Nothing Special   »   [go: up one dir, main page]

JP6796989B2 - Ignition system for internal combustion engine - Google Patents

Ignition system for internal combustion engine Download PDF

Info

Publication number
JP6796989B2
JP6796989B2 JP2016204661A JP2016204661A JP6796989B2 JP 6796989 B2 JP6796989 B2 JP 6796989B2 JP 2016204661 A JP2016204661 A JP 2016204661A JP 2016204661 A JP2016204661 A JP 2016204661A JP 6796989 B2 JP6796989 B2 JP 6796989B2
Authority
JP
Japan
Prior art keywords
discharge
auxiliary
voltage
circuit
spark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016204661A
Other languages
Japanese (ja)
Other versions
JP2018066305A (en
Inventor
潤 井出
潤 井出
定男 渡辺
定男 渡辺
Original Assignee
株式会社エッチ・ケー・エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エッチ・ケー・エス filed Critical 株式会社エッチ・ケー・エス
Priority to JP2016204661A priority Critical patent/JP6796989B2/en
Publication of JP2018066305A publication Critical patent/JP2018066305A/en
Application granted granted Critical
Publication of JP6796989B2 publication Critical patent/JP6796989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)

Description

本発明は内燃機関用点火装置に関する。 The present invention relates to an ignition device for an internal combustion engine.

従来の内燃機関用点火装置として、特許文献1に記載の如く、内燃機関の各気筒毎に電流遮断式点火装置を内蔵する点火コイルユニットを設けたものがある。 As a conventional ignition device for an internal combustion engine, as described in Patent Document 1, there is one provided with an ignition coil unit having a built-in current cutoff type ignition device for each cylinder of the internal combustion engine.

電流遮断式点火装置は、点火コイルの1次電流を遮断して当該点火コイルの1次側に大きな送起電力である高電圧を発生させることにより、当該点火コイルの2次側に発生する更に大きな高電圧により、点火プラグの電極間に高電圧の火花放電を発生させてその電極間に火炎核を発生させるととともに、該火花放電に続く小電圧の保温放電を発生させて上記火炎核を成長させる。電流遮断式点火装置の上述の火花放電によって点火プラグの電極間に発生し、或いは成長する火炎核が熱源になって、当該気筒の燃焼室内で当該点火プラグの周辺に存在する混合気に着火せしめるものである。 The current cutoff type ignition device cuts off the primary current of the ignition coil and generates a high voltage, which is a large transfer power, on the primary side of the ignition coil, thereby further generating on the secondary side of the ignition coil. Due to a large high voltage, a high-voltage spark discharge is generated between the electrodes of the ignition plug to generate a flame nucleus between the electrodes, and a small-voltage heat-retaining discharge following the spark discharge is generated to generate the flame nucleus. Grow. The above-mentioned spark discharge of the current cutoff type ignition device causes a flame nucleus generated or growing between the electrodes of the spark plug to become a heat source and ignite the air-fuel mixture existing around the spark plug in the combustion chamber of the cylinder. It is a thing.

しかるに、特許文献1に記載の内燃機関用点火装置では、点火コイルユニットの外部に、火花放電用補助回路としてのCDI点火装置を配置している。CDI点火装置は、火花放電用補助コンデンサを有し、電流遮断式点火装置が点火コイルの1次電流を遮断して当該点火コイルの2次側に高電圧を発生させるタイミングに合わせて、上記火花放電用補助コンデンサに蓄積した高圧のコンデンサ電圧を火花放電用補助電圧として、火花放電中の点火コイルユニットにおける点火コイルの1次側に付加する。 However, in the ignition device for an internal combustion engine described in Patent Document 1, a CDI ignition device as an auxiliary circuit for spark discharge is arranged outside the ignition coil unit. The CDI ignition device has an auxiliary capacitor for spark discharge, and the above-mentioned sparks are adjusted to the timing when the current cutoff type ignition device cuts off the primary current of the ignition coil and generates a high voltage on the secondary side of the ignition coil. The high-pressure capacitor voltage accumulated in the discharge auxiliary capacitor is applied to the primary side of the ignition coil in the ignition coil unit during spark discharge as the spark discharge auxiliary voltage.

特許文献1に記載の内燃機関用点火装置では、電流遮断式点火装置の作動によって点火コイルの1次側に発生する高電圧に、CDI点火装置の火花放電用補助コンデンサに蓄積した高圧のコンデンサ電圧を火花放電用補助電圧として重ね合わせるように付加し、点火コイルの2次側に一層大きな2次側高電圧を発生させる。従って、点火コイルの電極間には、電流遮断式点火装置による火花放電に加えて、CDI点火装置の容量放電を重ね合わせた大きな点火エネルギを放出させるものになる。これにより、点火コイルの電極間に通常の火花放電に比して一層高電圧の放電を発生させ、その電極間における火炎核発生の初期の段階の成長を促し、当該点火プラグの周辺に存在する混合気に対する着火性を向上させようとするものである。 In the ignition device for an internal combustion engine described in Patent Document 1, the high voltage generated on the primary side of the ignition coil by the operation of the current cutoff type ignition device and the high voltage of the high voltage stored in the auxiliary condenser for spark discharge of the CDI ignition device. Is added so as to be superposed as an auxiliary voltage for spark discharge, and a larger secondary high voltage is generated on the secondary side of the ignition coil. Therefore, in addition to the spark discharge by the current cutoff type ignition device, a large ignition energy is emitted between the electrodes of the ignition coil by superimposing the capacitance discharge of the CDI ignition device. This causes a higher voltage discharge between the electrodes of the ignition coil than a normal spark discharge, promotes the growth of the initial stage of flame nucleation between the electrodes, and exists around the spark plug. It is intended to improve the ignitability of the air-fuel mixture.

特開2001-41136号公報Japanese Unexamined Patent Publication No. 2001-41136

特許文献1に記載の内燃機関用点火装置は、電流遮断式点火装置による火花放電にCDI点火装置による容量放電を付加した複合誘電方式を採用したものである。 The ignition device for an internal combustion engine described in Patent Document 1 employs a composite dielectric system in which a capacitance discharge by a CDI ignition device is added to a spark discharge by a current cutoff type ignition device.

しかしながら、特許文献1に記載の複合放電方式は、電流遮断式点火装置による火花放電に唯1回の容量放電を付加するものであり、点火プラグの電極間における点火エネルギの放出総量の増大化、熱供給の継続化に限界がある。 However, the combined discharge method described in Patent Document 1 adds only one capacitance discharge to the spark discharge by the current cutoff type ignition device, and increases the total amount of ignition energy released between the electrodes of the spark plug. There is a limit to the continuation of heat supply.

また、内燃機関用点火装置にあっては、点火プラグの電極間における点火エネルギの放出総量を増大化し、熱供給の継続化を図る場合にも、点火プラグの電極の消耗を低減させることが望まれる。 Further, in the ignition device for an internal combustion engine, it is desirable to reduce the consumption of the electrodes of the spark plug even when increasing the total amount of ignition energy released between the electrodes of the spark plug and continuing the heat supply. Is done.

本発明の課題は、内燃機関用点火装置において、点火プラグによる混合気の着火性能を向上させることにある。 An object of the present invention is to improve the ignition performance of an air-fuel mixture by a spark plug in an ignition device for an internal combustion engine.

本発明の他の課題は、内燃機関用点火装置において、点火プラグの電極の消耗を低減させることにある。 Another object of the present invention is to reduce the consumption of the electrodes of the spark plug in the ignition device for an internal combustion engine.

請求項1に係る発明は、電流遮断式点火装置を内蔵する点火コイルユニットを用い、電流遮断式点火装置が点火コイルの1次電流を遮断して当該点火コイルの1次側に大きな送起電力である高電圧を発生させることにより、当該点火コイルの2次側に発生する更に大きな高電圧により、点火プラグの電極間に高電圧の火花放電を発生させてその電極間に火炎核を発生させるととともに、該火花放電に続く小電圧の保温放電を発生させて上記火炎核を成長させる内燃機関用点火装置であって、火花放電用補助コンデンサを有し、該火花放電用補助コンデンサに蓄積した高圧のコンデンサ電圧を火花放電用補助電圧として、火花放電中の点火コイルユニットにおける点火コイルの1次側に付加する火花放電用補助回路と、1個又は複数個の保温放電用補助コンデンサを有し、該保温放電用補助コンデンサに蓄積したコンデンサ電圧を保温放電用補助電圧として、保温放電中の点火コイルユニットにおける点火コイルの1次側に付加する保温放電用補助回路と、火花放電用補助回路と保温放電用補助回路を制御する放電制御回路とを有して構成され、放電制御回路は、内燃機関の運転状況に応じて、火花放電用補助電圧の付加の有無、火花放電用補助電圧の電圧の設定、保温放電用補助電圧の付加の有無、保温放電用補助電圧の電圧の設定、保温放電用補助電圧の付加の回数を含む制御対象項目の少なくとも1つを制御可能にするものとされ、更に、前記点火コイルユニットの電流遮断式点火装置による高電圧の発生タイミングを放電タイミングとして検出するトリガ回路を有し、放電制御回路は、トリガ回路により検出された放電タイミングに基づき、火花放電用補助回路による火花放電用補助電圧の出力素子と、保温放電用補助回路による保温放電用補助電圧の出力素子を出力動作させるようにしたものである。 The invention according to claim 1 uses an ignition coil unit having a built-in current cutoff type ignition device, and the current cutoff type ignition device cuts off the primary current of the ignition coil to send a large transmission power to the primary side of the ignition coil. By generating a high voltage, a higher high voltage generated on the secondary side of the ignition coil causes a high voltage spark discharge between the electrodes of the ignition plug to generate a flame nucleus between the electrodes. In addition, it is an ignition device for an internal combustion engine that generates a small voltage heat-retaining discharge following the spark discharge to grow the flame nucleus, has an auxiliary capacitor for spark discharge, and accumulates in the auxiliary capacitor for spark discharge. It has an auxiliary circuit for spark discharge that is added to the primary side of the ignition coil in the ignition coil unit during spark discharge, and one or more auxiliary capacitors for heat retention discharge, using a high-voltage capacitor voltage as an auxiliary voltage for spark discharge. Auxiliary circuit for heat-retaining discharge and an auxiliary circuit for spark discharge that are applied to the primary side of the ignition coil in the ignition coil unit during heat-retaining discharge by using the capacitor voltage accumulated in the auxiliary capacitor for heat-retaining discharge as the auxiliary voltage for heat-retaining discharge. It is configured to have a discharge control circuit that controls an auxiliary circuit for heat retention and discharge, and the discharge control circuit includes the presence or absence of an auxiliary voltage for spark discharge and the voltage of the auxiliary voltage for spark discharge according to the operating conditions of the internal combustion engine. At least one of the control target items including the setting of, whether or not the auxiliary voltage for heat retention and discharge is added, the setting of the auxiliary voltage for heat retention and discharge, and the number of times the auxiliary voltage for heat retention and discharge is added can be controlled . Further, it has a trigger circuit that detects the generation timing of a high voltage by the current cutoff type ignition device of the ignition coil unit as a discharge timing, and the discharge control circuit assists for spark discharge based on the discharge timing detected by the trigger circuit. The output element of the auxiliary voltage for spark discharge by the circuit and the output element of the auxiliary voltage for heat retention and discharge by the auxiliary circuit for heat retention and discharge are output and operated .

