Nothing Special   »   [go: up one dir, main page]

JP6729484B2 - シリコン単結晶の製造方法 - Google Patents

シリコン単結晶の製造方法 Download PDF

Info

Publication number
JP6729484B2
JP6729484B2 JP2017093091A JP2017093091A JP6729484B2 JP 6729484 B2 JP6729484 B2 JP 6729484B2 JP 2017093091 A JP2017093091 A JP 2017093091A JP 2017093091 A JP2017093091 A JP 2017093091A JP 6729484 B2 JP6729484 B2 JP 6729484B2
Authority
JP
Japan
Prior art keywords
single crystal
heater
silicon single
crystal
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017093091A
Other languages
English (en)
Other versions
JP2018188338A (ja
Inventor
竜介 横山
竜介 横山
渉 杉村
渉 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2017093091A priority Critical patent/JP6729484B2/ja
Publication of JP2018188338A publication Critical patent/JP2018188338A/ja
Application granted granted Critical
Publication of JP6729484B2 publication Critical patent/JP6729484B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、チョクラルスキー法(以下、「CZ法」という)によるシリコン単結晶の製造方法に関し、特に、シリコン融液に磁場を印加しながら単結晶の引き上げを行うMCZ(Magnetic field applied CZ)法に関するものである。また本発明は、そのような製造方法によって製造されるシリコン単結晶に関する。
CZ法によるシリコン単結晶の製造方法としてMCZ法が知られている(例えば特許文献1、2参照)。MCZ法では、石英ルツボ内のシリコン融液に磁場を印加することにより融液対流を抑えて石英ルツボからの酸素の溶出を抑制するものである。磁場の印加方法は様々であるが、水平方向の磁場(横磁場)を印加しながら単結晶の引き上げを行うHMCZ(Horizontal MCZ)法の実用化が進んでいる。
MCZ法に関し、例えば特許文献1には、磁場中心位置を液面上0〜80mmにすることで、結晶外周部の酸素濃度の低下を軽減する方法が記載されている。また特許文献2には、直径458mm+αのシリコン単結晶を引き上げた後、450mmまで外周研削することにより、ウェーハ周縁部に低酸素領域がなく、酸素濃度の面内分布がより均一な直径が450mmのシリコンウェーハを製造する方法が記載されている。
特許文献3には、固液界面近くの結晶引き上げ方向の温度勾配の面内分布を均一化するため、結晶の成長最前線の中心部に集中的に熱を供給し、これによりシリコン融液の流動を中心で上昇流(特許文献3の図5参照)にする方法が記載されている。特許文献3では、カスプ磁場を印加すると共に、ルツボの下方に底部ヒーターを配置し、底部ヒーターがルツボ底部の中心部をルツボ底部の周辺部よりも強く加熱することにより、ルツボ底部の中心部の温度を集中的に高めている。
シリコン融液の加熱制御に関し、例えば特許文献4には、2分割ヒーターの上ヒーターに対する下ヒーターの出力比を4以上に制御することで、結晶中の酸素濃度を低く抑える方法が記載されている。また特許文献5にはカスプ磁場を印加するMCZ法においてサイドヒーター及びボトムヒーターを設け、引き上げの進行に伴ってサイドヒーター及びボトムヒーターのトータル加熱量Qに対するボトムヒーターの加熱量qの比(q/Q)を大きくすることで、シリコン融液の残量低下に伴う酸素濃度の低下を回避し、結晶引き上げ方向の酸素濃度分布を均一化する方法が記載されている。
特開2007−204312号公報 特開2009−274903号公報 特開2004−292309号公報 特開2011−51806号公報 特開平10−273392号公報
従来のHMCZ法では、石英ルツボを取り囲む単一のヒーターを用いた融液の加熱方法が一般的であるが、そのようなヒーターで融液を加熱しながらシリコン単結晶を引き上げる場合には、単結晶の外周部の酸素濃度が低くなり、酸素濃度の面内分布を均一にすることが難しいという問題がある。
外周部の酸素濃度が低いシリコン単結晶であっても、シリコンウェーハの目標直径よりも十分に大きな直径で引き上げた後、外周研削によって酸素濃度が低い部分を除去することにより、シリコンウェーハの酸素濃度の面内分布を均一にすることが可能である。しかしこの場合、インゴットの直径をより一層大きくする必要があるため製造コストが増加するという問題がある。
特許文献3において、ルツボ中心部で上昇する融液対流は、4つの大きな渦流のうち内側の2つの渦流に伴って発生するものであり、この融液対流は気液界面近傍を経由することなく固液界面に供給される。一方、外側の2つの渦流は、ルツボ内壁面に沿って上昇した後、ルツボ中心部(固液界面)に向かう融液対流を発生させている。この外側の2つの渦流のループサイズが大きい場合には、気液界面近傍を経由することによって酸素濃度が低下した融液対流が固液界面に供給されることになるため、単結晶の外周部の酸素濃度が低下するという問題がある。特に、カスプ磁場型MCZ法では、径方向における融液対流の揺らぎが発生しやすく、外側の2つの渦流のループサイズが変動して一時的に大きくなることにより、外周部の酸素濃度が低下するおそれがある。
したがって、本発明の目的は、シリコン単結晶の外周部の酸素濃度の低下を抑え、これにより酸素濃度の面内分布の均一性を高めることが可能なHMCZ法によるシリコン単結晶の製造方法を提供することにある。また本発明の目的は、酸素濃度の面内分布の均一性が高められたシリコンウェーハを容易に製造することが可能なシリコン単結晶を提供することにある。
