Nothing Special   »   [go: up one dir, main page]

JP6792405B2 - 表示装置の作製方法 - Google Patents

表示装置の作製方法 Download PDF

Info

Publication number
JP6792405B2
JP6792405B2 JP2016207261A JP2016207261A JP6792405B2 JP 6792405 B2 JP6792405 B2 JP 6792405B2 JP 2016207261 A JP2016207261 A JP 2016207261A JP 2016207261 A JP2016207261 A JP 2016207261A JP 6792405 B2 JP6792405 B2 JP 6792405B2
Authority
JP
Japan
Prior art keywords
layer
transistor
insulating layer
substrate
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016207261A
Other languages
English (en)
Other versions
JP2018066960A (ja
JP2018066960A5 (ja
Inventor
山崎 舜平
舜平 山崎
大介 久保田
大介 久保田
広樹 安達
広樹 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2016207261A priority Critical patent/JP6792405B2/ja
Publication of JP2018066960A publication Critical patent/JP2018066960A/ja
Publication of JP2018066960A5 publication Critical patent/JP2018066960A5/ja
Application granted granted Critical
Publication of JP6792405B2 publication Critical patent/JP6792405B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

本明細書等で開示する発明の一態様は、物、方法、または、製造方法に関する。または、本明細書等で開示する発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。特に、表示装置または表示装置の作製方法に関する。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置および電子機器などは、半導体装置を有すると言える場合がある。
電子ブック、タブレット、スマートフォン等のモバイル機器に代表される電子機器が普及している。モバイル機器は、屋外環境や室内環境など利用する環境の明るさに適した表示をすることが求められている。
電子機器の表示部に用いられる表示装置の一つとして、液晶素子を備える液晶表示装置がある。例えば、画素電極をマトリクス状に配置し、画素電極の各々に接続するスイッチング素子としてトランジスタを用いたアクティブマトリクス型液晶表示装置が注目を集めている。
例えば、画素電極の各々に接続するスイッチング素子として、金属酸化物をチャネル形成領域とするトランジスタを用いるアクティブマトリクス型液晶表示装置が知られている。(特許文献1及び特許文献2)
アクティブマトリクス型液晶表示装置には大きく分けて透過型と反射型の二種類のタイプが知られている。
透過型の液晶表示装置は、冷陰極蛍光ランプやLED(Light Emitting Diode)などのバックライトを用い、液晶の光学変調作用を利用して、バックライトからの光が液晶を透過して液晶表示装置外部に出力される状態と、出力されない状態とを選択し、明と暗の表示を行わせ、さらにそれらを組み合わせることで、画像表示を行うものである。
また、反射型の液晶表示装置は、液晶の光学変調作用を利用して、外光、即ち入射光が画素電極で反射して装置外部に出力される状態と、入射光が装置外部に出力されない状態とを選択し、明と暗の表示を行わせ、さらにそれらを組み合わせることで、画像表示を行うものである。反射型の液晶表示装置は、透過型の液晶表示装置と比較して、バックライトを使用しないため、消費電力が少ないといった長所を有する。
また、特にモバイル機器は、薄型化および軽量化の要求も高まっている。このため、表示装置の薄型化および軽量化の要求も高まっている。表示装置の薄型化および軽量化を実現するために、機械研磨によって表示装置の基板を薄くする方法が知られている。
特開2007−123861号公報 特開2007−96055号公報
機械研磨により基板を薄くすると、それ以降の表示装置の作製工程において、試料の取り扱いが困難となる。よって、機械研磨による基板の薄型化は、表示装置作製の終盤工程で行われることが多い。一方で、機械研磨による基板の薄型化は、生産性の低下、歩留まりの低下を引き起こしやすい。このため、表示装置の作製工程の終盤において、機械研磨による基板の薄型化による破損が生じると、損害額が大きくなってしまう。
上記課題に鑑み、本発明の一態様は、生産性の良好な表示装置または電子機器などを提供することを課題の一とする。または、表示装置または電子機器を作製する際の歩留まりを高めることを課題の一とする。または、信頼性が良好な表示装置または電子機器などを提供することを課題の一つとする。または、視認性が良好な表示装置または電子機器などを提供することを課題の一とする。または、表示品位が良好な表示装置または電子機器などを提供することを課題の一つとする。または、新規な表示装置または電子機器などを提供することを課題の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、第1工程乃至第7工程を有し、第1工程は、第1支持基板上に、第1剥離層と、第1樹脂層と、を設ける工程と、樹脂層上に、第1電極を設ける工程と、第1電極上に、光拡散層と、第1偏光板と、を設ける工程と、を有し、第2工程は、第2支持基板上に、第2剥離層と、第2樹脂層と、第1基板と、を設ける工程と、を有し、第3工程は、第1支持基板と第2支持基板を、偏光板と第1基板が向かい合うように第1接着層を介して重ねる工程と、第1支持基板を介して第1剥離層に光を照射する工程と、第1支持基板および第1剥離層を第1樹脂層から分離する工程と、第1樹脂層を除去する工程と、を有し、第4工程は、第3支持基板上に、第3剥離層と、第3樹脂層と、第2電極と、トランジスタと、第3電極と、を設ける工程を有し、第5工程は、第4支持基板上に、第4剥離層と、第4樹脂層と、第2基板と、第4電極と、を設ける工程を有し、第6工程は、第3支持基板と第4支持基板を、第3電極と第4電極が向かい合うように第1液晶層を介して重ねる工程と、第3支持基板を介して第3剥離層に光を照射する工程と、第3支持基板および第3剥離層を第3樹脂層から分離する工程と、第3樹脂層を除去する工程と、を有し、第7工程は、第1基板と第2基板を、第1電極と第2電極が向かい合うように第2液晶層を介して重ねる工程と、第2支持基板を介して第2剥離層に光を照射する工程と、第2支持基板および第2剥離層を第2樹脂層から分離する工程と、第2樹脂層を除去する工程と、第4支持基板を介して第4剥離層に光を照射する工程と、第4支持基板および第4剥離層を第4樹脂層から分離する工程と、第4樹脂層を除去する工程と、第2基板上に第2偏光板を設ける工程と、を有する表示装置の作製方法である。
第1基板の厚さは0.5mm未満であることが好ましい。第2基板の厚さは0.5mm未満であることが好ましい。第1乃至第4樹脂層は、ポリイミドを有することが好ましい。剥離層に照射する光の波長は、180nm以上450nm以下が好ましい。第1基板上に、反射防止層または防眩層の少なくとも一方が設けられていることが好ましい。
上記の作製方法で作製された表示装置は、反射型の液晶素子と透過型の液晶素子を有することが好ましい。
本発明の一態様によれば、生産性の良好な表示装置または電子機器などを提供できる。または、表示装置または電子機器を作製する際の歩留まりを高めることができる。または、信頼性が良好な表示装置または電子機器などを提供できる。または、視認性が良好な表示装置または電子機器などを提供できる。または、表示品位が良好な表示装置または電子機器などを提供できる。または、新規な表示装置または電子機器などを提供できる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
表示装置の一例を説明する図。 表示装置の一例を説明する図。 表示装置の一例を説明する図。 表示装置の一例を説明する図。 表示装置の一例を説明する図。 トランジスタの一例を示す断面図。 表示装置の作製方法の一例を説明する図。 表示装置の作製方法の一例を説明する図。 表示装置の作製方法の一例を説明する図。 表示装置の作製方法の一例を説明する図。 表示装置の作製方法の一例を説明する図。 表示装置の作製方法の一例を説明する図。 表示装置の作製方法の一例を説明する図。 表示装置の作製方法の一例を説明する図。 表示装置の作製方法の一例を説明する図。 表示装置の作製方法の一例を説明する図。 表示装置の作製方法の一例を説明する図。 表示装置の作製方法の一例を説明する図。 表示装置の作製方法の一例を説明する図。 表示装置の作製方法の一例を説明する図。 表示装置の作製方法の一例を説明する図。 表示装置の作製方法の一例を説明する図。 表示装置の作製方法の一例を説明する図。 表示装置の一例を説明する図。 本発明の一態様を説明する図。 表示装置の構成例を説明する図。 画素の回路構成例を説明する図。 画素の回路構成例および平面構成例を説明する図。 表示モード毎の電子機器の使用例を説明する図。 画素の構成例を説明する、模式図及び状態遷移図。 動作モードを説明する、回路図及びタイミングチャート。 タッチセンサのブロック図及びタイミングチャート図。 タッチセンサの回路図。 表示装置のブロック図及びタイミングチャート図。 表示装置およびタッチセンサの動作を説明する図。 表示装置およびタッチセンサの動作を説明する図。 トランジスタの一例を示す上面図及び断面図。 トランジスタの一例を示す上面図及び断面図。 トランジスタの一例を示す上面図及び断面図。 試料のXRDスペクトルの測定結果を説明する図。 試料のTEM像、および電子線回折パターンを説明する図。 試料のEDXマッピングを説明する図。 電子機器の一例を示す図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。
また、図面などにおいて示す各構成の、位置、大きさ、範囲などは、発明の理解を容易とするため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面などに開示された位置、大きさ、範囲などに限定されない。例えば、実際の製造工程において、エッチングなどの処理により層やレジストマスクなどが意図せずに目減りすることがあるが、発明の理解を容易とするため、省略して示すことがある。
また、特に上面図(「平面図」ともいう。)や斜視図などにおいて、発明の理解を容易とするため、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線などの記載を省略する場合がある。
本明細書等において、「第1」、「第2」などの序数詞は、構成要素の混同を避けるために付すものであり、工程順または積層順など、なんらかの順番や順位を示すものではない。また、本明細書等において序数詞が付されていない用語であっても、構成要素の混同を避けるため、特許請求の範囲において序数詞が付される場合がある。また、本明細書等において付された序数詞と、特許請求の範囲において付された序数詞が異なる場合がある。また、本明細書等において序数詞が付されている用語であっても、特許請求の範囲などにおいて序数詞を省略する場合がある。
また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配線」が一体となって設けられている場合なども含む。
なお、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネルが形成される領域における、ソース(ソース領域またはソース電極)とドレイン(ドレイン領域またはドレイン電極)との間の距離をいう。なお、一つのトランジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル長は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル長は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
チャネル幅とは、例えば、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネルが形成される領域における、ソースとドレインとが向かい合っている部分の長さをいう。なお、一つのトランジスタにおいて、チャネル幅がすべての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル幅は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル幅は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
なお、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、「実効的なチャネル幅」ともいう。)と、トランジスタの上面図において示されるチャネル幅(以下、「見かけ上のチャネル幅」ともいう。)と、が異なる場合がある。例えば、ゲート電極が半導体層の側面を覆う場合、実効的なチャネル幅が、見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつゲート電極が半導体の側面を覆うトランジスタでは、半導体の側面に形成されるチャネル形成領域の割合が大きくなる場合がある。その場合は、見かけ上のチャネル幅よりも、実効的なチャネル幅の方が大きくなる。
このような場合、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
そこで、本明細書では、見かけ上のチャネル幅を、「囲い込みチャネル幅(SCW:Surrounded Channel Width)」と呼ぶ場合がある。また、本明細書では、単にチャネル幅と記載した場合には、囲い込みチャネル幅または見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅、囲い込みチャネル幅などは、断面TEM像などを解析することなどによって、値を決定することができる。
なお、トランジスタの電界効果移動度や、チャネル幅当たりの電流値などを計算して求める場合、囲い込みチャネル幅を用いて計算する場合がある。その場合には、実効的なチャネル幅を用いて計算する場合とは異なる値をとる場合がある。
また、本明細書等において、フォトリソグラフィ法によりレジストマスクを形成し、その後にエッチング工程(除去工程)を行う場合は、特段の説明がない限り、当該レジストマスクは、エッチング工程終了後に除去するものとする。
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電極)の間にチャネル領域を有しており、ドレインとチャネル領域とソースとを介して電流を流すことができるものである。なお、本明細書等において、チャネル領域とは、電流が主として流れる領域をいう。
また、本明細書等に示すトランジスタは、特に断りがない場合、エンハンスメント型(ノーマリーオフ型)の電界効果トランジスタとする。また、本明細書等に示すトランジスタは、特に断りがない場合、nチャネル型のトランジスタとする。よって、そのしきい値電圧(「Vth」ともいう。)は、特に断りがない場合、0Vよりも大きいものとする。
なお、本明細書等において、バックゲートを有するトランジスタのVthは、特に断りがない場合、バックゲートの電位をソースまたはゲートと同電位としたときのVthをいう。
また、本明細書等において、特に断りがない場合、オフ電流とは、トランジスタがオフ状態(非導通状態、遮断状態、ともいう)にあるときのドレイン電流をいう。オフ状態とは、特に断りがない場合、nチャネル型トランジスタでは、ソースを基準とした時のゲートとソースの間の電位差(以下、「Vg」ともいう。)がしきい値電圧Vthよりも低い状態、pチャネル型トランジスタでは、ゲートとソースの間の電圧Vgがしきい値電圧Vthよりも高い状態をいう。例えば、nチャネル型のトランジスタのオフ電流とは、Vgがしきい値電圧(以下、「Vth」ともいう。)よりも低いときのドレイン電流を言う場合がある。
トランジスタのオフ電流は、Vgに依存する場合がある。従って、トランジスタのオフ電流がI以下である、とは、トランジスタのオフ電流がI以下となるVgの値が存在することを言う場合がある。トランジスタのオフ電流は、所定のVgにおけるオフ状態、所定の範囲内のVgにおけるオフ状態、または、十分に低減されたオフ電流が得られるVgにおけるオフ状態、等におけるオフ電流を指す場合がある。
一例として、Vthが0.5Vであり、Vgが0.5Vにおけるドレイン電流が1×10−9Aであり、Vgが0.1Vにおけるドレイン電流が1×10−13Aであり、Vgが−0.5Vにおけるドレイン電流が1×10−19Aであり、Vgが−0.8Vにおけるドレイン電流が1×10−22Aであるようなnチャネル型トランジスタを想定する。当該トランジスタのドレイン電流は、Vgが−0.5Vにおいて、または、Vgが−0.5V乃至−0.8Vの範囲において、1×10−19A以下であるから、当該トランジスタのオフ電流は1×10−19A以下である、と言う場合がある。当該トランジスタのドレイン電流が1×10−22A以下となるVgが存在するため、当該トランジスタのオフ電流は1×10−22A以下である、と言う場合がある。
トランジスタのオフ電流は、温度に依存する場合がある。本明細書において、オフ電流は、特に記載がない場合、室温(RT:Room Temperature)、60℃、85℃、95℃、または125℃におけるオフ電流を表す場合がある。または、当該トランジスタが含まれる半導体装置等の信頼性が保証される温度、または、当該トランジスタが含まれる半導体装置等が使用される温度(例えば、5℃以上35℃以下の温度)におけるオフ電流、を表す場合がある。トランジスタのオフ電流がI以下である、とは、RT、60℃、85℃、95℃、125℃、当該トランジスタが含まれる半導体装置の信頼性が保証される温度、または、当該トランジスタが含まれる半導体装置等が使用される温度(例えば、5℃以上35℃以下の温度)、におけるトランジスタのオフ電流がI以下となるVgの値が存在することを指す場合がある。
トランジスタのオフ電流は、ソースを基準とした時のドレインとソースの間の電圧(以下、「Vd」ともいう。)に依存する場合がある。本明細書において、オフ電流は、特に記載がない場合、Vdが0.1V、0.8V、1V、1.2V、1.8V、2.5V、3V、3.3V、10V、12V、16V、または20Vにおけるオフ電流を表す場合がある。または、当該トランジスタが含まれる半導体装置等の信頼性が保証されるVd、または、当該トランジスタが含まれる半導体装置等において使用されるVdにおけるオフ電流、を表す場合がある。トランジスタのオフ電流がI以下である、とは、Vdが0.1V、0.8V、1V、1.2V、1.8V、2.5V、3V、3.3V、10V、12V、16V、20V、当該トランジスタが含まれる半導体装置の信頼性が保証されるVd、または、当該トランジスタが含まれる半導体装置等において使用されるVd、におけるトランジスタのオフ電流がI以下となるVgの値が存在することを指す場合がある。
上記オフ電流の説明において、ドレインをソースと読み替えてもよい。つまり、オフ電流は、トランジスタがオフ状態にあるときのソースを流れる電流を言う場合もある。
また、本明細書等では、オフ電流と同じ意味で、リーク電流と記載する場合がある。また、本明細書等において、オフ電流とは、例えば、トランジスタがオフ状態にあるときに、ソースとドレインとの間に流れる電流を指す場合がある。
なお、本明細書等において「上」や「下」の用語は、構成要素の位置関係が直上または直下で、かつ、直接接していることを限定するものではない。例えば、「絶縁層A上の電極B」の表現であれば、絶縁層Aの上に電極Bが直接接して設けられている必要はなく、絶縁層Aと電極Bとの間に他の構成要素を含むものを除外しない。
また、本明細書において、「平行」とは、明示されている場合を除き、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。従って、−5°以上5°以下の場合も含まれる。また、「略平行」とは、明示されている場合を除き、二つの直線が−30°以上30°以下の角度で配置されている状態をいう。また、「垂直」および「直交」とは、明示されている場合を除き、二つの直線が80°以上100°以下の角度で配置されている状態をいう。従って、85°以上95°以下の場合も含まれる。また、「略垂直」とは、明示されている場合を除き、二つの直線が60°以上120°以下の角度で配置されている状態をいう。
なお、本明細書等において、計数値および計量値に関して「同一」、「同じ」、「等しい」または「均一」(これらの同意語を含む)などと言う場合は、明示されている場合を除き、プラスマイナス20%の誤差を含むものとする。
(実施の形態1)
本発明の一態様の表示装置100について、図面を用いて説明する。
<断面構成例>
〔構成例1〕
図1は、表示装置100の斜視概略図である。表示装置100は、基板351と基板361とが貼り合わされた構成を有する。図1では、基板361を破線で明示している。
表示装置100は、表示部362、回路364、配線365等を有する。図1では表示装置100にIC(集積回路)373及びFPC372が実装されている例を示している。そのため、図1に示す構成は、表示装置100、IC、及びFPCを有する表示モジュールということもできる。
回路364としては、例えば走査線駆動回路を用いることができる。
配線365は、表示部362及び回路364に信号及び電力を供給する機能を有する。当該信号及び電力は、FPC372を介して外部から、またはIC373から配線365に入力される。
図1では、COG(Chip On Glass)方式またはCOF(Chip on Film)方式等により、基板351にIC373が設けられている例を示す。IC373は、例えば走査線駆動回路または信号線駆動回路などを有するICを適用できる。なお、表示装置100及び表示モジュールは、ICを設けない構成としてもよい。また、ICを、COF方式等により、FPCに実装してもよい。
また、基板351の外側にバックライト(図示せず。)が設けられている。
図1には、表示部362の一部の拡大図を示している。表示部362には、複数の表示素子が有する電極311bがマトリクス状に配置されている。電極311bは、可視光を反射する機能を有し、液晶素子180の反射電極として機能する。
また、図1に示すように、電極311bは開口部451を有する。さらに表示部362は、電極311bよりも基板351側に、液晶素子170を有する。バックライトが発する光は、液晶素子170、および、電極311bの開口部451を介して基板361側に射出される。
液晶素子170の電極として機能する電極191(図2参照。)の面積と、開口部451の面積とは等しくてもよい。ただし、電極191の面積の方が開口部451の面積よりも大きいと、位置ずれに対するマージンが大きくなるため好ましい。特に、開口部451が、電極191の内側に設けられていることが好ましい。また、開口部451が小さいと、バックライトからの光の一部が電極311bによって遮られ、外部に取り出せないことがある。開口部451を十分に大きくすることで、バックライトの光が無駄になることを抑制できる。よって、表示装置100の消費電力を低減することができる。
図2に、図1で示した表示装置100の、FPC372を含む領域の一部、回路364を含む領域の一部、及び表示部362を含む領域の一部をそれぞれ切断したときの断面の一例を示す。
なお、図2では、表示装置100の下方にバックライト150を併記している。バックライト15は、表示装置100に光を供給する機能を有する。バックライト150としては、例えば、発光ダイオード、EL素子、または冷陰極蛍光管(CCFL:Cold Cathode Fluorescent Lamp)などを用いることができる。
図2に示す表示装置100は、基板351と基板361の間に、トランジスタ201、容量素子203、トランジスタ205、トランジスタ206、液晶素子180、液晶素子170、絶縁層220、着色層131、タッチセンサ370、光拡散層122、偏光板123等を有する。基板361と絶縁層220は接着層141を介して接着されている。基板351と絶縁層220は接着層142を介して接着されている。また、基板351の外側に偏光板124を有する。
なお、本実施の形態に示す液晶素子180は反射型の液晶素子である。よって、偏光板123として円偏光板を用いる。円偏光板としては、例えば直線偏光板と1/4波長位相差板を積層したものを用いることができる。また、偏光板の種類に応じて、液晶素子180に用いる液晶素子のセルギャップ、配向、駆動電圧等を調整することで、所望のコントラストが実現されるようにすればよい。また、目的、用途、素子構成などによっては、円偏光板に代えて直線偏光板を用いてもよい。偏光板123に円偏光板を用いる場合、偏光板124にも円偏光板を用いることが好ましい。
基板361には、着色層131、遮光層132、絶縁層121、及び液晶素子180の共通電極として機能する電極113、配向膜133b、絶縁層117等が設けられている。絶縁層121は、平坦化層としての機能を有していてもよい。絶縁層121により、電極113の表面を概略平坦にできるため、液晶112の配向状態を均一にできる。絶縁層117は、液晶素子180のセルギャップを保持するためのスペーサとして機能する。絶縁層117は可視光を透過する材料を用いて形成する。また、絶縁層117を液晶素子180の表示領域と重ねて配置する。よって、絶縁層117を開口部451と重ねて配置する。絶縁層117の面積は、開口部451の面積よりも大きいことが好ましい。特に、開口部451が、絶縁層117の内側に設けられていることが好ましい。
なお、基板361の外側の面には光学部材などの機能性部材を配置することができる。光学部材としては、偏光板、位相差板、光拡散層(拡散フィルムなど)、反射防止層、及び集光フィルム等が挙げられる。また、光学部材以外の機能性部材としては、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜などが挙げられる。
本実施の形態に示す表示装置100は、基板361の外側の面に反射防止層135(「Anti Reflection層」または「AR層」ともいう。)を有する。AR層は、光の干渉作用を利用して、外光の正反射(鏡面反射)を低減する機能を有する。
AR層は、基板361の屈折率と異なる屈折率を有する材料で形成される。AR層は、例えば、酸化ジルコニウム、フッ化マグネシウム、酸化アルミニウム、酸化シリコンなどの材料を用いて形成することができる。
また、AR層に代えて防眩層(「Anti Glare層」または「AG層」ともいう。)を設けてもよい。AG層は、入射した外光を拡散させることにより、正反射(鏡面反射)を低減する機能を有する。
AG層の形成方法としては、表面に微細な凹凸を設ける方法、屈折率の異なる材料を混合する方法、または、双方を組み合わせる方法などが知られている。例えば、透光性を有する樹脂に、セルロース繊維などのナノファイバ、酸化シリコンなどの無機ビーズ、または樹脂ビーズなどを混合して、AG層を形成することができる。
また、AR層に重ねてAG層を設けてもよい。AR層とAG層を積層して設けることで、外光の反射や映り込みを防ぐ機能をより高めることができる。AR層、および/またはAG層などを用いることにより、表示装置の表面の外光反射率を1%未満、好ましくは0.3%未満とするとよい。
液晶素子180は反射型の液晶素子である。液晶素子180は、電極311a、液晶112、電極113が積層された積層構造を有する。電極311aの基板351側に接して、可視光を反射する電極311bが設けられている。電極311bは開口部451を有する。電極311a及び電極113は可視光を透過する。液晶112と電極311aの間に配向膜133aが設けられている。液晶112と電極113の間に配向膜133bが設けられている。
液晶素子180において、電極311bは可視光を反射する機能を有し、電極113は可視光を透過する機能を有する。基板361側から入射した光は、偏光板123により偏光され、電極113、液晶112を透過し、電極311bで反射する。そして液晶112及び電極113を再度透過して、偏光板123に達する。このとき、電極311bと電極113の間に与える電圧によって液晶の配向を制御し、光の光学変調を制御することができる。すなわち、偏光板123を介して射出される光の強度を制御することができる。また光は着色層131によって特定の波長領域以外の光が吸収されることにより、取り出される光は、例えば赤色を呈する光となる。
接続部207において、電極311bは、導電層221bを介して、トランジスタ206が有する導電層222aと電気的に接続されている。トランジスタ206は、液晶素子180の駆動を制御する機能を有する。
接着層141が設けられる一部の領域には、接続部252が設けられている。接続部252において、電極311aと同一の導電膜を加工して得られた導電層と、電極113の一部が、接続体243により電気的に接続されている。したがって、基板361側に形成された電極113に、FPC372から入力される信号または電位を、接続部252を介して供給することができる。
接着層142が設けられる一部の領域には、接続部253が設けられている。接続部253において、電極191と同一の導電膜を加工して得られた導電層216と、電極193の一部が、接続体244により電気的に接続されている。したがって、基板351側に形成された電極193に、FPC372から入力される信号または電位を、接続部252を介して供給することができる。
接続体243および接続体244としては、例えば導電性の粒子を用いることができる。導電性の粒子としては、有機樹脂またはシリカなどの粒子の表面を金属材料で被覆したものを用いることができる。金属材料としてニッケルや金を用いると接触抵抗を低減できるため好ましい。またニッケルをさらに金で被覆するなど、2種類以上の金属材料を層状に被覆させた粒子を用いることが好ましい。また接続体243として、弾性変形、または塑性変形する材料を用いることが好ましい。このとき導電性の粒子である接続体243は、図2に示すように上下方向に潰れた形状となる場合がある。こうすることで、接続体243と、これと電気的に接続する導電層との接触面積が増大し、接触抵抗を低減できるほか、接続不良などの不具合の発生を抑制することができる。例えば、硬化前の接着層141に接続体243を分散させておけばよい。
接続体243は、接着層141に覆われるように配置することが好ましい。例えば、硬化前の接着層141に接続体243を分散させておけばよい。
液晶素子170は、透過型の液晶素子である。液晶素子170は、電極191、液晶192、電極193が積層された積層構造を有する。電極191は、絶縁層214に設けられた開口を介して、トランジスタ205が有する導電層222bと接続されている。トランジスタ205は、液晶素子170の駆動を制御する機能を有する。電極191および電極193は可視光を透過する機能を有する。液晶192と電極191間に配向膜194aが設けられている。液晶192と電極193間に配向膜194bが設けられている。
また、絶縁層214上に絶縁層118が設けられている。絶縁層118は、液晶素子170のセルギャップを保持するためのスペーサとして機能する。
基板351側から入射したバックライト(図示せず。)の光は、偏光板124により偏光され、電極193、液晶192、電極191、開口部451、絶縁層117を透過し、偏光板123に達する。このとき、電極191と電極193の間に与える電圧によって液晶192の配向を制御し、光の光学変調を制御することができる。すなわち、偏光板123を介して射出される光の強度を制御することができる。また光は着色層131によって特定の波長領域以外の光が吸収されることにより、取り出される光は、例えば赤色を呈する光となる。
トランジスタ201、容量素子203、トランジスタ205、及びトランジスタ206は、いずれも絶縁層220の基板351側の面上に形成されている。これらのトランジスタは、同一の工程を用いて作製することができる。
絶縁層220の基板351側には、絶縁層211、絶縁層212、絶縁層213、絶縁層214等の絶縁層が設けられている。絶縁層211は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層212は、トランジスタ206等を覆って設けられる。絶縁層213は、トランジスタ205等を覆って設けられている。絶縁層214は、平坦化層としての機能を有する。なお、トランジスタを覆う絶縁層の数は限定されず、単層であっても2層以上であってもよい。
各トランジスタを覆う絶縁層の少なくとも一層に、水や水素などの不純物が拡散しにくい材料を用いることが好ましい。これにより、絶縁層をバリア膜として機能させることができる。このような構成とすることで、トランジスタに対して外部から不純物が拡散することを効果的に抑制することが可能となり、信頼性の高い表示装置を実現できる。
トランジスタ201、トランジスタ205、及びトランジスタ206は、ゲートとして機能する導電層221a、ゲート絶縁層として機能する絶縁層211、ソース及びドレインとして機能する導電層222a及び導電層222b、並びに、半導体層231を有する。ここでは、同一の導電膜を加工して得られる複数の層に、同じハッチングパターンを付している。
トランジスタ201及びトランジスタ205は、トランジスタ206の構成に加えて、ゲートとして機能する導電層223を有する。
トランジスタ201及びトランジスタ205には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。このような構成とすることで、トランジスタの閾値電圧を制御することができる。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。このようなトランジスタは他のトランジスタと比較して電界効果移動度を高めることが可能であり、オン電流を増大させることができる。その結果、高速駆動が可能な回路を作製することができる。さらには、回路部の占有面積を縮小することが可能となる。オン電流の大きなトランジスタを適用することで、表示装置を大型化、または高精細化したときに配線数が増大したとしても、各配線における信号遅延を低減することが可能であり、表示ムラを抑制することができる。
または、2つのゲートのうち、一方に閾値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタの閾値電圧を制御することができる。
表示装置が有するトランジスタの構造に限定はない。回路364が有するトランジスタと、表示部362が有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。回路364が有する複数のトランジスタは、全て同じ構造であってもよく、2種類以上の構造が組み合わせて用いられていてもよい。同様に、表示部362が有する複数のトランジスタは、全て同じ構造であってもよく、2種類以上の構造が組み合わせて用いられていてもよい。
導電層223には、酸化物を含む導電性材料を用いてもよい。導電層223を構成する導電膜の成膜時に、酸素を含む雰囲気下で成膜することで、絶縁層212に酸素を供給することができる。成膜ガス中の酸素ガスの割合を90%以上100%以下の範囲とすることが好ましい。絶縁層212に供給された酸素は、後の熱処理により半導体層231に供給され、半導体層231中の酸素欠損の低減を図ることができる。
特に、導電層223には、低抵抗化された酸化物半導体を用いることが好ましい。このとき、絶縁層213に水素を放出する絶縁膜、例えば窒化シリコン膜等を用いることが好ましい。絶縁層213の成膜中、またはその後の熱処理によって導電層223中に水素が供給され、導電層223の電気抵抗を効果的に低減することができる。