請求項2に係る発明は、請求項1に係る発明において更に、前記放電制御回路は、前記制御対象項目の目標値を外部から伝達され、当該制御対象項目を制御するようにしたものである。 The invention according to claim 2 is the invention according to claim 1, further, the discharge control circuit is such that the target value of the control target item is transmitted from the outside to control the control target item.

請求項3に係る発明は、請求項1に係る発明において更に、前記放電制御回路は、内燃機関の運転状況を伝達され、この運転状況に基づいて前記制御対象項目の目標値を演算し、当該制御対象項目を制御するようにしたものである。 The invention according to claim 3 is the invention according to claim 1, further, the discharge control circuit transmits the operating condition of the internal combustion engine, calculates the target value of the controlled item based on the operating condition, and said the invention. It is designed to control the items to be controlled.

請求項に係る発明は、請求項1乃至のいずれかに係る発明において更に、複数の気筒のそれぞれに点火コイルユニットを設け、各気筒の点火コイルユニットに共用される各単一の火花放電用補助回路と保温放電用補助回路とを有してなるようにしたものである。 The invention according to claim 4 further provides an ignition coil unit in each of a plurality of cylinders in the invention according to any one of claims 1 to 3 , and each single spark discharge shared by the ignition coil unit of each cylinder. It is designed to have an auxiliary circuit for heat retention and discharge and an auxiliary circuit for heat retention and discharge.

(請求項1)
(a)内燃機関用点火装置は、電流遮断式点火装置による火花放電中に、火花放電用補助回路による容量放電を付加するだけでなく、電流遮断式点火装置による保温放電中にも、保温放電用補助回路による容量放電を付加するものになる。
(Claim 1)
(a) The ignition device for an internal combustion engine not only adds a capacitance discharge by an auxiliary circuit for spark discharge during a spark discharge by a current cutoff type ignition device, but also a heat retention discharge during a heat retention discharge by a current cutoff type ignition device. It will add capacitance discharge by the auxiliary circuit.

電流遮断式点火装置による火花放電中に、火花放電用補助回路による容量放電を付加することによって、点火プラグの電極間における火炎核発生の初期の段階の成長を促し、当該点火プラグによる着火性を向上するとともに、電流遮断式点火装置による保温放電中にも、保温放電用補助回路による容量放電を付加することによって、火花放電乃至保温放電において放電が継続している火炎核成長の段階においても点火プラグの電極間に高い温度を発生させて混合気を温め続け、当該点火プラグによる着火性を一層向上するものになる。 By adding a capacitance discharge by the auxiliary circuit for spark discharge during the spark discharge by the current cutoff type ignition device, the growth of the initial stage of the generation of flame nuclei between the electrodes of the spark plug is promoted, and the ignitability by the spark plug is improved. In addition to the improvement, by adding the capacitance discharge by the heat retention discharge auxiliary circuit even during the heat retention discharge by the current cutoff type ignition device, ignition is performed even at the stage of flame nuclear growth in which the discharge continues in the spark discharge or the heat retention discharge. A high temperature is generated between the electrodes of the plug to keep the air-fuel mixture warm, and the ignitability of the spark plug is further improved.

即ち、点火プラグにおける火花放電乃至保温放電の過程で、当該点火プラグの電極間における点火エネルギの放出総量の増大化、熱供給の継続化を実現し、当該点火プラグによる混合気の着火性能を向上できるものになる。 That is, in the process of spark discharge or heat retention discharge in the spark plug, the total amount of ignition energy released between the electrodes of the spark plug is increased and the heat supply is continued, and the ignition performance of the air-fuel mixture by the spark plug is improved. It will be possible.

(b)放電制御回路は、上述(a)において、内燃機関の運転状況に応じて、火花放電用補助電圧の付加の有無、火花放電用補助電圧の電圧の設定、保温放電用補助電圧の付加の有無、保温放電用補助電圧の電圧の設定、保温放電用補助電圧の付加の回数を含む制御対象項目の少なくとも1つを制御する。 (b) In the above-mentioned (a), the discharge control circuit sets the presence or absence of the auxiliary voltage for spark discharge, the setting of the auxiliary voltage for spark discharge, and the addition of the auxiliary voltage for heat retention discharge according to the operating condition of the internal combustion engine. Controls at least one of the control target items including the presence / absence of, the setting of the auxiliary voltage for heat retention / discharge, and the number of times the auxiliary voltage for heat retention / discharge is applied.

即ち、内燃機関の低中速回転域でのトルク性能の向上、内燃機関のアクセル操作に対する回転数の応答性能の向上、ターボ車における高過給圧下での確実な点火、チューニングエンジンの始動性向上やアイドリング安定化等を図るときには、放電制御回路によって、上述(a)の、火花放電用補助回路による容量放電の付加や、保温放電用補助回路による容量放電の付加を、それらの内燃機関の運転状況に応じて積極的に強化し、点火プラグによる混合気の着火性能を確実に向上できる。 That is, improvement of torque performance in the low to medium speed range of the internal combustion engine, improvement of the response performance of the number of rotations to the accelerator operation of the internal combustion engine, reliable ignition under high supercharging pressure in a turbo vehicle, improvement of startability of the tuning engine. When trying to stabilize idling, etc., the discharge control circuit is used to add capacity discharge by the spark discharge auxiliary circuit and capacity discharge by the heat retention discharge auxiliary circuit described in (a) above, and to operate those internal combustion engines. It can be positively strengthened according to the situation, and the ignition performance of the air-fuel mixture by the spark plug can be surely improved.

他方、内燃機関において、点火プラグによる混合気の着火性能を格別に向上させる必要がない運転状況では、放電制御回路によって、上述(a)の、火花放電用補助回路による容量放電の付加や、保温放電用補助回路による容量放電の付加を、制限乃至は休止させる。これにより、火花放電用補助回路による容量放電の付加や、保温放電用補助回路による容量放電の付加に起因する、点火プラグの電極の消耗を低減できる。
(c)内燃機関用点火装置は、点火コイルユニットの電流遮断式点火装置による高電圧の発生タイミングを放電タイミングとして検出するトリガ回路を有する。そして、放電制御回路は、トリガ回路により検出された放電タイミングに基づき、火花放電用補助回路による火花放電用補助電圧の出力素子と、保温放電用補助回路による保温放電用補助電圧の出力素子を出力動作させることにより、上述(a)の、火花放電用補助回路による容量放電の付加、及び保温放電用補助回路による容量放電の付加を実行するものになる。
On the other hand, in an internal combustion engine, in an operating situation where it is not necessary to significantly improve the ignition performance of the air-fuel mixture by the spark plug, the discharge control circuit adds capacitance discharge by the spark discharge auxiliary circuit described in (a) above and keeps the heat warm. Limits or suspends the addition of capacitance discharge by the discharge auxiliary circuit. As a result, it is possible to reduce the consumption of the electrodes of the spark plug due to the addition of the capacitance discharge by the auxiliary circuit for spark discharge and the addition of the capacitance discharge by the auxiliary circuit for heat retention discharge.
(c) The ignition device for an internal combustion engine has a trigger circuit that detects the generation timing of a high voltage by the current cutoff type ignition device of the ignition coil unit as the discharge timing. Then, the discharge control circuit outputs an output element of the auxiliary voltage for spark discharge by the auxiliary circuit for spark discharge and an output element of the auxiliary voltage for heat retention discharge by the auxiliary circuit for heat retention discharge based on the discharge timing detected by the trigger circuit. By operating, the above-mentioned (a) addition of capacitance discharge by the auxiliary circuit for spark discharge and addition of capacitance discharge by the auxiliary circuit for heat retention discharge are executed.