本願発明者らは、シリコン単結晶の外周部の酸素濃度が低下するメカニズムについて鋭意研究を重ねた結果、シリコン単結晶の外周部の酸素濃度の低下は、気液界面を経由することによって酸素濃度が低下した融液対流が固液界面に供給されることが原因であり、そのような融液対流の発生を抑えることで酸素濃度の低下を抑制できることを見出した。そのためには、シリコン融液の下部に印加される熱量をシリコン融液の上部に印加される熱量よりも大きくし、特にシリコン融液と接触する石英ルツボの内壁面の温度の最大点が1438℃以上となり、且つ、この最大点が石英ルツボ内壁面へのシリコン単結晶の投影領域(以下、投影領域と称す。図4(b)参照)内に存在するように結晶引き上げ条件を制御する必要がある。シリコン融液と接触する石英ルツボの内壁面の温度の最大点が1438℃以上となるように加熱する場合、石英ルツボの中心付近で湧き上がる上昇流を伴う2つの大きな渦流を発生させることができる。逆に2つの大きな渦流が発生していればシリコン融液と接触する石英ルツボの内壁面の温度の最大点が1438℃以上となっているといえる。この場合、石英ルツボからの酸素が高濃度に溶け込んだ融液が石英ルツボから気液界面を経ずに固液界面へと直接流れ込む流動分布となるため、単結晶の外周部の酸素濃度の低下を抑制することが可能となる。
本発明はこのような技術的知見に基づくものであり、本発明によるシリコン単結晶の製造方法は、石英ルツボの周囲に配置されたヒーターを用いて前記石英ルツボ内のシリコン融液を加熱し、且つ、前記シリコン融液に横磁場を印加しながら、前記シリコン融液からシリコン単結晶を引き上げるチョクラルスキー法によるシリコン単結晶の製造方法であって、結晶中心軸を通り且つ前記横磁場の印加方向に垂直な断面において、前記シリコン融液と接触する前記石英ルツボの内壁面の温度の最大点が前記シリコン単結晶の投影領域内にあり、且つ1438℃以上となる結晶引き上げ条件下で前記シリコン単結晶を引き上げることを特徴とする。
本発明によるシリコン単結晶の製造方法は、3次元シミュレーション(以下、3Dシミュレーションと称す)による前記石英ルツボ及び前記シリコン融液の伝熱解析の計算結果に基づいて、前記結晶引き上げ条件を決定することが好ましい。これにより、シリコン融液中に中心上昇流を伴う2つの大きな渦流が発生する結晶引き上げ条件を正確に予測することができ、実際の結晶引き上げにおいて酸素濃度の面内分布の均一性が高められたシリコン単結晶の製造歩留まりを高めることができる。
本発明において、前記ヒーターは、鉛直方向に分割された多段ヒーターであり、最上段ヒーターに対する最下段ヒーターの出力比は1よりも大きいことが好ましい。この場合において、前記ヒーターは、鉛直方向に2分割された上段ヒーターと下段ヒーターからなり、前記上段ヒーターに対する前記下段ヒーターの出力比は2以上5以下であることが好ましい。これにより、シリコン融液と接触する石英ルツボの内壁面の温度の最大点が1438℃以上となり、且つ、この最大点がシリコン単結晶の投影領域内に存在させるシリコン融液の加熱条件を実施することができる。
本発明において、前記結晶中心軸上の前記シリコン融液内の前記横磁場の最大強度は、一般的なHMCZの磁場強度範囲である0.15T以上0.6T以下であることが好ましい。また、前記シリコン単結晶の回転速度は5rpm以上30rpm以下であることが好ましい。さらに、前記石英ルツボの回転速度は0.1rpm以上4rpm以下であることが好ましい。これらの結晶引き上げ条件によれば、シリコン融液と接触する石英ルツボの内壁面の温度の最大点を1438℃以上とし、且つ、この最大点をシリコン単結晶の投影領域内に発生させることができる。この場合、シリコン融液は石英ルツボの内壁面に沿って降下した後、石英ルツボの中心付近で上昇して固液界面へと直接流れ込む熱対流を形成するので、蒸発によって酸素濃度が低下した融液が固液界面の外周部に供給されることを防止することが可能となる。
本発明において、前記シリコン単結晶の最大直径は300mm以上であることが好ましい。そのような大口径のシリコン単結晶は、外周部において酸素濃度が低下しやすく、本発明の効果が顕著だからである。この場合において、シリコン単結晶の引き上げに用いる石英ルツボの口径は800mm以上であることが好ましい。
また、本発明によるシリコン単結晶は、HMCZ法により製造されたバルクシリコン単結晶であって、その直胴部の最外周から径方向内側に15mmまでの外周近傍領域における酸素濃度の複数の測定値から酸素濃度の最大値、最小値及び平均値を求め、前記最大値と前記最小値との差を前記平均値で除した値からなる酸素濃度の落ち込み量が0.01以下であることを特徴とする。これによれば、酸素濃度の面内分布の均一性が高められたシリコンウェーハを容易に製造することができる。なお、バルクシリコン単結晶とは、単結晶引上げ装置から取り出された後、外周研削加工により単結晶の外周部分を取り除く前の状態のシリコン単結晶のことを言う。
本発明によれば、横磁場を印加しながらシリコン単結晶を引き上げるHMCZ法において、シリコン単結晶の外周部の酸素濃度の低下を抑えることができる。したがって、酸素濃度の面内分布の均一性が高められたシリコンウェーハを容易に製造することができる。
図1は、本発明の実施の形態による単結晶製造装置の構成を概略的に示す側面断面図である。 図2は、本発明の実施の形態によるシリコン単結晶の製造方法を説明するフローチャートである。 図3は、シリコン単結晶インゴットの形状を示す略断面図である。 図4は、HMCZ法において結晶中心軸を通り且つ磁場印加方向に垂直な断面におけるシリコン融液の流動分布を説明する図であって、特に(a)は単一のヒーターを用いた一般的な加熱方法の場合、(b)は分割ヒーターの上段ヒーターと下段ヒーターとの出力比を1:2とした加熱方法の場合をそれぞれ示している。 図5は、条件1〜7のシリコン単結晶の直胴部における半径方向の酸素濃度分布の計算値を示すグラフである。 図6は、条件1〜7における外周近傍の酸素濃度の落ち込みの大きさを示す棒グラフである。 図7は、条件2及び条件7のシリコン融液の流動分布図であり、特に上段の図は、結晶中心軸を通り且つ横磁場の印加方向に垂直な断面の流動分布、また下段の図は、結晶中心軸を通り且つ横磁場の印加方向と平行な断面の流動分布をそれぞれ示している。 図8は、条件1〜7におけるルツボ底部の単結晶の投影領域内の最大温度(相対値)を示す棒グラフである。 図9は、シリコンウェーハの径方向の酸素濃度分布を示すグラフであり、横軸は半径方向の位置、縦軸は酸素濃度である。 図10は、シリコンウェーハの径方向の酸素濃度分布を示すグラフであり、横軸は半径方向の位置、縦軸は酸素濃度である。