なお、導電層223は必要に応じて設ければよい。例えば、トランジスタ206に導電層223を設けてもよい。また、トランジスタ201およびトランジスタ205の導電層223を設けなくてもよい。
基板351の基板361と重ならない領域には、接続部204が設けられている。接続部204では、配線365が接続層242を介してFPC372と電気的に接続されている。接続部204は接続部207と同様の構成を有している。接続部204の上面は、電極311aと同一の導電膜を加工して得られた導電層が露出している。これにより、接続部204とFPC372とを接続層242を介して電気的に接続することができる。
液晶素子170および液晶素子180としては、例えば垂直配向(VA:Vertical Alignment)モードが適用された液晶素子を用いることができる。垂直配向モードとしては、MVA(Multi−Domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASV(Advanced Super View)モードなどを用いることができる。
液晶素子170および液晶素子180には、様々なモードが適用された液晶素子を用いることができる。例えばVAモードのほかに、TN(Twisted Nematic)モード、IPS(In−Plane−Switching)モード、VA−IPSモード、FFS(Fringe Field Switching)モード、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optically Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モード、ゲスト−ホストモード等が適用された液晶素子を用いることができる。
液晶素子は、液晶の光学的変調作用によって光の透過または非透過を制御する素子である。液晶の光学的変調作用は、液晶にかかる電界(横方向の電界、縦方向の電界または斜め方向の電界を含む)によって制御される。液晶素子に用いる液晶としては、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)、強誘電性液晶、反強誘電性液晶等を用いることができる。これらの液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイラルネマチック相、等方相等を示す。
液晶材料としては、ポジ型の液晶、またはネガ型の液晶のいずれを用いてもよく、適用するモードや設計に応じて最適な液晶材料を用いればよい。
液晶の配向を制御するため、配向膜を設けることができる。なお、横電界方式を採用する場合、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善するために数重量%以上のカイラル剤を混合させた液晶組成物を液晶に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が短く、光学的等方性である。また、ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、配向処理が不要であり、視野角依存性が小さい。また配向膜を設けなくてもよいのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破壊を防止することができ、作製工程中の液晶表示装置の不良や破損を軽減することができる。
偏光板123よりも外側に、フロントライトを設けてもよい。フロントライトとしては、エッジライト型のフロントライトを用いることが好ましい。LED(Light Emitting Diode)を備えるフロントライトを用いると、消費電力を低減できるため好ましい。
接着層としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
接続層242としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。
[基板]
基板351および基板361に用いる材料に大きな制限はない。目的に応じて、透光性の有無や加熱処理に耐えうる程度の耐熱性などを勘案して決定すればよい。例えばバリウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板、セラミック基板、石英基板、サファイア基板などを用いることができる。また、半導体基板、可撓性基板(フレキシブル基板)、貼り合わせフィルム、基材フィルムなどを用いてもよい。
半導体基板としては、例えば、シリコン、もしくはゲルマニウムなどを材料とした単体半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、もしくは酸化ガリウムを材料とした化合物半導体基板などがある。また、半導体基板は、単結晶半導体であってもよいし、多結晶半導体であってもよい。
なお、表示装置110の可撓性を高めるため、基板351および基板361には可撓性基板(フレキシブル基板)、貼り合わせフィルム、基材フィルムなどを用いてもよい。
可撓性基板、貼り合わせフィルム、基材フィルムなどの材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバーなどを用いることができる。
基板として上記材料を用いることにより、軽量な表示装置を提供することができる。また、基板として上記材料を用いることにより、衝撃に強い表示装置を提供することができる。また、基板として上記材料を用いることにより、破損しにくい表示装置を提供することができる。
基板351および基板361に用いる可撓性基板は、線膨張率が低いほど環境による変形が抑制されて好ましい。基板351および基板361に用いる可撓性基板は、例えば、線膨張率が1×10−3/K以下、5×10−5/K以下、または1×10−5/K以下である材質を用いればよい。特に、アラミドは、線膨張率が低いため、可撓性基板として好適である。
[導電層]
トランジスタのゲート、ソースおよびドレインのほか、表示装置を構成する各種配線および電極などの導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステンなどの金属、またはこれを主成分とする合金などが挙げられる。これらの材料を含む膜を単層で、または積層構造として用いることができる。
また、透光性を有する導電性材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを添加した酸化亜鉛などの導電性酸化物またはグラフェンを用いることができる。または、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、またはチタンなどの金属材料や、該金属材料を含む合金材料を用いることができる。または、該金属材料の窒化物(例えば、窒化チタン)などを用いてもよい。なお、金属材料、合金材料(またはそれらの窒化物)を用いる場合には、透光性を有する程度に薄くすればよい。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウムスズ酸化物の積層膜などを用いると、導電性を高めることができるため好ましい。これらは、表示装置を構成する各種配線および電極などの導電層や、表示素子が有する導電層(画素電極や共通電極として機能する導電層)にも用いることができる。
[絶縁層]
各絶縁層に用いることのできる絶縁材料としては、例えば、アクリル、エポキシなどの樹脂材料、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料が挙げられる。
[着色層]
着色層に用いることのできる材料としては、金属材料、樹脂材料、顔料または染料が含まれた樹脂材料などが挙げられる。着色層の色を画素毎に異ならせ、複数の画素を組み合わせることで、カラー表示を実現できる。
[遮光層]
遮光層として用いることのできる材料としては、カーボンブラック、チタンブラック、金属、金属酸化物、複数の金属酸化物の固溶体を含む複合酸化物等が挙げられる。遮光層は、樹脂材料を含む膜であってもよいし、金属などの無機材料の薄膜であってもよい。また、遮光層に、着色層の材料を含む膜の積層膜を用いることもできる。例えば、ある色の光を透過する着色層に用いる材料を含む膜と、他の色の光を透過する着色層に用いる材料を含む膜との積層構造を用いることができる。着色層と遮光層の材料を共通化することで、装置を共通化できるほか工程を簡略化できるため好ましい。
〔構成例2〕
表示装置100の変形例である表示装置100Aの断面を図3に示す。表示装置100Aは、液晶素子170および液晶素子180にゲスト−ホストモードで動作する液晶材料を用いる場合の断面構成例を示している。
液晶素子170および液晶素子180にゲスト−ホストモードで動作する液晶材料を用いることにより、光拡散層122、偏光板123および偏光板124を省略することができる。よって、表示装置の生産性を高めることができる。また、光拡散層122、偏光板123および偏光板124を設けないことにより、液晶素子170の透過光量を増やし、液晶素子180の反射輝度を高めることができる。よって、表示装置の視認性を高めることができる。なお、その他の構成については、表示装置100と同様のため、詳細な説明を省略する。
〔構成例3〕
表示装置100の変形例である表示装置100Bの断面を図4に示す。表示装置100Bは、絶縁層213と絶縁層214の間に着色層134を有し、着色層131を有していない点で、表示装置100と異なる。着色層134は、着色層131と同様の材料および方法で作製することができる。その他の構成については、表示装置100と同様のため、詳細な説明を省略する。
表示装置100Bにおいて、液晶素子180は、白色を呈する。着色層131を有していないため、表示装置100は、液晶素子170および着色層134を用いたカラー表示と、液晶素子180を用いた白黒またはグレイスケールでの表示を行うことができる。
〔構成例4〕
表示装置100の変形例である表示装置100Cの断面を図5に示す。表示装置100Cは、絶縁層213と絶縁層214の間に着色層134を有する。また、着色層131と着色層134が重ならないように設けられている。その他の構成については、表示装置1001と同様のため、詳細な説明を省略する。
表示装置100Cは、液晶素子170および着色層134を用いてカラー表示を実現できる。また、液晶素子180および着色層131を用いてカラー表示を実現できる。カラー表示を実現するために、液晶素子170と組み合わせる着色層の色、および液晶素子180と組み合わせる着色層の色は、赤、緑、青の組み合わせだけでなく、黄、シアン、マゼンダの組み合わせであってもよい。例えば、液晶素子170と組み合わせる着色層の色を赤、緑、青とし、液晶素子180と組み合わせる着色層の色をシアン、マゼンダ、黄としてもよい。組み合わせる着色層の色は、目的または用途などに応じて適宜設定すればよい。
〔トランジスタ〕
本発明の一態様において、表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタとしてもよいし、スタガ型のトランジスタとしてもよいし、逆スタガ型のトランジスタとしてもよい。また、トップゲート構造またはボトムゲート構造のいずれのトランジスタ構造としてもよい。または、チャネルの上下にゲート電極が設けられていてもよい。
なお、チャネルの上下に設けられたゲート電極の一方を、「ゲート電極」という場合、他方を「バックゲート電極」という。また、チャネルの上下に設けられたゲート電極の一方を、「ゲート」という場合、他方を「バックゲート」という。なお、ゲート電極のことを「フロントゲート電極」という場合がある。同様に、ゲートのことを「フロントゲート」という場合がある。
ゲート電極とバックゲート電極を設けることで、トランジスタの半導体層を、ゲート電極から生じる電界とバックゲート電極から生じる電界によって電気的に取り囲むことができる。ゲート電極およびバックゲート電極から生じる電界によって、チャネルが形成される半導体層を電気的に取り囲むトランジスタの構造をSurrounded channel(S−channel)構造と呼ぶことができる。
バックゲート電極はゲート電極と同様に機能させることができる。バックゲート電極の電位は、ゲート電極と同電位としてもよいし、接地電位や、任意の電位としてもよい。また、バックゲート電極の電位をゲート電極と連動させず独立して変化させることで、トランジスタのしきい値電圧を変化させることができる。
ゲート電極とバックゲート電極を設けることで、更には、両者を同電位とすることで、半導体層においてキャリアの流れる領域が膜厚方向においてより大きくなるため、キャリアの移動量が増加する。この結果、トランジスタのオン電流が大きくなると共に、電界効果移動度が高くなる。
したがって、トランジスタを占有面積に対して大きいオン電流を有するトランジスタとすることができる。すなわち、求められるオン電流に対して、トランジスタの占有面積を小さくすることができる。よって、集積度の高い半導体装置を実現することができる。
また、ゲート電極とバックゲート電極は導電層で形成されるため、トランジスタの外部で生じる電界が、チャネルが形成される半導体層に作用しないようにする機能(特に静電気などに対する電界遮蔽機能)を有する。なお、平面視において、バックゲート電極を半導体層よりも大きく形成し、バックゲート電極で半導体層を覆うことで、電界遮蔽機能を高めることができる。
ゲート電極とバックゲート電極は、それぞれが外部からの電界を遮蔽する機能を有するため、トランジスタの上方および下方に生じる荷電粒子等の電荷が半導体層のチャネル形成領域に影響しない。この結果、ストレス試験(例えば、ゲートに負の電荷を印加するNGBT(Negative Gate Bias−Temperature)ストレス試験(「NBT」または「NBTS」ともいう。)の劣化が抑制される。また、ゲート電極とバックゲート電極は、ドレイン電極から生じる電界が半導体層に作用しないように遮断することができる。よって、ドレイン電圧の変動に起因する、オン電流の立ち上がり電圧の変動を抑制することができる。なお、この効果は、ゲート電極およびバックゲート電極に電位が供給されている場合において顕著に生じる。
また、バックゲート電極を有するトランジスタは、ゲートに正の電荷を印加するPGBT(Positive Gate Bias−Temperature)ストレス試験(「PBT」または「PBTS」ともいう。)前後におけるしきい値電圧の変動も、バックゲート電極を有さないトランジスタより小さい。
なお、NGBTおよびPGBTなどのBTストレス試験は加速試験の一種であり、長期間の使用によって起こるトランジスタの特性変化(経年変化)を短時間で評価することができる。特に、BTストレス試験前後におけるトランジスタのしきい値電圧の変動量は、信頼性を調べるための重要な指標となる。BTストレス試験前後において、しきい値電圧の変動量が少ないほど、信頼性が高いトランジスタであるといえる。
また、ゲート電極およびバックゲート電極を有し、且つ両者を同電位とすることで、しきい値電圧の変動量が低減される。このため、複数のトランジスタ間における電気特性のばらつきも同時に低減される。
また、バックゲート電極側から光が入射する場合に、バックゲート電極を、遮光性を有する導電膜で形成することで、バックゲート電極側から半導体層に光が入射することを防ぐことができる。よって、半導体層の光劣化を防ぎ、トランジスタのしきい値電圧がシフトするなどの電気特性の劣化を防ぐことができる。
[半導体材料]
トランジスタの半導体層に用いる半導体材料の結晶性について大きな制限はない。非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。なお、結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
また、例えば、トランジスタの半導体層に用いる半導体材料として、シリコンや、ゲルマニウム等を用いることができる。また、炭化シリコン、ガリウム砒素、金属酸化物、窒化物半導体などの化合物半導体や、有機半導体などを用いることができる。
また、トランジスタに用いる半導体材料として、金属酸化物の一種である酸化物半導体を用いることができる。代表的には、インジウムを含む酸化物半導体などを適用できる。
特にシリコンよりもバンドギャップが広く、且つキャリア密度の小さい半導体材料を用いると、トランジスタのオフ状態におけるソースとドレインの間に流れる電流を低減できるため好ましい。
半導体層は、例えば少なくともインジウム、亜鉛およびM(アルミニウム、チタン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、セリウム、スズ、ネオジムまたはハフニウム等の金属)を含むIn−M−Zn系酸化物で表記される材料を含むことが好ましい。また、該酸化物半導体を用いたトランジスタの電気特性のばらつきを減らすため、それらと共に、スタビライザーを含むことが好ましい。
スタビライザーとしては、上記Mで記載の金属を含め、例えば、ガリウム、スズ、ハフニウム、アルミニウム、またはジルコニウム等がある。また、他のスタビライザーとしては、ランタノイドである、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム等がある。
半導体層を構成する酸化物半導体として、例えば、In−Ga−Zn系酸化物、In−Al−Zn系酸化物、In−Sn−Zn系酸化物、In−Hf−Zn系酸化物、In−La−Zn系酸化物、In−Ce−Zn系酸化物、In−Pr−Zn系酸化物、In−Nd−Zn系酸化物、In−Sm−Zn系酸化物、In−Eu−Zn系酸化物、In−Gd−Zn系酸化物、In−Tb−Zn系酸化物、In−Dy−Zn系酸化物、In−Ho−Zn系酸化物、In−Er−Zn系酸化物、In−Tm−Zn系酸化物、In−Yb−Zn系酸化物、In−Lu−Zn系酸化物、In−Sn−Ga−Zn系酸化物、In−Hf−Ga−Zn系酸化物、In−Al−Ga−Zn系酸化物、In−Sn−Al−Zn系酸化物、In−Sn−Hf−Zn系酸化物、In−Hf−Al−Zn系酸化物を用いることができる。
なお、ここで、In−Ga−Zn系酸化物とは、InとGaとZnを主成分として有する酸化物という意味であり、InとGaとZnの比率は問わない。また、InとGaとZn以外の金属元素が入っていてもよい。
図6(A)乃至(E)に、トランジスタの構成例を示す。
図6(A)に示すトランジスタ110aは、トップゲート構造のトランジスタである。
トランジスタ110aは、導電層221、絶縁層211、半導体層231、絶縁層212、導電層222a、及び導電層222bを有する。半導体層231は、絶縁層151上に設けられている。導電層221は絶縁層211を介して半導体層231と重なる。導電層222a及び導電層222bは、絶縁層211及び絶縁層212に設けられた開口を介して、半導体層231と電気的に接続される。
導電層221は、ゲートとして機能する。絶縁層211は、ゲート絶縁層として機能する。導電層222a及び導電層222bのうち、一方はソースとして機能し、他方はドレインとして機能する。
トランジスタ110aは、導電層221と導電層222aまたは導電層222bとの物理的な距離を離すことが容易なため、これらの間の寄生容量を低減することが可能である。
図6(B)に示すトランジスタ110bは、トランジスタ110aの構成に加えて、導電層223及び絶縁層218を有する。導電層223は絶縁層151上に設けられ、半導体層231と重なる。絶縁層218は、導電層223及び絶縁層151を覆って設けられている。
導電層223は、バックゲートとして機能できる。そのため、トランジスタのオン電流を高めることや、閾値電圧を制御することなどが可能である。
図6(C)乃至(E)には、2つのトランジスタを積層した構造の例を示す。積層される2つのトランジスタの構造は、それぞれ独立に決定することができ、図6(C)乃至(E)の組み合わせに限られない。
図6(C)に、トランジスタ110cとトランジスタ110dとを積層した構成を示す。トランジスタ110cは、2つのゲートを有する。トランジスタ110dは、ボトムゲート構造である。なお、トランジスタ110cは、ゲートを1つ有していてもよい(トップゲート構造)。また、トランジスタ110dはゲートを2つ有していてもよい。
トランジスタ110cは、導電層223、絶縁層218、半導体層231、導電層221、絶縁層211、導電層222a、及び導電層222bを有する。導電層223は絶縁層151上に設けられている。導電層223は、絶縁層218を介して半導体層231と重なる。絶縁層218は、導電層223及び絶縁層151を覆って設けられている。導電層221は絶縁層211を介して半導体層231と重なる。図6(C)では絶縁層211が導電層221と重なる部分にのみ設けられている例を示すが、図6(B)等に示すように、絶縁層211が半導体層231の端部を覆うように設けられていてもよい。導電層222a及び導電層222bは、絶縁層212に設けられた開口を介して、半導体層231と電気的に接続される。
トランジスタ110dは、導電層222b、絶縁層213、半導体層261、導電層263a、及び導電層263bを有する。導電層222bは、絶縁層213を介して半導体層261と重なる領域を有する。絶縁層213は、導電層222bを覆って設けられている。導電層263a及び導電層263bは、半導体層261と電気的に接続される。
導電層221及び導電層223は、それぞれ、トランジスタ110cのゲートとして機能する。絶縁層218及び絶縁層211は、トランジスタ110cのゲート絶縁層として機能する。導電層222aはトランジスタ110cのソースまたはドレインの一方として機能する。
導電層222bは、トランジスタ110cのソースまたはドレインの他方として機能する部分と、トランジスタ110dのゲートとして機能する部分と、を有する。絶縁層213は、トランジスタ110dのゲート絶縁層として機能する。導電層263a及び導電層263bのうち、一方はトランジスタ110dのソースとして機能し、他方はトランジスタ110dのドレインとして機能する。
導電層263bと導電層222bが、絶縁層213を介して重なる領域は、容量素子130として機能できる。
導電層263bは、絶縁層217及び絶縁層214に設けられた開口を介して、液晶素子170の画素電極として機能する電極191と電気的に接続されている。
図6(D)に、トランジスタ110eとトランジスタ110fとを積層した構成を示す。トランジスタ110eは、ボトムゲート構造である。トランジスタ110fは、2つのゲートを有する。トランジスタ110eは、ゲートを2つ有していてもよい。
トランジスタ110eは、導電層221、絶縁層211、半導体層231、導電層222a、及び導電層222bを有する。導電層221は絶縁層151上に設けられている。導電層221は、絶縁層211を介して半導体層231と重なる。絶縁層211は、導電層221及び絶縁層151を覆って設けられている。導電層222a及び導電層222bは、半導体層231と電気的に接続される。
トランジスタ110fは、導電層222b、絶縁層212、半導体層261、導電層223、絶縁層218、絶縁層213、導電層263a、及び導電層263bを有する。導電層222bは、絶縁層212を介して半導体層261と重なる領域を有する。絶縁層212は、導電層222bを覆って設けられている。導電層263a及び導電層263bは、絶縁層213に設けられた開口を介して、半導体層261と電気的に接続される。導電層223は、絶縁層218を介して半導体層261と重なる。絶縁層218は、導電層223と重なる部分に設けられている。
導電層221は、トランジスタ110eのゲートとして機能する。絶縁層211は、トランジスタ110eのゲート絶縁層として機能する。導電層222aはトランジスタ110eのソースまたはドレインの一方として機能する。
導電層222bは、トランジスタ110eのソースまたはドレインの他方として機能する部分と、トランジスタ110fのバックゲートとして機能する部分と、を有する。導電層223は、トランジスタ110fのゲートとして機能する。絶縁層212及び絶縁層218は、それぞれ、トランジスタ110fのゲート絶縁層として機能する。導電層263a及び導電層263bのうち、一方はトランジスタ110fのソースとして機能し、他方はトランジスタ110fのドレインとして機能する。
導電層263bは、絶縁層214に設けられた開口を介して、液晶素子170の画素電極として機能する電極191と電気的に接続されている。
図6(E)に、トランジスタ110gとトランジスタ110hとを積層した構成を示す。トランジスタ110gは、トップゲート構造である。トランジスタ110hは、2つのゲートを有する。なお、トランジスタ110gはゲートを2つ有していてもよい。
トランジスタ110gは、半導体層231、導電層221、絶縁層211、導電層222a、及び導電層222bを有する。半導体層231は絶縁層151上に設けられている。導電層221は、絶縁層211を介して半導体層231と重なる。絶縁層211は、導電層221と重ねて設けられている。導電層222a及び導電層222bは、絶縁層212に設けられた開口を介して、半導体層231と電気的に接続される。
トランジスタ110hは、導電層222b、絶縁層213、半導体層261、導電層223、絶縁層218、絶縁層217、導電層263a、及び導電層263bを有する。導電層222bは、絶縁層213を介して半導体層261と重なる領域を有する。絶縁層213は、導電層222bを覆って設けられている。導電層263a及び導電層263bは、絶縁層213に設けられた開口を介して半導体層261と電気的に接続される。導電層223は、絶縁層218を介して半導体層261と重なる。絶縁層218は、導電層223と重なる部分に設けられている。
導電層221は、トランジスタ110gのゲートとして機能する。絶縁層211は、トランジスタ110gのゲート絶縁層として機能する。導電層222aはトランジスタ110gのソースまたはドレインの一方として機能する。
導電層222bは、トランジスタ110gのソースまたはドレインの他方として機能する部分と、トランジスタ110hのバックゲートとして機能する部分と、を有する。導電層223は、トランジスタ110hのゲートとして機能する。絶縁層212及び絶縁層218は、それぞれ、トランジスタ110hのゲート絶縁層として機能する。導電層263a及び導電層263bのうち、一方はトランジスタ110hのソースとして機能し、他方はトランジスタ110hのドレインとして機能する。
導電層263bは、絶縁層214に設けられた開口を介して、液晶素子170の画素電極として機能する電極191と電気的に接続されている。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態2)
表示装置100の作製方法の一例について、図面を用いて説明する。特に、表示装置100の表示部362に着目して、作製方法を説明する。
なお、表示装置を構成する絶縁層、半導体層、導電層などは、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、真空蒸着法、パルスレーザー堆積(PLD:Pulse Laser Deposition)法、原子層成膜(ALD:Atomic Layer Deposition)法などを用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD)法や、熱CVD法でもよい。熱CVD法の例として、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法を用いてもよい。
また、表示装置を構成する絶縁層、半導体層、導電層などは、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法により形成することができる。
表示装置を構成する層(薄膜)を加工する際には、フォトリソグラフィ法等を用いて加工することができる。または、遮蔽マスクを用いた成膜方法により、島状の層を形成してもよい。または、ナノインプリント法、サンドブラスト法、リフトオフ法などにより層を加工してもよい。フォトリソグラフィ法としては、加工したい層(薄膜)上にレジストマスクを形成して、レジストマスクをマスクとして用いて、当該層(薄膜)の一部を選択的に除去し、その後レジストマスクを除去する方法と、感光性を有する層を成膜した後に、露光、現像を行って、当該層を所望の形状に加工する方法と、がある。
フォトリソグラフィ法において光を用いる場合、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外光やKrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外光(EUV:Extreme Ultra−violet)やX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。
層(薄膜)の除去(エッチング)には、ドライエッチング法、ウエットエッチング法、サンドブラスト法などを用いることができる。また、これらのエッチング方法を組み合わせて用いてもよい。
<作製方法例>
本実施の形態に示す表示装置100は、対向基板171(図8(C)参照。)とトランジスタ基板181(図14)参照。)を組み合わせて作製する。
〔対向基板171〕
まず、対向基板171の作製方法について説明する。
[工程A1]
支持基板331上に剥離層332を形成し、剥離層332上に層333を形成する(図7(A)参照。)。支持基板331としては、基板351および基板361と同様の材料を用いることができる。また、支持基板331は、光を透過する機能を有することが好ましい。特に、紫外光を透過する機能を有することが好ましい。
本実施の形態では支持基板331としてガラス基板を用いる。また、支持基板331は表示装置100の作製工程に耐えうる機械的強度を有することが好ましい。言い換えると、支持基板331は、搬送が容易となる程度に剛性を有し、かつ作製工程にかかる温度に対して耐熱性を有することが好ましい。支持基板331の厚さは、0.5mm以上5mm以下が好ましく、0.7mm以上5mm以下がより好ましい。
剥離層332は、後に照射する光を吸収する機能を有することが好ましい。剥離層332としては、金属層または金属酸化物層などを用いることができる。例えば、剥離層332として、酸化チタン(TiO)、酸化モリブデン、酸化アルミニウム、酸化タングステン、シリコンを含むインジウム錫酸化物(ITSO)、インジウム亜鉛酸化物、In−Ga−Zn酸化物などを用いることができる。
剥離層332の形成方法に特に限定は無い。例えば、スパッタリング法、プラズマCVD法、蒸着法、ゾルゲル法、電気泳動法、スプレー法等を用いて形成することができる。
剥離層332に金属酸化物を用いる場合は、金属層を成膜した後に、当該金属層に酸素を導入することで、剥離層332を形成することができる。このとき、金属層の表面のみ、または金属層全体を酸化させる。前者の場合、金属層に酸素を導入することで、金属層と金属酸化物層との積層構造が形成される。
また、金属層を、酸素を含む雰囲気下で金属層を加熱することで酸化させてもよい。この場合、酸素を含むガスを流しながら金属層を加熱することが好ましい。金属層を加熱する温度は、100℃以上500℃以下が好ましく、100℃以上450℃以下がより好ましく、100℃以上400℃以下がより好ましく、100℃以上350℃以下がさらに好ましい。
金属層を加熱する温度は、トランジスタの作製における最高温度以下が好ましい。これにより、表示装置の作製における最高温度が高くなることを防止できる。トランジスタの作製における最高温度以下とすることで、トランジスタの作製工程における製造装置などを流用することが可能となるため、追加の設備投資などを抑制することができる。したがって、生産コストが抑制された表示装置とすることができる。例えば、トランジスタの作製温度が350℃までである場合、加熱処理の温度は350℃以下とすることが好ましい。
金属層を形成し、金属層の表面にラジカル処理を行って剥離層332としてもよい。ラジカル処理では、酸素ラジカル及びヒドロキシラジカルのうち少なくとも一方を含む雰囲気に、金属層の表面を曝すことが好ましい。例えば、酸素または水蒸気(HO)のうち一方または双方を含む雰囲気でプラズマ処理を行うことが好ましい。
ラジカル処理は、プラズマ発生装置またはオゾン発生装置を用いて行うことができる。例えば、酸素プラズマ処理、水素プラズマ処理、水プラズマ処理、オゾン処理等で行うことができる。酸素プラズマ処理は、酸素を含む雰囲気下でプラズマを生成して行うことができる。水素プラズマ処理は、水素を含む雰囲気下でプラズマを生成して行うことができる。水プラズマ処理は、水蒸気(HO)を含む雰囲気下でプラズマを生成して行うことができる。特に水プラズマ処理を行うことで、剥離層332の表面または内部に水分を多く含ませることができ好ましい。
また、酸素、水素、水(水蒸気)、及び不活性ガス(代表的にはアルゴン)のうち、2種以上を含む雰囲気下でのプラズマ処理を行ってもよい。当該プラズマ処理としては、例えば、酸素と水素とを含む雰囲気下でのプラズマ処理、酸素と水とを含む雰囲気下でのプラズマ処理、水とアルゴンとを含む雰囲気下でのプラズマ処理、酸素とアルゴンとを含む雰囲気下でのプラズマ処理、または酸素と水とアルゴンとを含む雰囲気下でのプラズマ処理などが挙げられる。プラズマ処理のガスの一つとして、アルゴンガスを用いることで剥離層332にダメージを与えながら、プラズマ処理を行うことが可能となるため好適である。
2種以上のプラズマ処理を大気に暴露することなく連続で行ってもよい。例えば、アルゴンプラズマ処理を行った後に、水プラズマ処理を行ってもよい。
これにより、剥離層332の表面または内部に、水素、酸素、水素ラジカル(H)、酸素ラジカル(O)、ヒドロキシラジカル(OH)等を含ませることができる。また、これらが、加熱処理や光照射により加熱され、HOとなる。
剥離層332の厚さは、1nm以上200nm以下が好ましく、5nm以上100nm以下がより好ましく、5nm以上50nm以下がより好ましい。なお、金属層を酸化して剥離層332を形成する場合、最終的に形成される剥離層332の厚さは、成膜した金属層の厚さよりも厚くなることがある。
後に行う、剥離層332と層333の分離前または分離中に、剥離層332と層333との界面に水を含む液体を供給することで、分離に要する力を低減させることができる。剥離層332と当該液体との接触角が小さいほど、分離に要する力を低減させることができる。具体的には、剥離層332の水を含む液体との接触角は、0°より大きく60°以下が好ましく、0°より大きく50°以下がより好ましい。なお、水を含む液体に対する濡れ性が極めて高い場合(例えば接触角が約20°以下の場合)には、接触角の正確な値の取得が困難なことがある。剥離層332は、水を含む液体に対する濡れ性が高いほど好適であるため、上記接触角の正確な値が取得できないほど、水を含む液体に対する濡れ性が高くてもよい。
剥離層332には、酸化チタン、酸化タングステン等が好適である。酸化チタンを用いると、酸化タングステンよりもコストを低減でき、好ましい。
剥離層332は光触媒機能を有してもよい。光触媒機能を有する金属酸化物層に光を照射することで、光触媒反応を生じさせることができる。これにより、金属酸化物層と樹脂層との結合力を弱め、容易に分離できる場合がある。剥離層332には、剥離層332を活性化させる波長の光を適宜照射することができる。例えば、剥離層332に紫外光を照射する。例えば、剥離層332の成膜後、他の層を介することなく、剥離層332に直接、紫外光を照射してもよい。紫外光の照射には、紫外光ランプを好適に用いることができる。紫外光ランプとしては、水銀ランプ、水銀キセノンランプ、メタルハライドランプ等が挙げられる。または、分離前に行うレーザ照射工程によって、剥離層332を活性化させてもよい。
剥離層332として、金属元素もしくは窒素を添加した酸化チタンを用いてもよい。これらの元素を添加した酸化チタンを用いて剥離層332を形成すると、紫外光でなく、可視光によって剥離層332と層333を分離することができる。
層333は、各種樹脂材料(樹脂前駆体を含む)を用いて形成することができる。層333は、熱硬化性を有する材料を用いて形成することが好ましい。層333は、感光性を有する材料を用いて形成してもよく、感光性を有さない材料(非感光性の材料ともいう)を用いて形成してもよい。
感光性を有する材料を用いると、光を用いたフォトリソグラフィ法により、層333の一部を除去し、所望の形状の層333を形成することができる。
