Nothing Special   »   [go: up one dir, main page]

JP6763612B2 - Active energy ray-curable resin composition, sealing material and cushioning material made of the cured product - Google Patents

Active energy ray-curable resin composition, sealing material and cushioning material made of the cured product Download PDF

Info

Publication number
JP6763612B2
JP6763612B2 JP2017521935A JP2017521935A JP6763612B2 JP 6763612 B2 JP6763612 B2 JP 6763612B2 JP 2017521935 A JP2017521935 A JP 2017521935A JP 2017521935 A JP2017521935 A JP 2017521935A JP 6763612 B2 JP6763612 B2 JP 6763612B2
Authority
JP
Japan
Prior art keywords
active energy
energy ray
resin composition
curable resin
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017521935A
Other languages
Japanese (ja)
Other versions
JPWO2016194870A1 (en
Inventor
泰 樋口
泰 樋口
翔太 伊地知
翔太 伊地知
繁憲 佐藤
繁憲 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taica Corp
Original Assignee
Taica Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taica Corp filed Critical Taica Corp
Publication of JPWO2016194870A1 publication Critical patent/JPWO2016194870A1/en
Application granted granted Critical
Publication of JP6763612B2 publication Critical patent/JP6763612B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Sealing Material Composition (AREA)
  • Polymerisation Methods In General (AREA)

Description

本発明は、活性エネルギー線硬化性樹脂組成物及びその硬化物に関し、詳しくは吐出塗布における形状精度と生産性に優れるとともに、硬化物が低硬度かつ高緩衝性を有する活性エネルギー線硬化性樹脂組成物並びにその硬化物からなるシール材及び緩衝材に関する。 The present invention relates to an active energy ray-curable resin composition and a cured product thereof. Specifically, the present invention is excellent in shape accuracy and productivity in discharge coating, and the cured product has an active energy ray-curable resin composition having low hardness and high cushioning property. The present invention relates to a sealing material and a cushioning material made of a material and a cured product thereof.

携帯電話やスマートフォン等の携帯情報端末機器やデジタルカメラ等の電子機器の小型化に伴い、構成部品の小型化及び集積化が進んでいる。例えば、これらの機器の筺体に使用されるシール材(パッキン、ガスケットなど)も線幅が細い設計に移行しており、現状では約1mm幅程度のシール材が使用されている。また、これらの機器に内蔵される小型のカメラユニットやアクチュエーターユニットに使用される緩衝材(衝撃吸収材)や防振材も小型化が進んでいる。これらのシール材や緩衝材、防振材といった構成部品は、軟質素材からなることが多く、その軟質性ゆえにシール材の線幅が細くなったり、緩衝材や防振材のサイズが極端に小さくなると、筺体等に構成部品として組込む作業が困難になり、生産性が低下してコストアップの原因となっている。 With the miniaturization of mobile information terminal devices such as mobile phones and smartphones and electronic devices such as digital cameras, the miniaturization and integration of components are progressing. For example, the sealing materials (packing, gaskets, etc.) used for the housings of these devices have also shifted to designs with narrow line widths, and at present, sealing materials having a width of about 1 mm are used. In addition, cushioning materials (shock absorbing materials) and anti-vibration materials used in small camera units and actuator units built into these devices are also becoming smaller. These components such as sealing materials, cushioning materials, and vibration-proofing materials are often made of soft materials, and due to their softness, the line width of the sealing materials becomes narrower, and the size of the cushioning materials and vibration-proofing materials is extremely small. In that case, it becomes difficult to incorporate the components into the housing or the like, which reduces productivity and causes an increase in cost.

この対策として、特許文献1及び特許文献2では、シール材を筺体等に装着させる部分に、紫外線硬化性樹脂等の液状シール材料をビード状(線状)にニードルから吐出させて塗布(以下、「ニードル塗布」という。)し、紫外線でビード状吐出体を硬化させて、シール材を直接形成すると同時に筺体等に装着させる方法(所謂cured−in−place工法:以下CIP工法という。)が提案されている。また、このような液状シール材料の吐出性(塗工性)及び塗布された硬化前のビード状吐出体の形状保持性を向上させることを目的として、特許文献1には、紫外線硬化性樹脂にシリカ粒子を添加する技術が記載され、特許文献2には、紫外線硬化性樹脂等の塗布材料の粘度を塗工温度下で約1〜1000Pa・sとする技術が記載されている。 As a countermeasure, in Patent Document 1 and Patent Document 2, a liquid sealing material such as an ultraviolet curable resin is discharged from a needle in a bead shape (linearly) and applied to a portion where the sealing material is attached to a housing or the like (hereinafter, A method (so-called "cured-in-place method": hereinafter referred to as "CIP method") is proposed in which a bead-shaped ejector is cured with ultraviolet rays to directly form a sealing material and at the same time attached to a housing or the like. Has been done. Further, in order to improve the discharge property (coatability) of such a liquid sealing material and the shape retention of the applied bead-shaped discharge body before curing, Patent Document 1 describes an ultraviolet curable resin. A technique for adding silica particles is described, and Patent Document 2 describes a technique for adjusting the viscosity of a coating material such as an ultraviolet curable resin to about 1 to 1000 Pa · s at a coating temperature.

他方、小型化のため肉薄化した筐体等の部材にシール材や緩衝材を組込んだ際に、これらの反発性が大きいと筐体等が変形し易くなるため、シール材や緩衝材には低反発性、すなわち、十分に柔軟で低硬度であることが求められている。また、携帯情報端末機器やデジタルカメラ、ウェアラブル電子機器等は小型化により電子部品が密集して集積され、近年では各種センサーの実装も進んでおり、その使用形態や環境による電子部品の破損や誤作動を防止する目的から、シール材や緩衝材にはより優れた緩衝性や防振性が要求されている。 On the other hand, when a sealing material or a cushioning material is incorporated into a member such as a housing that has been thinned for miniaturization, if the resilience is large, the housing or the like is easily deformed. Is required to have low resilience, that is, sufficiently flexible and low hardness. In addition, electronic components such as personal digital assistants, digital cameras, and wearable electronic devices are densely integrated due to miniaturization, and in recent years, various sensors have been implemented, and the electronic components are damaged or erroneously depending on the usage pattern and environment. For the purpose of preventing operation, sealing materials and cushioning materials are required to have better cushioning and vibration isolation.