以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
図1は、本発明の実施の形態による単結晶製造装置の構成を概略的に示す側面断面図である。
図1に示すように、単結晶製造装置1は、チャンバー10(CZ炉)と、チャンバー10内においてシリコン融液2を保持する石英ルツボ11と、石英ルツボ11を保持するグラファイト製のサセプタ12と、サセプタ12を支持する回転シャフト13と、回転シャフト13を回転及び昇降駆動するシャフト駆動機構14と、サセプタ12の周囲に配置されたヒーター15と、ヒーター15の外側であってチャンバー10の内面に沿って配置された断熱材16と、石英ルツボ11の上方に配置された熱遮蔽体17と、石英ルツボ11の上方であって回転シャフト13と同軸上に配置された単結晶引き上げ用のワイヤー18と、チャンバー10の上方に配置されたワイヤー巻き取り機構19とを備えている。
また単結晶製造装置1は、チャンバー10の外側に配置された磁場発生装置21と、チャンバー10内を撮影するCCDカメラ22と、CCDカメラ22で撮影された画像を処理する画像処理部23と、画像処理部23の出力に基づいてシャフト駆動機構14、ヒーター15及びワイヤー巻き取り機構19を制御する制御部24とを備えている。
チャンバー10は、メインチャンバー10aと、メインチャンバー10aの上部開口に連結された細長い円筒状のプルチャンバー10bとで構成されており、石英ルツボ11、サセプタ12、ヒーター15及び熱遮蔽体17はメインチャンバー10a内に設けられている。プルチャンバー10bにはチャンバー10内にアルゴンガス等の不活性ガス(パージガス)を導入するためのガス導入口10cが設けられており、メインチャンバー10aの下部には不活性ガスを排出するためのガス排出口10dが設けられている。また、メインチャンバー10aの上部には覗き窓10eが設けられており、シリコン単結晶3の育成状況(固液界面)を覗き窓10eから観察可能である。
石英ルツボ11は、円筒状の側壁部と湾曲した底部とを有する石英ガラス製の容器である。サセプタ12は、加熱によって軟化した石英ルツボ11の形状を維持するため、石英ルツボ11の外表面に密着して石英ルツボ11を包むように保持する。石英ルツボ11及びサセプタ12はチャンバー10内においてシリコン融液を支持する二重構造のルツボを構成している。
サセプタ12は鉛直方向に延びる回転シャフト13の上端部に固定されている。また回転シャフト13の下端部はチャンバー10の底部中央を貫通してチャンバー10の外側に設けられたシャフト駆動機構14に接続されている。サセプタ12、回転シャフト13及びシャフト駆動機構14は石英ルツボ11の回転機構及び昇降機構を構成している。
ヒーター15は、石英ルツボ11内に充填されたシリコン原料を溶融して溶融状態を維持するために用いられる。ヒーター15はカーボン製の抵抗加熱式ヒーターであり、サセプタ12内の石英ルツボ11の全周を取り囲むように設けられた略円筒状の部材である。さらにヒーター15の外側は断熱材16に取り囲まれており、これによりチャンバー10内の保温性が高められている。
本実施形態によるヒーター15は、鉛直方向に2分割された分割ヒーターであり、上段ヒーター15aと下段ヒーター15bとで構成されている。上段ヒーター15aと下段ヒーター15bは共に石英ルツボ11の側壁部と対向するように配置されたいわゆるサイドヒーターを構成している。上段ヒーター15a及び下段ヒーター15bはそれぞれ独立に制御可能であり、上段ヒーター15aのパワーを下段ヒーター15bよりも大きくしたり小さくしたりすることができる。詳細は後述するが、結晶引き上げ中において、上段ヒーター15aに対する下段ヒーター15bの出力比は2〜5に設定される。
熱遮蔽体17は、シリコン融液2の温度変動を抑制して固液界面付近に適切なホットゾーンを形成するとともに、ヒーター15及び石英ルツボ11からの輻射熱によるシリコン単結晶3の加熱を防止するために設けられている。熱遮蔽体17は、シリコン単結晶3の引き上げ経路を除いたシリコン融液2の上方の領域を覆うグラファイト製の円筒部材である。
熱遮蔽体17の下端中央にはシリコン単結晶3の直径よりも大きな円形の開口が形成されており、シリコン単結晶3の引き上げ経路が確保されている。図示のように、シリコン単結晶3は開口17aを通過して上方に引き上げられる。熱遮蔽体17の開口の直径は石英ルツボ11の口径よりも小さく、熱遮蔽体17の下端部は石英ルツボ11の内側に位置するので、石英ルツボ11のリム上端を熱遮蔽体17の下端よりも上方まで上昇させても熱遮蔽体17が石英ルツボ11と干渉することはない。
シリコン単結晶3の成長と共に石英ルツボ11内の融液量は減少するが、融液面と熱遮蔽体17との間隔(ギャップ)が一定になるように石英ルツボ11を上昇させることにより、シリコン融液2の温度変動を抑制すると共に、融液面近傍(パージガス誘導路)を流れるガスの流速を一定にしてシリコン融液2からのドーパントの蒸発量を制御することができる。したがって、単結晶の引き上げ軸方向の結晶欠陥分布、酸素濃度分布、抵抗率分布等の安定性を向上させることができる。
石英ルツボ11の上方には、シリコン単結晶3の引き上げ軸であるワイヤー18と、ワイヤー18を巻き取るワイヤー巻き取り機構19が設けられている。ワイヤー巻き取り機構19はワイヤー18と共に単結晶を回転させる機能を有している。ワイヤー巻き取り機構19はプルチャンバー10bの上方に配置されており、ワイヤー18はワイヤー巻き取り機構19からプルチャンバー10b内を通って下方に延びており、ワイヤー18の先端部はメインチャンバー10aの内部空間まで達している。図1には、育成途中のシリコン単結晶3がワイヤー18に吊設された状態が示されている。単結晶の引き上げ時には種結晶をシリコン融液2に浸漬し、石英ルツボ11と種結晶をそれぞれ回転させながらワイヤー18を徐々に引き上げることにより単結晶を成長させる。
プルチャンバー10bの上部にはチャンバー10内に不活性ガスを導入するためのガス導入口10cが設けられており、メインチャンバー10aの底部にはチャンバー10内の不活性ガスを排気するためのガス排出口10dが設けられている。不活性ガスはガス導入口10cからチャンバー10内に導入され、その導入量はバルブにより制御される。また密閉されたチャンバー10内の不活性ガスはガス排出口10dからチャンバー10の外部へ排気されるので、チャンバー10内で発生するSiOガスやCOガスを回収してチャンバー10内を清浄に保つことが可能となる。図示していないが、ガス排出口10dには配管を介して真空ポンプが接続されており、真空ポンプでチャンバー10内の不活性ガスを吸引しながらバルブでその流量を制御することでチャンバー10内は一定の減圧状態に保たれている。