層333は、ポリイミド樹脂またはポリイミド樹脂前駆体を含む材料を用いて形成されることが好ましい。層333は、例えば、ポリイミド樹脂と溶媒を含む材料、またはポリアミック酸と溶媒を含む材料等を用いて形成できる。ポリイミドは、表示装置の平坦化膜等に好適に用いられる材料であるため、成膜装置や材料を共有することができる。そのため本発明の一態様の構成を実現するために新たな装置や材料を必要としない。
そのほか、層333の形成に用いることができる樹脂材料としては、例えば、アクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。
層333は、スリットコータまたはスピンコータなどを用いて形成することが好ましい。スピンコート法を用いることで、大判基板に薄い膜を均一に形成することができる。
層333は、粘度が5cP以上500cP未満、好ましくは5cP以上100cP未満、より好ましくは10cP以上50cP以下の溶液を用いて形成することが好ましい。溶液の粘度が低いほど、塗布が容易となる。また、溶液の粘度が低いほど、気泡の混入を抑制でき、良質な層を形成できる。
次に、層333に対して加熱処理を行い、層333を硬化させる。加熱処理は、例えば、加熱装置のチャンバーの内部に、酸素、窒素、及び希ガス(アルゴンなど)のうち一つまたは複数を含むガスを流しながら行うことができる。または、加熱処理は、大気雰囲気下で加熱装置のチャンバー、ホットプレート等を用いて行うことができる。
大気雰囲気下や酸素を含むガスを流しながら加熱処理を行うと、層333が酸化により着色し、可視光に対する透過性が低下することがある。そのため、窒素ガスを流しながら、加熱を行うことが好ましい。これにより、層333の可視光に対する透過性を高めることができる。
加熱処理の温度は、トランジスタの作製における最高温度以下とすることが好ましい。例えば、トランジスタの作製温度が350℃までである場合、加熱処理の温度は350℃以下とすることが好ましい。
加熱処理の時間は、例えば、5分以上24時間以下が好ましく、30分以上12時間以下がより好ましく、1時間以上6時間以下がさらに好ましい。なお、加熱処理の時間はこれに限定されない。例えば、加熱処理を、RTA(Rapid Thermal Annealing)法を用いて行う場合などは、5分未満としてもよい。
加熱装置としては、電気炉や、抵抗発熱体などの発熱体からの熱伝導または熱輻射によって被処理物を加熱する装置等、様々な装置を用いることができる。例えば、GRTA(Gas Rapid Thermal Anneal)装置、LRTA(Lamp Rapid Thermal Anneal)装置等のRTA装置を用いることができる。LRTA装置は、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、高圧水銀ランプなどのランプから発する光(電磁波)の輻射により、被処理物を加熱する装置である。GRTA装置は、高温のガスを用いて加熱処理を行う装置である。RTA装置を用いることによって、処理時間が短縮することができるので、量産する上で好ましい。また、加熱処理はインライン型の加熱装置を用いて行ってもよい。
加熱処理を行う前に、層333に含まれる溶媒を除去するための熱処理(プリベーク処理ともいう)を行ってもよい。プリベーク処理の温度は用いる材料に応じて適宜決定することができる。例えば、50℃以上180℃以下、80℃以上150℃以下、または90℃以上120℃以下で行うことができる。または、加熱処理がプリベーク処理を兼ねてもよく、加熱処理によって、層333に含まれる溶媒を除去してもよい。
層333の厚さは、0.01μm以上10μm未満であることが好ましく、0.1μm以上5μm以下であることがより好ましく、0.5μm以上3μm以下であることがさらに好ましい。層333を薄く形成することで、低コストで表示装置を作製できる。
層333の熱膨張係数は、0.1ppm/℃以上50ppm/℃以下であることが好ましく、0.1ppm/℃以上20ppm/℃以下であることがより好ましく、0.1ppm/℃以上10ppm/℃以下であることがさらに好ましい。層333の熱膨張係数が低いほど、加熱により、トランジスタ等を構成する層にクラックが生じることや、トランジスタ等が破損することを抑制できる。
剥離層332と層333の分離は、上記の光照射による分離方法以外に、物理的に分離する方法がある。
剥離層332と層333を物理的に分離する場合は、例えば、剥離層332としてタングステンなどの高融点金属材料を含む層と、当該金属材料の酸化物を含む層を積層して用いる。高融点金属材料を含む金属層を形成し、該金属層の表面を酸素プラズマ処理などにより酸化させてもよい。
また、剥離層332と層333を物理的に分離する場合は、例えば、層333として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコンなどの酸素を含む無機絶縁材料を用いる。
例えば、剥離層332を形成した支持基板331に、垂直方向に引っ張る力を加えることにより、剥離層332と層333を分離することができる。
光照射による分離方法と同様に物理的に分離する方法においても、分離時に、分離界面に水や水溶液など、水を含む液体を添加し、該液体が分離界面に浸透するように分離を行うことで、分離を容易に行うことができる。また、分離時に生じる静電気が、トランジスタなどの機能素子に悪影響を及ぼすこと(半導体素子が静電気により破壊されるなど)を抑制できる。
供給する液体としては、水(好ましくは純水)、中性、アルカリ性、もしくは酸性の水溶液や、塩が溶けている水溶液が挙げられる。また、エタノール、アセトン等が挙げられる。また、各種有機溶剤を用いてもよい。
なお、光照射による分離方法を用いる場合は、剥離層332を形成しなくても構わない。ただし、剥離層332を形成することにより、照射する光の吸収を高めることができる。また、剥離層332を形成することにより、分離工程の歩留まりを高めることができる。よって、表示装置の生産性を高めることができる。
また、層333に水溶性の樹脂材料を用いてもよい。層333に水溶性の樹脂材料を用いることで、例えば、支持基板331の分離工程を洗浄工程で兼ねることができる。よって、光照射工程、物理的に引き剥がす工程などを削減できる。また、後に行なう層333の除去工程も削減できる。
[工程A2]
次に、表面に反射防止層135が設けられた基板361を、層333上に設ける(図7(B)参照。)。この時、反射防止層135が、層333と基板361で挟まれるように配置する。基板361の厚さは、0.01mm以上0.5mm未満が好ましく、0.1mm以上0.4未満がより好ましい。基板361の厚さを0.5mm未満にすることで、表示装置100の薄型化および軽量化が実現できる。また、基板361の研磨工程を削減することができるため、表示装置100の生産性を高めることができる。
[工程A3]
次に、基板361上に偏光板123を設け、偏光板123上に光拡散層122を設ける(図7(C)参照。)。
[工程A4]
次に、光拡散層122上にタッチセンサ370を設ける(図8(A)参照。)。本実施の形態では、タッチセンサ370は導電層374、絶縁層375、導電層376a、導電層376b、導電層377、および絶縁層378を有する。
導電層374は光拡散層122上に設けられている。また、導電層374上に絶縁層375が設けられている。また、絶縁層375上に導電層376a、導電層376b、および導電層377が設けられている。導電層376aは、絶縁層375に設けられた開口で導電層374と電気的に接続している。また、導電層376bは、絶縁層375に設けられた他の開口で導電層374と電気的に接続されている。導電層376aと導電層376bは、導電層374を介して電気的に接続されている。
導電層376a、導電層376b、および導電層377は、タッチセンサ370を構成する配線として機能する。導電層376a、導電層376b、および導電層377は、透光性を有する導電性材料で形成することが好ましい。ただし、一般に、透光性を有する導電性材料は、透光性を有さない金属材料よりも抵抗率が高い。よって、タッチセンサの大型化、高精細化を実現するため、導電層376a、導電層376b、および導電層377を抵抗率が低い金属材料で形成する場合がある。
また、導電層376a、導電層376b、および導電層377を金属材料で形成する場合、外光反射を低減することが好ましい。一般的に金属材料は反射率が大きい材料であるが、酸化処理などを施すことにより反射率を小さくして、暗色にすることができる。
また、導電層376a、導電層376b、および導電層377を、金属層と反射率の小さい層(「暗色層」ともいう。)の積層としてもよい。暗色層は抵抗率が高いため、金属層と暗色層の積層にすることが好ましい。暗色層の一例としては、酸化銅を含む層、塩化銅または塩化テルルを含む層などがある。また、暗色層を、Ag粒子、Agファイバー、Cu粒子等の金属微粒子、カーボンナノチューブ(CNT)、またはグラフェン等のナノ炭素粒子、ならびに、PEDOT、ポリアニリン、またはポリピロールなどの導電性高分子などを用いて形成してもよい。
また、タッチセンサ370として、抵抗膜方式または静電容量方式のタッチセンサのほか、光電変換素子を用いた光学式のタッチセンサなどを用いてもよい。静電容量方式としては、表面型静電容量方式、投影型静電容量方式等がある。投影型静電容量方式としては、主に駆動方式の違いから、自己容量方式、相互容量方式などがある。相互容量方式を用いると同時多点検出が可能となるため好ましい。
[工程A5]
次に、タッチセンサ370上に着色層131と遮光層132を形成する(図8(B)参照。)。着色層131は、感光性の材料を用いて形成することで、フォトリソグラフィ法等により島状に加工することができる。なお、図2に示す表示装置100では、回路364等と重ねて遮光層132を設けている。なお、着色層131と遮光層132は、必要に応じて設ければよい。よって、着色層131と遮光層132の少なくとも一方を設けない場合もありうる。
[工程A6]
次に、着色層131及び遮光層132上に、絶縁層121を形成する。
絶縁層121は、平坦化層として機能することが好ましい。絶縁層121には、アクリル、エポキシなどの樹脂を好適に用いることができる。絶縁層121として無機絶縁層を用いてもよい。
[工程A7]
次に、電極113を形成する。電極113は、導電層を形成した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することにより形成できる。電極113は、可視光を透過する導電材料を用いて形成する。
[工程A8]
次に、電極113上に、絶縁層117を形成する。絶縁層117は、透光性を有する材料を用いて形成することが好ましい。絶縁層117は、有機樹脂材料を用いて形成することが好ましい。
[工程A9]
次に、電極113及び絶縁層117上に、配向膜133bを形成する(図8(C)参照。)。配向膜133bは、樹脂等の薄膜を形成した後に、配向処理(ラビング処理または光配向処理など)を行うことで形成できる。
このようにして、対向基板171を作製することができる。なお、本実施の形態では、タッチセンサ370を対向基板171側に設けているが、タッチセンサ370をトランジスタ基板181側に設けてもよい。また、目的、用途によっては、タッチセンサ370を設けなくてもよい。
〔トランジスタ基板181〕
続いて、トランジスタ基板181の作製方法について説明する。トランジスタ基板181は、要素基板182と要素基板183を組み合わせて作製する。
はじめに、要素基板182の作製方法について説明する。
[工程B1]
支持基板334上に剥離層335を形成し、剥離層335上に層336を形成する(図9(A)参照。)。支持基板334としては、支持基板331と同様の材料を用いることができる。また、支持基板334は、紫外光を透過する機能を有することが好ましい。剥離層335は、剥離層332と同様の材料を用いることができる。層336は、層333と同様の材料を用いることができる。
[工程B2]
次に、層336上に絶縁層337を形成し、絶縁層337上に電極311aを形成し、電極311a上に電極311bを形成する(図9(B)参照。)。電極311bは、電極311a上に開口部451を有する。電極311a及び電極311bは、それぞれ、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することにより形成できる。電極311aは、可視光を透過する導電材料を用いて形成する。電極311bは、可視光を反射する導電材料を用いて形成する。なお、絶縁層337は、必要に応じて設ければよい。よって、絶縁層337を設けない場合もありうる。
[工程B3]
次に、絶縁層220を形成する(図9(C)参照。)。そして、絶縁層220に電極311bに達する開口を設ける。
絶縁層220は、不純物が支持基板334側から後に形成するトランジスタや表示素子に拡散することを防ぐバリア層として用いることができる。例えば、層336に有機樹脂材料を用いる場合、絶縁層220は、層336を加熱した際に、層336に含まれる水分等がトランジスタや表示素子に拡散することを防ぐことが好ましい。そのため、絶縁層220は、不純物に対するバリア性が高い材料を用いることが好ましい。
[工程B4]
次に、絶縁層220上に、トランジスタ206、トランジスタ205、及び容量素子203を形成する。
ここでは、トランジスタの半導体層として酸化物半導体層を用いた、ボトムゲート構造のトランジスタを作製する場合を示す。トランジスタ205は、トランジスタ206の構成に導電層223を追加した構成であり、2つのゲートを有する。
トランジスタ206および導電層221bの形成を例として、具体的に説明する。まず、絶縁層220上に、導電層221a及び導電層221bを形成する。導電層221a及び導電層221bは、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することで形成できる。ここで、絶縁層220の開口を介して、導電層221bと電極311bが電気的に接続する。
続いて、絶縁層211を形成する。絶縁層211としては、例えば、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜などの無機絶縁膜を用いることができる。また、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、及び酸化ネオジム膜等を用いてもよい。また、上述の絶縁膜を2以上積層して用いてもよい。
無機絶縁膜は、成膜温度が高いほど緻密でバリア性の高い膜となるため、高温で形成することが好ましい。無機絶縁膜の成膜時の基板温度は、室温(25℃)以上350℃以下が好ましく、100℃以上300℃以下がさらに好ましい。
続いて、半導体層231を形成する。本実施の形態では、半導体層231として、酸化物半導体層を形成する。酸化物半導体層は、酸化物半導体膜を成膜した後、レジストマスクを形成し、当該酸化物半導体膜をエッチングした後にレジストマスクを除去することで形成できる。
酸化物半導体膜の成膜時の基板温度は、350℃以下が好ましく、室温以上200℃以下がより好ましく、室温以上130℃以下がさらに好ましい。
酸化物半導体膜は、不活性ガス及び酸素ガスのいずれか一方を用いて成膜することができる。なお、酸化物半導体膜の成膜時における酸素の流量比(酸素分圧)に、特に限定はない。ただし、電界効果移動度が高いトランジスタを得る場合においては、酸化物半導体膜の成膜時における酸素の流量比(酸素分圧)は、0%以上30%以下が好ましく、5%以上30%以下がより好ましく、7%以上15%以下がさらに好ましい。
酸化物半導体膜は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウム及び亜鉛を含むことが好ましい。
酸化物半導体は、エネルギーギャップが2eV以上であることが好ましく、2.5eV以上であることがより好ましく。3eV以上であることがさらに好ましい。このように、エネルギーギャップの広い酸化物半導体を用いることで、トランジスタのオフ電流を低減することができる。
酸化物半導体膜は、スパッタリング法により形成することができる。そのほか、例えばPLD法、PECVD法、熱CVD法、ALD法、真空蒸着法などを用いてもよい。
続いて、導電層222a及び導電層222bを形成する。導電層222a及び導電層222bは、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することにより形成できる。導電層222a及び導電層222bは、それぞれ、半導体層231と接続される。ここで、トランジスタ206が有する導電層222aは、導電層221bと電気的に接続される。これにより、接続部207では、電極311bと導電層222aを電気的に接続することができる。
なお、導電層222a及び導電層222bの加工の際に、レジストマスクに覆われていない半導体層231の一部がエッチングにより薄膜化する場合がある。
以上のようにして、トランジスタ206を作製できる。トランジスタ206において、導電層221aの一部はゲートとして機能し、絶縁層211の一部はゲート絶縁層として機能し、導電層222a及び導電層222bは、それぞれソースまたはドレインのいずれか一方として機能する。
[工程B5]
次に、トランジスタ206を覆う絶縁層212を形成し、絶縁層212上に導電層223を形成する。次に、絶縁層213を形成する。
また、絶縁層212として、酸素を含む雰囲気下で成膜した酸化シリコン膜や酸化窒化シリコン膜等の酸化物絶縁膜を用いることが好ましい。さらに、当該酸化シリコン膜や酸化窒化シリコン膜上に、絶縁層213として、窒化シリコン膜などの酸素を拡散、透過しにくい絶縁膜を積層することが好ましい。酸素を含む雰囲気下で形成した酸化物絶縁膜は、加熱により多くの酸素を放出しやすい絶縁膜とすることができる。このような酸素を放出する酸化絶縁膜と、酸素を拡散、透過しにくい絶縁膜を積層した状態で、加熱処理を行うことにより、酸化物半導体層に酸素を供給することができる。その結果、酸化物半導体層中の酸素欠損、及び酸化物半導体層と絶縁層212の界面の欠陥を修復し、欠陥準位を低減することができる。これにより、極めて信頼性の高い表示装置を実現できる。
[工程B6]
次に、必要に応じて、絶縁層213上に、着色層134を形成してもよい。(図示せず。)。着色層134は、開口部451と重なるように配置する。着色層134は、着色層131と同様の方法により形成することができる。着色層134が不要な場合は、本工程は行われない。
[工程B7]
次に、絶縁層214を形成する(図10(A)参照。)。絶縁層214は、後に形成する表示素子の被形成面となる層であるため、平坦化層として機能することが好ましい。絶縁層214は、絶縁層121に用いることのできる樹脂または無機絶縁膜を援用できる。
[工程B8]
次に、絶縁層212、絶縁層213、及び絶縁層214に、トランジスタ205が有する導電層222bに達する開口を形成する。
[工程B9]
次に、電極191を形成する。電極191は、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することにより形成できる。ここで、トランジスタ205が有する導電層222bと電極191が電気的に接続する。電極191は、可視光を透過する導電材料を用いて形成する。
[工程B10]
次に、絶縁層214上に絶縁層118を形成する(図10(B)参照。)。絶縁層118は、絶縁層117と同様の材料および方法で形成することができる。
[工程B11]
次に、電極191及び絶縁層118上に、配向膜194aを形成する。配向膜194aは、樹脂等の薄膜を形成した後に、配向処理(ラビング処理または光配向処理など)を行うことで形成できる。
このようにして、要素基板182を作製することができる。
続いて、要素基板183の作製方法について説明する。
[工程C1]
支持基板381上に剥離層382を形成し、剥離層382上に層383を形成する(図11(A)参照。)。支持基板381としては、支持基板331と同様の材料を用いることができる。
剥離層382は、剥離層332と同様の材料および方法で形成することができる。層383は、層333と同様の材料および方法で形成することができる。
[工程C2]
次に、層383上に基板351を設ける(図11(B)参照。)。基板351は、基板361と同様の材料を用いればよい。
[工程C3]
次に、基板351上に電極193を形成する。電極193は、電極191と同様の材料および方法で作製すればよい。
[工程C4]
次に、電極193上に、配向膜194bを形成する。配向膜194bは、樹脂等の薄膜を形成した後に、配向処理(ラビング処理または光配向処理など)を行うことで形成できる。
このようにして、要素基板183を作製することができる。
続いて、要素基板182と要素基板183を組み合わせて、トランジスタ基板181を作製する方法について説明する。
[工程D1]
要素基板182と要素基板183を、配向膜194aと配向膜194bが向かい合うように液晶192を挟んで貼り合わせる(図12(A)参照。)。なお、図12(A)では示さないが、図2などに示すように、要素基板182と要素基板183は接着層142で貼り合わされる。接着層142には、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤等の各種硬化型接着剤を用いることができる。また、接着シート等を用いてもよい。
[工程D2]
次に、支持基板334を剥離層335とともに層336から分離する。
なお、前述した光照射による分離方法、および物理的に分離する方法ともに、分離前に、層336の一部を支持基板334または剥離層335から分離することで、分離の起点を形成してもよい。例えば、支持基板331と層333との間に、刃物などの鋭利な形状の器具を差し込むことで分離の起点を形成してもよい。または、支持基板334側もしくは基板351側から鋭利な形状の器具で層336に切り込みを入れ、分離の起点を形成してもよい。または、レーザアブレーション法等のレーザを用いた方法で、分離の起点を形成してもよい。
本実施の形態では、光照射による分離方法について説明する。支持基板334側から剥離層335に紫外光を照射する(図12(B)参照。)。紫外光の照射は、線状レーザ装置を用いて行うことが好ましい。線状レーザ装置は、低温ポリシリコン(LTPS(Low Temperature Poly−Silicon))等の製造ラインで使用されている。よって、LTPS等の製造ラインの有効利用が可能である。線状レーザはとは、矩形長尺状に集光(線状レーザビームに成形)されたレーザ光である。
本実施の形態では、線状レーザ装置を用いる。具体的には、支持基板334と線状のレーザ光を、線状のレーザ光の長軸方向と垂直な方向かつ支持基板334の表面と平行な方向に相対的に移動させる。レーザ光が照射された領域は、剥離層335と層336の結合力が低下する。
照射する光の波長は、180nm以上450nm以下が好ましい。特に、波長領域が308nm、またはその近傍の波長を含むことが好ましい。光のエネルギー密度は、250mJ/cm以上400mJ/cm以下が好ましく、250mJ/cm以上360mJ/cm以下がより好ましい。
レーザ装置を用いて光を照射する場合、同一箇所に照射されるレーザ光のショット数は、1ショット以上50ショット以下とすることができ、1ショットより多く10ショット以下が好ましく、1ショットより多く5ショット以下がより好ましい。
ビームの短軸方向の両端には、光の強度が低い部分が存在する。そのため、当該光の強度が低い部分の幅以上、一つのショットと次のショットの間にオーバーラップする部分を設けることが好ましい。そのため、レーザ光のショット数は、1.1ショット以上とすることが好ましく、1.25ショット以上とすることがより好ましい。
なお、本明細書中、レーザ光のショット数とは、ある点(領域)に照射されるレーザ光の照射回数を指し、ビーム幅、スキャン速度、周波数、またはオーバーラップ率などで決定される。また、線状のビームをあるスキャン方向に移動させているパルスとパルスの間、即ち、一つのショットと次のショットの間にオーバーラップする部分があり、その重なる比率がオーバーラップ率である。なお、オーバーラップ率が100%に近ければ近いほどショット数は多く、離れれば離れるほどショット数は少なくなり、スキャン速度が速ければ速いほどショット数は少なくなる。
上記のレーザ光のショット数が1.1ショットとは、連続する2つのショットの間にビームの10分の1程度の幅のオーバーラップを有することを示し、オーバーラップ率10%といえる。同様に、1.25ショットとは、連続する2つのショットの間にビームの4分の1程度の幅のオーバーラップを有することを示し、オーバーラップ率25%といえる。
ちなみに、LTPSのレーザ結晶化の工程で照射する光のエネルギー密度は高く、例えば350mJ/cm以上400mJ/cm以下が挙げられる。また、レーザのショット数も多く必要であり、例えば10ショット以上100ショット以下が挙げられる。
一方、本実施の形態において、剥離層335と層336を分離するために行う光の照射は、レーザ結晶化の工程で用いる条件よりも低いエネルギー密度、または少ないショット数で行うことができる。そのため、レーザ装置での処理可能な基板枚数を増やすことができる。また、レーザ装置のメンテナンスの頻度の低減など、レーザ装置のランニングコストの低減が可能となる。したがって、表示装置などの作製コストを低減することができる。
また、光の照射が、レーザ結晶化の工程で用いる条件よりも低いエネルギー密度、または少ないショット数で行われることから、基板がレーザ光の照射による受けるダメージを低減できる。そのため、基板を一度使用しても、強度が低下しにくく、基板を再利用できる。したがって、コストを抑えることが可能となる。
また、本実施の形態では、支持基板334と層336の間に剥離層335を配置している。剥離層335を用いることで、剥離層335を用いない場合に比べて、光の照射を、低いエネルギー密度、または少ないショット数で行うことができることがある。
作製基板を介して光を照射する際、作製基板の光照射面にゴミなどの異物が付着していると、光の照射ムラが生じ、剥離性が低い部分が形成され、金属酸化物層と樹脂層とを分離する工程の歩留まりが低下することがある。そのため、光を照射する前、または光を照射している間に、光照射面を洗浄することが好ましい。例えば、アセトンなどの有機溶剤、水等を用いて作製基板の光照射面を洗浄することができる。また、エアナイフを用いて気体を噴きつけながら光を照射してもよい。これにより、光の照射ムラを低減し、分離の歩留まりを向上させることができる。
[工程D3]
続いて、支持基板334を剥離層335とともに層336から分離する(図11(B)参照。)。
分離前または分離中に、分離界面に水を含む液体を供給することが好ましい。分離界面に水が存在することで、剥離層335と層336との密着性もしくは接着性をより低下させ、分離に要する力を低減させることができる。また、分離界面に水を含む液体を供給することで、剥離層335と層336の間の結合を弱めるもしくは切断する効果を奏することがある。液体との化学結合を利用して、剥離層335と層336の間の結合を切って分離を進行させることができる。例えば、剥離層335と層336の間に水素結合が形成されている場合、水を含む液体が供給されることで、水と、剥離層335または層336との間に水素結合が形成され、剥離層335と層336の間の水素結合が切れることが考えられる。
剥離層335は、表面張力が小さく、水を含む液体に対する濡れ性が高いことが好ましい。剥離層335の表面全体に水を含む液体を行き渡らせ、分離界面に水を含む液体を容易に供給できる。剥離層335全体に水が広がることで、均一な剥離ができる。
分離界面に水を含む液体が存在することで、分離時に生じる静電気が、被剥離層に含まれる機能素子に悪影響を及ぼすこと(半導体素子が静電気により破壊されるなど)を抑制できる。また、イオナイザなどを用いて、分離により露出した被剥離層の表面を除電してもよい。
分離界面に液体を供給した場合は、分離により露出した被剥離層の表面を乾燥してもよい。
[工程D4]
次に、層336と絶縁層337を除去する。例えば、ドライエッチング法などを用いて層336と絶縁層337を除去することができる。これにより、電極311aが露出する(図12(B)参照。)。図12(B)では、除去された層336および絶縁層337を破線で示している。
[工程D5]
次に、露出した電極311aの表面に、配向膜133aを形成する(図13参照。)。配向膜133aは、樹脂等の薄膜を成膜した後に、配向処理(ラビング処理または光配向処理など)を行うことにより形成できる。このようにして、トランジスタ基板181を作製することができる。
〔表示装置100〕
次に、対向基板171とトランジスタ基板181を用いた表示装置100の作製方法について説明する。
[工程E1]
対向基板171とトランジスタ基板181を、液晶112を挟んで貼り合わせる(図15参照。)。なお、図15では示さないが、図2などに示すように、基板351と基板361とは接着層141で貼り合わされる。接着層141は、接着層142に用いることのできる材料を援用できる。
[工程E2]
次に、支持基板331を剥離層332とともに層333から分離するために、支持基板331側から剥離層332に紫外光を照射する(図15参照。)。紫外光の照射は、工程D2と同様に行えばよい。
[工程E3]
次に、支持基板331を剥離層332とともに層333から分離する(図16および工程D3参照。)。
[工程E4]
次に、層333を除去する。例えば、ドライエッチング法などを用いて層333を除去することができる。これにより、反射防止層135が露出する(図17(A)参照。)。なお、図17(A)では除去された層333を破線で示している。
[工程E5]
次に、支持基板381を剥離層382とともに層383から分離するために、支持基板381側から剥離層382に紫外光を照射する(図17(B)参照。)。紫外光の照射は、工程D2と同様に行えばよい。
[工程E6]
次に、支持基板381を剥離層382とともに層383から分離する(図18(A)および工程D3参照。)。
[工程E7]
次に、層383を除去する。例えば、ドライエッチング法などを用いて層383を除去することができる。これにより、基板351が露出する。
[工程E8]
次に、基板351に偏光板124を設ける。
表示装置100が有する液晶素子180は、一部が画素電極として機能する電極311a(及び電極311b)、液晶112、ならびに、一部が共通電極として機能する電極113が積層された構成を有する。液晶素子180は、着色層131と重なるように設けられる。
以上により、表示装置100を作製することができる。本発明の一態様によれば、薄型化および軽量化のための基板研磨工程を省略することができる。よって、表示装置の生産性を高めることができる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態3)
本実施の形態では、対向基板171と異なる構成を有する対向基板171Aについて図面を用いて説明する。なお、説明の繰り返しを減らすため、対向基板171と異なる点について主に説明する。
光拡散層122および偏光板123は、長時間の加熱処理により性能が低下する場合がある。本実施の形態に示す対向基板171Aの作製によれば、作製時に光拡散層122および偏光板123に加わる加熱処理を軽減することができる。よって、光拡散層122および偏光板123の性能低下を防ぐことができる。
対向基板171Aは、対向基板172および対向基板173を用いて作製する。続いて、対向基板171Aの作製方法について説明する。本実施の形態では、対向基板171Aの、表示装置100の表示部362に相当する領域に着目して説明する。
〔対向基板172〕
まず、対向基板172の作製方法について説明する。
[工程F1]
支持基板341上に剥離層342を形成し、剥離層342上に層343を形成する(図19(A)参照。)。支持基板341には、支持基板331と同様の材料を用いればよい。剥離層342は、剥離層332と同様の材料および方法で形成すればよい。層343は、層333と同様の材料および方法で形成すればよい。
[工程F2]
次に、層343上に絶縁層338を形成する(図19(B)参照。)。絶縁層338は、上記実施の形態に示した絶縁層と同様の材料および方法で形成すればよい。なお、絶縁層338として、無機絶縁層を用いることが好ましい。なお、絶縁層338は必要に応じて設ければよい。よって、絶縁層338を設けない場合もありうる。
[工程F3]
次に、絶縁層338上に電極113を形成する(図19(B)参照。)。電極113は、導電層を形成した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することにより形成できる。電極113は、可視光を透過する導電材料を用いて形成する。
[工程F4]
次に、電極113上に着色層131と遮光層132を形成する(図19(C)参照。)。なお、着色層131と遮光層132は、必要に応じて設ければよい。よって、着色層131と遮光層132の少なくとも一方を設けない場合もありうる。
[工程F5]
次に、着色層131及び遮光層132上に、絶縁層121を形成する(図19(C)参照。)。
[工程F6]
次に、光拡散層122上にタッチセンサ370を設ける(図20(A)参照。)。本実施の形態においても、タッチセンサ370は導電層374、絶縁層375、導電層376a、導電層376b、導電層377、および絶縁層378を有する。なお、本実施の形態では、タッチセンサ370を対向基板172側に設けているが、タッチセンサ370をトランジスタ基板181側に設けてもよい。また、目的、用途によっては、タッチセンサ370を設けなくてもよい。
[工程F7]
次に、タッチセンサ370上に光拡散層122を設け、光拡散層122上に偏光板123を設ける(図20(B)参照。)。
このようにして、対向基板172を作製することができる。
〔対向基板173〕
続いて、対向基板173の作製方法について説明する。
[工程G1]
工程A1と同様に、支持基板331上に剥離層332を形成し、剥離層332上に層333を形成する(図21(A)参照。)。
[工程G2]
次に、工程A2と同様に、表面に反射防止層135が設けられた基板361を、層333上に設ける(図21(B)参照。)。このようにして、対向基板173を作製することができる。
〔対向基板171A〕
次に、対向基板172と対向基板173を用いた対向基板171Aの作製方法について説明する。
[工程H1]
基板361と偏光板123が向かい合うように、対向基板172と対向基板173を、接着層143で貼り合わせる(図22(A)参照。)。接着層143は、接着層142に用いることのできる材料を援用できる。
[工程H2]
次に、支持基板341を剥離層342とともに層343から剥離するために、支持基板341側から剥離層342に紫外光を照射する。紫外光の照射は、工程B14と同様に行えばよい。
[工程H3]
次に、支持基板341を剥離層342とともに層343から分離する(図22(B)および工程B15参照。)。
[工程H4]
次に、層343と絶縁層338を除去する。例えば、ドライエッチング法などを用いて層336と絶縁層337を除去することができる。これにより、電極113が露出する(図23(A)参照。)。図23(A)では、除去された層343および絶縁層338を破線で示している。
[工程H5]
次に、電極113上に絶縁層117を形成する。
[工程H6]
次に、電極113及び絶縁層117上に、配向膜133bを形成する(図23(B)参照。)。配向膜133bは、樹脂等の薄膜を形成した後に、配向処理(ラビング処理または光配向処理など)を行うことで形成できる。
このようにして、対向基板171Aを作製することができる。
〔表示装置100D〕
対向基板171Aとトランジスタ基板181を用いて、上記実施の形態に示した表示装置100の作製方法と同様の方法で表示装置100Dを作製することができる。表示装置100Dの断面を図24に示す。表示装置100Dは表示装置100の変形例である。対向基板171Aに関連する構成以外の構成については表示装置100と同様のため、詳細な説明を省略する。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態4)
一般に、表示装置の生産性を高めるため、1つのマザー基板(支持基板)上に複数の表示装置を同時に作製し、後の工程で分離する方法(「多面取り法」ともいう。)が行われている。本実施の形態では、本発明の一態様の表示装置を多面取り法で作製する方法について説明する。