そこで、柔軟性を備えたシール材を得るための紫外線硬化性樹脂の構成として、特許文献3及び特許文献4では、アクリル系化合物と多官能チオール化合物を混合したエネルギー線硬化型樹脂組成物が提案され、特許文献5〜7では、アクリルモノマーを用いた光硬化性樹脂組成物が提案され、特許文献8ではウレタンアクリレートオリゴマーとアクリルモノマーを混合した活性エネルギー線硬化型樹脂組成物が提案されている。 Therefore, Patent Documents 3 and 4 propose an energy ray-curable resin composition in which an acrylic compound and a polyfunctional thiol compound are mixed as a constitution of an ultraviolet curable resin for obtaining a flexible sealing material. In Patent Documents 5 to 7, a photocurable resin composition using an acrylic monomer is proposed, and in Patent Document 8, an active energy ray-curable resin composition in which a urethane acrylate oligomer and an acrylic monomer are mixed is proposed. ..

特開平07−88430号公報Japanese Unexamined Patent Publication No. 07-88430 特開2004−289943号公報Japanese Unexamined Patent Publication No. 2004-289943 特開2010−254853号公報Japanese Unexamined Patent Publication No. 2010-254853 特開2010−260918号公報JP-A-2010-260918 特開2004−26919号公報Japanese Unexamined Patent Publication No. 2004-26919 国際公開第2002/044299International Publication No. 2002/044299 特開2014−80498号公報Japanese Unexamined Patent Publication No. 2014-80498 特開2003−105320号公報Japanese Unexamined Patent Publication No. 2003-105320

しかしながら、特許文献1及び特許文献2に記載の技術では、シール材の線幅を細く又は狭くするために、ニードル吐出口の口径を小さくするほど液状シール材料を吐出し難くなり、高圧で吐出するとビード状吐出体が径膨張(swell)したり、吐出性を優先しようとして液状シール材料の粘度を低くすると、塗布後にビード状吐出体にダレが生じてシール材の線幅が広がり、所望の細い線幅のシール材を得ることが困難となるという問題点や課題があった。 However, in the techniques described in Patent Document 1 and Patent Document 2, in order to narrow or narrow the line width of the sealing material, the smaller the diameter of the needle discharge port, the more difficult it becomes to discharge the liquid sealing material, and when the liquid sealing material is discharged at high pressure. If the bead-shaped discharge body expands in diameter (swell) or the viscosity of the liquid sealing material is lowered in order to prioritize the discharge property, the bead-shaped discharge body will sag after application and the line width of the sealing material will be widened, which is desired to be thin. There has been a problem and a problem that it becomes difficult to obtain a sealing material having a line width.

さらに、特許文献1及び特許文献2には、紫外線硬化性樹脂を硬化させてシール材を得ることについては記載されているが、十分な柔軟性及び高い緩衝性・防振性を備えるシール材を得るための紫外線硬化性樹脂の構成については検討されていない。また、特許文献3及び特許文献4に記載のエネルギー線硬化型樹脂組成物は、アクリル化合物に多官能チオールからなる架橋剤を多量に添加しているため、架橋点が多くなり、十分な柔らかさを有するシール材等の硬化物を得ることは困難であった。そして、特許文献5〜8に記載された樹脂組成物についても、十分な柔軟性を備えたシール材や緩衝材等の硬化物を得ることはできなかった。このように、十分な柔軟性及び高い緩衝性・防振性を備えるシール材や緩衝材を得るための活性エネルギー線硬化性樹脂の構成の検討は十分になされていない。 Further, although Patent Document 1 and Patent Document 2 describe that an ultraviolet curable resin is cured to obtain a sealing material, a sealing material having sufficient flexibility and high cushioning and vibration-proofing properties is provided. The composition of the UV curable resin for obtaining has not been studied. Further, the energy ray-curable resin compositions described in Patent Documents 3 and 4 have a large number of cross-linking points and are sufficiently soft because a large amount of a cross-linking agent composed of a polyfunctional thiol is added to the acrylic compound. It was difficult to obtain a cured product such as a sealing material having the above. As for the resin compositions described in Patent Documents 5 to 8, it was not possible to obtain a cured product such as a sealing material or a cushioning material having sufficient flexibility. As described above, the composition of the active energy ray-curable resin for obtaining the sealing material and the cushioning material having sufficient flexibility and high cushioning and vibration-proofing properties has not been sufficiently studied.

本発明は上述した点に鑑みてなされたもので、その目的は、CIP工法に好適な流動性とチクソロトピー性を有し、細い線幅のシール材を得るためにニードル吐出口の口径を小さくした場合においても、塗工性と形状精度に優れると共に、硬化後には十分な柔軟性(硬度が低い)及び高い緩衝性・防振性(損失係数:tanδが大きい)を備える硬化物を形成する活性エネルギー線硬化性樹脂組成物を提供することにある。なお、本発明における損失係数tanδは、動的粘弾性特性における損失弾性率G’’を貯蔵弾性率G'で除した値として定義されるものである。 The present invention has been made in view of the above points, and an object of the present invention is to have fluidity and chixolotopy suitable for the CIP method, and to reduce the diameter of the needle discharge port in order to obtain a sealing material having a narrow line width. Even in the case, the activity of forming a cured product having excellent coatability and shape accuracy, sufficient flexibility (low hardness) and high cushioning and vibration isolation properties (loss coefficient: large tan δ) after curing. The present invention is to provide an energy ray curable resin composition. The loss coefficient tan δ in the present invention is defined as a value obtained by dividing the loss elastic modulus G ″ in the dynamic viscoelastic property by the storage elastic modulus G ′.