(請求項2)
(d)放電制御回路は、上述(b)の制御動作において、前記制御対象項目の目標値を外部から伝達され、当該制御対象項目を制御できる。
(Claim 2)
(d) In the control operation of (b) above, the discharge control circuit can control the control target item by transmitting the target value of the control target item from the outside.

(請求項3)
(e)放電制御回路は、上述(b)の制御動作において、内燃機関の運転状況を伝達され、この運転状況に基づいて前記制御対象項目の目標値を演算し、当該制御対象項目を制御できる。
(Claim 3)
(e) In the control operation of (b) above, the discharge control circuit can transmit the operating status of the internal combustion engine, calculate the target value of the controlled target item based on the operating status, and control the controlled target item. ..

(請求項
(f)内燃機関用点火装置は、複数の気筒のそれぞれに点火コイルユニットを設け、各気筒の点火コイルユニットに共用される各単一の火花放電用補助回路と保温放電用補助回路とを有する。従って、各単一の火花放電用補助回路及び保温放電用補助回路により全気筒の点火コイルユニットに対応するものとなり、部品点数を少なくでき、また複数の火花放電用補助回路や保温放電用補助回路を各気筒の点火コイルユニット毎に設ける場合に比して待機中の無駄電力消費をなくすことができる。
(Claim 4 )
(f) The ignition device for an internal combustion engine is provided with an ignition coil unit for each of a plurality of cylinders, and has a single spark discharge auxiliary circuit and a heat retention discharge auxiliary circuit shared by the ignition coil units of each cylinder. .. Therefore, each single spark discharge auxiliary circuit and heat retention discharge auxiliary circuit correspond to the ignition coil unit of all cylinders, the number of parts can be reduced, and a plurality of spark discharge auxiliary circuits and heat retention discharge auxiliary circuits can be reduced. It is possible to eliminate wasteful power consumption during standby as compared with the case where is provided for each ignition coil unit of each cylinder.

図1は内燃機関用点火装置を示す模式図である。FIG. 1 is a schematic view showing an ignition device for an internal combustion engine. 図2は電流遮断式点火装置によって点火コイルの1次側に発生させた電圧波形を示す模式図である。FIG. 2 is a schematic diagram showing a voltage waveform generated on the primary side of the ignition coil by the current cutoff type ignition device. 図3は火花放電用補助回路と保温放電用補助回路が点火コイルの1次側に付加した火花放電用補助電圧と保温放電用補助電圧の各電圧波形を示す模式図である。FIG. 3 is a schematic diagram showing each voltage waveform of the spark discharge auxiliary voltage and the heat retention discharge auxiliary voltage added to the primary side of the ignition coil by the spark discharge auxiliary circuit and the heat retention discharge auxiliary circuit. 図4は火花放電用補助回路と保温放電用補助回路とを具備した実施例1のマルチスパーク回路を示す模式図である。FIG. 4 is a schematic view showing a multi-spark circuit of the first embodiment including an auxiliary circuit for spark discharge and an auxiliary circuit for heat retention discharge. 図5は火花放電用補助回路と保温放電用補助回路とを具備した実施例2のマルチスパーク回路を示す模式図である。FIG. 5 is a schematic diagram showing a multi-spark circuit of the second embodiment including an auxiliary circuit for spark discharge and an auxiliary circuit for heat retention discharge.

(実施例1)(図1乃至図4)
(点火コイルユニット10)
本実施形態の内燃機関用点火装置100は、図1に示す如く、電流遮断式点火装置11と点火コイル12を内蔵する点火コイルユニット10を有する。点火コイルユニット10は、電流遮断式点火装置11と点火コイル12の他に、バッテリ13、点火プラグ14を付帯して備える。
(Example 1) (FIGS. 1 to 4)
(Ignition coil unit 10)
As shown in FIG. 1, the ignition device 100 for an internal combustion engine of the present embodiment includes an ignition coil unit 10 incorporating a current cutoff type ignition device 11 and an ignition coil 12. The ignition coil unit 10 includes a battery 13 and a spark plug 14 in addition to the current cutoff type ignition device 11 and the ignition coil 12.

点火コイルユニット10は、内燃機関が有する気筒(単気筒機関であれば1個の気筒、複数気筒機関であれば各気筒)に対応配置され、エンジンコントロールユニット(ECU)1により例えばトランジスタからなる電流遮断式点火装置11をオン(導通状態)/オフ(非導通状態)制御する。 The ignition coil unit 10 is arranged corresponding to the cylinder of the internal combustion engine (one cylinder in the case of a single-cylinder engine, each cylinder in the case of a multi-cylinder engine), and the engine control unit (ECU) 1 provides a current consisting of, for example, a transistor. The cutoff ignition device 11 is controlled to be on (conducting state) / off (non-conducting state).

即ち、電流遮断式点火装置11は通常オフ状態にある。そして、内燃機関のある気筒に対応する点火コイルユニット10における火花放電のタイミングが近づくと、エンジンコントロールユニット1は電流遮断式点火装置11をオフ状態からオン状態に切換え、この電流遮断式点火装置11を閉角度(ドエル角度)Cの間、オン状態に保持する。次に、エンジンコントロールユニット1が電流遮断式点火装置11をオフすると、電流遮断式点火装置11は点火コイル12の1次電流を遮断して当該点火コイル12の1次側に大きな逆起電力である1次高電圧を発生させ、当該点火コイル12の2次側には更に大きな2次高電圧を発生させる。 That is, the current cutoff type ignition device 11 is normally in the off state. Then, when the timing of spark discharge in the ignition coil unit 10 corresponding to the cylinder having the internal combustion engine approaches, the engine control unit 1 switches the current cutoff type ignition device 11 from the off state to the on state, and the current cutoff type ignition device 11 Is held in the on state for the closing angle (dwell angle) C. Next, when the engine control unit 1 turns off the current cutoff type ignition device 11, the current cutoff type ignition device 11 cuts off the primary current of the ignition coil 12 and causes a large countercurrent force to the primary side of the ignition coil 12. A certain primary high voltage is generated, and a larger secondary high voltage is generated on the secondary side of the ignition coil 12.

ここで、点火コイルユニット10の電流遮断式点火装置11が点火コイル12の1次側に発生させる電圧波形を模式的に示せば、図2(横軸に時間、縦軸に電圧)の通りになる。図2においてVAは電流遮断式点火装置11のオフの瞬間に点火コイル12の1次側に発生する大電圧VAを示し、この大電圧VAによって点火コイル12に蓄積される高密度のエネルギは点火プラグ14に伝わって当該点火プラグ14の電極間に火花放電Aに相当する大電圧を発生させ、その電極間に火炎核を発生させる。VBは電流遮断式点火装置11のオフによる大電圧VAの発生に引き続いて点火コイル12の1次側に生ずる小電圧VBを示し、この小電圧VBによって点火コイル12に蓄積されるエネルギは点火プラグ14に伝わって当該点火プラグ14の電極間に上述の火花放電Aに相当する大電圧に続き、かつ該火花放電Aに相当する大電圧に比して保温放電Bに相当する小電圧(グロー放電ともいう)を発生させ、上記火炎核を成長させる。 Here, if the voltage waveform generated by the current cutoff type ignition device 11 of the ignition coil unit 10 on the primary side of the ignition coil 12 is schematically shown, as shown in FIG. 2 (time on the horizontal axis and voltage on the vertical axis). Become. In FIG. 2, VA indicates a large voltage VA generated on the primary side of the ignition coil 12 at the moment when the current cutoff type ignition device 11 is turned off, and the high-density energy stored in the ignition coil 12 by this large voltage VA ignites. A large voltage corresponding to the spark discharge A is generated between the electrodes of the spark plug 14 transmitted to the plug 14, and a flame nucleus is generated between the electrodes. VB indicates a small voltage VB generated on the primary side of the ignition coil 12 following the generation of a large voltage VA due to the off of the current cutoff type ignition device 11, and the energy stored in the ignition coil 12 by this small voltage VB is the ignition plug. A small voltage (glow discharge) corresponding to the heat retention discharge B is transmitted between the electrodes of the ignition plug 14 and is followed by a large voltage corresponding to the above-mentioned spark discharge A and a large voltage corresponding to the spark discharge A. (Also called) is generated to grow the flame nucleus.

尚、図2において、Cは、点火コイル12に通電している時間であって、前述の閉角度(ドエル角度)と呼ばれる。この閉角度Cにおける通電によって、点火コイル12にエネルギが蓄積され、この通電がオフされるタイミングで点火コイル12の1次側に逆起電力である1次高電圧(大電圧VA)が発生する。 In FIG. 2, C is the time during which the ignition coil 12 is energized, and is referred to as the above-mentioned closing angle (dwell angle). Energy is accumulated in the ignition coil 12 by energization at the closed angle C, and a primary high voltage (large voltage VA), which is a counter electromotive force, is generated on the primary side of the ignition coil 12 at the timing when the energization is turned off. ..

(マルチスパーク回路20)
内燃機関用点火装置100は、点火コイルユニット10の外部にマルチスパーク回路20を配置している。マルチスパーク回路20は、点火コイルユニット10における点火コイル12の1次側に接続され、電流遮断式点火装置11が点火コイル12の1次電流を遮断し、該点火コイル12に高電圧が発生するタイミングを放電タイミングとして検出し、この放電タイミングに合わせて、図3に示す如く、点火コイル12の1次側に火花放電用補助電圧EAと保温放電用補助電圧EB(本実施形態ではEB1乃至EB3)を付加する。
(Multi-spark circuit 20)
The ignition device 100 for an internal combustion engine has a multi-spark circuit 20 arranged outside the ignition coil unit 10. The multi-spark circuit 20 is connected to the primary side of the ignition coil 12 in the ignition coil unit 10, the current cutoff type ignition device 11 cuts off the primary current of the ignition coil 12, and a high voltage is generated in the ignition coil 12. The timing is detected as the discharge timing, and in accordance with this discharge timing, as shown in FIG. 3, the auxiliary voltage EA for spark discharge and the auxiliary voltage EB for heat retention discharge (EB1 to EB3 in this embodiment) are on the primary side of the ignition coil 12. ) Is added.