上記実施の形態で開示した通り、本発明の一態様で用いる基板361の厚さは、0.01mm以上0.5mm未満が好ましく、0.1mm以上0.4未満がより好ましい。一方、基板が薄くなるにつれて、基板搬送時などに破損しやすくなる。このため、基板361の大きさを、支持基板331と同程度にすることが困難となる場合がある。
このため、本発明の一態様の表示装置を多面取り法で作製する場合は、後に分離する大きさと同程度の大きさの基板361を、支持基板331上に複数配置する。
支持基板331の大きさは、例えば、第6世代(1500mm×1850mm)、第7世代(1870mm×2200mm)、第8世代(2200mm×2400mm)、第9世代(2400mm×2800mm)、第10世代(2950mm×3400mm)などが挙げられる。ただし、支持基板331の大きさは、上記の大きさに限定されない。
また、基板361の大きさは、基板搬送時などに破損しない大きさであれば、表示装置100の大きさに対応した任意の大きさとすればよい。なお、基板361が支持基板331よりも小さいことは言うまでもない。
図25(A)は、支持基板331上に複数の基板361をマトリクス状に配置する例を示している。また、図25(B)は、図25(A)中にA1−A2の一点差線で示す部位の断面構成例を示している。
大面積の支持基板331上に複数の基板361をマトリクス状に配置する場合も、前述した工程A1と同様に行えばよい。
図25(C)に、本発明の一態様の表示装置を多面取り法で作製するための対向基板171Mの断面構成例を示す。図25(C)は、図25(A)中にA1−A2の一点差線で示す部位に相当する断面図である。なお、図25(C)は、後に表示装置の表示部362となる部分に着目した図である。対向基板171Mは、前述した工程A1以降の作製工程を参考にして作製することができる。
また、前述した工程B1以降の作製工程を参考にして、本発明の一態様の表示装置を多面取り法で作製するためのトランジスタ基板181M(図示せず。)を作製する。その後、対向基板171Mとトランジスタ基板181Mを前述した工程C1と同様に貼りあわせる。なお、前述した工程C3以降の工程は、複数の表示装置を個々に分離した後に行ってもよいし、分離する前に行ってもよい。
本実施の形態に示す多面取り法を用いることにより、表示装置の生産性を高めることができる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態5)
本実施の形態では、表示装置100の構成例について説明する。
表示装置100は、様々な形態を用いること、または様々な表示素子を有することが出来る。表示素子の一例としては、EL(エレクトロルミネッセンス)素子(有機EL素子、無機EL素子、または、有機物および無機物を含むEL素子)、LED(白色LED、赤色LED、緑色LED、青色LEDなど)、トランジスタ(電流に応じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク、電気泳動素子、GLV(グレーティングライトバルブ)、MEMS(マイクロ・エレクトロ・メカニカル・システム)を用いた表示素子、DMD(デジタルマイクロミラーデバイス)、DMS(デジタル・マイクロ・シャッター)、MIRASOL(登録商標)、IMOD(インターフェロメトリック・モジュレーション)素子、シャッター方式のMEMS表示素子、光干渉方式のMEMS表示素子、エレクトロウェッティング素子、圧電セラミックディスプレイ、カーボンナノチューブを用いた表示素子、など、電気的または磁気的作用により、コントラスト、輝度、反射率、透過率などが変化する表示媒体を有するものがある。また、表示素子として量子ドットを用いてもよい。
EL素子を用いた表示装置の一例としては、EL表示装置などがある。電子放出素子を用いた表示装置の一例としては、電界放出型表示装置(FED:Field Emission Display)または表面伝導型電子放出素子表示装置(SED:Surface−conduction Electron−emitter Display)などがある。量子ドットを用いた表示装置の一例としては、量子ドット表示装置などがある。
液晶素子を用いた表示装置の一例としては、液晶表示装置(透過型液晶表示装置、半透過型液晶表示装置、反射型液晶表示装置、直視型液晶表示装置、投射型液晶表示装置)などがある。電子インク、電子粉流体(登録商標)、または電気泳動素子を用いた表示装置の一例としては、電子ペーパーなどがある。また、表示装置はPDP(Plasma Display Panel)であってもよい。また、表示装置は網膜走査型の投影装置であってもよい。また、マイクロLEDを用いた表示装置であってもよい。
なお、半透過型液晶表示装置や反射型液晶表示装置を実現する場合には、画素電極の一部、または、全部が、反射電極としての機能を有するようにすればよい。例えば、画素電極の一部、または、全部が、アルミニウム、銀、などを有するようにすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路を設けることも可能である。これにより、さらに、消費電力を低減することができる。
なお、LEDを用いる場合、LEDの電極や窒化物半導体の下に、グラフェンやグラファイトを配置してもよい。グラフェンやグラファイトは、複数の層を重ねて、多層膜としてもよい。このように、グラフェンやグラファイトを設けることにより、その上に、窒化物半導体、例えば、結晶を有するn型GaN半導体層などを容易に成膜することができる。さらに、その上に、結晶を有するp型GaN半導体層などを設けて、LEDを構成することができる。なお、グラフェンやグラファイトと、結晶を有するn型GaN半導体層との間に、AlN層を設けてもよい。なお、LEDが有するGaN半導体層は、MOCVDで成膜してもよい。ただし、グラフェンを設けることにより、LEDが有するGaN半導体層は、スパッタ法で成膜することも可能である。
本明細書等に示す表示装置100は、反射型液晶素子と、透過型液晶素子の両方を有し、反射モードと透過モードの両方の表示を行うことができる表示装置である。
表示装置100の構成例について説明する。図26(A)は、表示装置100の構成例を説明するブロック図である。表示装置100は、表示領域235、回路232、および回路233を有する。
なお、本実施の形態に示す表示領域235は、上記実施の形態に示す表示部362に相当する。また、本実施の形態に示す回路232および/または回路233は、上記実施の形態に示す回路364に相当する。
表示領域235は、マトリクス状に配列した複数の画素230、複数の配線G1、複数の配線G2、複数の配線ANO、複数の配線CSCOM、配線S1および複数の配線S2を有する。配線G1、配線G2、配線ANO、および配線CSCOMは、方向Rに配列した複数の画素230と回路232に電気的に接続する。配線S1および配線S2は、方向Cに配列した複数の画素230と回路233に電気的に接続する。
なお、図26(A)では回路232および回路233を1つずつ有する構成を示したが、液晶素子を駆動する回路232および回路233と、EL素子(EL材料を用いた発光素子)を駆動する回路232および回路233とを、別々に設けてもよい。
また、回路232および回路233の一部、または全部を他の基板上に形成して、表示装置100と電気的に接続してもよい。例えば、回路232および回路233の一部、または全部を、単結晶基板を用いて形成し、表示装置100と電気的に接続してもよい。
画素230は、反射型の液晶素子と、透過型の液晶素子と、を有する。
赤色光を透過するまたは反射する画素230、緑色光を透過するまたは反射する画素230、および青色光を透過するまたは反射する画素230をまとめて1つの画素として機能させ、それぞれの画素が透過および反射する光の量(透過輝度、および反射輝度)を制御することで、フルカラー表示を実現することができる。よって、当該3つの画素はそれぞれが副画素として機能する。すなわち、3つの副画素は、それぞれが赤色光、緑色光、または青色光の、透過率、および反射率、すなわち、透過光量および反射光量などを制御する。なお、3つの副画素それぞれが制御する光の色相は、赤、緑、青の組み合わせに限らず、シアン、マゼンダ、黄であってもよい。
また、4つの副画素をまとめて1つの画素として機能させてもよい。例えば、赤色光、緑色光、青色光をそれぞれ制御する3つの副画素に、白色光を制御する副画素を加えてもよい。白色光を制御する副画素を加えることで、表示領域の輝度を高めることができる。1つの画素として機能させる副画素の数を増やし、赤、緑、青、シアン、マゼンダ、および黄などの光を制御する副画素を適宜組み合わせて用いることにより、再現可能な色域を広げることができる。
また、複数の画素を1920×1080のマトリクス状に配置すると、いわゆるフルハイビジョン(「2K解像度」、「2K1K」、または「2K」などとも言われる。)の解像度で表示可能な表示装置100を実現することができる。また、例えば、画素を3840×2160のマトリクス状に配置すると、いわゆるウルトラハイビジョン(「4K解像度」、「4K2K」、または「4K」などとも言われる。)の解像度で表示可能な表示装置100を実現することができる。また、例えば、画素を7680×4320のマトリクス状に配置すると、いわゆるスーパーハイビジョン(「8K解像度」、「8K4K」、または「8K」などとも言われる。)の解像度で表示可能な表示装置100を実現することができる。画素を増やすことで、16Kや32Kの解像度で表示可能な表示装置100を実現することも可能である。
図26(B1)は、画素230が有する電極311bの構成例を示す。電極311bは、画素230における反射型の液晶素子の反射電極として機能する。また電極311bには、開口部451が設けられている。
図26(B1)には、電極311bと重なる領域に位置する透過型の液晶素子170を破線で示している。透過型の液晶素子170は、電極311bが有する開口部451と重ねて配置されている。これにより、透過型の液晶素子170を透過する光は、開口部451を介して表示面側に射出される。
図26(B1)では、方向Rに隣接する画素230が異なる色に対応する画素である。このとき、図26(B1)に示すように、方向Rに隣接する2つの画素において、開口部451が一列に配列されないように、電極311bの異なる位置に設けられていることが好ましい。これにより、2つの透過型の液晶素子170を離すことが可能で、透過型の液晶素子170を透過する光が隣接する画素230が有する着色層に入射してしまう現象(「クロストーク」ともいう。)を抑制することができる。また、隣接する2つの透過型の液晶素子170を離して配置することができるため、透過型の液晶素子170のEL層をシャドウマスク等により作り分ける場合であっても、高い精細度の表示装置を実現できる。
また、図26(B2)に示すような配列としてもよい。
非開口部の総面積に対する開口部451の総面積の比の値が大きすぎると、反射型の液晶素子180を用いた表示が暗くなってしまう。また、非開口部の総面積に対する開口部451の総面積の比の値が小さすぎると、透過型の液晶素子170を用いた表示が暗くなってしまう。
開口部451の形状は、例えば多角形、四角形、楕円形、円形または十字等の形状とすることができる。また、細長い筋状、スリット状、市松模様状の形状としてもよい。また、開口部451を隣接する画素に寄せて配置してもよい。好ましくは、開口部451を同じ色を表示する他の画素に寄せて配置する。これにより、クロストークを抑制できる。
また、図26(B3)、(B4)に示すように、電極311bが設けられていない部分に、透過型の液晶素子170が位置していてもよい。これにより、透過型の液晶素子170を透過する光は、表示面側に射出される。
図26(B3)では、矢印Rで示す方向に隣接する2つの画素230において、透過型の液晶素子170が一列に配列されていない。図26(B4)では、矢印Rで示す方向に隣接する2つの画素において、透過型の液晶素子170が一列に配列されている。
図26(B3)の構成は、隣接する2つの画素230が有する透過型の液晶素子170どうしを離すことができるため、上述の通り、クロストークの抑制、及び、高精細化が可能となる。また、図26(B4)の構成では、透過型の液晶素子170の矢印Cに平行な辺側に、電極311bが位置しないため、透過型の液晶素子170の光が電極311bに遮られることを抑制でき、高い視野角特性を実現できる。
回路232には、シフトレジスタ等の様々な順序回路等を用いることができる。回路232には、トランジスタ及び容量素子等を用いることができる。回路232が有するトランジスタは、画素230に含まれるトランジスタと同じ工程で形成することができる。
回路233は、配線S1と電気的に接続される。回路233には、例えば、集積回路を用いることができる。具体的には、回路233には、シリコン基板上に形成された集積回路を用いることができる。
例えば、COG(Chip on glass)方式またはCOF方式等を用いて、画素230と電気的に接続されるパッドに回路233を実装することができる。具体的には、異方性導電膜を用いて、パッドに集積回路を実装できる。
<画素230の回路構成例>
図27は、画素230の構成例を示す回路図である。図27では、隣接する2つの画素230を示している。
画素230は、スイッチSW1、容量素子C1、液晶素子180、スイッチSW2、スイッチSW2、容量素子C2、及び液晶素子170等を有する。また、画素230には、配線G1、配線G2、配線CSCOM、配線S1、及び配線S2が電気的に接続されている。また、図27では、液晶素子180と電気的に接続する配線VCOM1、及び液晶素子170と電気的に接続する配線VCOM2を示している。
図27では、スイッチSW1及びスイッチSW2に、トランジスタを用いた場合の例を示している。
スイッチSW1は、ゲートが配線G1と接続され、ソース又はドレインの一方が配線S1と接続され、ソース又はドレインの他方が容量素子C1の一方の電極、及び液晶素子180の一方の電極と接続されている。容量素子C1は、他方の電極が配線CSCOMと接続されている。液晶素子180は、他方の電極が配線VCOM1と接続されている。
スイッチSW2は、ゲートが配線G2と接続され、ソース又はドレインの一方が配線S2と接続され、ソース又はドレインの他方が容量素子C2の一方の電極、及び液晶素子170の一方の電極と接続されている。容量素子C2は、他方の電極が配線CSCOMと接続されている。液晶素子170は、他方の電極が配線VCOM2と接続されている。
配線G1には、スイッチSW1を導通状態または非導通状態に制御する信号を与えることができる。配線VCOM1には、所定の電位を与えることができる。配線S1には、液晶素子180が有する液晶の配向状態を制御する信号を与えることができる。配線CSCOMには、所定の電位を与えることができる。
配線G2には、スイッチSW2を導通状態または非導通状態に制御する信号を与えることができる。配線VCOM2には、所定の電位を与えることができる。配線S2には、液晶素子170が有する液晶の配向状態を制御する信号を与えることができる。
図27に示す画素230は、例えば反射モードの表示を行う場合には、配線G1及び配線S1に与える信号により駆動し、液晶素子180による光学変調を利用して表示することができる。また、透過モードで表示を行う場合には、配線G2及び配線S2に与える信号により駆動し、液晶素子170による光学変調を利用して表示することができる。また両方のモードで駆動する場合には、配線G1、配線G2、配線S1及び配線S2のそれぞれに与える信号により駆動することができる。
なお、図27では一つの画素230に、一つの液晶素子180と一つの液晶素子170とを有する例を示している。このとき、画素230は1つの副画素として機能する。または、液晶素子170を時間階調法により駆動することで、透過モードまたは両方のモードで表示する際に、1つの画素230でフルカラーの表示が可能である。
図28(A)は、1つの画素230に1つの反射型の液晶素子180と3つの透過型の液晶素子(液晶素子170r、液晶素子170g、及び液晶素子170b)を有する例を示している。液晶素子170r、液晶素子170g、及び液晶素子170bは、それぞれ赤色(R)、緑色(G)、青色(B)の光を透過する、透過型の液晶素子である。図28(A)に示す画素230は、透過モードまたは両方のモードで表示する際に、3つの透過型の液晶素子によりフルカラーの表示が可能である。
また、図28(B)には、画素230の構成例を示している。画素230は、電極311bが有する開口部と重なる領域を有する液晶素子170wと、電極311bの周囲に配置された液晶素子170r、液晶素子170g、および液晶素子170bとを有する。液晶素子170r、液晶素子170g、および液晶素子170bの面積は、ほぼ同等であることが好ましい。
<表示モード>
表示装置100は、3つの表示モードで動作させることができる。第1の表示モード(mode1)は、反射型の液晶表示装置として画像を表示する表示モードである。第2の表示モード(mode2)は、透過型の液晶表示装置として画像を表示する表示モードである。第3の表示モード(mode3)は、第1の表示モードと第2の表示モードを同時に作用させる表示モードである。
〔第1の表示モード〕
第1の表示モードは光源が不要であるため、極めて低消費電力な表示モードである。例えば、外光の照度が十分大きく、且つ外光が白色光またはその近傍の光である場合に特に有効である。また、第1の表示モードは、照度が300lx程度より大きい環境下、例えば日中下で使用する場合に特に有効である。ただし、目的または用途などによって、照度が300lx程度より小さい環境下であっても、表示装置100を第1の表示モードで動作させる場合がありうる。
また、第1の表示モードは、本や書類などの文字情報を表示することに適した表示モードである。画像の表示に反射光を用いるため、目に優しい表示を行うことができ、目が疲れにくいという効果を奏する。
図29(A1)は、日中の屋外で電子機器910を使用している様子を示している。図29(A1)において、電子機器910の表示装置は第1の表示モードで動作する。電子機器910は、例えば、スマートフォンなどの携帯情報端末である。また、電子機器910は、本発明の一態様の表示装置100を有している。
図29(A2)は、電子機器910の表示装置100に入射する入射光901と、表示装置100が反射する反射光902を示している。
〔第2の表示モード〕
第2の表示モードは、外光の照度や色度によらず、極めて鮮やかな(コントラストが高く、且つ色再現性の高い)表示を行うことができる表示モードである。例えば、夜間や室内など、外光の照度が小さい場合などに有効である。第2の表示モードは、照度が5000lx程度より小さい環境下での使用時に特に有効である。ただし、目的または用途などによって、照度が5000lx程度より大きい環境下であっても、表示装置100を第2の表示モードで動作させる場合がありうる。また、外光の照度が小さい場合、明るい表示を行うと使用者が眩しく感じてしまう場合がある。これを防ぐために、第2の表示モードでは輝度を抑えた表示を行うことが好ましい。これにより、眩しさを抑えることに加え、消費電力も低減することができる。第2の表示モードは、鮮やかな画像や滑らかな動画などを表示することに適したモードである。
図29(B1)は、夜間の屋外で電子機器910を使用している様子を示している。また、同図中の電子機器920は、デジタルサイネージに用いる電子機器である。図29(B1)において、電子機器910および電子機器920の表示装置は第2の表示モードで動作する。また、電子機器920は、本発明の一態様の表示装置100を有している。
図29(B2)は、電子機器910の表示装置100から射出される光903と、電子機器920の表示装置100から射出される光903を示している。
〔第3の表示モード〕
第3の表示モードは、第1の表示モードによる反射光と、第2の表示モードによる透過光の両方を利用して表示を行う表示モードである。例えば、第1の表示モードの最大反射輝度以上の光を表示装置100から射出する必要が生じた場合に、必要な光量を第2の表示モードによる透過光で補うことができる。また、例えば、第1の表示モードによる反射光と、第2の表示モードによる透過光を混合することにより、1つの色を表現するように駆動することができる。
第3の表示モードは、第1の表示モードよりも鮮やかな表示をしつつ、第2の表示モードよりも消費電力を抑えることができる。例えば、室内照明下や、朝方や夕方の時間帯など、外光の照度が比較的低い場合や、外光の色度が白色ではない場合などに有効である。
第3の表示モードは、照度が5000lx程度より小さい環境下での使用時に特に有効である。ただし、目的または用途などによって、照度が5000lx程度より大きい環境下であっても、表示装置100を第3の表示モードで動作させる場合がありうる。
図29(C1)は、室内で電子機器910を使用している様子を示している。また、同図中の電子機器930は、テレビまたはモニタとして機能できる電子機器である。また、同図中の電子機器940は、ノート型のパーソナルコンピュータである。図29(C1)において、電子機器910、電子機器930、および電子機器940が有する表示装置は第3の表示モードで動作する。また、電子機器930および電子機器940は、本発明の一態様の表示装置100を有している。
図29(C2)は、電子機器910の表示装置100から射出される光903、電子機器910の表示装置100に入射する入射光901、および電子機器910の表示装置100が反射する反射光902を示している。また、電子機器930の表示装置100から射出される光903、電子機器930の表示装置100に入射する入射光901、および電子機器930の表示装置100が反射する反射光902を示している。電子機器940の表示装置100も、他の表示装置100と同様に機能することができる。
なお、第3の表示モードを用いた表示は、ハイブリッド表示モードとも言える。ハイブリッド表示とは、1つのパネルにおいて、反射光と、透過光とを併用して、色調または光強度を互いに補完して、文字または画像を表示する方法である。または、ハイブリッド表示とは、同一画素または同一副画素において複数の表示素子から、それぞれの光を用いて、文字および/または画像を表示する方法である。ただし、ハイブリッド表示を行っている表示装置(「ハイブリッド表示装置」または「ハイブリッドディスプレイ」ともいう。)を局所的にみると、複数の表示素子のいずれか一を用いて表示される画素または副画素と、複数の表示素子の二以上を用いて表示される画素または副画素と、を有する場合がある。
なお、本明細書等において、上記構成のいずれか1つまたは複数の表現を満たすものを、ハイブリッド表示という。
また、ハイブリッドディスプレイは、同一画素または同一副画素に複数の表示素子を有する。なお、複数の表示素子としては、例えば、光を反射する反射型素子と、光を透過する透過型素子とが挙げられる。なお、反射型素子と、透過型素子とは、それぞれ独立に制御することができる。ハイブリッドディスプレイは、表示部において、反射光および透過光のいずれか一方または双方を用いて、文字および/または画像を表示する機能を有する。
<第1乃至第3の表示モードの具体例>
ここで、上述した第1乃至第3の表示モードを用いる場合の具体例について、図30および図31を用いて説明する。
なお、以下では、第1乃至第3の表示モードが照度に応じて自動に切り替わる場合について説明する。なお、照度に応じて自動で切り替わる場合、例えば、表示装置に照度センサ等を設け、当該照度センサからの情報をもとに表示モードを切り替えることができる。
図30(A)、図30(B)、および図30(C)は、本発明の一態様の表示装置が取り得る表示モードを説明するための画素の模式図である。
図30(A)、図30(B)、および図30(C)では、第1の表示素子501が有する電極311b、第2の表示素子502、開口部451、第1の表示素子501から反射される反射光504、および第2の表示素子502から開口部451を通って射出される透過光505が明示されている。なお、図30(A)が第1の表示モードを説明する図であり、図30(B)が第2の表示モードを説明する図であり、図30(C)が第3の表示モードを説明する図である。
なお、図30(A)、図30(B)、および図30(C)では、第1の表示素子501として、反射型の液晶素子を用い、第2の表示素子502として、透過型の液晶素子を用いる場合とする。
本実施の形態で説明する第1の表示素子501は、上記実施の形態に示す液晶素子180に相当する。また、第1の表示素子502は液晶素子170に相当する。
図30(A)に示す第1の表示モードでは、第1の表示素子501である、反射型の液晶素子を駆動して反射光の強度を調節して階調表示を行うことができる。
図30(B)に示す第2の表示モードでは、第2の表示素子502である液晶素子の透過率を調節して階調表示を行うことができる。なお、第2の表示素子502から透過する光は、開口部451を通過し、透過光505として外部に取り出される。
図30(C)に示す第3の表示モードは、上述した第1の表示モードと、第2の表示モードとを組み合わせた表示モードである。例えば、第1の表示素子501である、反射型の液晶素子が有する反射電極で、反射光504の強度を液晶層で調節し階調表示を行う。また、第1の表示素子501の駆動する期間と、同じ期間内に、第2の表示素子502である、液晶素子の透過率を変化させることで透過光505の強度を調整し、階調表示を行う。
<第1乃至第3の表示モードの状態遷移>
次に、第1乃至第3の表示モードの状態遷移について、図30(D)を用いて説明を行う。図(D)は、第1の表示モード、第2の表示モード、および第3の表示モードの状態遷移図である。図30(D)に示す、状態C1は第1の表示モードに相当し、状態C2は第2の表示モードに相当し、状態C3は第3の表示モードに相当する。
図30(D)に図示するように、状態C1から状態C3までは照度に応じていずれかの状態の表示モードを取り得る。例えば、屋外のように照度が大きい場合には、状態C1を取り得る。また、屋外から屋内に移動するような照度が小さくなる場合には、状態C1から状態C2に遷移する。また、屋外であっても照度が低く、反射光による階調表示が十分でない場合には、状態C2から状態C3に遷移する。もちろん、状態C3から状態C1への遷移、状態C1から状態C3への遷移、状態C3から状態C2への遷移、または状態C2から状態C1への遷移も生じる。
なお、図30(D)では、第1の表示モードのイメージとして太陽のシンボルを、第2の表示モードのイメージとして、月のシンボルを、第3の表示モードのイメージとして、雲のシンボルを、それぞれ図示してある。
なお、図30(D)に図示するように、状態C1乃至状態C3において、照度の変化がない、または照度の変化が少ない場合には、他の状態に遷移せずに、続けて元の状態を維持すればよい。
以上のように照度に応じて表示モードを切り替える構成とすることで、消費電力が比較的大きいバックライト等の光源を必要とする透過型の液晶素子の階調表示の頻度を減らすことができる。そのため、表示装置の消費電力を低減することができる。また、表示装置は、バッテリの残容量、表示するコンテンツ、または周辺環境の照度に応じて、さらに動作モードを切り替えることができる。なお、上記の説明においては、照度に応じて表示モードが自動で切り替わる場合について例示したがこれに限定されず、使用者が手動で表示モードを切り替えてもよい。
<動作モード>
次に、第1の表示素子および第2の表示素子で行うことができる動作モードについて、図31用いて説明を行う。
なお、以下では、通常のフレーム周波数(代表的には60Hz以上240Hz以下)で動作する通常動作モード(Normal mode)と、低速のフレーム周波数で動作するアイドリング・ストップ(IDS)駆動モードと、を例示して説明する。
なお、IDS駆動モードとは、画像データの書き込み処理を実行した後、画像データの書き換えを停止する駆動方法のことをいう。一旦画像データの書き込みをして、その後、次の画像データの書き込みまでの間隔を延ばすことで、その間の画像データの書き込みに要する分の消費電力を削減することができる。IDS駆動モードは、例えば、通常動作モードの1/100乃至1/10程度のフレーム周波数とすることができる。静止画は、連続するフレーム間でビデオ信号が同じである。よって、IDS駆動モードは、静止画を表示する場合に特に有効である。IDS駆動を用いて画像を表示させることで、消費電力が低減されるとともに、画面のちらつき(フリッカー)が抑制され、眼精疲労も低減できる。
図31(A)、図31(B)、および図31(C)は、画素回路、および通常駆動モードとIDS駆動モードを説明するタイミングチャートである。なお、図31(A)では、第1の表示素子501(ここでは反射型の液晶素子)と、第1の表示素子501に電気的に接続される画素回路506と、を示している。また、図31(A)に示す画素回路506では、信号線SLと、ゲート線GLと、信号線SLおよびゲート線GLに接続されたトランジスタM1と、トランジスタM1に接続される容量素子CsLCとを示している。
トランジスタM1は、データDのリークパスと成り得る。よって、トランジスタM1のオフ電流は小さいほど好ましい。トランジスタM1としては、チャネルが形成される半導体層に金属酸化物を有するトランジスタを用いることが好ましい。金属酸化物が増幅作用、整流作用、およびスイッチング作用の少なくとも1つを有する場合、当該金属酸化物を、金属酸化物半導体(metal oxide semiconductor)または酸化物半導体(oxide semiconductor)、略してOSと呼ぶことができる。以下、トランジスタの代表例として、チャネルが形成される半導体層に酸化物半導体を用いたトランジスタ(「OSトランジスタ」ともいう。)を用いて説明する。OSトランジスタは、多結晶シリコンなどを用いたトランジスタよりも非導通状態時のリーク電流(オフ電流)が極めて低い特徴を有する。トランジスタM1にOSトランジスタを用いることでノードND1に供給された電荷を長期間保持することができる。
なお、図31(A)に示す回路図において、液晶素子LCはデータDのリークパスとなる。したがって、適切にIDS駆動を行うには、液晶素子LCの抵抗率を1.0×1014Ω・cm以上とすることが好ましい。
なお、上記OSトランジスタのチャネル領域には、例えば、In−Ga−Zn酸化物、In−Zn酸化物などを好適に用いることができる。また、上記In−Ga−Zn酸化物としては、代表的には、In:Ga:Zn=4:2:4.1[原子数比]近傍の組成を用いることができる。
また、図31(B)は、通常駆動モードでの信号線SLおよびゲート線GLにそれぞれ与える信号の波形を示すタイミングチャートである。通常駆動モードでは通常のフレーム周波数(例えば60Hz)で動作する。1フレーム期間を期間TからTまでで表すと、各フレーム期間でゲート線GLに走査信号を与え、信号線SLからデータDをノードND1に書き込む動作を行う。この動作は、期間TからTまでで同じデータDを書き込む場合、または異なるデータを書き込む場合でも同じである。
一方、図31(C)は、IDS駆動モードでの信号線SLおよびゲート線GLに、それぞれ与える信号の波形を示すタイミングチャートである。IDS駆動では低速のフレーム周波数(例えば1Hz)で動作する。1フレーム期間を期間Tで表し、その中でデータの書き込み期間を期間T、データの保持期間を期間TRETで表す。IDS駆動モードは、期間Tでゲート線GLに走査信号を与え、信号線SLのデータDを書き込み、期間TRETでゲート線GLをローレベルの電圧に固定し、トランジスタM1を非導通状態として一旦書き込んだデータDを保持させる動作を行う。なお、低速のフレーム周波数としては、例えば、0.1Hz以上60Hz未満とすればよい。
IDS駆動モードは、上述した第1の表示モード、第2の表示モードまたは第3の表示モードと組み合わせることで、さらなる低消費電力化を図ることができるため有効である。
以上のように、本実施の形態の表示装置は、第1の表示モード乃至第3の表示モードを切り替えて表示を行うことができる。したがって、周囲の明るさによらず、視認性が高く利便性の高い表示装置または全天候型の表示装置を実現できる。
また、本実施の形態に示す表示装置は、第1の表示素子を有する第1の画素と、第2の表示素子を有する第2の画素とをそれぞれ複数有すると好ましい。また、第1の画素と第2の画素とは、それぞれ、マトリクス状に配置されることが好ましい。
第1の画素および第2の画素は、それぞれ、1つ以上の副画素を有する構成とすることができる。本実施の形態に示す表示装置は、第1の画素および第2の画素の双方とも、フルカラー表示を行う構成とすることができる。または、本実施の形態に示す表示装置は、第1の画素では白黒表示またはグレイスケールでの表示を行い、第2の画素ではフルカラー表示を行う構成とすることができる。第1の画素を用いた白黒表示またはグレイスケールでの表示は、文書情報など、カラー表示を必要としない情報を表示することに適している。
また、本発明の一態様の表示装置は、さまざまな規格の色域を再現することができる。例えば、テレビ放送で使われるPAL(Phase Alternating Line)規格およびNTSC(National Television System Committee)規格、パーソナルコンピュータ、デジタルカメラ、プリンタなどの電子機器に用いる表示装置で広く使われているsRGB(standard RGB)規格およびAdobe RGB規格、HDTV(High Definition Television、ハイビジョンともいう)で使われるITU−R BT.709(International Telecommunication Union Radiocommunication Sector Broadcasting Service(Television) 709)規格、デジタルシネマ映写で使われるDCI−P3(Digital Cinema Initiatives P3)規格、UHDTV(Ultra High Definition Television、スーパーハイビジョンともいう)で使われるITU−R BT.2020(REC.2020(Recommendation 2020))規格などの色域を再現することができる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態6)
本実施の形態では、タッチセンサの駆動方法の例について、図面を参照して説明する。
〔センサの検知方法の例〕
図32(A)は、相互容量方式のタッチセンサの構成を示すブロック図である。図32(A)では、パルス電圧出力回路551、電流検出回路552を示している。なお図32(A)では、パルス電圧が与えられる電極521、電流の変化を検知する電極522をそれぞれ、X1−X6、Y1−Y6のそれぞれ6本の配線として示している。また図32(A)は、電極521および電極522が重畳することで形成される容量553を図示している。なお、電極521と電極522とはその機能を互いに置き換えてもよい。
パルス電圧出力回路551は、X1−X6の配線に順にパルス電圧を印加するための回路である。X1−X6の配線にパルス電圧が印加されることで、容量553を形成する電極521と電極522の間に電界が生じる。この電極間に生じる電界が遮蔽等により容量553の相互容量に変化を生じさせることを利用して、被検知体の近接、または接触を検出することができる。
電流検出回路552は、容量553での相互容量の変化による、Y1乃至Y6の配線での電流の変化を検出するための回路である。Y1乃至Y6の配線では、被検知体の近接、または接触がないと検出される電流値に変化はないが、検出する被検知体の近接、または接触により相互容量が減少する場合には電流値が減少する変化を検出する。なお電流の検出は、積分回路等を用いて行えばよい。
なお、パルス電圧出力回路551および電流検出回路552のいずれか一方、または両方を、対向基板171またはトランジスタ基板181上に形成してもよい。例えば、表示部362や回路364などと同時に形成すると、工程を簡略化できることに加え、タッチセンサの駆動に用いる部品数を削減することができるため好ましい。また、パルス電圧出力回路551および電流検出回路552のいずれか一方、または両方を、IC373に実装してもよい。
特に、トランジスタ基板181上に形成されるトランジスタとして、チャネルが形成される半導体層に多結晶シリコンや単結晶シリコンなどの結晶性シリコンや、酸化物半導体などを用いると、パルス電圧出力回路551や電流検出回路552等の回路の駆動能力が向上し、タッチセンサの感度を向上させることができる。