また、本発明の他の目的は、十分な柔軟性(硬度が低い)及び高い緩衝性・防振性(損失係数:tanδが大きい)を備えるシール材及び緩衝材、防振材等を提供することにある。 Another object of the present invention is to provide a sealing material, a cushioning material, a vibration-proof material, etc., which have sufficient flexibility (low hardness) and high cushioning / vibration-proofing property (loss coefficient: large tan δ). There is.

上記課題を解決するため、本発明の活性エネルギー線硬化性樹脂組成物は、光重合性オリゴマー(A)、光重合性モノマー(B)、光重合開始剤(C)及びチクソトロピー付与剤(D)を含有し、光重合性オリゴマー(A)は、質量平均分子量が10000以上のエーテル結合を有するウレタン(メタ)アクリレートであり、光重合性モノマー(B)には、下記式(1)(式中、Rは水素原子又はメチル基、Wはエチレン基又はプロピレン基、nは0〜4の整数をそれぞれ示す。)で表される(メタ)アクリロイル化合物(b1)が、光重合性モノマー(B)の質量全体のうちの80質量%以上含まれており、光重合性オリゴマー(A)及び光重合性モノマー(B)の合計含有量(A+B)は、光重合性オリゴマー(A)、光重合性モノマー(B)及び光重合開始剤(C)の合計質量(A+B+C)に対して、94〜99.99質量%であり、光重合性モノマー(B)の含有量は、光重合性オリゴマー(A)及び光重合性モノマー(B)の合計質量(A+B)に対して、80〜99質量%であり、チクソトロピー付与剤(D)は、光重合性オリゴマー(A)、光重合性モノマー(B)及び光重合開始剤(C)の合計(A+B+C)100質量部に対して、1〜40質量部含まれ、未硬化の状態において、せん断速度0.1〜2s−1における粘度が10〜5000Pa・sかつ、せん断速度0.1〜2s−1の範囲におけるチクソトロピー係数が1.1〜10である。In order to solve the above problems, the active energy ray-curable resin composition of the present invention comprises a photopolymerizable oligomer (A), a photopolymerizable monomer (B), a photopolymerization initiator (C) and a thixotropic agent (D). The photopolymerizable oligomer (A) is a urethane (meth) acrylate having an ether bond having a mass average molecular weight of 10,000 or more, and the photopolymerizable monomer (B) has the following formulas (1) (in the formula). , R 1 is a hydrogen atom or a methyl group, W is an ethylene group or a propylene group, and n is an integer of 0 to 4). The (meth) acryloyl compound (b1) is a photopolymerizable monomer (B1). ) Is contained in an amount of 80% by mass or more, and the total content (A + B) of the photopolymerizable oligomer (A) and the photopolymerizable monomer (B) is the photopolymerizable oligomer (A) and the photopolymerization. It is 94 to 99.99% by mass with respect to the total mass (A + B + C) of the sex monomer (B) and the photopolymerization initiator (C), and the content of the photopolymerizable monomer (B) is the photopolymerizable oligomer (B). It is 80 to 99% by mass with respect to the total mass (A + B) of A) and the photopolymerizable monomer (B), and the thixotropy-imparting agent (D) is a photopolymerizable oligomer (A) and a photopolymerizable monomer (B). ) And the photopolymerization initiator (C) totaling (A + B + C) 100 parts by mass, containing 1 to 40 parts by mass, and in an uncured state, the viscosity at a shear rate of 0.1 to 2s -1 is 10 to 5000 Pa. -S and the chixotropy coefficient in the range of the shear rate of 0.1 to 2s -1 is 1.1 to 10.