マルチスパーク回路20は、図4に示す如く、トリガ回路30と、放電制御回路40と、火花放電用補助電圧EAを出力する火花放電用補助回路50と、保温放電用補助電圧EBを出力する保温放電用補助回路60とを有する。 As shown in FIG. 4, the multi-spark circuit 20 includes a trigger circuit 30, a discharge control circuit 40, a spark discharge auxiliary circuit 50 that outputs a spark discharge auxiliary voltage EA, and a heat retention that outputs a heat retention discharge auxiliary voltage EB. It has a discharge auxiliary circuit 60.

本実施例では、内燃機関が複数の気筒を有するものとする。これに伴い、本実施例の内燃機関用点火装置100では、複数の気筒のそれぞれに点火コイルユニット10を配置し、それらの点火コイルユニット10に共通となる単一のマルチスパーク回路20を有するものとしている。マルチスパーク回路20は、各気筒の点火コイルユニット10に対応するトリガ回路30を有し、各気筒の点火コイルユニット10に共通となる放電制御回路40を有する。また、マルチスパーク回路20は、各気筒の点火コイルユニット10に共用される各単一の火花放電用補助回路50と保温放電用補助回路60とを有して構成される。 In this embodiment, it is assumed that the internal combustion engine has a plurality of cylinders. Along with this, in the ignition device 100 for an internal combustion engine of the present embodiment, the ignition coil units 10 are arranged in each of the plurality of cylinders, and the ignition coil units 10 have a single multi-spark circuit 20 common to them. It is said. The multi-spark circuit 20 has a trigger circuit 30 corresponding to the ignition coil unit 10 of each cylinder, and has a discharge control circuit 40 common to the ignition coil unit 10 of each cylinder. Further, the multi-spark circuit 20 is configured to include each single spark discharge auxiliary circuit 50 and a heat retention discharge auxiliary circuit 60 shared by the ignition coil unit 10 of each cylinder.

マルチスパーク回路20は、各気筒の点火コイルユニット10における点火コイル12の1次側(点火出力1…点火出力N)にそれぞれ接続される通電線15と、それらの通電線15の点火コイル12に接続される側に対する反対側端を互いに接続する単一の通電線16と、火花放電用補助回路50における火花放電用補助コンデンサ52の出力端を通電線16に接続する通電線17と、保温放電用補助回路60における保温放電用補助コンデンサ62の出力端を通電線16に接続する通電線18とを備える。 The multi-spark circuit 20 is connected to the energizing wires 15 connected to the primary side (ignition output 1 ... ignition output N) of the ignition coils 12 in the ignition coil unit 10 of each cylinder and the ignition coils 12 of those energizing wires 15. A single energizing wire 16 that connects the ends opposite to the connected side to each other, an energizing wire 17 that connects the output end of the spark discharging auxiliary capacitor 52 in the spark discharging auxiliary circuit 50 to the electric wire 16, and a heat retaining discharge. The auxiliary circuit 60 includes an energizing wire 18 that connects the output end of the heat-retaining and discharging auxiliary capacitor 62 to the electric wire 16.

(トリガ回路30)
トリガ回路30は、各気筒の点火コイルユニット10毎に対応するように設けられ、各点火コイルユニット10における点火コイル12の1次側に通電線15を介して直に接続され、電流遮断式点火装置11が点火コイル12の1次電流を遮断し、該点火コイル12に高電圧が発生するタイミングを放電タイミングとして検出し、この検出結果を各信号線31によって放電制御回路40に伝達する。
(Trigger circuit 30)
The trigger circuit 30 is provided so as to correspond to each ignition coil unit 10 of each cylinder, and is directly connected to the primary side of the ignition coil 12 in each ignition coil unit 10 via an energizing wire 15, and is a current cutoff type ignition. The device 11 cuts off the primary current of the ignition coil 12, detects the timing at which a high voltage is generated in the ignition coil 12 as the discharge timing, and transmits this detection result to the discharge control circuit 40 by each signal line 31.

(放電制御回路40)
放電制御回路40(CPU)は、各通電線15に介装されている各主出力素子41と信号線41Lによって接続される。放電制御回路40は、各トリガ回路30が対応する点火コイルユニット10の放電タイミングを検出したと同時に、それらの各主出力素子41を一定時間継続してON(導通状態)させる。
(Discharge control circuit 40)
The discharge control circuit 40 (CPU) is connected to each main output element 41 interposed in each energizing line 15 by a signal line 41L. The discharge control circuit 40 detects the discharge timing of the ignition coil unit 10 corresponding to each trigger circuit 30, and at the same time, turns on (conducts) each of the main output elements 41 continuously for a certain period of time.

放電制御回路40は、通電線17に介装されている火花放電用補助電圧EAの出力素子42と信号線42Lによって接続される。放電制御回路40は、各トリガ回路30が各点火コイルユニット10の放電タイミングを検出したことに応じて主出力素子41をONさせたと同時、又は出力素子41のオン後の一定時間経過後に、CPU内部の演算回路及びデータにて設定されるタイミングで出力素子42をオン(導通状態)させる。 The discharge control circuit 40 is connected to the output element 42 of the auxiliary voltage EA for spark discharge, which is interposed in the energizing line 17, by the signal line 42L. The discharge control circuit 40 turns on the main output element 41 in response to each trigger circuit 30 detecting the discharge timing of each ignition coil unit 10, or after a certain period of time has elapsed after the output element 41 is turned on, the CPU The output element 42 is turned on (conducting state) at the timing set by the internal arithmetic circuit and data.

これにより、放電制御回路40は、火花放電用補助回路50の火花放電用補助コンデンサ52が蓄積していたコンデンサ電圧を火花放電用補助電圧EAとして、火花放電中の点火コイルユニット10における点火コイル12の1次側に付加させる。 As a result, the discharge control circuit 40 uses the capacitor voltage accumulated in the spark discharge auxiliary capacitor 52 of the spark discharge auxiliary circuit 50 as the spark discharge auxiliary voltage EA as the ignition coil 12 in the ignition coil unit 10 during spark discharge. It is added to the primary side of.

放電制御回路40は、通電線18に介装されている保温放電用補助電圧EBの出力素子43と信号線43Lによって接続される。放電制御回路40は、各トリガ回路30が各点火コイルユニット10の放電タイミングを検出したことに応じて主出力素子41、出力素子42をオンさせた後、該出力素子42のオン後の一定期間経過後に、CPU内部の演算回路及びデータにて設定されるタイミングで出力素子43をオン(導通状態)させる。 The discharge control circuit 40 is connected to the output element 43 of the heat-retaining discharge auxiliary voltage EB interposed in the energizing line 18 by the signal line 43L. The discharge control circuit 40 turns on the main output element 41 and the output element 42 in response to each trigger circuit 30 detecting the discharge timing of each ignition coil unit 10, and then turns on the output element 42 for a certain period of time. After the lapse of time, the output element 43 is turned on (conducting state) at a timing set by the arithmetic circuit and data inside the CPU.

尚、本実施形態において、放電制御回路40は、保温放電用補助回路60が有する複数個の保温放電用補助コンデンサ62−1、62−2…の出力端を通電線16に接続する複数本の通電線18−1、18−2…のそれぞれに、複数個の出力素子43−1、43−2…のそれぞれを備え、それらの各出力素子43−1、43−2…を順にオン(導通状態)させる。 In the present embodiment, the discharge control circuit 40 has a plurality of electric wires that connect the output ends of the plurality of heat-retaining and discharging auxiliary capacitors 62-1, 62-2, ... The heat-retaining and discharging auxiliary circuits 60 to the electric wire 16. Each of the energizing wires 18-1, 18-2 ... Is provided with a plurality of output elements 43-1, 43-2 ..., And each of the output elements 43-1, 43-2 ... Is turned on (conducting) in order. State).

これにより、放電制御回路40は、保温放電用補助回路60の各保温放電用補助コンデンサ62(62−1、62−2…)が蓄積していたコンデンサ電圧を保温放電用補助電圧EB(EB−1、EB−2…)として、保温放電中の点火コイルユニット10における点火コイル12の1次側に順に複数回付加させる。 As a result, the discharge control circuit 40 uses the capacitor voltage accumulated in each of the heat-retaining and discharging auxiliary capacitors 62 (62-1, 62-2 ...) of the heat-retaining and discharging auxiliary circuit 60 as the heat-retaining and discharging auxiliary voltage EB (EB-). 1, EB-2 ...) Are added to the primary side of the ignition coil 12 in the ignition coil unit 10 during the heat-retaining discharge a plurality of times in order.