次いで図32(B)には、図32(A)で示す相互容量方式のタッチセンサにおける入出力波形のタイミングチャートを示す。図32(B)では、1フレーム期間で各行列での被検知体の検出を行うものとする。また図32(B)では、被検知体を検出しない場合(非タッチ)と被検知体を検出する場合(タッチ)との2つの場合について示している。なおY1−Y6の配線については、検出される電流値に対応する電圧値とした波形を示している。
X1−X6の配線には、順にパルス電圧が与えられ、該パルス電圧にしたがってY1−Y6の配線での波形が変化する。被検知体の近接または接触がない場合には、X1−X6の配線の電圧の変化に応じてY1−Y6の波形が一様に変化する。一方、被検知体が近接または接触する箇所では、電流値が減少するため、これに対応する電圧値の波形も変化する。
このように、相互容量の変化を検出することにより、被検知体の近接または接触を検知することができる。
また、図32(A)ではタッチセンサとして配線の交差部に容量553のみを設けるパッシブマトリクス方式のタッチセンサの構成を示したが、トランジスタと容量とを備えたアクティブマトリクス方式のタッチセンサとしてもよい。図33にアクティブマトリクス方式のタッチセンサに含まれる一つのセンサ回路の例を示している。
センサ回路は容量553と、トランジスタ561と、トランジスタ562と、トランジスタ563とを有する。トランジスタ563はゲートに信号S2が与えられ、ソース又はドレインの一方に電圧VRESが与えられ、他方が容量553の一方の電極およびトランジスタ561のゲートと電気的に接続する。トランジスタ561はソース又はドレインの一方がトランジスタ562のソース又はドレインの一方と電気的に接続し、他方に電圧VSSが与えられる。トランジスタ562はゲートに信号S1が与えられ、ソース又はドレインの他方が配線MLと電気的に接続する。容量553の他方の電極には電圧VSSが与えられる。
続いて、センサ回路の動作について説明する。まず信号S2としてトランジスタ563をオン状態とする電位が与えられることで、トランジスタ561のゲートが接続されるノードnに電圧VRESに対応した電位が与えられる。次いで信号S2としてトランジスタ563をオフ状態とする電位が与えられることで、ノードnの電位が保持される。
続いて、指等の被検知体の近接または接触により、容量553の相互容量が変化することに伴い、ノードnの電位がVRESから変化する。
読み出し動作は、信号S1にトランジスタ562をオン状態とする電位を与える。ノードnの電位に応じてトランジスタ561に流れる電流、すなわち配線MLに流れる電流が変化する。この電流を検出することにより、被検知体の近接または接触を検出することができる。
トランジスタ561、トランジスタ562、トランジスタ563としては、チャネルが形成される半導体層に酸化物半導体を適用したトランジスタを用いることが好ましい。特にトランジスタ563のチャネルを形成する半導体層に酸化物半導体を適用することにより、ノードnの電位を長期間に亘って保持することが可能となり、ノードnにVRESを供給しなおす動作(リフレッシュ動作)の頻度を減らすことができる。
〔表示装置の駆動方法例〕
図34(A)は、表示装置の構成例を示すブロック図である。図34(A)ではゲート駆動回路GD(走査線駆動回路)、ソース駆動回路SD(信号線駆動回路)、複数の画素pixを有する表示部を示している。なお図34(A)では、ゲート駆動回路GDに電気的に接続されるゲート線x_1乃至x_m(mは自然数)、ソース駆動回路SDに電気的に接続されるソース線y_1乃至y_n(nは自然数)に対応して、画素pixではそれぞれに(1,1)乃至(n,m)の符号を付している。
次いで図34(B)は、図34(A)で示す表示装置におけるゲート線およびソース線に与える信号のタイミングチャート図である。図34(B)では、1フレーム期間ごとにデータ信号を書き換える場合と、データ信号を書き換えない場合と、に分けて示している。なお図34(B)では、帰線期間等の期間を考慮していない。
1フレーム期間ごとにデータ信号を書き換える場合、x_1乃至x_mのゲート線には、順に走査信号が与えられる。走査信号がHレベルの期間である水平走査期間1Hでは、各列のソース線y_1乃至y_nにデータ信号Dが与えられる。
1フレーム期間ごとにデータ信号を書き換えない場合、ゲート線x_1乃至x_mに与える走査信号を停止する。また水平走査期間1Hでは、各列のソース線y_1乃至y_nに与えるデータ信号を停止する。
1フレーム期間ごとにデータ信号を書き換えない駆動方法は、特に、画素pixが有するトランジスタとしてチャネルが形成される半導体層に酸化物半導体を適用する場合に有効である。酸化物半導体が適用されたトランジスタはシリコン等の半導体が適用されたトランジスタに比べて極めてオフ電流を小さくすることが可能である。そのため、1フレーム期間ごとにデータ信号の書き換えを行わずに前の期間に書き込んだデータ信号を保持させることができ、例えば1秒以上、好ましくは5秒以上に亘って画素の階調を保持することもできる。
また、画素pixが有するトランジスタとしてチャネルが形成される半導体層に多結晶シリコンなどを適用する場合には、画素が有する保持容量の大きさをあらかじめ大きくしておくことが好ましい。保持容量が大きいほど、画素の階調を長時間に亘って保持することができる。保持容量の大きさは、保持容量に電気的に接続するトランジスタや表示素子のリーク電流に応じて設定すればよいが、例えば、1画素あたりの保持容量を5fF以上5pF以下、好ましくは10fF以上5pF以下、より好ましくは20fF以上1pF以下とすると、1フレーム期間ごとにデータ信号の書き換えを行わずに前の期間に書き込んだデータ信号を保持させることができ、例えば数フレームまたは数10フレームの期間に亘って画素の階調を保持することが可能となる。
〔表示部とタッチセンサの駆動方法の例〕
図35(A)乃至(D)は、一例として図32(A)、(B)で説明したタッチセンサと、図34(A)、(B)で説明した表示部を1sec.(1秒間)駆動する場合に、連続するフレーム期間の動作について説明する図である。なお図35(A)では、表示部の1フレーム期間を16.7ms(フレーム周波数:60Hz)、タッチセンサの1フレーム期間を16.7ms(フレーム周波数:60Hz)とした場合について示している。
本発明の一態様の表示装置は、表示部の動作とタッチセンサの動作は互いに独立しており、表示期間と平行してタッチ検知期間を設けることができる。そのため図35(A)に示すように、表示部およびタッチセンサの1フレーム期間を共に16.7ms(フレーム周波数:60Hz)と設定することができる。また、タッチセンサと表示部のフレーム周波数を異ならせてもよい。例えば図35(B)に示すように、表示部の1フレーム期間を8.3ms(フレーム周波数:120Hz)と設定し、タッチセンサの1フレーム期間を16.7ms(フレーム周波数:60Hz)とすることもできる。また、図示しないが、表示部のフレーム周波数を33.3ms(フレーム周波数:30Hz)としてもよい。
また表示部のフレーム周波数を切り替え可能な構成とし、動画像の表示の際にはフレーム周波数を大きく(例えば60Hz以上または120Hz以上)し、静止画像の表示の際にはフレーム周波数を小さく(例えば60Hz以下、30Hz以下、または1Hz以下)することで、表示装置の消費電力を低減することができる。またタッチセンサのフレーム周波数を切り替え可能な構成とし、待機時と、タッチを感知した時とでフレーム周波数を異ならせてもよい。
また本発明の一態様の表示装置は、表示部におけるデータ信号の書き換えを行わずに、前の期間に書き換えたデータ信号を保持することで、表示部の1フレーム期間を16.7msよりも長い期間とすることができる。そのため、図35(C)に示すように、表示部の1フレーム期間を1sec.(フレーム周波数:1Hz)と設定し、タッチセンサの1フレーム期間を16.7ms(フレーム周波数:60Hz)とすることもできる。
なお、表示部におけるデータ信号の書き換えを行わずに、前の期間に書き換えたデータ信号を保持する構成については、先に説明のIDS駆動モードを参照することができる。なお、IDS駆動モードについては、表示部におけるデータ信号の書き換えを特定の領域だけ行う、部分IDS駆動モードとしてもよい。部分IDS駆動モードとは、表示部におけるデータ信号の書き換えを特定の領域だけ行い、それ以外の領域においては、前の期間に書き換えたデータ信号を保持する構成である。
また、本実施の形態に開示するタッチセンサの駆動方法によれば、図35(C)に示す駆動を行う場合、継続してタッチセンサの駆動を行うことができる。そのため、図35(D)に示すようにタッチセンサにおける被検知体の近接または接触を検知したタイミングで、表示部のデータ信号を書き換えることもできる。
ここで、タッチセンサのセンシング期間に表示部のデータ信号の書き換え動作を行うと、データ信号の書き換え時に生じるノイズがタッチセンサに伝わることで、タッチセンサの感度を低下させてしまう恐れがある。したがって、表示部のデータ信号の書き換え期間と、タッチセンサのセンシング期間とをずらすように駆動することが好ましい。
図36(A)では、表示部のデータ信号の書き換えと、タッチセンサのセンシングとを交互に行う例を示している。また、図36(B)では、表示部のデータ信号の書き換え動作を2回行うごとに、タッチセンサのセンシングを1回行う例を示している。なお、これに限られず3回以上の書き換え動作を行うごとにタッチセンサのセンシングを1回行う構成としてもよい。
また、画素pixに適用されるトランジスタに、OSトランジスタを用いる場合、オフ電流を極めて低減することが可能なため、データ信号の書き換えの頻度を十分に低減することができる。具体的には、データ信号の書き換えを行った後、次にデータ信号を書き換えるまでの間に、十分に長い休止期間を設けることが可能となる。休止期間は、例えば0.5秒以上、1秒以上、または5秒以上とすることができる。休止期間の上限は、トランジスタに接続される容量や表示素子等のリーク電流によって制限されるが、例えば1分以下、10分以下、1時間以下、または1日以下などとすることができる。
図36(C)では、5秒間に1度の頻度で表示部のデータ信号の書き換えを行う例を示している。図36(C)では、表示部はデータ信号を書き換えたのち、次のデータ信号の書き換え動作までの期間は、書き換え動作を停止する休止期間が設けられている。休止期間では、タッチセンサがフレーム周波数iHz(iは表示装置のフレーム周波数以上、ここでは0.2Hz以上)で駆動することができる。また図36(C)に示すように、タッチセンサのセンシングを休止期間に行い、表示部のデータ信号の書き換え期間には行わないようにすると、タッチセンサの感度を向上させることができ好ましい。また、図36(D)に示すように、表示部のデータ信号の書き換えとタッチセンサのセンシングを同時に行うと、駆動のための信号を簡略化することができる。
また、表示部のデータ信号の書き換え動作を行わない休止期間では、表示部へのデータ信号の供給を停止するだけでなく、ゲート駆動回路GDおよびソース駆動回路SDの一方、または双方の動作を停止してもよい。さらに、ゲート駆動回路GDおよびソース駆動回路SDの一方、または双方への電力供給を停止してもよい。このようにすることで、ノイズをより低減し、タッチセンサの感度をさらに良好なものとすることができる。また、表示装置の消費電力をさらに低減することができる。
また、表示装置として、先に説明のハイブリッドディスプレイを用いる場合、上述のIDS駆動モード、または部分IDS駆動モードと、上述のタッチセンサの駆動方法と、を組み合わせることができる。また、ハイブリッドディスプレイを用いる場合、複数の表示素子は、それぞれ独立してIDS駆動モードまたは部分IDS駆動モードを行うことができる。ハイブリッドディスプレイを用いる場合、以下のような駆動方法を実現できる。
例えば、上記ハイブリッドディスプレイが反射型素子と、透過型素子とを有する場合、反射型素子にて白黒の画像を表示させる。その後、反射型素子をIDS駆動モードにし、ゲート駆動回路GD及びソース駆動回路SDの一方または双方への電力供給を停止する。その後、タッチセンサのセンシングを行い、当該センシングが行われていない領域の反射型素子を部分IDS駆動モードへと移行させる。その後、部分IDS駆動モードが行われていない領域の透過型素子に信号を供給する。その後、当該透過型素子を選択して信号を供給するための、ゲート駆動回路GD及びソース駆動回路SDの一方または双方への電力供給を停止させて、透過型素子を部分IDS駆動モードへと移行する。
上記のような駆動方法を行うことで、消費電力を低減させ、且つタッチセンサの検出感度が高められた優れた表示装置を実現することができる。
本発明の一態様の表示装置は、2つの基板で表示部とタッチセンサが挟持された構成を有する。よって、表示部とタッチセンサの距離を極めて近づけることができる。このとき、表示部の駆動時のノイズがタッチセンサに伝搬しやすくなり、タッチセンサの感度が低下してしまう恐れがある。本実施の形態で例示した駆動方法を適用することで、薄型化と高い検出感度を両立した、タッチセンサを有する表示装置を実現できる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態7)
本実施の形態では、図37乃至図39を用いて、本発明の一態様に係る表示装置に用いることができるトランジスタの構成例について説明を行う。
<トランジスタの構成例1>
まず、トランジスタの構造の一例として、トランジスタ3200aについて、図37(A)(B)(C)を用いて説明する。図37(A)はトランジスタ3200aの上面図である。図37(B)は、図37(A)に示す一点鎖線X1−X2間における切断面の断面図に相当し、図37(C)は、図37(A)に示す一点鎖線Y1−Y2間における切断面の断面図に相当する。なお、図37(A)において、煩雑になることを避けるため、トランジスタ3200aの構成要素の一部(ゲート絶縁層としての機能を有する絶縁層等)を省略して図示している。なお、以下において、一点鎖線X1−X2方向をチャネル長方向、一点鎖線Y1−Y2方向をチャネル幅方向と呼称する場合がある。なお、トランジスタの上面図においては、以降の図面においても図37と同様に、構成要素の一部を省略して図示する場合がある。
トランジスタ3200aは、絶縁層3224上の導電層3221と、絶縁層3224及び導電層3221上の絶縁層3211と、絶縁層3211上の金属酸化物層3231と、金属酸化物層3231上の導電層3222aと、金属酸化物層3231上の導電層3222bと、金属酸化物層3231、導電層3222a、及び導電層3222b上の絶縁層3212と、絶縁層3212上の導電層3223と、絶縁層3212及び導電層3223上の絶縁層3213と、を有する。
また、絶縁層3211及び絶縁層3212は、開口部3235を有する。導電層3223は、開口部3235を介して、導電層3221と電気的に接続される。
ここで、絶縁層3211は、トランジスタ3200aの第1のゲート絶縁層としての機能を有し、絶縁層3212は、トランジスタ3200aの第2のゲート絶縁層としての機能を有し、絶縁層3213は、トランジスタ3200aの保護絶縁層としての機能を有する。また、トランジスタ3200aにおいて、導電層3221は、第1のゲートとしての機能を有し、導電層3222aは、ソースまたはドレインの一方としての機能を有し、導電層3222bは、ソースまたはドレインの他方としての機能を有する。また、トランジスタ3200aにおいて、導電層3223は、第2のゲートとしての機能を有する。
なお、トランジスタ3200aは、所謂チャネルエッチ型のトランジスタであり、デュアルゲート構造である。
また、トランジスタ3200aは、導電層3223を設けない構成にすることもできる。この場合、トランジスタ3200aは、所謂チャネルエッチ型のトランジスタであり、ボトムゲート構造である。
図37(B)(C)に示すように、金属酸化物層3231は、導電層3221、及び導電層3223と対向するように位置し、2つのゲートの機能を有する導電層に挟まれている。導電層3223のチャネル長方向の長さ、及び導電層3223のチャネル幅方向の長さは、金属酸化物層3231のチャネル長方向の長さ、及び金属酸化物層3231のチャネル幅方向の長さよりもそれぞれ長く、金属酸化物層3231の全体は、絶縁層3212を介して導電層3223に覆われている。
別言すると、導電層3221及び導電層3223は、絶縁層3211及び絶縁層3212に設けられる開口部3235において接続され、且つ金属酸化物層3231の側端部よりも外側に位置する領域を有する。
このような構成を有することで、トランジスタ3200aに含まれる金属酸化物層3231を、導電層3221及び導電層3223の電界によって電気的に囲むことができる。トランジスタ3200aのように、第1のゲート及び第2のゲートの電界によって、チャネル領域が形成される金属酸化物層を、電気的に囲むトランジスタのデバイス構造をSurrounded channel(S−channel)構造と呼ぶことができる。
トランジスタ3200aは、S−channel構造を有するため、第1のゲートの機能を有する導電層3221によってチャネルを誘起させるための電界を効果的に金属酸化物層3231に印加することができるため、トランジスタ3200aの電流駆動能力が向上し、高いオン電流特性を得ることが可能となる。また、オン電流を高くすることが可能であるため、トランジスタ3200aを微細化することが可能となる。また、トランジスタ3200aは、第1のゲートの機能を有する導電層3221及び第2のゲートの機能を有する導電層3223によって囲まれた構造を有するため、トランジスタ3200aの機械的強度を高めることができる。
例えば、金属酸化物層3231は、Inと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウム)と、Znと、を有すると好ましい。
また、金属酸化物層3231は、Inの原子数比がMの原子数比より多い領域を有すると好ましい。一例としては、金属酸化物層3231のIn、M、及びZnの原子数の比を、In:M:Zn=4:2:3近傍とすると好ましい。ここで、近傍とは、Inが4の場合、Mが1.5以上2.5以下であり、且つZnが2以上4以下を含む。または、金属酸化物層3231のIn、M、及びZnの原子数の比を、In:M:Zn=5:1:6近傍とすると好ましい。
また、金属酸化物層3231は、CAC−OSまたはCAC−metal oxideであると好適である。金属酸化物層3231が、Inの原子数比がMの原子数比より多い領域を有し、且つCAC−OSまたはCAC−metal oxideであることで、トランジスタ3200aの電界効果移動度を高くすることができる。なお、CAC−OSまたはCAC−metal oxideの詳細については、後述する。
また、s−channel構造であるトランジスタ3200aは電界効果移動度が高く、且つ駆動能力が高いので、トランジスタ3200aを駆動回路、代表的にはゲート信号を生成するゲートドライバに用いることで、額縁幅の狭い(狭額縁ともいう)表示装置を提供することができる。また、トランジスタ3200aを、表示装置が有する信号線からの信号の供給を行うソースドライバ(とくに、ソースドライバが有するシフトレジスタの出力端子に接続されるデマルチプレクサ)に用いることで、表示装置に接続される配線数が少ない表示装置を提供することができる。
また、トランジスタ3200aはそれぞれチャネルエッチ構造のトランジスタであるため、低温ポリシリコンを用いたトランジスタと比較して、作製工程数が少ない。また、トランジスタ3200aは、金属酸化物層をチャネルに用いているため、低温ポリシコンを用いたトランジスタのように、レーザ結晶化工程が不要である。これらのため、大面積基板を用いた表示装置であっても、製造コストを低減することが可能である。さらに、ウルトラハイビジョン(「4K解像度」、「4K2K」、「4K」)、スーパーハイビジョン(「8K解像度」、「8K4K」、「8K」)のよう高解像度であり、且つ大型の表示装置において、トランジスタ3200aのように電界効果移動度が高いトランジスタを駆動回路及び表示部に用いることで、短時間での書き込みが可能であり、表示不良を低減することが可能であり好ましい。
また、金属酸化物層3231と接する絶縁層3211及び絶縁層3212は、酸化物絶縁膜であることが好ましく、化学量論的組成よりも過剰に酸素を含有する領域(過剰酸素領域)を有することがより好ましい。別言すると、絶縁層3211及び絶縁層3212は、酸素を放出することが可能な絶縁膜である。なお、絶縁層3211及び絶縁層3212に過剰酸素領域を設けるには、例えば、酸素雰囲気下にて絶縁層3211及び絶縁層3212を形成する、もしくは成膜後の絶縁層3211及び絶縁層3212を酸素雰囲気下で熱処理すればよい。
金属酸化物層3231としては、金属酸化物の一種である酸化物半導体を用いることができる。
金属酸化物層3231がIn−M−Zn酸化物の場合、In−M−Zn酸化物を成膜するために用いるスパッタリングターゲットの金属元素の原子数比は、In>Mを満たすことが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In:M:Zn=2:1:3、In:M:Zn=3:1:2、In:M:Zn=4:2:4.1、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8、In:M:Zn=6:1:6、In:M:Zn=5:2:5等が挙げられる。
また、金属酸化物層3231が、In−M−Zn酸化物で形成される場合、スパッタリングターゲットとしては、多結晶のIn−M−Zn酸化物を含むターゲットを用いると好ましい。多結晶のIn−M−Zn酸化物を含むターゲットを用いることで、結晶性を有する金属酸化物層3231を形成しやすくなる。なお、成膜される金属酸化物層3231の原子数比は、上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む。例えば、金属酸化物層3231に用いるスパッタリングターゲットの組成がIn:Ga:Zn=4:2:4.1[原子数比]の場合、成膜される金属酸化物層3231の組成は、In:Ga:Zn=4:2:3[原子数比]の近傍となる場合がある。
また、金属酸化物層3231は、エネルギーギャップが2eV以上、好ましくは2.5eV以上である。このように、エネルギーギャップの広い酸化物半導体を用いることで、トランジスタのオフ電流を低減することができる。
また、金属酸化物層3231は、非単結晶構造であると好ましい。非単結晶構造は、例えば、後述するCAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)、多結晶構造、微結晶構造、または非晶質構造を含む。非単結晶構造において、非晶質構造は最も欠陥準位密度が高く、CAAC−OSは最も欠陥準位密度が低い。
金属酸化物層3231としては、不純物濃度が低く、欠陥準位密度の低い金属酸化物膜を用いることで、優れた電気特性を有するトランジスタを作製することができ好ましい。ここでは、不純物濃度が低く、欠陥準位密度の低い(酸素欠損の少ない)ことを高純度真性または実質的に高純度真性とよぶ。なお、金属酸化物膜中の不純物としては、代表的には水、水素などが挙げられる。本明細書等において、金属酸化物膜中から水及び水素を低減または除去することを、脱水化、脱水素化と表す場合がある。また、金属酸化物膜、または酸化物絶縁膜中に酸素を添加することを、加酸素化と表す場合があり、加酸素化され且つ化学両論的組成よりも過剰の酸素を有する状態を過酸素化状態と表す場合がある。
高純度真性または実質的に高純度真性である金属酸化物膜は、キャリア発生源が少ないため、キャリア密度を低くすることができる。従って、該金属酸化物膜にチャネル領域が形成されるトランジスタは、しきい値電圧がマイナスとなる電気特性(ノーマリーオンともいう。)になることが少ない。また、高純度真性または実質的に高純度真性である金属酸化物膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。また、高純度真性または実質的に高純度真性である金属酸化物膜は、オフ電流が著しく小さく、チャネル幅が1×10μmでチャネル長Lが10μmの素子であっても、ソース電極とドレイン電極間の電圧(ドレイン電圧)が1Vから10Vの範囲において、オフ電流が、半導体パラメータアナライザの測定限界以下、すなわち1×10−13A以下という特性を得ることができる。
絶縁層3213は、水素及び窒素のいずれか一方または双方を有する。または、絶縁層3213は、窒素及びシリコンを有する。また、絶縁層3213は、酸素、水素、水、アルカリ金属、アルカリ土類金属等のブロッキングできる機能を有する。絶縁層3213を設けることで、金属酸化物層3231からの酸素の外部への拡散と、絶縁層3212に含まれる酸素の外部への拡散と、外部から金属酸化物層3231への水素、水等の入り込みを防ぐことができる。
絶縁層3213としては、例えば、窒化物絶縁膜を用いることができる。該窒化物絶縁膜としては、窒化シリコン、窒化酸化シリコン、窒化アルミニウム、窒化酸化アルミニウム等がある。
<トランジスタの構成例2>
次に、トランジスタの構造の一例として、トランジスタ3200bについて、図38(A)(B)(C)を用いて説明する。図38(A)はトランジスタ3200bの上面図である。図38(B)は、図38(A)に示す一点鎖線X1−X2間における切断面の断面図に相当し、図38(C)は、図38(A)に示す一点鎖線Y1−Y2間における切断面の断面図に相当する。
トランジスタ3200bは、金属酸化物層3231、導電層3222a、導電層3222b、および絶縁層3212が積層構造である点において、トランジスタ3200aと異なる。
絶縁層3212は、金属酸化物層3231、導電層3222a及び導電層3222bの上の絶縁層3212aと、絶縁層3212aの上の絶縁層3212bを有する。絶縁層3212は、金属酸化物層3231に酸素を供給する機能を有する。すなわち、絶縁層3212は、酸素を有する。また、絶縁層3212aは、酸素を透過することのできる絶縁層である。なお、絶縁層3212aは、後に形成する絶縁層3212bを形成する際の、金属酸化物層3231へのダメージ緩和膜としても機能する。
絶縁層3212aとしては、厚さが5nm以上150nm以下、好ましくは5nm以上50nm以下の酸化シリコン、酸化窒化シリコン等を用いることができる。
また、絶縁層3212aは、欠陥量が少ないことが好ましく、代表的には、ESR測定により、シリコンのダングリングボンドに由来するg=2.001に現れる信号のスピン密度が3×1017spins/cm以下であることが好ましい。これは、絶縁層3212aに含まれる欠陥密度が多いと、該欠陥に酸素が結合してしまい、絶縁層3212aにおける酸素の透過性が減少してしまう。
なお、絶縁層3212aにおいては、外部から絶縁層3212aに入った酸素が全て絶縁層3212aの外部に移動せず、絶縁層3212aにとどまる酸素もある。また、絶縁層3212aに酸素が入ると共に、絶縁層3212aに含まれる酸素が絶縁層3212aの外部へ移動することで、絶縁層3212aにおいて酸素の移動が生じる場合もある。絶縁層3212aとして酸素を透過することができる酸化物絶縁層を形成すると、絶縁層3212a上に設けられる、絶縁層3212bから脱離する酸素を、絶縁層3212aを介して金属酸化物層3231に移動させることができる。
また、絶縁層3212aは、窒素酸化物に起因する準位密度が低い酸化物絶縁層を用いて形成することができる。なお、当該窒素酸化物に起因する準位密度は、金属酸化物膜の価電子帯の上端のエネルギー(Ev_os)と金属酸化物膜の伝導帯の下端のエネルギー(Ec_os)の間に形成され得る場合がある。上記酸化物絶縁層として、窒素酸化物の放出量が少ない酸化窒化シリコン膜、または窒素酸化物の放出量が少ない酸化窒化アルミニウム膜等を用いることができる。
なお、窒素酸化物の放出量の少ない酸化窒化シリコン膜は、昇温脱離ガス分析法(TDS:Thermal Desorption Spectroscopy)において、窒素酸化物の放出量よりアンモニアの放出量が多い膜であり、代表的にはアンモニアの放出量が1×1018/cm以上5×1019/cm以下である。なお、アンモニアの放出量は、膜の表面温度が50℃以上650℃以下、好ましくは50℃以上550℃以下の加熱処理による放出量とする。
窒素酸化物(NO、xは0よりも大きく2以下、好ましくは1以上2以下)、代表的にはNOまたはNOは、絶縁層3212aなどに準位を形成する。当該準位は、金属酸化物層3231のエネルギーギャップ内に位置する。そのため、窒素酸化物が、絶縁層3212a及び金属酸化物層3231の界面に拡散すると、当該準位が絶縁層3212a側において電子をトラップする場合がある。この結果、トラップされた電子が、絶縁層3212a及び金属酸化物層3231界面近傍に留まるため、トランジスタのしきい値電圧をプラス方向にシフトさせてしまう。
また、窒素酸化物は、加熱処理においてアンモニア及び酸素と反応する。絶縁層3212aに含まれる窒素酸化物は、加熱処理において、絶縁層3212bに含まれるアンモニアと反応するため、絶縁層3212aに含まれる窒素酸化物が低減される。このため、絶縁層3212a及び金属酸化物層3231の界面において、電子がトラップされにくい。
絶縁層3212aとして、上記酸化物絶縁層を用いることで、トランジスタのしきい値電圧のシフトを低減することが可能であり、トランジスタの電気特性の変動を低減することができる。
また、上記酸化物絶縁層は、SIMSで測定される窒素濃度が6×1020atoms/cm以下である。
基板温度が220℃以上350℃以下であり、シラン及び一酸化二窒素を用いたPECVD法を用いて、上記酸化物絶縁層を形成することで、緻密であり、且つ硬度の高い膜を形成することができる。
絶縁層3212bは、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁層である。上記の酸化物絶縁層は、加熱により酸素の一部が脱離する。なお、TDSにおいて、上記の酸化物絶縁層は、酸素の放出量が1.0×1019atoms/cm以上、好ましくは3.0×1020atoms/cm以上の領域を有する。また、上記の酸素の放出量は、TDSにおける加熱処理の温度が50℃以上650℃以下、または50℃以上550℃以下の範囲での総量である。また、上記の酸素の放出量は、TDSにおける酸素原子に換算しての総量である。
絶縁層3212bとしては、厚さが30nm以上500nm以下、好ましくは50nm以上400nm以下の、酸化シリコン、酸化窒化シリコン等を用いることができる。
また、絶縁層3212bは、欠陥量が少ないことが好ましく、代表的には、ESR測定により、シリコンのダングリングボンドに由来するg=2.001に現れる信号のスピン密度が1.5×1018spins/cm未満、さらには1×1018spins/cm以下であることが好ましい。なお、絶縁層3212bは、絶縁層3212aと比較して金属酸化物層3231から離れているため、絶縁層3212aより、欠陥密度が多くともよい。
また、絶縁層3212は、同種の材料の絶縁層を用いることができるため、絶縁層3212aと絶縁層3212bの界面が明確に確認できない場合がある。したがって、本実施の形態においては、絶縁層3212aと絶縁層3212bの界面は、破線で図示している。なお、本実施の形態においては、絶縁層3212aと絶縁層3212bの2層構造について説明したが、これに限定されず、例えば、絶縁層3212aの単層構造、あるいは3層以上の積層構造としてもよい。
トランジスタ3200bにおいて、金属酸化物層3231は、絶縁層3211上の金属酸化物層3231_1と、金属酸化物層3231_1上の金属酸化物層3231_2と、を有する。なお、金属酸化物層3231_1及び金属酸化物層3231_2は、それぞれ同じ元素を有する。例えば、金属酸化物層3231_1及び金属酸化物層3231_2は、上述の金属酸化物層3231が有する元素を、それぞれ独立に有することが好ましい。
また、金属酸化物層3231_1及び金属酸化物層3231_2は、それぞれ独立に、Inの原子数比がMの原子数比より多い領域を有すると好ましい。一例としては、金属酸化物層3231_1及び金属酸化物層3231_2のIn、M、及びZnの原子数の比を、In:M:Zn=4:2:3近傍とすると好ましい。ここで、近傍とは、Inが4の場合、Mが1.5以上2.5以下であり、且つZnが2以上4以下を含む。または、金属酸化物層3231_1及び金属酸化物層3231_2のIn、M、及びZnの原子数の比を、In:M:Zn=5:1:6近傍とすると好ましい。このように、金属酸化物層3231_1及び金属酸化物層3231_2を概略同じ組成とすることで、同じスパッタリングターゲットを用いて形成できるため、製造コストを抑制することが可能である。また、同じスパッタリングターゲットを用いる場合、同一チャンバーにて真空中で連続して金属酸化物層3231_1及び金属酸化物層3231_2を成膜することができるため、金属酸化物層3231_1と金属酸化物層3231_2との界面に不純物が取り込まれるのを抑制することができる。
ここで、金属酸化物層3231_1は、金属酸化物層3231_2よりも結晶性が低い領域を有していてもよい。なお、金属酸化物層3231_1及び金属酸化物層3231_2の結晶性としては、例えば、X線回折(XRD:X−Ray Diffraction)を用いて分析する、あるいは、透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いて分析することで解析できる。
金属酸化物層3231_1の結晶性が低い領域が過剰酸素の拡散経路となり、金属酸化物層3231_1よりも結晶性の高い金属酸化物層3231_2にも過剰酸素を拡散させることができる。このように、結晶構造が異なる金属酸化物層の積層構造とし、結晶性の低い領域を過剰酸素の拡散経路とすることで、信頼性の高いトランジスタを提供することができる。
また、金属酸化物層3231_2が、金属酸化物層3231_1より結晶性が高い領域を有することにより、金属酸化物層3231に混入しうる不純物を抑制することができる。特に、金属酸化物層3231_2の結晶性を高めることで、導電層3222a及び導電層3222bを加工する際のダメージを抑制することができる。金属酸化物層3231の表面、すなわち金属酸化物層3231_2の表面は、導電層3222a及び導電層3222bの加工の際のエッチャントまたはエッチングガスに曝される。しかしながら、金属酸化物層3231_2は、結晶性が高い領域を有する場合、結晶性が低い金属酸化物層3231_1と比較してエッチング耐性に優れる。したがって、金属酸化物層3231_2は、エッチングストッパとして機能する。
また、金属酸化物層3231_1は、金属酸化物層3231_2よりも結晶性が低い領域を有することで、キャリア密度が高くなる場合がある。
また、金属酸化物層3231_1のキャリア密度が高くなると、金属酸化物層3231_1の伝導帯に対してフェルミ準位が相対的に高くなる場合がある。これにより、金属酸化物層3231_1の伝導帯の下端が低くなり、金属酸化物層3231_1の伝導帯下端と、ゲート絶縁膜(ここでは、絶縁層3211)中に形成されうるトラップ準位とのエネルギー差が大きくなる場合がある。該エネルギー差が大きくなることにより、ゲート絶縁膜中にトラップされる電荷が少なくなり、トランジスタのしきい値電圧の変動を小さくできる場合がある。また、金属酸化物層3231_1のキャリア密度が高くなると、金属酸化物層3231の電界効果移動度を高めることができる。
なお、トランジスタ3200bにおいては、金属酸化物層3231を2層の積層構造にする例を示したが、これに限定されず、3層以上積層する構成にしてもよい。
トランジスタ3200bが有する導電層3222aは、導電層3222a_1と、導電層3222a_1上の導電層3222a_2と、導電層3222a_2上の導電層3222a_3と、を有する。また、トランジスタ3200bが有する導電層3222bは、導電層3222b_1と、導電層3222b_1上の導電層3222b_2と、導電層3222b_2上の導電層3222b_3と、を有する。
例えば、導電層3222a_1、導電層3222b_1、導電層3222a_3、及び導電層3222b_3としては、チタン、タングステン、タンタル、モリブデン、インジウム、ガリウム、錫、及び亜鉛の中から選ばれるいずれか一つまたは複数を有すると好適である。また、導電層3222a_2及び導電層3222b_2としては、銅、アルミニウム、及び銀の中から選ばれるいずれか一つまたは複数を有すると好適である。