Figure 0006763612
Figure 0006763612

活性エネルギー線硬化性樹脂組成物を構成する光重合性オリゴマー(A)として、質量平均分子量が10000以上のエーテル結合を有するウレタン(メタ)アクリレートを採用することにより、優れた緩衝性・防振性(高損失係数)及び柔軟性(低硬度)を有する硬化物を得ることができる。また、式(1)で表される(メタ)アクリロイル化合物(b1)が光重合性モノマー(B)の質量全体の80質量%以上含まれることにより、優れた緩衝性・防振性(高損失係数)を有する硬化物を得ることができる。また、光重合性オリゴマー(A)及び光重合性モノマー(B)の合計含有量(A+B)を、光重合性オリゴマー(A)、光重合性モノマー(B)及び光重合開始剤(C)の合計質量(A+B+C)に対して、94〜99.99質量%とすることにより、硬化反応が好適になされる。さらに、光重合性モノマー(B)の含有量を光重合性オリゴマー(A)及び光重合性モノマー(B)の合計質量(A+B)に対して、80〜99質量%とすることにより、硬化物の優れた緩衝性・防振性(高損失係数)及び柔軟性(低硬度)を両立させることができる。そして、チクソトロピー付与剤(D)を、光重合性オリゴマー(A)、光重合性モノマー(B)及び光重合開始剤(C)の合計(A+B+C)100質量部に対して、1〜40質量部含有することにより、優れた緩衝性・防振性(高損失係数)及び柔軟性(低硬度)を両立させつつ、好適なチクソトロピー性が得られる。また、未硬化の状態において、せん断速度0.1〜2s−1における粘度が10〜5000Pa・sかつ、せん断速度0.1〜2s−1の範囲におけるチクソトロピー係数を1.1〜10とすることにより、CIP工法に好適な流動性とチクソロトピー性を有し、ニードル吐出口の口径を小さくした場合においても、塗工性と形状精度に優れた活性エネルギー線硬化性樹脂組成物が得られる。そして、本発明の各構成を備えた活性エネルギー線硬化性樹脂組成物は、活性エネルギー線を照射して硬化させることにより、E硬度(JIS K6253準拠)が40以下であり、かつ動的粘弾性測定(JIS K7244−10準拠)における10Hzでの損失係数が0.3以上の物性を有し、十分な柔軟性(低硬度)及び優れた緩衝性・防振性(損失係数が大きい)を備えた硬化物を形成することができる。By adopting urethane (meth) acrylate having an ether bond having a mass average molecular weight of 10,000 or more as the photopolymerizable oligomer (A) constituting the active energy ray-curable resin composition, excellent cushioning property and vibration isolation property are obtained. A cured product having (high loss coefficient) and flexibility (low hardness) can be obtained. Further, since the (meth) acryloyl compound (b1) represented by the formula (1) is contained in an amount of 80% by mass or more of the total mass of the photopolymerizable monomer (B), it has excellent cushioning and vibration isolation (high loss). A cured product having a coefficient) can be obtained. Further, the total content (A + B) of the photopolymerizable oligomer (A) and the photopolymerizable monomer (B) is adjusted to the photopolymerizable oligomer (A), the photopolymerizable monomer (B) and the photopolymerization initiator (C). The curing reaction is preferably made by setting 94 to 99.99% by mass with respect to the total mass (A + B + C). Further, by setting the content of the photopolymerizable monomer (B) to 80 to 99% by mass with respect to the total mass (A + B) of the photopolymerizable oligomer (A) and the photopolymerizable monomer (B), the cured product is obtained. It is possible to achieve both excellent cushioning and vibration isolation (high loss coefficient) and flexibility (low hardness). Then, the thixotropy-imparting agent (D) is added in an amount of 1 to 40 parts by mass with respect to 100 parts by mass of the total (A + B + C) of the photopolymerizable oligomer (A), the photopolymerizable monomer (B) and the photopolymerization initiator (C). By containing it, suitable thixotropic properties can be obtained while achieving both excellent cushioning and vibration isolation (high loss coefficient) and flexibility (low hardness). Further, in the uncured state, the viscosity at a shear rate of 0.1 to 2s -1 is 10 to 5000 Pa · s, and the thixotropy coefficient in the range of a shear rate of 0.1 to 2s -1 is 1.1 to 10. As a result, an active energy ray-curable resin composition having fluidity and thixotropy suitable for the CIP method and having excellent coatability and shape accuracy can be obtained even when the diameter of the needle discharge port is reduced. The active energy ray-curable resin composition having each configuration of the present invention has an E hardness (JIS K6253 compliant) of 40 or less and dynamic viscoelasticity by irradiating and curing the active energy ray. It has physical properties with a loss coefficient of 0.3 or more at 10 Hz in measurement (JIS K7244-10 compliant), and has sufficient flexibility (low hardness) and excellent cushioning and vibration isolation (large loss coefficient). A cured product can be formed.

また、本発明の活性エネルギー線硬化性樹脂組成物における重合性モノマー(B)には、さらに下記式(2)(式中、Rは水素原子又はメチル基、Yはエチレン基又はプロピレン基、mは0〜20の整数をそれぞれ示す。)で表される(メタ)アクリロイル化合物(b2)が含まれることも好ましい。これにより、上述の作用効果に加えて硬化物の圧縮永久歪みを低減することができる。また、式(2)で表される(メタ)アクリロイル化合物(b2)の含有量が、式(1)で示される(メタ)アクリロイル化合物(b1)と式(2)で示される(メタ)アクリロイル化合物(b2)の合計質量(b1+b2)に対して、0.1〜5質量%であることも好ましい。これにより、硬化物の優れた緩衝性・防振性(高損失係数)及び柔軟性(低硬度)を両立させつつ、圧縮永久歪みを低減することができる。Further, the polymerizable monomer (B) in the active energy ray-curable resin composition of the present invention further includes the following formula (2) (in the formula, R 2 is a hydrogen atom or a methyl group, Y is an ethylene group or a propylene group. It is also preferable that m contains a (meth) acryloyl compound (b2) represented by (each of which represents an integer from 0 to 20). As a result, in addition to the above-mentioned effects, the compression set of the cured product can be reduced. Further, the content of the (meth) acryloyl compound (b2) represented by the formula (2) is represented by the (meth) acryloyl compound (b1) represented by the formula (1) and the (meth) acryloyl represented by the formula (2). It is also preferable that it is 0.1 to 5% by mass with respect to the total mass (b1 + b2) of the compound (b2). As a result, it is possible to reduce the compression set while achieving both excellent cushioning and vibration isolation (high loss coefficient) and flexibility (low hardness) of the cured product.

Figure 0006763612
Figure 0006763612

また、本発明の活性エネルギー線硬化性樹脂組成物におけるチクソトロピー付与剤(D)がシリカ微粒子であり、シリカ微粒子の炭素含有量が0.5質量%未満であることも好ましい。これにより、チクソトロピー付与剤として好適な物質が選択される。 Further, it is also preferable that the thixotropy-imparting agent (D) in the active energy ray-curable resin composition of the present invention is silica fine particles, and the carbon content of the silica fine particles is less than 0.5% by mass. As a result, a suitable substance as a thixotropy-imparting agent is selected.

また、本発明の活性エネルギー線硬化性樹脂組成物における光重合開始剤(C)が少なくとも2種類以上の化合物からなり、少なくとも1種類はホスフィン系化合物またはアミノアルキルフェノン系化合物であることも好ましい。これにより、光エネルギー線照射により硬化した硬化物の表面のべたつきを低減又は圧縮永久歪みが改善される。 Further, it is also preferable that the photopolymerization initiator (C) in the active energy ray-curable resin composition of the present invention comprises at least two or more kinds of compounds, and at least one kind is a phosphine-based compound or an aminoalkylphenone-based compound. As a result, the stickiness of the surface of the cured product cured by irradiation with light energy rays is reduced or the compression set is improved.

また、本発明のシール材又は緩衝材は上述の活性エネルギー線硬化性樹脂組成物の硬化物からなることも好ましい。これにより、柔軟性と緩衝性・防振性に優れたシール材及び緩衝材が得られる。 Further, it is also preferable that the sealing material or cushioning material of the present invention is made of a cured product of the above-mentioned active energy ray-curable resin composition. As a result, a sealing material and a cushioning material having excellent flexibility, cushioning and vibration isolation can be obtained.