(火花放電用補助回路50)
火花放電用補助回路50は、DC/DCコンバータ回路51と火花放電用補助コンデンサ52を有し、DC/DCコンバータ回路51によって火花放電用補助コンデンサ52に蓄積した高電圧のコンデンサ電圧を火花放電用補助電圧EAとして、点火コイルユニット10における電流遮断式点火装置11の作動によって火花放電中の当該点火コイルユニット10における点火コイル12の1次側に発生している1次高電圧の大電圧VAに、重ね合わせるように付加する。
(Auxiliary circuit 50 for spark discharge)
The spark discharge auxiliary circuit 50 has a DC / DC converter circuit 51 and a spark discharge auxiliary capacitor 52, and the high voltage capacitor voltage accumulated in the spark discharge auxiliary capacitor 52 by the DC / DC converter circuit 51 is used for spark discharge. As an auxiliary voltage EA, a large voltage VA having a primary high voltage generated on the primary side of the ignition coil 12 in the ignition coil unit 10 during spark discharge due to the operation of the current cutoff type ignition device 11 in the ignition coil unit 10. , Add so that they overlap.

DC/DCコンバータ回路51は、DC/DC制御用IC51A(スイッチング周波数は例えば100KHz、火花放電領域の出力電圧は例えば400Vとして、放電制御回路40にて電圧の変更を可能とする)、スイッチング用FET51B、電流制御のための電流検出回路51C、電圧制御のための電圧検出回路51Dを有して構成される。DC/DCコンバータ回路51は、点火用電源101にて供給される例えば12V電圧を、例えばDC400Vに昇圧する。 The DC / DC converter circuit 51 is a DC / DC control IC51A (the switching frequency is, for example, 100 KHz, the output voltage in the spark discharge region is, for example, 400 V, and the voltage can be changed by the discharge control circuit 40), and the switching FET 51B. The current detection circuit 51C for current control and the voltage detection circuit 51D for voltage control are included. The DC / DC converter circuit 51 boosts, for example, a 12V voltage supplied by the ignition power supply 101 to, for example, DC400V.

火花放電用補助コンデンサ52は、1つのコンデンサからなり、整流ダイオード52Aを伴なう。点火放電用補助コンデンサ52は、例えば0.5乃至1.0μFの容量を有し、DC/DCコンバータ回路51の出力電圧をチャージする。 The spark discharge auxiliary capacitor 52 is composed of one capacitor and is accompanied by a rectifying diode 52A. The ignition / discharging auxiliary capacitor 52 has a capacitance of, for example, 0.5 to 1.0 μF, and charges the output voltage of the DC / DC converter circuit 51.

(保温放電用補助回路60)
保温放電用補助回路60は、DC/DCコンバータ回路61と複数個の保温放電用補助コンデンサ62(62−1、62−2…)を有する(但し、保温放電用補助回路60は、唯1個の保温放電用補助コンデンサ62のみを有するものでも良い)。保温放電用補助回路60は、DC/DCコンバータ回路61によって保温放電用補助コンデンサ62(1個又は複数個のコンデンサ62−1、62−2…)に蓄積したコンデンサ電圧を保温放電用補助電圧EB(EB−1、EB−2…)として、点火コイルユニット10における電流遮断式点火装置11の作動によって保温放電中の当該点火コイルユニット10における点火コイル12の1次側に発生している1次高電圧の小電圧VBに、重ね合わせるように順に付加する。
(Auxiliary circuit 60 for heat retention and discharge)
The heat-retaining / discharging auxiliary circuit 60 has a DC / DC converter circuit 61 and a plurality of heat-retaining / discharging auxiliary capacitors 62 (62-1, 62-2 ...) (However, there is only one heat-retaining / discharging auxiliary circuit 60. It may have only the auxiliary capacitor 62 for heat retention and discharge). The heat-retaining / discharging auxiliary circuit 60 uses the capacitor voltage accumulated in the heat-retaining / discharging auxiliary capacitors 62 (one or a plurality of capacitors 62-1, 62-2 ...) by the DC / DC converter circuit 61 as the heat-retaining / discharging auxiliary voltage EB. As (EB-1, EB-2 ...), the primary side generated on the primary side of the ignition coil 12 in the ignition coil unit 10 during heat retention discharge by the operation of the current cutoff type ignition device 11 in the ignition coil unit 10. It is added in order so as to be superimposed on the high voltage and small voltage VB.

DC/DCコンバータ回路61は、DC/DC制御用IC61A(スイッチング周波数は例えば100KHz、保温放電領域の出力電圧は例えば100乃至200Vとして、放電制御回路40にて電圧の変更を可能とする)、スイッチング用FET61B、電流制御のための電流検出回路61C、電圧制御のための電圧検出回路61Dを有して構成される。DC/DCコンバータ回路61は、点火用電源101にて供給される例えば12V電圧を、例えばDC100乃至200V に昇圧する。 The DC / DC converter circuit 61 is a DC / DC control IC61A (the switching frequency is, for example, 100 KHz, the output voltage in the heat-retaining discharge region is, for example, 100 to 200 V, and the voltage can be changed by the discharge control circuit 40), switching. The FET 61B, the current detection circuit 61C for current control, and the voltage detection circuit 61D for voltage control are included. The DC / DC converter circuit 61 boosts, for example, a 12V voltage supplied by the ignition power supply 101 to, for example, DC100 to 200V.

放電制御回路40は、制御電圧可変回路44を介して、DC/DCコンバータ回路61の出力電圧を変更可能にする。 The discharge control circuit 40 makes it possible to change the output voltage of the DC / DC converter circuit 61 via the control voltage variable circuit 44.

保温放電用補助コンデンサ62は、前述の通り、複数個のコンデンサ62−1、62−2…からなり、整流ダイオード62Aを伴なう。各保温放電用補助コンデンサ62(62−1、62−2…)は、例えば0.1乃至0.5μFの容量を有し、DC/DCコンバータ回路61の出力電圧をチャージする。 As described above, the heat-retaining discharge auxiliary capacitor 62 is composed of a plurality of capacitors 62-1, 62-2 ..., And is accompanied by a rectifying diode 62A. Each heat-retaining and discharging auxiliary capacitor 62 (62-1, 62-2 ...) has a capacity of, for example, 0.1 to 0.5 μF, and charges the output voltage of the DC / DC converter circuit 61.

従って、内燃機関用点火装置100による点火動作は以下の如くになされる。
(1)各気筒の点火コイルユニット10毎に対応するトリガ回路30が、当該点火コイルユニット10の電流遮断式点火装置11が点火コイル12の1次電流を遮断し、該点火コイル12に高電圧が発生するタイミングを放電タイミングとして検出する。各トリガ回路30のこの検出結果が放電制御回路40に伝達される。
Therefore, the ignition operation by the ignition device 100 for the internal combustion engine is performed as follows.
(1) In the trigger circuit 30 corresponding to each ignition coil unit 10 of each cylinder, the current cutoff type ignition device 11 of the ignition coil unit 10 cuts off the primary current of the ignition coil 12, and the ignition coil 12 has a high voltage. Is detected as the discharge timing. This detection result of each trigger circuit 30 is transmitted to the discharge control circuit 40.

このとき、各気筒の点火コイルユニット10にあっては、電流遮断式点火装置11が点火コイル12の1次電流を遮断して当該点火コイル12の1次側に大きな逆起電力である高電圧を発生させることにより、当該点火コイル12の2次側に更に大きな高電圧を発生させ、点火プラグ14の電極間に火花放電Aに相当する大電圧を発生させてその電極間に火炎核を発生させるとともに、該火花放電Aに相当する大電圧に続き、かつ該火花放電Aに相当する大電圧に比して保温放電Bに相当する小電圧を発生させて上記火炎核を成長させるものとしている。 At this time, in the ignition coil unit 10 of each cylinder, the current cutoff type ignition device 11 cuts off the primary current of the ignition coil 12, and a high voltage which is a large countercurrent force is applied to the primary side of the ignition coil 12. Is generated, a larger high voltage is generated on the secondary side of the ignition coil 12, a large voltage corresponding to spark discharge A is generated between the electrodes of the ignition plug 14, and a flame nucleus is generated between the electrodes. In addition, the flame nucleus is grown by generating a large voltage corresponding to the spark discharge A and a small voltage corresponding to the heat retaining discharge B as compared with the large voltage corresponding to the spark discharge A. ..

(2)放電制御回路40は、各トリガ回路30が対応する点火コイルユニット10の放電タイミングを検出したと同時に、当該点火コイルユニット10における点火コイル12の1次側に接続されている通電線15に介装されている主出力素子41を一定時間継続してオン(導通状態)させる。 (2) The discharge control circuit 40 detects the discharge timing of the corresponding ignition coil unit 10 by each trigger circuit 30, and at the same time, the energizing wire 15 connected to the primary side of the ignition coil 12 in the ignition coil unit 10. The main output element 41 interposed therein is continuously turned on (conducting state) for a certain period of time.

主出力素子41は、当該点火コイルユニット10における点火コイル12が点火プラグ14の電極間に上述(1)の火花放電Aに相当する大電圧、更には保温放電Bに相当する小電圧を発生させる一定時間だけ、継続してオン(導通状態)される。 In the main output element 41, the ignition coil 12 in the ignition coil unit 10 generates a large voltage corresponding to the spark discharge A of the above-mentioned (1) and a small voltage corresponding to the heat retaining discharge B between the electrodes of the spark plug 14. It is continuously turned on (conducting state) for a certain period of time.

(3)放電制御回路40は、上述(2)による主出力素子41のオンと同時、又は該主出力素子41のオン後の一定時間経過後に、通電線17に介装されている出力素子42をオン(導通状態)させる (3) The discharge control circuit 40 is the output element 42 interposed in the energizing wire 17 at the same time as the main output element 41 is turned on according to (2) above, or after a certain period of time has elapsed after the main output element 41 is turned on. On (conducting state)

出力素子42がオン(導通状態)されることにより、火花放電用補助回路50の火花放電用補助コンデンサ52が蓄積していたコンデンサ電圧が火花放電用補助電圧EAとして、上述(1)で火花放電中の点火コイルユニット10における点火コイル12の1次側に生じている1次高電圧(大電圧VA)に重ね合わせる如くに付加される(図3)。 When the output element 42 is turned on (conducting state), the capacitor voltage accumulated in the spark discharge auxiliary capacitor 52 of the spark discharge auxiliary circuit 50 becomes the spark discharge auxiliary voltage EA, and the spark discharge is performed in (1) above. It is added so as to be superimposed on the primary high voltage (large voltage VA) generated on the primary side of the ignition coil 12 in the ignition coil unit 10 inside (FIG. 3).

(4)放電制御回路40は、上述(2)による出力素子42のオン後の一定時間経過後に、複数本の各通電線18(18−1、18−2…)のそれぞれに介装されている各出力素子43(43−1、43−2…)を順にオン(導通状態)させる。各出力素子(43−1、43−2…)が順にオン(導通状態)されたとき、保温放電用補助回路60の複数個の各保温放電用補助コンデンサ62−1、62−2…のそれぞれが蓄積していたコンデンサ電圧が保温放電用補助電圧EB−1、EB−2…として、上述(1)で保温放電中の点火コイルユニット10における点火コイル12の1次側に生じている前述の1次高電圧(小電圧VB)に重ね合わされる如くに付加される(図3)。 (4) The discharge control circuit 40 is interposed in each of a plurality of energizing wires 18 (18-1, 18-2 ...) after a certain period of time has elapsed after the output element 42 is turned on according to (2) above. Each of the output elements 43 (43-1, 43-2 ...) Is turned on (conducting state) in order. When each output element (43-1, 43-2 ...) Is turned on (conducting state) in order, each of the plurality of heat-retaining / discharging auxiliary capacitors 62-1, 62-2 ... The capacitor voltage accumulated in the above-mentioned is generated on the primary side of the ignition coil 12 in the ignition coil unit 10 during the heat-retaining discharge in the above-mentioned (1) as the auxiliary voltages EB-1 and EB-2 for heat-retaining discharge. It is added so as to be superimposed on the primary high voltage (small voltage VB) (Fig. 3).

従って、内燃機関用点火装置100によれば、マルチスパーク回路20の存在によって、下記(a)の作用効果を奏する。
(a)内燃機関用点火装置100は、電流遮断式点火装置11による火花放電中に、火花放電用補助回路50による容量放電を付加するだけでなく、電流遮断式点火装置11による保温放電中にも、保温放電用補助回路60による複数回の容量放電を付加するものになる。
Therefore, according to the ignition device 100 for an internal combustion engine, the presence of the multi-spark circuit 20 exerts the following action and effect (a).
(a) The internal combustion engine ignition device 100 not only adds a capacitance discharge by the spark discharge auxiliary circuit 50 during the spark discharge by the current cutoff type ignition device 11, but also during the heat retention discharge by the current cutoff type ignition device 11. Also, a plurality of capacitance discharges are added by the heat-retaining discharge auxiliary circuit 60.

電流遮断式点火装置11による火花放電中に、火花放電用補助回路50による容量放電を付加することによって、点火プラグ14の電極間における火炎核発生の初期の段階の成長を促し、当該点火プラグ14による着火性を向上するとともに、電流遮断式点火装置11による保温放電中にも、保温放電用補助回路60による複数回の容量放電を付加することによって、火花放電乃至保温放電において放電が継続している火炎核成長の段階においても点火プラグ14の電極間に高い温度を発生させて混合気を温め続け、当該点火プラグ14による着火性を一層向上するものになる。 By adding a capacitance discharge by the spark discharge auxiliary circuit 50 during the spark discharge by the current cutoff type ignition device 11, the growth of the initial stage of flame nucleation between the electrodes of the spark plug 14 is promoted, and the spark plug 14 By adding a plurality of capacitance discharges by the heat retention discharge auxiliary circuit 60 even during the heat retention discharge by the current cutoff type ignition device 11, the discharge continues in the spark discharge or the heat retention discharge. Even in the stage of flame nucleus growth, a high temperature is generated between the electrodes of the spark plug 14 to continue warming the air-fuel mixture, and the ignitability of the spark plug 14 is further improved.

即ち、点火プラグ14における火花放電乃至保温放電の過程で、当該点火プラグ14の電極間における点火エネルギの放出総量の増大化、熱供給の継続化を実現し、当該点火プラグ14による混合気の着火性能を向上できるものになる。 That is, in the process of spark discharge or heat retention discharge in the spark plug 14, the total amount of ignition energy released between the electrodes of the spark plug 14 is increased and the heat supply is continued, and the air-fuel mixture is ignited by the spark plug 14. The performance can be improved.

尚、保温放電用補助回路60は唯1個の保温放電用補助コンデンサ62のみを有するものでも良く、その場合には、内燃機関用点火装置100の点火動作について説明した上述(4)で、保温放電用補助回路60の1個の保温放電用補助コンデンサ62(コンデンサ62−1)が蓄積していたコンデンサ電圧が保温放電用補助電圧EB(EB−1)として、上述(1)で保温放電中の点火コイルユニット10における点火コイル12の1次側に生じている前述の1次高電圧(小電圧VB)に重ね合わされる如くに付加される。 The heat-retaining / discharging auxiliary circuit 60 may have only one heat-retaining / discharging auxiliary capacitor 62. In that case, the heat-retaining is described in (4) above, which describes the ignition operation of the internal combustion engine ignition device 100. The capacitor voltage accumulated in one heat-retaining discharge auxiliary capacitor 62 (capacitor 62-1) of the discharge auxiliary circuit 60 is used as the heat-retaining discharge auxiliary voltage EB (EB-1) during heat-retaining discharge in (1) above. It is added so as to be superimposed on the above-mentioned primary high voltage (small voltage VB) generated on the primary side of the ignition coil 12 in the ignition coil unit 10.

しかるに、内燃機関用点火装置100は、点火プラグ14における火花放電乃至保温放電の過程で、マルチスパーク回路20の存在により、当該点火プラグ14の電極間における点火エネルギの放出総量を増大化し、かつ熱供給を継続化するものであるため、結果として、点火プラグ14の電極が通常より大きな放電エネルギによって激しく攻撃され、通常より消耗するおそれがある。そこで、内燃機関用点火装置100にあっては、点火プラグ14の電極の消耗を低減するため、以下の構成を具備する。 However, in the ignition device 100 for an internal combustion engine, in the process of spark discharge or heat retention discharge in the spark plug 14, the presence of the multi-spark circuit 20 increases the total amount of ignition energy released between the electrodes of the spark plug 14, and heat is generated. As a result, the electrodes of the spark plug 14 may be violently attacked by a discharge energy larger than usual and consumed more than usual because the supply is continued. Therefore, the ignition device 100 for an internal combustion engine has the following configuration in order to reduce the consumption of the electrodes of the spark plug 14.

即ち、放電制御回路40は、火花放電用補助回路50と保温放電用補助回路60を制御するに際し、内燃機関の運転状況に応じて、火花放電用補助電圧EAの付加の有無、火花放電用補助電圧EAの電圧の設定、保温放電用補助電圧EBの付加の有無、保温放電用補助電圧EBの電圧の設定、保温放電用補助電圧EBの付加の回数を含む制御対象項目の少なくとも1つを制御する。 That is, when controlling the spark discharge auxiliary circuit 50 and the heat retention discharge auxiliary circuit 60, the discharge control circuit 40 determines whether or not the spark discharge auxiliary voltage EA is added and the spark discharge auxiliary according to the operating condition of the internal combustion engine. Controls at least one of the control target items including the setting of the voltage EA, the presence / absence of the auxiliary voltage EB for heat retention / discharge, the setting of the auxiliary voltage EB for heat retention / discharge, and the number of times the auxiliary voltage EB for heat retention / discharge is added. To do.

放電補助回路40は、上記制御対象項目の目標値を外部コントローラ110から伝達され、当該制御対象項目を制御する。即ち、外部コントローラ110は、例えば、
i.内燃機関を搭載した車両の例えばレース走行時に、前述(a)の、火花放電用補助回路50による容量放電の付加や、保温放電用補助回路60による容量放電の付加を積極的に強化するように、それらの火花放電用補助回路50、及び保温放電用補助回路60を制御する。
ii.内燃機関を搭載した車両の例えば一般走行時には、前述(a)の、火花放電用補助回路50による容量放電の付加や、保温放電用補助回路60による容量放電の付加を、制限乃至は休止させるように、それらの火花放電用補助回路50、及び保温放電用補助回路60を制御する。
The discharge auxiliary circuit 40 transmits the target value of the control target item from the external controller 110 and controls the control target item. That is, the external controller 110 is, for example,
i. For example, when a vehicle equipped with an internal combustion engine is running in a race, the addition of capacity discharge by the spark discharge auxiliary circuit 50 and the addition of capacity discharge by the heat retention discharge auxiliary circuit 60 as described in (a) above should be positively strengthened. , The auxiliary circuit 50 for spark discharge, and the auxiliary circuit 60 for heat retention discharge are controlled.
ii. For example, during general driving of a vehicle equipped with an internal combustion engine, the addition of capacity discharge by the spark discharge auxiliary circuit 50 and the addition of capacity discharge by the heat retention discharge auxiliary circuit 60 described in (a) above are restricted or suspended. In addition, the auxiliary circuit 50 for spark discharge and the auxiliary circuit 60 for heat retention discharge are controlled.