より具体的には、導電層3222a_1、導電層3222b_1、導電層3222a_3、及び導電層3222b_3にIn−Sn酸化物またはIn−Zn酸化物を用い、導電層3222a_2及び導電層3222b_2に銅を用いることができる。
また、導電層3222a_1の端部は、導電層3222a_2の端部よりも外側に位置する領域を有し、導電層3222a_3は、導電層3222a_2の上面及び側面を覆い、且つ導電層3222a_1と接する領域を有する。また、導電層3222b_1の端部は、導電層3222b_2の端部よりも外側に位置する領域を有し、導電層3222b_3は、導電層3222b_2の上面及び側面を覆い、且つ導電層3222b_1と接する領域を有する。
上記構成とすることで、導電層3222a及び導電層3222bの配線抵抗を低くし、且つ金属酸化物層3231への銅の拡散を抑制できるため好適である。
<トランジスタの構成例3>
次に、トランジスタの構造の一例として、トランジスタ3200cについて、図39(A)(B)(C)を用いて説明する。図39(A)はトランジスタ3200cの上面図である。図39(B)は、図39(A)に示す一点鎖線X1−X2間における切断面の断面図に相当し、図39(C)は、図39(A)に示す一点鎖線Y1−Y2間における切断面の断面図に相当する。
図39(A)(B)(C)に示すトランジスタ3200cは、絶縁層3224上の導電層3221と、導電層3221上の絶縁層3211と、絶縁層3211上の金属酸化物層3231と、金属酸化物層3231上の絶縁層3212と、絶縁層3212上の導電層3223と、絶縁層3211、金属酸化物層3231、及び導電層3223上の絶縁層3213と、を有する。なお、金属酸化物層3231は、導電層3223と重なるチャネル領域3231iと、絶縁層3213と接するソース領域3231sと、絶縁層3213と接するドレイン領域3231dと、を有する。
また、絶縁層3213は、窒素または水素を有する。絶縁層3213と、ソース領域3231s及びドレイン領域3231dと、が接することで、絶縁層3213中の窒素または水素がソース領域3231s及びドレイン領域3231d中に添加される。ソース領域3231s及びドレイン領域3231dは、窒素または水素が添加されることで、キャリア密度が高くなる。
また、トランジスタ3200cは、絶縁層3213上の絶縁層3215と、絶縁層3213及び絶縁層3215に設けられた開口部3236aを介して、ソース領域3231sに電気的に接続される導電層3222aと、絶縁層3213及び絶縁層3215に設けられた開口部3236bを介して、ドレイン領域3231dに電気的に接続される導電層3222bと、を有していてもよい。
絶縁層3215としては、酸化物絶縁膜を用いることができる。また、絶縁層3215としては、酸化物絶縁膜と、窒化物絶縁膜との積層膜を用いることができる。絶縁層3215として、例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化ガリウムまたはGa−Zn酸化物などを用いればよい。また、絶縁層3215としては、外部からの水素、水等のバリア膜として機能する膜であることが好ましい。
絶縁層3211は、第1のゲート絶縁膜としての機能を有し、絶縁層3212は、第2のゲート絶縁膜としての機能を有する。また、絶縁層3213及び絶縁層3215は保護絶縁膜としての機能を有する。
また、絶縁層3212は、過剰酸素領域を有する。絶縁層3212が過剰酸素領域を有することで、金属酸化物層3231が有するチャネル領域3231i中に過剰酸素を供給することができる。よって、チャネル領域3231iに形成されうる酸素欠損を過剰酸素により補填することができるため、信頼性の高い半導体装置を提供することができる。
なお、金属酸化物層3231中に過剰酸素を供給させるためには、金属酸化物層3231の下方に形成される絶縁層3211に過剰酸素を供給してもよい。この場合、絶縁層3211中に含まれる過剰酸素は、金属酸化物層3231が有するソース領域3231s、及びドレイン領域3231dにも供給されうる。ソース領域3231s、及びドレイン領域3231d中に過剰酸素が供給されると、ソース領域3231s、及びドレイン領域3231dの抵抗が高くなる場合がある。
一方で、金属酸化物層3231の上方に形成される絶縁層3212に過剰酸素を有する構成とすることで、チャネル領域3231iにのみ選択的に過剰酸素を供給させることが可能となる。あるいは、チャネル領域3231i、ソース領域3231s、及びドレイン領域3231dに過剰酸素を供給させたのち、ソース領域3231s及びドレイン領域3231dのキャリア密度を選択的に高めることで、ソース領域3231s、及びドレイン領域3231dの抵抗が高くなることを抑制することができる。
また、金属酸化物層3231が有するソース領域3231s及びドレイン領域3231dは、それぞれ、酸素欠損を形成する元素、または酸素欠損と結合する元素を有すると好ましい。当該酸素欠損を形成する元素、または酸素欠損と結合する元素としては、代表的には水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、チタン、希ガス等が挙げられる。また、希ガス元素の代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。上記酸素欠損を形成する元素が、絶縁層3213中に1つまたは複数含まれる場合、絶縁層3213からソース領域3231s、及びドレイン領域3231dに拡散する、および/または不純物添加処理によりソース領域3231s、及びドレイン領域3231d中に添加される。
不純物元素が酸化物半導体膜に添加されると、酸化物半導体膜中の金属元素と酸素の結合が切断され、酸素欠損が形成される。または、不純物元素が酸化物半導体膜に添加されると、酸化物半導体膜中の金属元素と結合していた酸素が不純物元素と結合し、金属元素から酸素が脱離され、酸素欠損が形成される。これらの結果、酸化物半導体膜においてキャリア密度が増加し、導電性が高くなる。
また、導電層3221は、第1のゲート電極としての機能を有し、導電層3223は、第2のゲート電極としての機能を有し、導電層3222aは、ソース電極としての機能を有し、導電層3222bは、ドレイン電極としての機能を有する。
また、図39(C)に示すように、絶縁層3211及び絶縁層3212には開口部3237が設けられる。また、導電層3221は、開口部3237を介して、導電層3223と、電気的に接続される。よって、導電層3221と導電層3223には、同じ電位が与えられる。なお、開口部3237を設けずに、導電層3221と、導電層3223と、に異なる電位を与えてもよい。または、開口部3237を設けずに、導電層3221を遮光膜として用いてもよい。例えば、導電層3221を遮光性の材料により形成することで、チャネル領域3231iに照射される下方からの光を抑制することができる。
また、図39(B)(C)に示すように、金属酸化物層3231は、第1のゲート電極として機能する導電層3221と、第2のゲート電極として機能する導電層3223のそれぞれと対向するように位置し、2つのゲート電極として機能する導電膜に挟まれている。
また、トランジスタ3200cもトランジスタ3200a及びトランジスタ3200bと同様にS−channel構造をとる。このような構成を有することで、トランジスタ3200cに含まれる金属酸化物層3231を、第1のゲート電極として機能する導電層3221及び第2のゲート電極として機能する導電層3223の電界によって電気的に取り囲むことができる。
トランジスタ3200cは、S−channel構造を有するため、導電層3221または導電層3223によってチャネルを誘起させるための電界を効果的に金属酸化物層3231に印加することができるため、トランジスタ3200cの電流駆動能力が向上し、高いオン電流特性を得ることが可能となる。また、オン電流を高くすることが可能であるため、トランジスタ3200cを微細化することが可能となる。また、トランジスタ3200cは、導電層3221、及び導電層3223によって取り囲まれた構造を有するため、トランジスタ3200cの機械的強度を高めることができる。
なお、トランジスタ3200cを、導電層3223の金属酸化物層3231に対する位置、または導電層3223の形成方法から、TGSA(Top Gate Self Align)型のFETと呼称してもよい。
なお、トランジスタ3200cにおいても、トランジスタ3200bと同様に金属酸化物層3231を2層以上積層する構成にしてもよい。
また、トランジスタ3200cにおいて、絶縁層3212が導電層3223と重なる部分にのみ設けられているが、これに限られることなく、絶縁層3212が金属酸化物層3231を覆う構成にすることもできる。また、導電層3221を設けない構成にすることもできる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態8)
<CAC−OSの構成>
以下では、本発明の一態様で開示されるトランジスタに用いることができるCAC(Cloud−Aligned Composite)−OSの構成について説明する。
本明細書等において、金属酸化物(metal oxide)とは、広い表現での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう)などに分類される。例えば、トランジスタの活性層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OS FETと記載する場合においては、金属酸化物または酸化物半導体を有するトランジスタと換言することができる。
本明細書において、金属酸化物が、導電体の機能を有する領域と、誘電体の機能を有する領域とが混合し、金属酸化物全体では半導体として機能する場合、CAC(Cloud−Aligned Composite)−OS(Oxide Semiconductor)、またはCAC−metal oxideと定義する。
つまり、CAC−OSとは、例えば、酸化物半導体を構成する元素が、0.5nm以上10nm以下、好ましくは、0.5nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、酸化物半導体において、一つあるいはそれ以上の元素が偏在し、該元素を有する領域が、0.5nm以上10nm以下、好ましくは、0.5nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
特定の元素が偏在した領域は、該元素が有する性質により、物理特性が決定する。例えば、金属酸化物を構成する元素の中でも比較的、絶縁体となる傾向がある元素が偏在した領域は、誘電体領域となる。一方、金属酸化物を構成する元素の中でも比較的、導体となる傾向がある元素が偏在した領域は、導電体領域となる。また、導電体領域、および誘電体領域がモザイク状に混合することで、材料としては、半導体として機能する。
つまり、本発明の一態様における金属酸化物は、物理特性が異なる材料が混合した、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)の一種である。
なお、酸化物半導体は、少なくともインジウムを含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、元素M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)が含まれていてもよい。
例えば、In−Ga−Zn酸化物におけるCAC−OS(CAC−OSの中でもIn−Ga−Zn酸化物を、特にCAC−IGZOと呼称してもよい。)とは、インジウム酸化物(以下、InOX1(X1は0よりも大きい実数)とする。)、またはインジウム亜鉛酸化物(以下、InX2ZnY2Z2(X2、Y2、およびZ2は0よりも大きい実数)とする。)と、ガリウム酸化物(以下、GaOX3(X3は0よりも大きい実数)とする。)、またはガリウム亜鉛酸化物(以下、GaX4ZnY4Z4(X4、Y4、およびZ4は0よりも大きい実数)とする。)などと、に材料が分離することでモザイク状となり、モザイク状のInOX1、またはInX2ZnY2Z2が、膜中に均一に分布した構成(以下、クラウド状ともいう。)である。
つまり、CAC−OSは、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、混合している構成を有する複合酸化物半導体である。なお、本明細書において、例えば、第1の領域の元素Mに対するInの原子数比が、第2の領域の元素Mに対するInの原子数比よりも大きいことを、第1の領域は、第2の領域と比較して、Inの濃度が高いとする。
なお、IGZOは通称であり、In、Ga、Zn、およびOによる1つの化合物をいう場合がある。代表例として、InGaO(ZnO)m1(m1は自然数)、またはIn(1+x0)Ga(1−x0)(ZnO)m0(−1≦x0≦1、m0は任意数)で表される結晶性の化合物が挙げられる。
上記結晶性の化合物は、単結晶構造、多結晶構造、またはCAAC構造を有する。なお、CAAC構造とは、複数のIGZOのナノ結晶がc軸配向を有し、かつa−b面においては配向せずに連結した結晶構造である。
一方、CAC−OSは、酸化物半導体の材料構成に関する。CAC−OSとは、In、Ga、Zn、およびOを含む材料構成において、一部にGaを主成分とするナノ粒子状領域が観察され、一部にInを主成分とするナノ粒子状領域が観察され、それぞれモザイク状にランダムに分散している構成をいう。従って、CAC−OSにおいて、結晶構造は副次的な要素である。
なお、CAC−OSは、組成の異なる二種類以上の膜の積層構造は含まないものとする。例えば、Inを主成分とする膜と、Gaを主成分とする膜との2層からなる構造は、含まない。
なお、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とは、明確な境界が観察できない場合がある。
なお、ガリウムの代わりに、アルミニウム、シリコン、ホウ素、イットリウム、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれている場合、CAC−OSは、一部に該元素を主成分とするナノ粒子状領域が観察され、一部にInを主成分とするナノ粒子状領域が観察され、それぞれモザイク状にランダムに分散している構成をいう。
<CAC−OSの解析>
続いて、各種測定方法を用い、基板上に成膜した酸化物半導体について測定を行った結果について説明する。
〔試料の構成と作製方法〕
以下では、本発明の一態様に係る9個の試料について説明する。各試料は、それぞれ、酸化物半導体を成膜する際の基板温度、および酸素ガス流量比を異なる条件で作製する。なお、試料は、基板と、基板上の酸化物半導体と、を有する構造である。
各試料の作製方法について、説明する。
まず、基板として、ガラス基板を用いる。続いて、スパッタリング装置を用いて、ガラス基板上に酸化物半導体として、厚さ100nmのIn−Ga−Zn酸化物を形成する。成膜条件は、チャンバー内の圧力を0.6Paとし、ターゲットには、酸化物ターゲット(In:Ga:Zn=4:2:4.1[原子数比])を用いる。また、スパッタリング装置内に設置された酸化物ターゲットに2500WのAC電力を供給する。
なお、酸化物を成膜する際の条件として、基板温度を、意図的に加熱しない温度(以下、室温またはR.T.ともいう。)、130℃、または170℃とした。また、Arと酸素の混合ガスに対する酸素ガスの流量比(以下、酸素ガス流量比ともいう。)を、10%、30%、または100%とすることで、9個の試料を作製する。
〔X線回折による解析〕
本項目では、9個の試料に対し、X線回折(XRD:X−ray diffraction)測定を行った結果について説明する。なお、XRD装置として、Bruker社製D8 ADVANCEを用いた。また、条件は、Out−of−plane法によるθ/2θスキャンにて、走査範囲を15deg.乃至50deg.、ステップ幅を0.02deg.、走査速度を3.0deg./分とした。
図40にOut−of−plane法を用いてXRDスペクトルを測定した結果を示す。なお、図40において、上段には成膜時の基板温度条件が170℃の試料における測定結果、中段には成膜時の基板温度条件が130℃の試料における測定結果、下段には成膜時の基板温度条件がR.T.の試料における測定結果を示す。また、左側の列には酸素ガス流量比の条件が10%の試料における測定結果、中央の列には酸素ガス流量比の条件が30%の試料における測定結果、右側の列には酸素ガス流量比の条件が100%の試料における測定結果、を示す。
図40に示すXRDスペクトルは、成膜時の基板温度を高くする、または、成膜時の酸素ガス流量比の割合を大きくすることで、2θ=31°付近のピーク強度が高くなる。なお、2θ=31°付近のピークは、被形成面または上面に略垂直方向に対してc軸に配向した結晶性IGZO化合物(CAAC(c−axis aligned crystalline)−IGZOともいう。)であることに由来することが分かっている。
また、図40に示すXRDスペクトルは、成膜時の基板温度が低い、または、酸素ガス流量比が小さいほど、明確なピークが現れなかった。従って、成膜時の基板温度が低い、または、酸素ガス流量比が小さい試料は、測定領域のa−b面方向、およびc軸方向の配向は見られないことが分かる。
〔電子顕微鏡による解析〕
本項目では、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料を、HAADF(High−Angle Annular Dark Field)−STEM(Scanning Transmission Electron Microscope)によって観察、および解析した結果について説明する(以下、HAADF−STEMによって取得した像は、TEM像ともいう。)。
HAADF−STEMによって取得した平面像(以下、平面TEM像ともいう。)、および断面像(以下、断面TEM像ともいう。)の画像解析を行った結果について説明する。なお、TEM像は、球面収差補正機能を用いて観察した。なお、HAADF−STEM像の撮影には、日本電子株式会社製原子分解能分析電子顕微鏡JEM−ARM200Fを用いて、加速電圧200kV、ビーム径約0.1nmφの電子線を照射して行った。
図41(A)は、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の平面TEM像である。図41(B)は、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の断面TEM像である。
〔電子線回折パターンの解析〕
本項目では、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料に、プローブ径が1nmの電子線(ナノビーム電子線ともいう。)を照射することで、電子線回折パターンを取得した結果について説明する。
図41(A)に示す、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の平面TEM像において、黒点a1、黒点a2、黒点a3、黒点a4、および黒点a5で示す電子線回折パターンを観察する。なお、電子線回折パターンの観察は、電子線を照射しながら0秒の位置から35秒の位置まで一定の速度で移動させながら行う。黒点a1の結果を図41(C)、黒点a2の結果を図41(D)、黒点a3の結果を図41(E)、黒点a4の結果を図41(F)、および黒点a5の結果を図41(G)に示す。
図41(C)、図41(D)、図41(E)、図41(F)、および図41(G)より、円を描くように(リング状に)輝度の高い領域が観測できる。また、リング状の領域に複数のスポットが観測できる。
また、図41(B)に示す、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の断面TEM像において、黒点b1、黒点b2、黒点b3、黒点b4、および黒点b5で示す電子線回折パターンを観察する。黒点b1の結果を図41(H)、黒点b2の結果を図41(I)、黒点b3の結果を図41(J)、黒点b4の結果を図41(K)、および黒点b5の結果を図41(L)に示す。
図41(H)、図41(I)、図41(J)、図41(K)、および図41(L)より、リング状に輝度の高い領域が観測できる。また、リング状の領域に複数のスポットが観測できる。
ここで、例えば、InGaZnOの結晶を有するCAAC−OSに対し、試料面に平行にプローブ径が300nmの電子線を入射させると、InGaZnOの結晶の(009)面に起因するスポットが含まれる回折パターンが見られる。つまり、CAAC−OSは、c軸配向性を有し、c軸が被形成面または上面に略垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面に垂直にプローブ径が300nmの電子線を入射させると、リング状の回折パターンが確認される。つまり、CAAC−OSは、a軸およびb軸は配向性を有さないことがわかる。
また、微結晶を有する酸化物半導体(nano crystalline oxide semiconductor。以下、nc−OSという。)に対し、大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折を行うと、ハローパターンのような回折パターンが観測される。また、nc−OSに対し、小さいプローブ径の電子線(例えば50nm未満)を用いるナノビーム電子線回折を行うと、輝点(スポット)が観測される。また、nc−OSに対しナノビーム電子線回折を行うと、円を描くように(リング状に)輝度の高い領域が観測される場合がある。さらに、リング状の領域に複数の輝点が観測される場合がある。
成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の電子線回折パターンは、リング状に輝度の高い領域と、該リング領域に複数の輝点を有する。従って、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料は、電子線回折パターンが、nc−OSになり、平面方向、および断面方向において、配向性は有さない。
以上より、成膜時の基板温度が低い、または、酸素ガス流量比が小さい酸化物半導体は、アモルファス構造の酸化物半導体膜とも、単結晶構造の酸化物半導体膜とも明確に異なる性質を有すると推定できる。
〔元素分析〕
本項目では、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用い、EDXマッピングを取得し、評価することによって、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の元素分析を行った結果について説明する。なお、EDX測定には、元素分析装置として日本電子株式会社製エネルギー分散型X線分析装置JED−2300Tを用いる。なお、試料から放出されたX線の検出にはSiドリフト検出器を用いる。
EDX測定では、試料の分析対象領域の各点に電子線照射を行い、これにより発生する試料の特性X線のエネルギーと発生回数を測定し、各点に対応するEDXスペクトルを得る。本実施の形態では、各点のEDXスペクトルのピークを、In原子のL殻への電子遷移、Ga原子のK殻への電子遷移、Zn原子のK殻への電子遷移及びO原子のK殻への電子遷移に帰属させ、各点におけるそれぞれの原子の比率を算出する。これを試料の分析対象領域について行うことにより、各原子の比率の分布が示されたEDXマッピングを得ることができる。
図42には、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の断面におけるEDXマッピングを示す。図42(A)は、Ga原子のEDXマッピング(全原子に対するGa原子の比率は1.18乃至18.64[atomic%]の範囲とする。)である。図42(B)は、In原子のEDXマッピング(全原子に対するIn原子の比率は9.28乃至33.74[atomic%]の範囲とする。)である。図42(C)は、Zn原子のEDXマッピング(全原子に対するZn原子の比率は6.69乃至24.99[atomic%]の範囲とする。)である。また、図42(A)、図42(B)、および図42(C)は、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の断面において、同範囲の領域を示している。なお、EDXマッピングは、範囲における、測定元素が多いほど明るくなり、測定元素が少ないほど暗くなるように、明暗で元素の割合を示している。また、図42に示すEDXマッピングの倍率は720万倍である。
図42(A)、図42(B)、および図42(C)に示すEDXマッピングでは、画像に相対的な明暗の分布が見られ、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料において、各原子が分布を持って存在している様子が確認できる。ここで、図42(A)、図42(B)、および図42(C)に示す実線で囲む範囲と破線で囲む範囲に注目する。
図42(A)では、実線で囲む範囲は、相対的に暗い領域を多く含み、破線で囲む範囲は、相対的に明るい領域を多く含む。また、図42(B)では実線で囲む範囲は、相対的に明るい領域を多く含み、破線で囲む範囲は、相対的に暗い領域を多く含む。
つまり、実線で囲む範囲はIn原子が相対的に多い領域であり、破線で囲む範囲はIn原子が相対的に少ない領域である。ここで、図42(C)では、実線で囲む範囲において、右側は相対的に明るい領域であり、左側は相対的に暗い領域である。従って、実線で囲む範囲は、InX2ZnY2Z2、またはInOX1などが主成分である領域である。
また、実線で囲む範囲はGa原子が相対的に少ない領域であり、破線で囲む範囲はGa原子が相対的に多い領域である。図42(C)では、破線で囲む範囲において、左上の領域は、相対的に明るい領域であり、右下側の領域は、相対的に暗い領域である。従って、破線で囲む範囲は、GaOX3、またはGaX4ZnY4Z4などが主成分である領域である。
また、図42(A)、図42(B)、および図42(C)より、In原子の分布は、Ga原子よりも、比較的、均一に分布しており、InOX1が主成分である領域は、InX2ZnY2Z2が主成分となる領域を介して、互いに繋がって形成されているように見える。このように、InX2ZnY2Z2、またはInOX1が主成分である領域は、クラウド状に広がって形成されている。
このように、GaOX3などが主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、偏在し、混合している構造を有するIn−Ga−Zn酸化物を、CAC−OSと呼称することができる。
また、CAC−OSにおける結晶構造は、nc構造を有する。CAC−OSが有するnc構造は、電子線回折パターンにおいて、単結晶、多結晶、またはCAAC構造を含むIGZOに起因する輝点(スポット)以外にも、数か所以上の輝点(スポット)を有する。または、数か所以上の輝点(スポット)に加え、リング状に輝度の高い領域が現れるとして結晶構造が定義される。
また、図42(A)、図42(B)、および図42(C)より、GaOX3などが主成分である領域、及びInX2ZnY2Z2、またはInOX1が主成分である領域のサイズは、0.5nm以上10nm以下、または1nm以上3nm以下で観察される。なお、好ましくは、EDXマッピングにおいて、各元素が主成分である領域の径は、1nm以上2nm以下とする。
以上より、CAC−OSは、金属元素が均一に分布したIGZO化合物とは異なる構造であり、IGZO化合物と異なる性質を有する。つまり、CAC−OSは、GaOX3などが主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域と、に互いに相分離し、各元素を主成分とする領域がモザイク状である構造を有する。
ここで、InX2ZnY2Z2、またはInOX1が主成分である領域は、GaOX3などが主成分である領域と比較して、導電性が高い領域である。つまり、InX2ZnY2Z2、またはInOX1が主成分である領域を、キャリアが流れることにより、酸化物半導体としての導電性が発現する。従って、InX2ZnY2Z2、またはInOX1が主成分である領域が、酸化物半導体中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
一方、GaOX3などが主成分である領域は、InX2ZnY2Z2、またはInOX1が主成分である領域と比較して、絶縁性が高い領域である。つまり、GaOX3などが主成分である領域が、酸化物半導体中に分布することで、リーク電流を抑制し、良好なスイッチング動作を実現できる。
従って、CAC−OSを半導体素子に用いた場合、GaOX3などに起因する絶縁性と、InX2ZnY2Z2、またはInOX1に起因する導電性とが、相補的に作用することにより、高いオン電流(Ion)、および高い電界効果移動度(μ)を実現することができる。
また、CAC−OSを用いた半導体素子は、信頼性が高い。従って、CAC−OSは、ディスプレイをはじめとするさまざまな半導体装置に最適である。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態9)
本実施の形態では、本明細書等に開示した表示装置などを用いた電子機器の一例について説明する。
本発明の一態様に係る半導体装置を用いた電子機器として、テレビ、モニタ等の表示装置、照明装置、デスクトップ型或いはノート型のパーソナルコンピュータ、ワードプロセッサ、DVD(Digital Versatile Disc)などの記録媒体に記憶された静止画又は動画を再生する画像再生装置、ポータブルCDプレーヤ、ラジオ、テープレコーダ、ヘッドホンステレオ、ステレオ、置き時計、壁掛け時計、コードレス電話子機、トランシーバ、自動車電話、携帯電話、携帯情報端末、タブレット型端末、携帯型ゲーム機、パチンコ機などの固定式ゲーム機、電卓、電子手帳、電子書籍端末、電子翻訳機、音声入力機器、ビデオカメラ、デジタルスチルカメラ、電気シェーバ、電子レンジ等の高周波加熱装置、電気炊飯器、電気洗濯機、電気掃除機、温水器、扇風機、毛髪乾燥機、エアコンディショナー、加湿器、除湿器などの空調設備、食器洗い器、食器乾燥器、衣類乾燥器、布団乾燥器、電気冷蔵庫、電気冷凍庫、電気冷凍冷蔵庫、DNA保存用冷凍庫、懐中電灯、チェーンソー等の工具、煙感知器、透析装置等の医療機器などが挙げられる。さらに、誘導灯、信号機、ベルトコンベア、エレベータ、エスカレータ、産業用ロボット、電力貯蔵システム、電力の平準化やスマートグリッドのための蓄電装置等の産業機器が挙げられる。また、燃料を用いたエンジンや、蓄電体からの電力を用いた電動機により推進する移動体なども、電子機器の範疇に含まれる場合がある。上記移動体として、例えば、電気自動車(EV)、内燃機関と電動機を併せ持ったハイブリッド車(HEV)、プラグインハイブリッド車(PHEV)、これらのタイヤ車輪を無限軌道に変えた装軌車両、電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、ゴルフ用カート、小型又は大型船舶、潜水艦、ヘリコプター、航空機、ロケット、人工衛星、宇宙探査機や惑星探査機、宇宙船などが挙げられる。
図43(A)に示す情報端末2910は、筐体2911に、表示部2912、マイク2917、スピーカ部2914、カメラ2913、外部接続部2916、および操作スイッチ2915等を有する。表示部2912には、可撓性基板が用いられた表示パネルおよびタッチスクリーンを備える。また、情報端末2910は、筐体2911の内側にアンテナ、バッテリなどを備える。情報端末2910は、例えば、スマートフォン、携帯電話、タブレット型情報端末、タブレット型パーソナルコンピュータ、電子書籍端末等として用いることができる。
図43(B)に示すノート型パーソナルコンピュータ2920は、筐体2921、表示部2922、キーボード2923、およびポインティングデバイス2924等を有する。また、ノート型パーソナルコンピュータ2920は、筐体2921の内側にアンテナ、バッテリなどを備える。
図43(C)に示すビデオカメラ2940は、筐体2941、筐体2942、表示部2943、操作スイッチ2944、レンズ2945、および接続部2946等を有する。操作スイッチ2944およびレンズ2945は筐体2941に設けられており、表示部2943は筐体2942に設けられている。また、ビデオカメラ2940は、筐体2941の内側にアンテナ、バッテリなどを備える。そして、筐体2941と筐体2942は、接続部2946により接続されており、筐体2941と筐体2942の間の角度は、接続部2946により変えることが可能な構造となっている。筐体2941に対する筐体2942の角度によって、表示部2943に表示される画像の向きの変更や、画像の表示/非表示の切り換えを行うことができる。
図43(D)にバングル型の情報端末の一例を示す。情報端末2950は、筐体2951、および表示部2952等を有する。また、情報端末2950、筐体2951の内側にアンテナ、バッテリなどを備える。表示部2952は、曲面を有する筐体2951に支持されている。表示部2952には、可撓性基板を用いた表示パネルを備えているため、フレキシブルかつ軽くて使い勝手の良い情報端末2950を提供することができる。
図43(E)に腕時計型の情報端末の一例を示す。情報端末2960は、筐体2961、表示部2962、バンド2963、バックル2964、操作スイッチ2965、入出力端子2966などを備える。また、情報端末2960、筐体2961の内側にアンテナ、バッテリなどを備える。情報端末2960は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。
表示部2962の表示面は湾曲しており、湾曲した表示面に沿って表示を行うことができる。また、表示部2962はタッチセンサを備え、指やスタイラスなどで画面に触れることで操作することができる。例えば、表示部2962に表示されたアイコン2967に触れることで、アプリケーションを起動することができる。操作スイッチ2965は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、情報端末2960に組み込まれたオペレーティングシステムにより、操作スイッチ2965の機能を設定することもできる。
また、情報端末2960は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、情報端末2960は入出力端子2966を備え、他の情報端末とーを介して直接データのやりとりを行うことができる。また入出力端子2966を介して充電を行うこともできる。なお、充電動作は入出力端子2966を介さずに無線給電により行ってもよい。
図43(F)はタブレット型のパーソナルコンピュータであり、筐体5301、筐体5302、表示部5303、光センサ5304、光センサ5305、スイッチ5306等を有する。表示部5303は、筐体5301および筐体5302によって支持されている。そして、表示部5303は可撓性を有する基板を用いて形成されているため形状をフレキシブルに曲げることができる機能を有する。筐体5301と筐体5302の間の角度をヒンジ5307および5308において変更することで、筐体5301と筐体5302が重なるように、表示部5303を折りたたむことができる。図示してはいないが、開閉センサを内蔵させ、上記角度の変化を表示部5303において使用条件の情報として用いても良い。
図43(G)は、テレビジョン装置9100を示す斜視図である。テレビジョン装置9100は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、又は操作スイッチを含む)、接続端子9006、センサ9007(距離、光、温度などを測定する機能を含むもの)、マイクロホン9008、などを有する。テレビジョン装置9100は、表示部9001に、例えば、50インチ以上、または100インチ以上の表示装置を組み込むことが可能である。
本実施の形態に示す電子機器の表示部には、本発明の一態様の表示装置が搭載されている。電子機器の表示部に本発明の一態様に係る表示装置および駆動方法を用いることで、視認性が良好な電子機器を実現できる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
100 表示装置
110 表示装置
112 液晶
113 電極
117 絶縁層
121 絶縁層
122 光拡散層
123 偏光板
131 着色層
132 遮光層
134 着色層
135 反射防止層
141 接着層
142 接着層
151 絶縁層
170 液晶素子
171 対向基板
180 液晶素子
181 トランジスタ基板