本発明によれば、以下のような優れた効果を有する活性エネルギー線硬化性樹脂組成物及びその硬化物からなるシール材及び緩衝材を提供することができる。
(1)本発明の活性エネルギー線硬化性樹脂組成物は、ニードル塗布の際に吐出性に優れるとともに、ビード状吐出体の径膨張(Swell)が起こり難く、ビード状吐出体の吐出形状精度が高く、しかも、塗布後の形状保持性が優れているため、形状精度が高いシール材や緩衝材などを生産性よく製造することができる。
(2)本発明の活性エネルギー線硬化性樹脂組成物の硬化物は、低硬度であると共に損失係数も大きいため、柔軟性と緩衝性・防振性に優れたシール材や緩衝材、防振材等を得ることができる。
(3)また、本発明の活性エネルギー線硬化性樹脂組成物を構成する光重合性モノマー(B)に含有させる成分を調整することにより、硬化物の損失係数をさらに向上させたり、硬化物の圧縮永久歪みを小さくすることができる。
(4)本発明の活性エネルギー線硬化性樹脂組成物は、内径1mmφ以下の細径のニードルを用いてニードル塗布されるビード状のシール材などを形成するのに好適であり、特に、内径0.75mmφ以下の極細径のニードルが用いられる際に、顕著にビード状吐出体の径膨張(Swell)が起こり難く、ビード状吐出体の径精度に優れ、しかも、塗布後の形状保持性が高いという効果を有する。また、硬化物は低硬度であると共に損失係数も大きいため、柔軟性と緩衝性・防振性に優れる。それゆえ、極細の線径を実現させつつ、柔軟かつ緩衝性にも優れたシール材や衝撃吸収性に優れた緩衝材、防振材が得られ、これらが組込まれる電子機器などの小型化やコストダウンに貢献する。
According to the present invention, it is possible to provide an active energy ray-curable resin composition having the following excellent effects, and a sealing material and a cushioning material made of the cured product thereof.
(1) The active energy ray-curable resin composition of the present invention is excellent in ejection property at the time of needle application, and the diameter expansion (Swell) of the bead-shaped ejection body is unlikely to occur, and the ejection shape accuracy of the bead-shaped ejection body is high. Since it is high and has excellent shape retention after coating, it is possible to produce a sealing material or a cushioning material having high shape accuracy with high productivity.
(2) Since the cured product of the active energy ray-curable resin composition of the present invention has low hardness and a large loss coefficient, it is a sealing material, cushioning material, or vibration-proof material having excellent flexibility, cushioning property, and vibration-proofing property. Materials and the like can be obtained.
(3) Further, by adjusting the components contained in the photopolymerizable monomer (B) constituting the active energy ray-curable resin composition of the present invention, the loss coefficient of the cured product can be further improved, or the cured product can be further improved. The compression set can be reduced.
(4) The active energy ray-curable resin composition of the present invention is suitable for forming a bead-shaped sealing material or the like to which a needle is applied by using a needle having a small diameter of 1 mmφ or less, and particularly, the inner diameter is 0. When a needle with an ultra-fine diameter of .75 mmφ or less is used, the diameter expansion (Swell) of the bead-shaped ejector is less likely to occur, the diameter accuracy of the bead-shaped ejector is excellent, and the shape retention after coating is high. It has the effect of. In addition, the cured product has low hardness and a large loss coefficient, so it is excellent in flexibility, cushioning and vibration isolation. Therefore, it is possible to obtain a sealing material that is flexible and has excellent cushioning properties, a cushioning material that has excellent shock absorption, and an anti-vibration material while realizing an ultra-fine wire diameter, and it is possible to reduce the size of electronic devices that incorporate these materials. Contributes to cost reduction.

本発明の活性エネルギー線硬化性樹脂組成物をビード状に吐出してビード状吐出体を形成し、活性エネルギー線を照射する塗工装置及び塗工の様子を示す説明図である。It is explanatory drawing which shows the coating apparatus which discharges the active energy ray curable resin composition of this invention in a bead shape to form a bead shape discharge body, and irradiates the active energy ray, and the state of coating. 実施例における試験用ビード状吐出体の塗布パターンを示す模式図である。It is a schematic diagram which shows the coating pattern of the bead-shaped discharge body for test in an Example.

本発明の活性エネルギー線硬化性樹脂組成物(以下、単に、樹脂組成物または硬化性樹脂組成物と称することもある。)は、光重合性オリゴマー(A)、光重合性モノマー(B)、光重合開始剤(C)及びチクソトロピー付与剤(D)を含有している。本発明の活性エネルギー線樹脂組成物は、活性エネルギー線が照射されることによって、光重合性オリゴマー(A)と光重合性モノマー(B)との混合組成物が重合して硬化する。以下、各構成成分について詳述する。 The active energy ray-curable resin composition of the present invention (hereinafter, may be simply referred to as a resin composition or a curable resin composition) includes a photopolymerizable oligomer (A), a photopolymerizable monomer (B), and the like. It contains a photopolymerization initiator (C) and a thixotropy-imparting agent (D). In the active energy ray resin composition of the present invention, the mixed composition of the photopolymerizable oligomer (A) and the photopolymerizable monomer (B) is polymerized and cured by being irradiated with the active energy ray. Hereinafter, each component will be described in detail.