磁場発生装置21はシリコン融液2に横磁場(水平磁場)を印加する。結晶中心軸上(結晶引き上げ軸の延長線上)のシリコン融液2内の横磁場の最大強度は、一般的なHMCZの磁場強度範囲である0.15〜0.6(T)であることが好ましい。シリコン融液2に磁場を印加ことで磁力線に直交する方向の融液対流を抑制することができる。したがって、石英ルツボ11からの酸素の溶出を抑えることができ、シリコン単結晶中の酸素濃度を低減することができる。
メインチャンバー10aの上部には内部を観察するための覗き窓10eが設けられており、CCDカメラ22は覗き窓10eの外側に設置されている。単結晶引き上げ工程中、CCDカメラ22は覗き窓10eから熱遮蔽体17の開口17aを通して見えるシリコン単結晶3とシリコン融液2との境界部の画像を撮影する。CCDカメラ22は画像処理部23に接続されており、撮影画像は画像処理部23で処理され、処理結果は制御部24において結晶引き上げ条件の制御に用いられる。
図2は、本発明の実施の形態によるシリコン単結晶の製造方法を説明するフローチャートである。また、図3は、シリコン単結晶インゴットの形状を示す略断面図である。
図2及び図3示すように、シリコン単結晶3の製造では、石英ルツボ11内のシリコン原料を加熱してシリコン融液2を生成する(ステップS11)。その後、ワイヤー18の先端部に取り付けられた種結晶を降下させてシリコン融液2に着液させる(ステップS12)。
次に、シリコン融液2との接触状態を維持しながら種結晶を徐々に引き上げて単結晶を育成する単結晶の引き上げ工程を実施する。単結晶の引き上げ工程では、無転位化のために結晶直径が細く絞られたネック部3aを形成するネッキング工程(ステップS13)と、規定の直径を得るために結晶直径が徐々に増加したショルダー部3bを形成するショルダー部育成工程(ステップS14)と、結晶直径が一定に維持されたボディー部3c(直胴部)を形成するボディー部育成工程(ステップS15)と、結晶直径が徐々に減少したテール部3dを形成するテール部育成工程(ステップS16)が順に実施され、単結晶が融液面から最終的に切り離されることによりテール部育成工程が終了する。以上により、単結晶の上端(トップ)から下端(ボトム)に向かって順に、ネック部3a、ショルダー部3b、ボディー部3c、及びテール部3dを有するシリコン単結晶インゴット3が完成する。
単結晶の引き上げ工程中は、シリコン単結晶3の直径及びシリコン融液2の液面位置を制御するため、CCDカメラ22でシリコン単結晶3とシリコン融液2との境界部の画像を撮影し、撮影画像から固液界面における単結晶の直径及び融液面と熱遮蔽体17との間隔(ギャップ)を算出する。制御部24は、シリコン単結晶3の直径が目標直径となるようにワイヤー18の引き上げ速度、ヒーター15のパワー等の引き上げ条件を制御する。また制御部24は、融液面と熱遮蔽体17との間隔が一定となるように石英ルツボ11の高さ位置を制御する。
本実施形態によるシリコン単結晶の製造方法は、横磁場型MCZ法においてヒーター15として2分割ヒーターを用いると共に、結晶引き上げ中における上段ヒーター15aと下段ヒーター15bとの出力比を1:2〜1:5の範囲内に設定する。シリコン単結晶3の回転速度は5〜30rpmであることが好ましく、石英ルツボ11の回転速度は0.1〜4rpmであることが好ましい。結晶回転速度が5rpmより小さい場合には融液の流動分布が中心上昇流とならず、外周部の酸素濃度の低下を抑制できないからであり、また30rpmよりも大きい場合には結晶回転制御が不安定となり、結晶の揺れが大きくなって結晶品質が低下するからである。
以上のような結晶引き上げ条件下でシリコン単結晶を引き上げる場合、シリコン融液と接触する石英ルツボ11の内壁面の温度の最大点は1438℃以上となる。石英ルツボ11の内壁面の温度の最大点は、ルツボ底部中心に発生することが望ましいが、融液対流の偏りによって中心からずれる場合がある。このような場合でも、最大点がシリコン単結晶の投影領域内に発生していれば、石英ルツボ11の中心付近で上昇し、気液界面を経ずに固液界面へと直接流れ込む流動分布となるので、単結晶の外周部の酸素濃度の低下を抑制することができ、酸素濃度の面内分布の均一化を実現することができる。
結晶引き上げ中のシリコン融液2の流動分布や石英ルツボ11の内壁面の温度は、総合伝熱解析の3Dシミュレーションから予測することができる。結晶引き上げ中にシリコン融液が石英ルツボ11の内壁面に沿って降下し、石英ルツボ11の中心部で上昇し、気液界面を経ずに固液界面へと直接流れ込む流動分布となるように結晶引き上げ条件を制御する。そのような結晶引き上げ条件は、3Dシミュレーションによる石英ルツボ11及びシリコン融液の温度分布の計算結果に基づいて決定することができる。すなわち、磁場強度、結晶回転速度、ルツボ回転速度、上段ヒーターに対する下段ヒーターの出力比、結晶引き上げ速度、アルゴン流量、炉内圧、融液量を可変パラメータとし、これらのパラメータを変更した種々の計算を行い、シリコン融液と接触する石英ルツボ11の内壁面の温度の最大点の位置が投影領域内かどうか、その温度が1438℃以上であるかどうかを判断することによって、最適な結晶引き上げ条件を選定することができる。
また、結晶引き上げ中における石英ルツボ11の底部の内壁面の実際の温度は、サセプタ12の外表面に取り付けた熱電対の測定温度から求めることができる。サセプタ12の底部中心の温度を熱電対で測定し、この温度を伝熱解析3Dシミュレーションの条件に与えることにより、石英ルツボ11の底部の内壁面の温度の算出が可能である。
さらに、ウェーハの酸素濃度の面内分布を測定することにより、石英ルツボ11の底部の内壁面の温度の推定が可能である。すなわち、ウェーハの面内酸素濃度分布が均一であれば、シリコン融液と接触する石英ルツボ11の内壁面の温度の最大点は1438℃以上となっていると結論付けることができる。
次に、単結晶の外周部の酸素濃度の低下を抑制するメカニズムについて説明する。
まず、引き上げ中のシリコン単結晶3への酸素の導入経路について説明する。酸素は、シリコン融液2を保持する石英ルツボ11の溶融によってシリコン融液2中へ導入され、拡散とシリコン融液2の対流により輸送される。溶融酸素の大部分は気液界面にて一酸化珪素(SiO)として蒸発し、融液外へと排出されるが、一部は成長界面へと輸送されシリコン単結晶中へ取り込まれる。従って、単結晶中の酸素濃度はシリコン融液の対流挙動に大きく依存する。