Claims (10)

  1. 第1工程乃至第7工程を有し、
    前記第1工程は、
    第1支持基板上に、第1剥離層と、第1樹脂層と、を設ける工程と、
    前記第1樹脂層上に、第1電極を設ける工程と、
    前記第1電極上に、光拡散層と、第1偏光板と、を設ける工程と、を有し、
    前記第2工程は、
    第2支持基板上に、第2剥離層と、第2樹脂層と、第1基板と、を設ける工程と、を有し、
    前記第3工程は、
    前記第1支持基板と前記第2支持基板を、前記第1偏光板と前記第1基板が向かい合うように第1接着層を介して重ねる工程と、
    前記第1支持基板を介して前記第1剥離層に光を照射する工程と、
    前記第1支持基板および前記第1剥離層を前記第1樹脂層から分離する工程と、
    前記第1樹脂層を除去する工程と、を有し、
    前記第4工程は、
    第3支持基板上に、第3剥離層と、第3樹脂層と、第2電極と、トランジスタと、第3電極と、を設ける工程を有し、
    前記第5工程は
    4支持基板上に、第4剥離層と、第4樹脂層と、第2基板と、第4電極と、を設ける工程を有し、
    前記第6工程は、
    前記第3支持基板と前記第4支持基板を、前記第3電極と前記第4電極が向かい合うように第1液晶層を介して重ねる工程と、
    前記第3支持基板を介して前記第3剥離層に光を照射する工程と、
    前記第3支持基板および前記第3剥離層を前記第3樹脂層から分離する工程と、
    前記第3樹脂層を除去する工程と、を有し、
    前記第7工程は、
    前記第1基板と前記第2基板を、前記第1電極と前記第2電極が向かい合うように第2液晶層を介して重ねる工程と、
    前記第2支持基板を介して前記第2剥離層に光を照射する工程と、
    前記第2支持基板および前記第2剥離層を前記第2樹脂層から分離する工程と、
    前記第2樹脂層を除去する工程と、
    前記第4支持基板を介して前記第4剥離層に光を照射する工程と、
    前記第4支持基板および前記第4剥離層を前記第4樹脂層から分離する工程と、
    前記第4樹脂層を除去する工程と、前記第2基板上に第2偏光板を設ける工程と、
    を有する表示装置の作製方法。
  2. 請求項1において、
    前記第1基板の厚さが0.5mm未満である表示装置の作製方法。
  3. 請求項1または請求項2において、
    前記第2基板の厚さが0.5mm未満である表示装置の作製方法。
  4. 請求項1乃至請求項3のいずれか一項において、
    前記第1樹脂層乃至第4樹脂層がポリイミドを有する表示装置の作製方法。
  5. 請求項1乃至請求項4のいずれか一項において、
    前記光の波長が180nm以上450nm以下である表示装置の作製方法。
  6. 請求項1乃至請求項5のいずれか一項において、
    前記第1基板上に、反射防止層または防眩層の少なくとも一方が設けられている表示装置の作製方法。
  7. 請求項1乃至請求項6のいずれか一項において、
    前記トランジスタが酸化物半導体を有する表示装置の作製方法。
  8. 請求項1乃至請求項7のいずれか一項において、
    前記第1電極と前記第2液晶層の間に第1の配向膜を有し、
    前記第2電極と前記第2液晶層の間に第2の配向膜を有する表示装置の作製方法。
  9. 請求項1乃至請求項8のいずれか一項において、
    前記第3電極と前記第1液晶層の間に第3の配向膜を有し、
    前記第4電極と前記第1液晶層の間に第4の配向膜を有する表示装置の作製方法。
  10. 請求項1乃至請求項9のいずれか一項において、
    前記第1電極と前記光拡散層の間にタッチセンサを有する表示装置の作製方法。
JP2016207261A 2016-10-21 2016-10-21 表示装置の作製方法 Expired - Fee Related JP6792405B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016207261A JP6792405B2 (ja) 2016-10-21 2016-10-21 表示装置の作製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016207261A JP6792405B2 (ja) 2016-10-21 2016-10-21 表示装置の作製方法