1.光重合性オリゴマー(A)
本発明の活性エネルギー線硬化性樹脂組成物に用いられる光重合性オリゴマー(A)は、活性エネルギー線による硬化が可能な重合性官能基を有し、硬化後の損失係数に寄与する成分であって、分子中に複数のエーテル結合を有し、質量平均分子量が10000以上であるウレタン(メタ)アクリレートである。光重合性オリゴマー(A)の質量平均分子量は、硬化物の損失係数を向上させる観点から、15000以上がより好ましく、20000以上であることがさらに好ましい。また、光重合性オリゴマー(A)の重合性官能基の数は、2個未満の場合には、活性エネルギー線硬化性樹脂組成物の硬化物の表面に未重合の光重合性オリゴマーがブリードして、硬化物のシール性や外観の不具合が発生する場合があり、5個以上の場合には、架橋密度が高くなりすぎてその硬度が高くなる場合があるため、2〜4個が好ましい。光重合性オリゴマー(A)の分子中のエーテル結合の存在は、ウレタン(メタ)アクリレートにおいて分子構造の柔軟性、ひいては硬化物の低硬度化(低反発化)に大きく寄与するため、不可欠である。光重合性オリゴマー(A)の配合割合は、光重合性オリゴマー(A)及び後述する光重合性モノマー(B)の合計質量(A+B)に対し、硬化物の緩衝性能を高める(損失係数を高める)観点から、1〜20質量%が好ましく、1〜15質量%がより好ましく、3〜10質量%がさらに好ましい。光重合性オリゴマー(A)の具体例としては、日本合成化学工業株式会社製の紫光(登録商標)シリーズ(例えば、UV−6640B、UV−3300B、UV−3700B等)や日立化成株式会社製のヒタロイド(登録商標)シリーズ(例えば、4861、7981等)、根上工業株式会社製のアートレジン(登録商標)シリーズ(例えば、UN−6202、UN−6301、UN−5590、KHP−22等)、亜細亜工業株式会社製のSUAシリーズ(例えば、SUA−008、SUA−015等)、ケーエスエム株式会社製KUAシリーズ(例えば、KUA−PEA2I、KUA−PEC2I等)、日本化薬株式会社製KAYARAD(登録商標)シリーズ UX(例えば、UXF−4002、UXF−4001等)があげられるが、これらに限定するものではない。
1. 1. Photopolymerizable oligomer (A)
The photopolymerizable oligomer (A) used in the active energy ray-curable resin composition of the present invention has a polymerizable functional group that can be cured by active energy rays, and is a component that contributes to the loss coefficient after curing. Therefore, it is a urethane (meth) acrylate having a plurality of ether bonds in the molecule and having a mass average molecular weight of 10,000 or more. The mass average molecular weight of the photopolymerizable oligomer (A) is more preferably 15,000 or more, and further preferably 20,000 or more, from the viewpoint of improving the loss coefficient of the cured product. When the number of polymerizable functional groups of the photopolymerizable oligomer (A) is less than 2, unpolymerized photopolymerizable oligomers bleed on the surface of the cured product of the active energy ray-curable resin composition. As a result, defects in the sealing property and appearance of the cured product may occur, and in the case of 5 or more, the crosslink density may become too high and the hardness thereof may increase, so 2 to 4 are preferable. The presence of an ether bond in the molecule of the photopolymerizable oligomer (A) is indispensable because it greatly contributes to the flexibility of the molecular structure of urethane (meth) acrylate and the reduction of hardness (low resilience) of the cured product. .. The blending ratio of the photopolymerizable oligomer (A) enhances the buffering performance of the cured product (increases the loss coefficient) with respect to the total mass (A + B) of the photopolymerizable oligomer (A) and the photopolymerizable monomer (B) described later. ), 1 to 20% by mass is preferable, 1 to 15% by mass is more preferable, and 3 to 10% by mass is further preferable. Specific examples of the photopolymerizable oligomer (A) include Shikou (registered trademark) series manufactured by Nippon Kayaku Chemical Co., Ltd. (for example, UV-6640B, UV-3300B, UV-3700B, etc.) and Hitachi Kasei Co., Ltd. Hitaroid® series (eg, 4861, 7981, etc.), Art Resin (registered trademark) series manufactured by Negami Kogyo Co., Ltd. (eg, UN-6202, UN-6301, UN-5590, KHP-22, etc.), Asia SUA series manufactured by Kogyo Co., Ltd. (for example, SUA-008, SUA-015, etc.), KUA series manufactured by KSM Co., Ltd. (for example, KUA-PEA2I, KUA-PEC2I, etc.), KAYARAD (registered trademark) manufactured by Nippon Kayaku Co., Ltd. Series UX (for example, UXF-4002, UXF-4001, etc.) can be mentioned, but the present invention is not limited thereto.

2.光重合性モノマー(B)
本発明の活性エネルギー線硬化性樹脂組成物に用いられる光重合性モノマー(B)は、活性エネルギー線による硬化が可能な重合性官能基を有し、前述した光重合性オリゴマー(A)と重合可能な成分である。光重合性モノマー(B)には、少なくとも上述の式(1)で表される(メタ)アクリロイル化合物(b1)からなるモノマー成分が含まれる。
2. 2. Photopolymerizable monomer (B)
The photopolymerizable monomer (B) used in the active energy ray-curable resin composition of the present invention has a polymerizable functional group that can be cured by active energy rays and polymerizes with the above-mentioned photopolymerizable oligomer (A). It is a possible ingredient. The photopolymerizable monomer (B) contains at least a monomer component composed of the (meth) acryloyl compound (b1) represented by the above formula (1).