次に、HMCZ法におけるシリコン融液の流動分布を説明する。HMCZ法において、シリコン融液は印加磁場の向きに対して垂直な面に循環流を形成し、その循環流は形状を維持しながら磁場印加方向に伸びるロール状の流動となっている。これら流動を把握するには、結晶中心軸を通りかつ磁場印加方向に対し垂直な断面の流動状態を見ればよい。
図4は、HMCZ法において結晶中心軸を通り且つ磁場印加方向に垂直な断面におけるシリコン融液の流動分布を説明する図であって、特に(a)は単一のヒーターを用いた一般的な加熱方法の場合、(b)は分割ヒーターの上段ヒーターと下段ヒーターとの出力比を1:2とした加熱方法の場合であって、投影領域内の石英ルツボ内壁面の最大温度が1438℃以上である場合をそれぞれ示している。
図4(a)に示すように、シリコン融液中にはシリコン融液全体にルツボ側面壁で上昇し結晶下で下降する循環流と、結晶下に成長界面を中心から外周部へ向かう方向の循環流の2種類が存在する。前者は、ルツボ側面に対向配置された円筒状のヒーター15によってルツボ側面の温度が上昇し、それに伴う熱対流に起因する流動であり、後者は結晶回転に伴う吐き出し流である。
図4(a)において、石英ルツボ11から導入されたシリコン融液中の酸素は、熱対流に起因する循環流によってルツボ側面を鉛直上方向に輸送され、気液界面を経由した後に、結晶回転に伴う循環流により結晶成長界面へと輸送される。このとき、気液界面では溶解酸素は蒸発するため、気液界面を経た後のシリコン融液中の溶解酸素濃度は著しく低下する。この酸素濃度が低下したシリコン融液が結晶成長界面の外側より輸送されるため、結晶成長界面における酸素濃度は外周で極端な低濃度となる。従って、結晶中の酸素濃度は一般に外周部で低濃度となる。
一方、図4(b)に示すように、結晶回転速度を5.0rpm以上とし、且つ、ヒーター15の上段ヒーター15aと下段ヒーター15bとの出力比を1:2とする場合、結晶成長界面を経由せずルツボから固液界面へと直接シリコン融液が流れ込む流動分布を得ることができる。これは、結晶回転速度を大きくすることで結晶下の結晶成長界面へ向かう流れが相対的に速くなったこと、及び下段ヒーター15bの出力を相対的に高めることでシリコン融液の側面から流れ込む熱量よりも下部から流れ込む熱量のほうが大きくなり、下部近傍にて浮力が生じたことから、中心近傍で上昇流を形成したためと考えられる。
上記のメカニズムによれば、石英ルツボ11の中心付近で上昇流が存在する流動分布が得られる条件は、シリコン融液と接触する石英ルツボの内壁面の温度の最大点が1438℃以上であり、且つ、その最大点の位置が結晶中心軸を通りかつ横磁場の印加方向に垂直な断面においてルツボ中心から結晶半径までの範囲内にあることである。なおシリコン融液と接触する石英ルツボの内壁面の温度の最大点は1537℃以下であることが好ましい。1537℃以下であれば、石英ルツボが軟化して大きく変形することなく、安全に単結晶を製造することができる。
以上のように、従来のHMCZ法では、シリコン融液の流動経路が気液界面を経由して固液界面へと向かうことにより、結晶外周部において酸素濃度が極端に低い領域が形成されてしまうが、本発明によるHMCZ法では、シリコン融液が気液界面を経由することなく結晶界面へと流れる流動経路を形成することができるため、結晶外周部において酸素濃度が極端に低くなることを回避して酸素濃度の面内分布の均一化を図ることができる。
図3に示した本実施形態によるシリコン単結晶インゴットは上記のように製造されるため、酸素濃度の面内分布の均一性が良好である。外周研削加工を行っていないas-grown状態のバルク単結晶において、最外周から径方向内側に15mmまでの外周近傍領域の酸素濃度を半径方向に一定間隔で測定し、複数の測定値から酸素濃度の最大値、最小値及び平均値を求め、さらに最大値と最小値との差を平均値で除した値を「酸素濃度の落ち込み量」として求めるとき、この酸素濃度の落ち込み量の値は0.01以下である。
以上説明したように、本実施形態によるシリコン単結晶の製造方法は、横磁場を印加するHMCZ法においてシリコン融液の加熱に2分割ヒーターを用い、結晶引き上げ中における上段ヒーター15aに対する下段ヒーター15bの出力比を2以上に設定することにより、シリコン融液2と接触する石英ルツボ11の内壁面の温度の最大点を1438℃以上とし、且つ、その最大点の位置が結晶中心軸を通りかつ横磁場の印加方向に垂直な断面においてルツボ中心から結晶半径までの範囲内に発生させることができる。これにより、シリコン融液中に中心上昇流を伴う2つの大きな渦流を発生させることができ、シリコン融液が気液界面を経由することなく結晶界面へと流れる流動経路を形成することができる。したがって、シリコン単結晶の外周部において酸素濃度が低下を抑えることができ、酸素濃度の面内分布の均一化を達成することができる。
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
例えば、上記実施形態では、上段ヒーター15a及び下段ヒーター15bからなる2分割ヒーターを用いているが、ヒーター15の鉛直方向の分割数は特に限定されず、3分割以上であってもよい。このような多段ヒーターを用いる場合、最上段ヒーターに対する最下段ヒーターの出力比を1よりも大きくすることにより、シリコン融液と接触する石英ルツボの内壁面の温度の最大点を1438℃以上とすることが可能となる。
また上記実施形態においては300mmウェーハの製造に用いられる結晶直径が300mm以上(直径300〜340mm)のシリコン単結晶インゴットの製造方法を例に挙げたが、450mmウェーハ用シリコン単結晶の製造方法(直径450〜490mm)であってもよく、直径200mm以下のシリコンウェーハの原料となるシリコン単結晶の製造方法であってもよい。ただし、結晶直径が大きなシリコン単結晶では結晶外周部の酸素濃度の低下が顕著であることから、本発明は、最大直径が300mm以上のシリコン単結晶の製造に好ましく用いることができる。
CZ炉内を模擬した3Dシミュレーションによる総合伝熱解析を行い、様々なパラメータを変更した際のシリコン単結晶の酸素濃度の面内分布、及びシリコン融液の対流を予測計算した。3Dシミュレーションでは、シリコン融液の側面に配置された円筒状のヒーター15として2分割ヒーターを用い、上段ヒーターに対する下段ヒーターの出力比のほか、結晶回転やルツボ回転といった一般的な制御因子を様々に設定して、シリコン融液の流動分布の計算を行った。
3DシミュレーションではCZ炉内全体の3次元形状をモデリングし、シリコン融液及びアルゴン雰囲気を流体として扱い、それ以外の部材を固体として扱った。このとき、少なくとも、シリコン融液形状のモデリングについては、複雑な3次元の流動状態を把握するために3次元メッシュ構造で表現する必要がある。温度は熱伝導、熱伝達、輻射を考慮した方程式、流体の流動はナビエ=ストークス方程式から、両者を連成して計算した。また横磁場を印加し、これによりシリコン融液中に発生する誘導電流、ローレンツ力を計算した。計算したローレンツ力はナビエ=ストークス方程式中の外力項に返すことにより、両者を連成した。
酸素は石英ルツボの溶融によりシリコン融液中へ導入され、両者の界面にて飽和濃度になるまで酸素が溶け込むと仮定した。シリコン融液とアルゴン雰囲気との気液界面において、シリコン融液中の酸素は一酸化珪素の平衡濃度になるまで化学変化すると仮定した。また、量反応の反応速度は無限に速いと仮定した。シリコン融液とシリコン単結晶との固液界面において、シリコン融液中の酸素は偏析係数1でシリコン単結晶中に取り込まれると仮定した。
300mm結晶の引き上げに対応したCZ炉を対象とし、結晶直径は310mm、石英ルツボの口径は800mm(32インチ)、シリコン融液量は200kg、結晶引き上げ速度は1.0mm/minに固定した。結晶中心軸上の坩堝内融液における横磁場の最大強度は他の条件に合わせて0.2T〜0.4Tの範囲内で適切な値に設定した。一方、結晶回転速度、ルツボ回転速度、アルゴン流量、炉内圧、及び上段ヒーターに対する下段ヒーターの出力比の5つを可変パラメータとし、それぞれを表1の通り設定し、条件1〜7の計算を実施した。
Figure 0006729484
図5は、条件1〜7のシリコン単結晶の直胴部における半径方向の酸素濃度分布の計算値を示すグラフである。結晶中心から最外周まで半径方向に5mm間隔の領域に区切り、その領域における酸素濃度の平均値を示している。この値は、酸素濃度を測定する場合においては、その領域の中央位置で測定した値に相当する。横軸は結晶中心からの径方向の位置(m)、縦軸は酸素濃度(atoms/cm3)をそれぞれ示している。
図5から明らかなように、条件1〜6では、結晶中心から半径140mm〜155mmの外周近傍の酸素濃度が低下し、これが酸素濃度の面内分布の均一性を悪化させていることが分かった。一方、条件7は、外周近傍の酸素濃度が低下せず、酸素濃度の面内分布の均一性は非常に良好であることが分かった。
次に、外周近傍の酸素濃度の落ち込みの大きさを評価した。
図6は、条件1〜7における外周近傍の酸素濃度の落ち込みの大きさ(落ち込み量)を示す棒グラフである。酸素濃度の落ち込みの大きさは、(最大値−最小値)/平均値により求めた。この指標が小さいほど、結晶中心から半径140mm〜155mmの外周近傍における酸素濃度の低下が小さいことを示している。
条件7の酸素濃度の落ち込みの大きさは、0.002735であり、図6から明らかなように、条件7は、他の条件1〜6と比較して、単結晶の外周近傍における酸素濃度の低下が著しく小さいことが明らかとなった。
次に、単結晶の外周近傍における酸素濃度の低下がどのような現象によるものかを明らかにするため、酸素濃度の低下が大きい条件2と、酸素濃度の低下が小さい条件7の流動分布を比較した。
図7は、条件2及び条件7のシリコン融液の流動分布図であり、特に上段の図は、結晶中心軸を通り且つ横磁場の印加方向に垂直な断面の流動分布、また下段の図は、結晶中心軸を通り且つ横磁場の印加方向と平行な断面の流動分布をそれぞれ示している。
図7の上段に示すように、条件2及び条件7は共に磁場印加の方向に垂直な面に渦を形成し、それが形状を保持したまま磁場印加方向に伸びる流動分布となった。特に、条件2では1つの大きな渦流が存在するが、条件7では2つの大きな渦流が存在し、石英ルツボの中心付近に融液の上昇流が発生していた。なお、条件7を除く全ての条件(条件1〜6)の流動分布が条件2のような1つの渦流を有するものであった。
酸素の輸送経路を考えるとき、条件2では、石英ルツボから融液中に導入された酸素は1つの渦流によって輸送され、片側の気液界面を経由して固液界面へと運ばれる。気液界面を経由する際に酸素は一酸化珪素としてアルゴン雰囲気中へ蒸発し、酸素濃度が低下したシリコン融液がそのまま固液界面へと運ばれるために、結晶の外周近傍において酸素濃度の低下が発生すると考えられる。
一方、条件7のような石英ルツボの中心付近で上昇流を伴う2つの渦流が存在する場合、石英ルツボから融液中に導入された酸素は気液界面を経ずに固液界面へと直接輸送されるため、結晶外周近傍における酸素濃度の低下が発生しないと考えられる。よって、このような中心上昇流を結晶中心軸から結晶半径までの範囲内に発生させることにより、外周近傍領域における酸素濃度の低下を回避できると考えられる。
上記のように、条件7において石英ルツボの中心付近で上昇流を伴う2つの渦流が発生する要因は、他の条件と異なり、2分割ヒーターの出力比を上:下で1:2とし、石英ルツボの下方からの加熱量を大きくしているからである。これにより、ルツボ底部の温度が上昇し、シリコン融液は下方から強く加熱され、それによりルツボ中心部での熱対流による上昇流が形成されたものと考えられる。
この考察から、中心上昇流を伴う2つの渦流を形成するためには、ルツボ内の融液の中心部にて熱対流を促進させればよいと考えられる。熱対流の大きさは流体の上部と下部の温度差が大きいほど強い。CZ法において流体の上部は固液界面であり、固液界面の温度は融点(1412℃)に固定されている。従って、ルツボ底部の温度を高くすることにより、中心上昇流の発生を促進させることができるものと考えられる。
図8は、条件1〜7におけるルツボ底部の単結晶の投影領域内の最大温度を示す棒グラフである。
図8に示すように、ルツボ底部の結晶径内の領域における最大温度は条件7が最も大きく1438℃である。それ以外の条件では、条件5が最も高く1437℃であるが、条件5では中心上昇流は形成されない。したがって、ルツボ底部の結晶径内の領域における温度の最大値が1438℃以上であれば、中心上昇流を形成でき、これにより外周近傍における酸素濃度の低下を防止し、酸素濃度の面内分布の均一性が良好なシリコン単結晶を得ることができることが分かった。
次に、上記シミュレーション結果に基づき、シリコン単結晶の実際の引き上げ工程を実施した。その際、シリコン融液の周囲に配置した2分割ヒーターの上下段の出力比を様々に変化させた。上段ヒーターと下段ヒーターとの出力比は、1:1(水準A),1:1.5(水準B),1:2(水準C),1:3(水準D),1:4(水準E),1:5(水準F)の6通りとした。それ以外の結晶引き上げ条件は全て同等とし、結晶回転速度は5rpm、横磁場の強度は0.3T、直胴部の結晶直径は320mmとした。