Publications (3)

Publication Number Publication Date
JP2018066960A JP2018066960A (ja) 2018-04-26
JP2018066960A5 JP2018066960A5 (ja) 2019-11-28
JP6792405B2 true JP6792405B2 (ja) 2020-11-25

Family

ID=62086073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016207261A Expired - Fee Related JP6792405B2 (ja) 2016-10-21 2016-10-21 表示装置の作製方法

Country Status (1)

Country Link
JP (1) JP6792405B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179580A (ja) * 1988-01-11 1989-07-17 Toshiba Corp 液晶を用いた画像表示装置
JP3738799B2 (ja) * 1996-11-22 2006-01-25 セイコーエプソン株式会社 アクティブマトリクス基板の製造方法,アクティブマトリクス基板および液晶表示装置
JP2004070069A (ja) * 2002-08-07 2004-03-04 Ricoh Co Ltd 積層基板の製造方法・積層型液晶表示素子の製造方法
JP2007041536A (ja) * 2005-05-20 2007-02-15 Sanyo Epson Imaging Devices Corp 表示装置及び液晶表示装置
KR20090108951A (ko) * 2008-04-14 2009-10-19 삼성전자주식회사 표시 장치의 제조 방법
JP5864926B2 (ja) * 2011-07-14 2016-02-17 東京応化工業株式会社 積層体、分離方法、及び製造方法
EP2963506B1 (fr) * 2014-07-04 2019-03-20 The Swatch Group Research and Development Ltd. Ensemble d'affichage comprenant deux dispositifs d'affichage superposés
JP6662665B2 (ja) * 2015-03-19 2020-03-11 株式会社半導体エネルギー研究所 液晶表示装置及び該液晶表示装置を用いた電子機器

Also Published As

Publication number Publication date
JP2018066960A (ja) 2018-04-26

Similar Documents

Publication Publication Date Title
JP7430763B2 (ja) 半導体装置
JP7274635B2 (ja) 表示装置
JP7126823B2 (ja) 半導体装置の作製方法
JP6925164B2 (ja) 半導体装置または当該半導体装置を有する表示装置
KR102512106B1 (ko) 반도체 장치 및 표시 장치
JP6976703B2 (ja) 半導体装置
JP6975562B2 (ja) 表示装置
US10693097B2 (en) Display device including two display elements, display module, electronic device, and method for manufacturing display device
JP6871253B2 (ja) 表示装置の作製方法
JPWO2019025917A1 (ja) 半導体装置、及び表示装置
JP2018026563A (ja) 半導体装置の作製方法
JP7033853B2 (ja) 複合酸化物半導体、およびその作製方法
JP7547437B2 (ja) 半導体装置
JPWO2020089726A1 (ja) 半導体装置
JP2024153637A (ja) 半導体装置
JP2018190753A (ja) 半導体装置、および表示装置
JP6965065B2 (ja) 表示装置
JP2018066953A (ja) 表示装置の作製方法
JP6792405B2 (ja) 表示装置の作製方法
JP6999315B2 (ja) 表示装置の作製方法
JP6925819B2 (ja) 半導体装置の作製方法
JP6799405B2 (ja) 表示装置の作製方法
JP2018077376A (ja) 表示装置
JP2018081290A (ja) 表示装置
JP6931985B2 (ja) 表示装置の作製方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201106

R150 Certificate of patent or registration of utility model

Ref document number: 6792405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees