path of the ultrasonic signal for each depth position of the internal defect is calculated by repeatedly performing the calculation to determine whether the angle formed by Snell's law is satisfied, and the ultrasonic signal for each calculated depth position is calculated. The ultrasonic flaw detection method according to any one of claims 1 to 4, further comprising a step of calculating delay times of a plurality of defect signals required for the aperture synthesis processing based on the propagation path of (1). 超音波探触子から検査材に超音波信号を送信し、前記検査材の内部で反射された超音波信号を欠陥信号として超音波探触子において受信することによって、前記検査材の内部を検査する超音波探傷装置であって、
前記検査材と前記超音波探触子との位置関係を変化させながら超音波探触子において複数の欠陥信号を受信する受信手段と、
前記検査材と前記超音波探触子との各位置関係において、基準位置における欠陥信号の受信音圧に対する欠陥信号の受信音圧の比を受信音圧比として算出し、算出された受信音圧比に基づいて、検査材の各深さ位置での開口合成処理における合成幅を決定する決定手段と、
決定した合成幅に従って複数の欠陥信号を用いて開口合成処理を実行することによって前記検査材の内部を検査する検査手段と、
を備えることを特徴とする超音波探傷装置。
The inside of the inspection material is inspected by transmitting an ultrasonic signal from the ultrasonic probe to the inspection material and receiving the ultrasonic signal reflected inside the inspection material as a defect signal in the ultrasonic probe. An ultrasonic flaw detector for
Receiving means for receiving a plurality of defect signals in the ultrasonic probe while changing the positional relationship between the inspection material and the ultrasonic probe,
In each positional relationship between the inspection material and the ultrasonic probe, the ratio of the received sound pressure of the defect signal to the received sound pressure of the defect signal at the reference position is calculated as the received sound pressure ratio, and the calculated received sound pressure ratio Based on the determination means for determining the combined width in the opening combination processing at each depth position of the inspection material,
Inspecting means for inspecting the inside of the inspection material by executing aperture synthesis processing using a plurality of defect signals according to the determined synthesis width,
An ultrasonic flaw detector, comprising:
鋼材を製造する製造装置と、
前記製造装置によって製造された前記鋼材の内部を検査する、請求項7に記載の超音波探傷装置と、
を備えることを特徴とする鋼材の製造設備列。
Manufacturing equipment for manufacturing steel,
The ultrasonic flaw detector according to claim 7, which inspects the inside of the steel material manufactured by the manufacturing apparatus,
A steel material manufacturing equipment line comprising:
鋼材を製造する製造ステップと、
請求項1〜6のうち、いずれか1項に記載の超音波探傷方法で、前記製造ステップにおいて製造された鋼材の内部を探傷する探傷ステップと、
を含むことを特徴とする鋼材の製造方法。
Manufacturing steps for manufacturing steel,
The ultrasonic flaw detection method according to any one of claims 1 to 6, comprising a flaw detection step of performing flaw detection inside the steel material manufactured in the manufacturing step,
A method of manufacturing a steel material, comprising:
JP2017241477A 2017-12-18 2017-12-18 Ultrasonic flaw detection method, ultrasonic flaw detection equipment, steel production equipment row, and steel production method Active JP6733650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017241477A JP6733650B2 (en) 2017-12-18 2017-12-18 Ultrasonic flaw detection method, ultrasonic flaw detection equipment, steel production equipment row, and steel production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017241477A JP6733650B2 (en) 2017-12-18 2017-12-18 Ultrasonic flaw detection method, ultrasonic flaw detection equipment, steel production equipment row, and steel production method

Publications (3)

Publication Number Publication Date
JP2019109107A JP2019109107A (en) 2019-07-04
JP2019109107A5 JP2019109107A5 (en) 2019-08-15
JP6733650B2 true JP6733650B2 (en) 2020-08-05

Family

ID=67179457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017241477A Active JP6733650B2 (en) 2017-12-18 2017-12-18 Ultrasonic flaw detection method, ultrasonic flaw detection equipment, steel production equipment row, and steel production method

Country Status (1)

Country Link
JP (1) JP6733650B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7435322B2 (en) 2020-07-03 2024-02-21 コニカミノルタ株式会社 Ultrasonic flaw detection equipment, ultrasonic flaw detection method, and program
CN113091664B (en) * 2021-04-01 2023-04-18 佛山市恒溢彩印有限公司 Width detection method, system, terminal and storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481822A (en) * 1982-10-18 1984-11-13 Hitachi, Ltd. Synthetic aperture ultrasonic testing apparatus with shear and longitudinal wave modes
JPS63295961A (en) * 1987-05-27 1988-12-02 Mitsubishi Electric Corp Video conversion of object by ultrasonic or electromagnetic wave
JP5456367B2 (en) * 2009-05-18 2014-03-26 一般財団法人電力中央研究所 Phased array aperture synthesis processing method
JP6500865B2 (en) * 2016-09-15 2019-04-17 Jfeスチール株式会社 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Also Published As

Publication number Publication date
JP2019109107A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
WO2020250378A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
WO2009119539A1 (en) Ultrasonic flaw detection method and device
JP2008209356A (en) Method of calibrating ultrasonic flaw detection, and quality control method and manufacturing method of tube
JP2008209358A (en) Quality control method and manufacturing method of tube
WO2008105111A1 (en) Tubular object ultrasonic test device and ultrasonic test method
JP2014048169A (en) Ultrasonic flaw detection method and ultrasonic flaw detection device
JP6402531B2 (en) Defect detection apparatus, defect detection method and program
JP6733650B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detection equipment, steel production equipment row, and steel production method
WO2020250379A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
JP2010266416A (en) Method of processing phased array aperture synthesis and method of evaluating application effect thereof
JP6992678B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detector, steel manufacturing equipment line, steel manufacturing method, and steel quality assurance method
JP2013156166A (en) Ultrasonic flaw detection method
JP5567471B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP2014077708A (en) Inspection device and inspection method
JP7078128B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detector, steel material manufacturing equipment, steel material manufacturing method, and steel material quality control method
JP5567472B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP2009058238A (en) Method and device for defect inspection
JP5575157B2 (en) Ultrasonic flaw detector, method and program
JP2010236886A (en) Method of measuring distribution of crystal grain size of metal material
JP2008261889A (en) Imaging method of internal defect by ultrasonic wave, and its device
Petrov et al. The implementation of post-processing algorithm for ultrasonic testing of welds
JPS61198056A (en) Ultrasonic flaw detecting method for steel pipe by array type probe
JP7318617B2 (en) Ultrasonic flaw detection method for tubular test object
JP4761147B2 (en) Ultrasonic flaw detection method and apparatus
JP7207205B2 (en) Method for evaluating mixed grain ratio of crystal grains of material to be evaluated having approximately circular cross section

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200205

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200622

R150 Certificate of patent or registration of utility model

Ref document number: 6733650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250