2−1.(メタ)アクリロイル化合物(b1)
この(メタ)アクリロイル化合物(b1)(以下、第1の(メタ)アクリロイル化合物(b1)と称することもある。)は、上述した式(1)の通り、分子末端に(メタ)アクリロイル基とフェニル基を有し、さらにその分子中にエチルエーテル又はプロピルエーテルを有した分子構造からなる。この式(1)で表される(メタ)アクリロイル化合物(b1)において、Rは水素原子またはメチル基であり、Wはエチレン基又はプロピレン基であり、nは0〜4の整数である。式(1)中のnの値は、nが5以上の場合には、硬化物の損失係数が小さくなり良好な緩衝性能が得られなくなるため、0〜4の整数であることが好ましい。また、(メタ)アクリロイル化合物(b1)の分子量は、192〜325であることがより好ましい。(メタ)アクリロイル化合物(b2)の分子量が192未満、即ちグリコール基で示される部分を有さない化合物の場合、アクリル当量が小さくなることによる硬化物の硬度の増加(反発弾性の増加)や、硬化時の硬化収縮量が増加して形状精度の低下が生じる場合があり、分子量が326以上になると、硬化物の損失係数が小さくなり、緩衝性の低下が生じる場合があるためである。式(1)で表される化合物としては、具体的には、フェノキシエチルアクリレート、フェノキシプロピルアクリレート、フェノキシジエチレングリコールアクリレート、フェノキシジプロピレングリコールアクリレート、フェノキシトリエチレングリコールアクリレート、フェノキシトリプロピレングリコールアクリレート、フェノキシエチルメタアクリレート、フェノキシプロピルメタアクリレート、フェノキシジエチレングリコールメタアクリレート、フェノキシジプロピレングリコールメタアクリレート、フェノキシトリエチレングリコールメタアクリレート等が挙げられ、このうち、硬さと損失係数とのバランスの観点から、フェノキシジエチレングリコールアクリレート、フェノキシジプロピレングリコールアクリレート、フェノキシジエチレングリコールメタアクリレートが好適に用いられる。
2-1. (Meta) Acryloyl compound (b1)
This (meth) acryloyl compound (b1) (hereinafter, may also be referred to as the first (meth) acryloyl compound (b1)) has a (meth) acryloyl group at the molecular end as described in the above formula (1). It has a molecular structure having a phenyl group and further having ethyl ether or propyl ether in the molecule. In the (meth) acryloyl compound (b1) represented by this formula (1), R 1 is a hydrogen atom or a methyl group, W is an ethylene group or a propylene group, and n is an integer of 0 to 4. The value of n in the formula (1) is preferably an integer of 0 to 4, because when n is 5 or more, the loss coefficient of the cured product becomes small and good buffering performance cannot be obtained. Further, the molecular weight of the (meth) acryloyl compound (b1) is more preferably 192 to 325. In the case of the (meth) acryloyl compound (b2) having a molecular weight of less than 192, that is, a compound having no portion indicated by a glycol group, the hardness of the cured product increases (increases in impact resilience) due to the decrease in acrylic equivalent, and This is because the amount of curing shrinkage during curing may increase and the shape accuracy may decrease, and when the molecular weight becomes 326 or more, the loss coefficient of the cured product may decrease and the cushioning property may decrease. Specific examples of the compound represented by the formula (1) include phenoxyethyl acrylate, phenoxypropyl acrylate, phenoxydiethylene glycol acrylate, phenoxydipropylene glycol acrylate, phenoxytriethylene glycol acrylate, phenoxytripropylene glycol acrylate, and phenoxyethyl meta. Examples thereof include acrylate, phenoxypropyl methacrylate, phenoxydiethylene glycol methacrylate, phenoxydipropylene glycol methacrylate, phenoxytriethylene glycol methacrylate, etc. Among them, phenoxydiethylene glycol acrylate, phenoxydi from the viewpoint of balance between hardness and loss coefficient. Propylene glycol acrylate and phenoxydiethylene glycol methacrylate are preferably used.

光重合性モノマー(B)の質量全体に占める(メタ)アクリロイル化合物(b1)の割合は、動的粘弾性測定における10Hzでの硬化物の損失係数を向上させ、良好な緩衝性能を得る観点から、80質量%以上が好ましく、85質量%以上がより好ましく、90質量%以上がさらに好ましい。本発明の樹脂組成物を構成する光重合性モノマー(B)に、式(1)で表される(メタ)アクリロイル化合物(b1)を採用することにより、損失係数が大きく、緩衝性・防振性に優れる硬化物が得られる。 The ratio of the (meth) acryloyl compound (b1) to the total mass of the photopolymerizable monomer (B) improves the loss coefficient of the cured product at 10 Hz in the dynamic viscoelasticity measurement, and from the viewpoint of obtaining good cushioning performance. , 80% by mass or more is preferable, 85% by mass or more is more preferable, and 90% by mass or more is further preferable. By adopting the (meth) acryloyl compound (b1) represented by the formula (1) as the photopolymerizable monomer (B) constituting the resin composition of the present invention, the loss coefficient is large, and the cushioning property and vibration isolation are achieved. A cured product having excellent properties can be obtained.

また、光重合性モノマー(B)の配合割合は、光重合性オリゴマー(A)及び光重合性モノマー(B)の合計質量(A+B)に対し、80〜99質量%が好ましく、85〜99質量%がより好ましく、90〜97質量%がさらに好ましい。光重合性モノマー(B)の上記配合割合が80重量%未満であると、硬化物の動的粘弾性測定における10Hzでの損失係数が小さくなるため、良好な緩衝性能が得られなくなり、光重合性モノマー(B)の上記配合割合が99重量%を超えると、活性エネルギー線硬化性樹脂組成物の硬化性が著しく低下するので好ましくない。光重合性モノマー(B)を構成する化合物としては、上述した(メタ)アクリロイル化合物(b1)のみで構成してもよいが、光重合性オリゴマー(A)と重合可能なあらゆるモノマー化合物を第1の(メタ)アクリロイル化合物(b1)と組み合わせた構成としてもよい。このうち、光重合性モノマー(B)を構成する他のモノマー化合物の好ましい例として、上述の式(2)で表されるモノマー化合物を以下詳述する。 The blending ratio of the photopolymerizable monomer (B) is preferably 80 to 99% by mass, preferably 85 to 99% by mass, based on the total mass (A + B) of the photopolymerizable oligomer (A) and the photopolymerizable monomer (B). % Is more preferable, and 90 to 97% by mass is further preferable. If the compounding ratio of the photopolymerizable monomer (B) is less than 80% by weight, the loss coefficient at 10 Hz in the dynamic viscoelasticity measurement of the cured product becomes small, so that good buffering performance cannot be obtained, and photopolymerization If the compounding ratio of the sex monomer (B) exceeds 99% by weight, the curability of the active energy ray-curable resin composition is significantly lowered, which is not preferable. The compound constituting the photopolymerizable monomer (B) may be composed of only the (meth) acryloyl compound (b1) described above, but any monomer compound that can be polymerized with the photopolymerizable oligomer (A) is the first compound. It may be configured in combination with the (meth) acryloyl compound (b1) of. Among these, as a preferable example of the other monomer compound constituting the photopolymerizable monomer (B), the monomer compound represented by the above formula (2) will be described in detail below.