従って、内燃機関用点火装置100によれば、前述(a)の作用効果に加え、下記(b)乃至(e)の作用効果を奏する。 Therefore, according to the ignition device 100 for an internal combustion engine, in addition to the above-mentioned effects (a), the following effects (b) to (e) are exhibited.

(b)放電制御回路40は、前述(a)において、外部コントローラ110が伝達してくる内燃機関の運転状況に応じて、火花放電用補助電圧EAの付加の有無、火花放電用補助電圧EAの電圧の設定、保温放電用補助電圧EBの付加の有無、保温放電用補助電圧EBの電圧の設定、保温放電用補助電圧EBの付加の回数を含む制御対象項目の少なくとも1つを制御する。 (b) In the above-mentioned (a), the discharge control circuit 40 determines whether or not the auxiliary voltage EA for spark discharge is added and the auxiliary voltage EA for spark discharge is added according to the operating condition of the internal combustion engine transmitted by the external controller 110. Controls at least one of the control target items including the setting of the voltage, the presence / absence of the addition of the auxiliary voltage EB for heat retention / discharge, the setting of the voltage of the auxiliary voltage EB for heat retention / discharge, and the number of times the auxiliary voltage EB for heat retention / discharge is added.

即ち、外部コントローラ110が伝達してくる車両の例えばレース走行時には、内燃機関の低中速回転域でのトルク性能の向上、内燃機関のアクセル操作に対する回転数の応答性能の向上、ターボ車における高過給圧下での確実な点火、チューニングエンジンの始動性向上やアイドリング安定化等を図るように、放電制御回路40によって、前述(a)の、火花放電用補助回路50による容量放電の付加や、保温放電用補助回路60による容量放電の付加を、それらの内燃機関の運転状況に応じて積極的に強化し、点火プラグ14による混合気の着火性能を確実に向上できる。 That is, when the vehicle transmitted by the external controller 110 is running, for example, in a race, the torque performance of the internal combustion engine in the low to medium speed range is improved, the response performance of the rotation speed to the accelerator operation of the internal combustion engine is improved, and the turbo vehicle is high. In order to ensure reliable ignition under supercharging pressure, improve the startability of the tuning engine, stabilize idling, etc., the discharge control circuit 40 adds capacitance discharge by the spark discharge auxiliary circuit 50 described in (a) above. The addition of capacitance discharge by the heat-retaining discharge auxiliary circuit 60 can be positively strengthened according to the operating conditions of those internal combustion engines, and the ignition performance of the air-fuel mixture by the spark plug 14 can be reliably improved.

他方、外部コントローラ110が伝達してくる車両の例えば一般走行時におけるように、内燃機関において、点火プラグ14による混合気の着火性能を格別に向上させる必要がない運転状況では、放電制御回路40によって、前述(a)の、火花放電用補助回路50による容量放電の付加や、保温放電用補助回路60による容量放電の付加を、制限乃至は休止させる。これにより、火花放電用補助回路50による容量放電の付加や、保温放電用補助回路60による容量放電の付加に起因する、点火プラグ14の電極の消耗を低減できる。 On the other hand, in an operating situation where it is not necessary to remarkably improve the ignition performance of the air-fuel mixture by the spark plug 14 in the internal combustion engine, such as during general running of the vehicle transmitted by the external controller 110, the discharge control circuit 40 is used. The above-mentioned (a), the addition of the capacitance discharge by the spark discharge auxiliary circuit 50 and the addition of the capacitance discharge by the heat retention discharge auxiliary circuit 60 are restricted or suspended. As a result, the consumption of the electrode of the spark plug 14 due to the addition of the capacitance discharge by the spark discharge auxiliary circuit 50 and the addition of the capacitance discharge by the heat retention discharge auxiliary circuit 60 can be reduced.

(c)放電制御回路40は、上述(b)の制御動作において、前記制御対象項目の目標値を外部から伝達され、当該制御対象項目を制御できる。 (c) The discharge control circuit 40 can control the control target item by transmitting the target value of the control target item from the outside in the control operation of the above (b).

(d)内燃機関用点火装置100は、点火コイルユニット10の電流遮断式点火装置11による高電圧の発生タイミングを放電タイミングとして検出するトリガ回路30を有する。そして、放電制御回路40は、トリガ回路30により検出された放電タイミングに基づき、火花放電用補助回路50による火花放電用補助電圧EAの出力素子42と、保温放電用補助回路60による保温放電用補助電圧EBの出力素子43を出力動作させることにより、前述(a)の、火花放電用補助回路50による容量放電の付加、及び保温放電用補助回路60による容量放電の付加を実行するものになる。 (d) The ignition device 100 for an internal combustion engine has a trigger circuit 30 that detects the generation timing of a high voltage by the current cutoff type ignition device 11 of the ignition coil unit 10 as a discharge timing. Then, the discharge control circuit 40 is based on the discharge timing detected by the trigger circuit 30, the output element 42 of the spark discharge auxiliary voltage EA by the spark discharge auxiliary circuit 50, and the heat retention discharge auxiliary by the heat retention discharge auxiliary circuit 60. By operating the output element 43 of the voltage EB for output operation, the above-mentioned (a) addition of capacitance discharge by the spark discharge auxiliary circuit 50 and addition of capacitance discharge by the heat retention discharge auxiliary circuit 60 are executed.

(e)内燃機関用点火装置100は、複数の気筒のそれぞれに点火コイルユニット10を設け、各気筒の点火コイルユニット10に共用される各単一の火花放電用補助回路50と保温放電用補助回路60とを有する。従って、各単一の火花放電用補助回路50及び保温放電用補助回路60により全気筒の点火コイルユニット10に対応するものとなり、部品点数を少なくでき、また複数の火花放電用補助回路50や保温放電用補助回路60を各気筒の点火コイルユニット10毎に設ける場合に比して待機中の無駄電力消費をなくすことができる。 (e) The ignition device 100 for an internal combustion engine is provided with ignition coil units 10 in each of a plurality of cylinders, and each single spark discharge auxiliary circuit 50 and heat retention discharge auxiliary shared by the ignition coil units 10 of each cylinder. It has a circuit 60. Therefore, each single spark discharge auxiliary circuit 50 and heat retention discharge auxiliary circuit 60 correspond to the ignition coil unit 10 of all cylinders, the number of parts can be reduced, and a plurality of spark discharge auxiliary circuits 50 and heat retention auxiliary circuit 50 and heat retention. Compared with the case where the discharge auxiliary circuit 60 is provided for each ignition coil unit 10 of each cylinder, wasteful power consumption during standby can be eliminated.

(実施例2)(図5)
実施例2の内燃機関用点火装置100が実施例1の内燃機関用点火装置100(図4)と異なる点は、放電制御回路40が、内燃機関の運転状況を伝達され、この運転状況に基づいて前記制御対象項目の目標値を演算し、当該制御対象項目を制御するものとしたことにある。
(Example 2) (Fig. 5)
The difference between the internal combustion engine ignition device 100 of the second embodiment and the internal combustion engine ignition device 100 of the first embodiment (FIG. 4) is that the discharge control circuit 40 transmits the operating status of the internal combustion engine and is based on this operating status. The target value of the control target item is calculated to control the control target item.

即ち、放電制御回路40は、例えば各気筒の点火コイルユニット10から伝達される放電タイミングに基づいて演算した内燃機関のエンジン回転数に基づき、又は内燃機関に設けた吸気負圧センサ、内燃機関が搭載された車両のアクセルセンサや車速センサ等の運転状況検出手段120の検出信号を得て、CPU内部に内蔵する演算回路及びデータ(それらのエンジン回転数及び/又は各種センサの検出値に対し、火花放電用補助電圧EAの付加の有無、火花放電用補助電圧EAの電圧の設定、保温放電用補助電圧EBの付加の有無、保温放電用補助電圧EBの電圧の設定、保温放電用補助電圧EBの付加の回数を予め定めてなるマップデータ等)に基づいて、上述(b)の制御動作を行なう。 That is, the discharge control circuit 40 is based on, for example, the engine rotation speed of the internal combustion engine calculated based on the discharge timing transmitted from the ignition coil unit 10 of each cylinder, or the intake negative pressure sensor provided in the internal combustion engine, the internal combustion engine. Obtaining the detection signal of the driving status detecting means 120 such as the accelerator sensor and the vehicle speed sensor of the mounted vehicle, the arithmetic circuit and data built in the CPU (the engine rotation speed and / or the detected values of various sensors) Presence / absence of auxiliary voltage EA for spark discharge, setting of auxiliary voltage EA for spark discharge, presence / absence of addition of auxiliary voltage EB for heat retention discharge, setting of auxiliary voltage EB for heat retention discharge, auxiliary voltage EB for heat retention discharge The control operation of (b) above is performed based on the map data or the like in which the number of times of addition of is predetermined.

従って、実施例2に係る内燃機関用点火装置100においても、実施例1の内燃機関用点火装置100における前述(a)乃至(e)と同様の作用効果を奏する。 Therefore, the internal combustion engine ignition device 100 according to the second embodiment also has the same effects as the above-mentioned (a) to (e) in the internal combustion engine ignition device 100 according to the first embodiment.

以上、本発明の実施例を図面により詳述したが、本発明の具体的な構成はこの実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。例えば、本発明は単気筒内燃機関用点火装置においても適用できる。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration of the present invention is not limited to this embodiment, and even if there is a design change or the like within a range not deviating from the gist of the present invention. Included in the present invention. For example, the present invention can also be applied to an ignition device for a single-cylinder internal combustion engine.