次に、それぞれのシリコン単結晶の直胴部の上端から下方に500mmの位置からウェーハを切り出し、ウェーハの径方向の酸素濃度分布を測定した。酸素濃度の測定にはFTIRを用い、ウェーハ中心から半径方向に150mmまでの領域を10mm間隔で測定し、その平均値を求めた。なお本明細書中に記載する結晶中の酸素濃度の測定値はすべてASTM F-121(1979)の規格に従った測定値である。酸素濃度の測定結果を表2に示す。
Figure 0006729484
表2から明らかなように、水準Aから水準Eまではシリコン単結晶を引き上げることができた。しかしながら、水準Fでは直胴部において結晶が有転位化し、単結晶を得ることが出来なかった。
次に、ウェーハ中心から半径方向に140mm〜157mmの領域の酸素濃度を1mm間隔で測定し、外周近傍の酸素濃度分布を詳細に測定した。なお、ウェーハ中心から半径方向に158mm〜160mmの最外周領域は、測定値がウェーハ側面形状の影響を受けるため除外した。その結果を図9に示す。
図9に示すように、ウェーハ外周部の酸素濃度の低下に着目すると、水準Aと水準Bでは半径152mmの位置以降で酸素濃度の低下が見られた。水準Cでは水準A,Bと比較して酸素濃度の低下領域が狭まっており、ウェーハ中心から半径方向に157mmの位置一点のみであった。水準Dと水準Eの結果も水準Cと同様であった。
次に、表2で示した酸素濃度平均値の±5%からはずれる領域を低酸素領域として定義し、低酸素領域の幅を求めた。その結果を表3にまとめる。ここで、ウェーハ中心から半径方向157mmよりも外側の領域の酸素濃度については、155〜157mmの位置における酸素濃度から外挿して低酸素領域かどうかを判断した。
Figure 0006729484
表3に示すように、水準A,Bの低酸素領域の幅が8mmであるのに対し、水準C,D,Eの低酸素領域の幅は4mmであった。この結果から、ウェーハ外周部の酸素濃度の低下を抑えるためには2分割ヒーターの上段ヒーターに対する下段ヒーターの出力比を2〜5にすることが効果的であることが分かった。上段ヒーターに対する下段ヒーターの出力比を2〜5にすることで、シリコン融液の流動分布が変化し、上記のように石英ルツボから気液界面を経由せず直接固液界面へと流れる流動分布に変化したためと考えられる。
次に、2分割ヒーターの上下出力比を1:2に固定し、結晶回転速度を様々に変化させ、シリコン単結晶の引き上げを実施した。結晶回転速度を、2.5rpm(水準G)、7.5rpm(水準H)、10.0rpm(水準I)とした。結晶直径は320mmとし、上記以外のプロセス条件は全て同等とした。その後、ウェーハ中心から150mmまでの領域内の酸素濃度を10mm間隔で測定し、その平均値を求めた。表2の水準Cと共に酸素濃度の測定結果を表4に示す。
Figure 0006729484
表4に示すように、水準G,H,Iはいずれも水準Cと同様にシリコン単結晶を引き上げることができた。だたし、水準Gでは酸素濃度の平均値が7.79atoms/cmと低かった。
次に、半径140mmから157mmまでの領域を1mm間隔で測定し、外周近傍の酸素濃度分布を詳細に測定した。その結果を図10に示す。
示す。
図10に示すように、水準Gではウェーハ中心から外周に向かって酸素濃度が緩やかな減少傾向を示した。一方、水準C,H,Iにおいて酸素濃度が減少傾向を示す領域はウェーハ中心から半径方向に157mmの位置一点のみであった。
次に、表4で示した酸素濃度平均値の±5%からはずれる領域を低酸素領域として定義し、低酸素領域の幅を求めた。その結果を表5にまとめる。
Figure 0006729484
表5に示すように、水準Gの低酸素領域の幅が11であったのに対し、水準C,H,Iの低酸素領域の幅は4mmであった。このように、結晶回転速度が2.5rpmでは低酸素領域の幅が非常に広くなり、酸素濃度の面内分布が悪化した。これに対し、結晶回転速度が5.0rpm以上である水準C,H,Iでは低酸素領域の幅が狭まっており、酸素濃度の面内分布は良好となった。これは、結晶回転速度が5.0rpm以上において流動分布が大きく変化していると考えられる。
上記の測定結果を検証するために、水準AからIまでの9条件のシミュレーションを行い、石英ルツボ底部への単結晶の投影領域内の最大温度を抽出した。その結果、外周部の低酸素領域の幅が小さい水準C、D、E、H、Iについては、全て1438℃以上であり、るつぼ中心付近にて上昇流が存在する流動分布であった。
以上の結果から、HMCZ法において、2分割ヒーターの上段ヒーターに対する下段ヒーターの出力比を2〜5とし、かつ結晶回転速度5.0以上とした場合には、シリコン単結晶の外周部の酸素濃度の低下を大幅に抑制できることが分かった。
1 単結晶製造装置
2 シリコン融液
3 シリコン単結晶(インゴット)
3a ネック部
3b ショルダー部
3c ボディー部(直胴部)
3d テール部
10 チャンバー
10a メインチャンバー
10b プルチャンバー
10c ガス導入口
10d ガス排出口
10e 覗き窓
11 石英ルツボ
12 サセプタ
13 回転シャフト
14 シャフト駆動機構
15 ヒーター
15a 上段ヒーター
15b 下段ヒーター
16 断熱材
17 熱遮蔽体
18 ワイヤー
19 ワイヤー巻き取り機構
21 磁場発生装置
22 カメラ
23 画像処理部
24 制御部

Claims (7)

  1. 石英ルツボの周囲に配置されたヒーターを用いて前記石英ルツボ内のシリコン融液を加熱し、且つ、前記シリコン融液に横磁場を印加しながら、前記シリコン融液からシリコン単結晶を引き上げるチョクラルスキー法によるシリコン単結晶の製造方法であって、
    結晶中心軸を通り且つ前記横磁場の印加方向に垂直な断面において、前記シリコン融液と接触する前記石英ルツボの内壁面の温度の最大点が1438℃以上となり、且つ、前記最大点の位置が前記シリコン単結晶の投影領域内に存在し、前記シリコン融液中に前記石英ルツボの底部中心付近から結晶成長界面に向かって上昇した後、径方向の外周側に向かう循環流が優勢な流動分布が発生することとなる結晶引き上げ条件下で前記シリコン単結晶を引き上げることを特徴とするシリコン単結晶の製造方法。
  2. 3Dシミュレーションによる前記石英ルツボ及び前記シリコン融液の伝熱解析結果に基づいて、前記結晶引き上げ条件を決定する、請求項1に記載のシリコン単結晶の製造方法。
  3. 前記ヒーターは、鉛直方向に2以上に分割された多段ヒーターであり、最上段ヒーターに対する最下段ヒーターの出力比は1よりも大きい、請求項1又は2に記載のシリコン単結晶の製造方法。
  4. 前記ヒーターは、鉛直方向に2分割された上段ヒーターと下段ヒーターからなり、
    前記上段ヒーターに対する前記下段ヒーターの出力比は2以上5以下である、請求項3に記載のシリコン単結晶の製造方法。
  5. 前記結晶中心軸上の前記シリコン融液内の前記横磁場の強度は0.15T以上0.6T以下である、請求項1乃至4のいずれか一項に記載のシリコン単結晶の製造方法。
  6. 前記シリコン単結晶の回転速度は5rpm以上30rpm以下である、請求項1乃至5のいずれか一項に記載のシリコン単結晶の製造方法。
  7. 前記シリコン単結晶の最大直径は300mm以上である、請求項1乃至6のいずれか一項に記載のシリコン単結晶の製造方法
JP2017093091A 2017-05-09 2017-05-09 シリコン単結晶の製造方法 Active JP6729484B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017093091A JP6729484B2 (ja) 2017-05-09 2017-05-09 シリコン単結晶の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017093091A JP6729484B2 (ja) 2017-05-09 2017-05-09 シリコン単結晶の製造方法

Publications (2)

Publication Number Publication Date
JP2018188338A JP2018188338A (ja) 2018-11-29
JP6729484B2 true JP6729484B2 (ja) 2020-07-22

Family

ID=64479155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017093091A Active JP6729484B2 (ja) 2017-05-09 2017-05-09 シリコン単結晶の製造方法

Country Status (1)

Country Link
JP (1) JP6729484B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7249913B2 (ja) * 2019-08-28 2023-03-31 グローバルウェーハズ・ジャパン株式会社 シリコン単結晶の製造方法
JP7561498B2 (ja) 2020-02-14 2024-10-04 グローバルウェーハズ・ジャパン株式会社 シリコン単結晶の製造方法
US11987899B2 (en) * 2020-11-12 2024-05-21 Globalwafers Co., Ltd. Methods for preparing an ingot in an ingot puller apparatus and methods for selecting a side heater length for such apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158688A (ja) * 1999-11-29 2001-06-12 Nippon Steel Corp シリコン種結晶とその製造方法並びにシリコン単結晶の製造方法
JP2003002782A (ja) * 2001-06-15 2003-01-08 Toshiba Ceramics Co Ltd シリコン単結晶引上方法およびその装置
JP4148059B2 (ja) * 2002-12-27 2008-09-10 信越半導体株式会社 単結晶製造用黒鉛ヒーター及び単結晶製造装置ならびに単結晶製造方法
JP4134800B2 (ja) * 2003-04-16 2008-08-20 信越半導体株式会社 単結晶製造用黒鉛ヒーター及び単結晶製造装置ならびに単結晶製造方法
JP2007261846A (ja) * 2006-03-28 2007-10-11 Sumco Techxiv株式会社 無欠陥のシリコン単結晶を製造する方法
JP5928363B2 (ja) * 2013-02-01 2016-06-01 信越半導体株式会社 シリコン単結晶ウエーハの評価方法

Also Published As

Publication number Publication date
JP2018188338A (ja) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6583142B2 (ja) シリコン単結晶の製造方法及び装置
JP4814207B2 (ja) シリコン半導体ウェハを製造する方法及び装置
TWI624569B (zh) 單結晶之拉引方法
CN108779577B (zh) 单晶硅的制造方法
JP7036217B2 (ja) シリコン単結晶の育成方法
JP6885301B2 (ja) 単結晶の製造方法及び装置
JP5595318B2 (ja) 単結晶引上装置及び単結晶引き上げ方法
JP6729484B2 (ja) シリコン単結晶の製造方法
JP4513798B2 (ja) 単結晶製造装置及び単結晶の製造方法
KR20200110389A (ko) 실리콘 단결정의 제조 방법 및 실리콘 단결정의 인상 장치
TWI749487B (zh) 一種控制矽熔體坩堝安全升降的方法和裝置
JP6729470B2 (ja) 単結晶の製造方法及び装置
JP6958632B2 (ja) シリコン単結晶及びその製造方法並びにシリコンウェーハ
TWI635199B (zh) 單晶矽的製造方法
CN108291327B (zh) 单晶硅的制造方法及单晶硅
CN112074626B (zh) 硅熔液的对流模式控制方法及单晶硅的制造方法
JP5974974B2 (ja) シリコン単結晶の製造方法
JP2020114802A (ja) シリコン単結晶の製造方法
JP6981371B2 (ja) シリコン単結晶の製造方法
JP2018043904A (ja) シリコン単結晶の製造方法
JP6597857B1 (ja) 熱遮蔽部材、単結晶引き上げ装置及び単結晶の製造方法
JP6784106B2 (ja) 単結晶育成装置および単結晶の製造方法
JP2008019129A (ja) 単結晶製造装置、単結晶の製造方法および単結晶
JP6414161B2 (ja) シリコン単結晶の製造方法及び装置
JP2018043901A (ja) シリコン単結晶の製造方法及び製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6729484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250