本発明によれば、内燃機関用点火装置において、点火プラグによる混合気の着火性能を向上させることができる。 According to the present invention, in the ignition device for an internal combustion engine, the ignition performance of the air-fuel mixture by the spark plug can be improved.

また、本発明によれば、内燃機関用点火装置において、点火プラグの電極の消耗を低減させることができる。 Further, according to the present invention, it is possible to reduce the consumption of the electrodes of the spark plug in the ignition device for an internal combustion engine.

10 点火コイルユニット
11 電流遮断式点火装置
12 点火コイル
14 点火プラグ
30 トリガ回路
40 放電制御回路
41 主出力素子
42 出力素子
43 出力素子
50 火花放電用補助回路
60 保温放電用補助回路
100 内燃機関用点火装置
110 外部コントローラ
120 運転状況検出手段
EA 火花放電用補助電圧
EB(EB−1、EB−2…) 保温放電用補助電圧
10 Ignition coil unit 11 Current cutoff type ignition device 12 Ignition coil 14 Ignition plug 30 Trigger circuit 40 Discharge control circuit 41 Main output element 42 Output element 43 Output element 50 Spark discharge auxiliary circuit 60 Thermal insulation discharge auxiliary circuit 100 Ignition for internal combustion engine Device 110 External controller 120 Operating status detection means EA Auxiliary voltage for spark discharge EB (EB-1, EB-2 ...) Auxiliary voltage for heat retention discharge

Claims (4)

電流遮断式点火装置を内蔵する点火コイルユニットを用い、
電流遮断式点火装置が点火コイルの1次電流を遮断して当該点火コイルの1次側に大きな送起電力である高電圧を発生させることにより、当該点火コイルの2次側に発生する更に大きな高電圧により、点火プラグの電極間に高電圧の火花放電を発生させてその電極間に火炎核を発生させるととともに、該火花放電に続く小電圧の保温放電を発生させて上記火炎核を成長させる内燃機関用点火装置であって、
火花放電用補助コンデンサを有し、該火花放電用補助コンデンサに蓄積した高圧のコンデンサ電圧を火花放電用補助電圧として、火花放電中の点火コイルユニットにおける点火コイルの1次側に付加する火花放電用補助回路と、
1個又は複数個の保温放電用補助コンデンサを有し、該保温放電用補助コンデンサに蓄積したコンデンサ電圧を保温放電用補助電圧として、保温放電中の点火コイルユニットにおける点火コイルの1次側に付加する保温放電用補助回路と、
火花放電用補助回路と保温放電用補助回路を制御する放電制御回路とを有して構成され 、
放電制御回路は、内燃機関の運転状況に応じて、火花放電用補助電圧の付加の有無、火花放電用補助電圧の電圧の設定、保温放電用補助電圧の付加の有無、保温放電用補助電圧の電圧の設定、保温放電用補助電圧の付加の回数を含む制御対象項目の少なくとも1つを制御可能にするものとされ、
更に、
前記点火コイルユニットの電流遮断式点火装置による高電圧の発生タイミングを放電タイミングとして検出するトリガ回路を有し、
放電制御回路は、トリガ回路により検出された放電タイミングに基づき、火花放電用補助回路による火花放電用補助電圧の出力素子と、保温放電用補助回路による保温放電用補助電圧の出力素子を出力動作させる内燃機関用点火装置。
Using an ignition coil unit with a built-in current cutoff ignition device,
The current cutoff type ignition device cuts off the primary current of the ignition coil and generates a high voltage which is a large transmission power on the primary side of the ignition coil, so that a larger voltage is generated on the secondary side of the ignition coil. Due to the high voltage, a high-voltage spark discharge is generated between the electrodes of the spark plug to generate a flame nucleus between the electrodes, and a small-voltage heat-retaining discharge following the spark discharge is generated to grow the flame nucleus. It is an ignition device for an electric discharge engine.
It has an auxiliary capacitor for spark discharge, and the high-voltage capacitor voltage accumulated in the auxiliary capacitor for spark discharge is used as an auxiliary voltage for spark discharge and is applied to the primary side of the ignition coil in the ignition coil unit during spark discharge. Auxiliary circuit and
It has one or more auxiliary capacitors for heat retention and discharge, and the capacitor voltage accumulated in the auxiliary capacitors for heat retention and discharge is added to the primary side of the ignition coil in the ignition coil unit during heat retention and discharge as the auxiliary voltage for heat retention and discharge. Auxiliary circuit for heat retention and discharge
It is configured to have an auxiliary circuit for spark discharge and a discharge control circuit that controls the auxiliary circuit for heat retention discharge.
The discharge control circuit determines whether or not an auxiliary voltage for spark discharge is added, whether or not an auxiliary voltage for spark discharge is added, whether or not an auxiliary voltage for heat retention discharge is added, and whether or not an auxiliary voltage for heat retention discharge is added, depending on the operating conditions of the internal combustion engine. It is assumed that at least one of the control target items including the voltage setting and the number of times the auxiliary voltage for heat retention and discharge is applied can be controlled .
In addition
It has a trigger circuit that detects the high voltage generation timing by the current cutoff type ignition device of the ignition coil unit as the discharge timing.
Based on the discharge timing detected by the trigger circuit, the discharge control circuit outputs the output element of the auxiliary voltage for spark discharge by the auxiliary circuit for spark discharge and the output element of the auxiliary voltage for heat retention discharge by the auxiliary circuit for heat retention discharge. Ignition system for internal combustion engines.
前記放電制御回路は、前記制御対象項目の目標値を外部から伝達され、当該制御対象項目を制御する請求項1に記載の内燃機関用点火装置。 The ignition device for an internal combustion engine according to claim 1, wherein the discharge control circuit transmits a target value of the control target item from the outside and controls the control target item. 前記放電制御回路は、内燃機関の運転状況を伝達され、この運転状況に基づいて前記制御対象項目の目標値を演算し、当該制御対象項目を制御する請求項1に記載の内燃機関用点火装置。 The ignition device for an internal combustion engine according to claim 1, wherein the discharge control circuit transmits the operating status of the internal combustion engine, calculates a target value of the controlled target item based on the operating status, and controls the controlled target item. .. 複数の気筒のそれぞれに点火コイルユニットを設け、各気筒の点火コイルユニットに共用される各単一の火花放電用補助回路と保温放電用補助回路とを有してなる請求項1乃至のいずれかに記載の内燃機関用点火装置。 Any of claims 1 to 3 , wherein an ignition coil unit is provided in each of the plurality of cylinders, and each single spark discharge auxiliary circuit and a heat retention discharge auxiliary circuit shared by the ignition coil unit of each cylinder are provided. Ignition system for internal combustion engine described in.
JP2016204661A 2016-10-18 2016-10-18 Ignition system for internal combustion engine Active JP6796989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016204661A JP6796989B2 (en) 2016-10-18 2016-10-18 Ignition system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016204661A JP6796989B2 (en) 2016-10-18 2016-10-18 Ignition system for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2018066305A JP2018066305A (en) 2018-04-26
JP6796989B2 true JP6796989B2 (en) 2020-12-09

Family

ID=62085885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016204661A Active JP6796989B2 (en) 2016-10-18 2016-10-18 Ignition system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6796989B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4001414B2 (en) * 1998-01-07 2007-10-31 株式会社エッチ・ケー・エス Ignition device for internal combustion engine
JP3091455B1 (en) * 1999-07-28 2000-09-25 株式会社エッチ・ケー・エス Ignition device for internal combustion engine
DE112013006486T5 (en) * 2013-01-23 2015-10-29 Toyota Jidosha Kabushiki Kaisha Ignition control device for an internal combustion engine
JP6044399B2 (en) * 2013-03-08 2016-12-14 株式会社デンソー Spark plug for internal combustion engine
JP6330366B2 (en) * 2013-04-11 2018-05-30 株式会社デンソー Ignition device
US10519879B2 (en) * 2014-02-17 2019-12-31 Nissan Motor Co., Ltd. Determining in-cylinder pressure by analyzing current of a spark plug
JP6421435B2 (en) * 2014-04-10 2018-11-14 株式会社デンソー Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2018066305A (en) 2018-04-26

Similar Documents

Publication Publication Date Title
US10371117B2 (en) Ignition apparatus for internal combustion engine
US9932954B2 (en) Ignition device for internal combustion engines
JP6372140B2 (en) Ignition device
JP2015200257A (en) Control device of internal combustion engine
JP2019210827A (en) Controller for internal combustion engine
JP6796989B2 (en) Ignition system for internal combustion engine
US9957944B2 (en) Ignition apparatus for internal combustion engine
JP6392535B2 (en) Control device for internal combustion engine
JP6337585B2 (en) Ignition device
JP2011117334A (en) Combustion control device of internal combustion engine
JPWO2019225070A1 (en) Control device for internal combustion engine
JP6622513B2 (en) Ignition device
JP6264166B2 (en) Ignition device failure diagnosis device and ignition device failure diagnosis method
JP6398272B2 (en) Ignition device
JP2017207007A (en) Ignition control device
US7066161B2 (en) Capacitive discharge ignition system
JP7412599B2 (en) Internal combustion engine control device
JP6384097B2 (en) Ignition device
JP6531841B2 (en) Igniter
US10626807B2 (en) Controller and control method for internal combustion engine
JP6252324B2 (en) Control device for internal combustion engine
JP6396669B2 (en) Ignition control device for internal combustion engine
JPH04298680A (en) Ignition device for engine
JP6331618B2 (en) Ignition device for internal combustion engine
JP2015200266A (en) Ignitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R150 Certificate of patent or registration of utility model

Ref document number: 6796989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250