2−2.(メタ)アクリロイル化合物(b2)
光重合性モノマー(B)として、第1の(メタ)アクリロイル化合物(b1)と、式(2)で表される(メタ)アクリロイル化合物(b2)を組み合わせて用いることにより、硬化物の圧縮永久歪みが低減される。この(メタ)アクリロイル化合物(b2)(以下、第2の(メタ)アクリロイル化合物(b2)と称することもある。)は、式(2)の通り、分子の両末端にそれぞれ(メタ)アクリロイル基を有し、さらにその分子中にエチルエーテル又はプロピルエーテルを有した分子構造からなる。この式(2)で表される(メタ)アクリロイル化合物(b2)において、Rは水素原子またはメチル基であり、Yはエチレン基又はプロピレン基であり、mは0〜20の整数である。式(2)中のmの値については、m=0、すなわちエチルエーテル又はプロピルグリコール単位がない場合には、硬化物が硬くなりすぎる場合があり、また、mが20を超えると、硬化物の圧縮永久歪みの値が大きくなる場合があるので、1〜20の整数であることが好ましく、3〜20であることがより好ましく、5〜20であることがさらに好ましい。ここで、圧縮永久歪みは、JIS K6262で示される70℃温度環境下25%圧縮条件で23時間保持した後の圧縮永久歪の値である。式(2)で表される(メタ)アクリロイル化合物(b2)の具体例としては、共栄社化学株式会社製ライトエステル(EG、2EG、3EG、4EG、9EG、14EG)、共栄社化学株式会社製ライトアクリレート(登録商標)シリーズ(3EG−A、4EG−A、9EG−A、14EG−A)、日本化薬株式会社製KAYARAD(登録商標)シリーズ(PEG400DA)、東亞合成工業株式会社製アロニックス(登録商標)シリーズ(M−220、M−225、M−240、M−270)、新中村化学工業株式会社製NKエステル(A−200、A−400、A−600、APG−100、APG−200、APG−400、APG−700)等が挙げられる。
2-2. (Meta) Acryloyl compound (b2)
By using the first (meth) acryloyl compound (b1) in combination as the photopolymerizable monomer (B) and the (meth) acryloyl compound (b2) represented by the formula (2), the cured product is permanently compressed. Distortion is reduced. This (meth) acryloyl compound (b2) (hereinafter, may also be referred to as a second (meth) acryloyl compound (b2)) has (meth) acryloyl groups at both ends of the molecule as shown in the formula (2). It is composed of a molecular structure having ethyl ether or propyl ether in the molecule. In the (meth) acryloyl compound (b2) represented by this formula (2), R 2 is a hydrogen atom or a methyl group, Y is an ethylene group or a propylene group, and m is an integer of 0 to 20. Regarding the value of m in the formula (2), m = 0, that is, the cured product may become too hard when there is no ethyl ether or propyl glycol unit, and when m exceeds 20, the cured product may become too hard. Since the value of the compressive permanent strain of the above may be large, it is preferably an integer of 1 to 20, more preferably 3 to 20, and even more preferably 5 to 20. Here, the compression set is the value of the compression set after being held for 23 hours under a 25% compression condition under a temperature environment of 70 ° C. indicated by JIS K6262. Specific examples of the (meth) acryloyl compound (b2) represented by the formula (2) include light esters manufactured by Kyoeisha Chemical Co., Ltd. (EG, 2EG, 3EG, 4EG, 9EG, 14EG) and light acrylates manufactured by Kyoeisha Chemical Co., Ltd. (Registered Trademarks) Series (3EG-A, 4EG-A, 9EG-A, 14EG-A), KAYARAD (Registered Trademarks) Series (PEG400DA) manufactured by Nippon Kayaku Co., Ltd., Aronix (Registered Trademarks) manufactured by Toagosei Co., Ltd. Series (M-220, M-225, M-240, M-270), NK Ester (A-200, A-400, A-600, APG-100, APG-200, APG) manufactured by Shin-Nakamura Chemical Co., Ltd. -400, APG-700) and the like.

第1の(メタ)アクリロイル化合物(b1)及び第2の(メタ)アクリロイル化合物(b2)の配合割合は、第1の(メタ)アクリロイル化合物(b1)と第2の(メタ)アクリロイル化合物(b2)の合計質量に対する第2の(メタ)アクリロイル化合物(b2)の割合が0.1〜5質量%であることが好ましい。第2の(メタ)アクリロイル化合物(b2)の割合が0.1質量%未満の場合、硬化物の圧縮永久歪みの低減等の効果が得られ難く、5質量%を超えると硬化物のE硬度が上昇して硬くなるとともに、損失係数の値が小さくなり、衝撃吸収性能が低下する場合があるためである。 The blending ratio of the first (meth) acryloyl compound (b1) and the second (meth) acryloyl compound (b2) is the first (meth) acryloyl compound (b1) and the second (meth) acryloyl compound (b2). The ratio of the second (meth) acryloyl compound (b2) to the total mass of) is preferably 0.1 to 5% by mass. When the ratio of the second (meth) acryloyl compound (b2) is less than 0.1% by mass, it is difficult to obtain effects such as reduction of the compression set of the cured product, and when it exceeds 5% by mass, the E hardness of the cured product is obtained. This is because, as the value increases and becomes harder, the value of the loss coefficient becomes smaller, and the shock absorption performance may deteriorate.

3.光重合開始剤(C)
本発明の活性エネルギー線硬化性樹脂組成物には、光重合性オリゴマー(A)と光重合性モノマー(B)との重合を開始させるための光重合開始剤(C)が配合されている。光重合開始剤(C)は、少なくとも2種類以上の化合物を組み合わせて用いることが好ましく、そのうち1種類はホスフィン系化合物又はアミノアルキルフェノン系化合物であることが好ましく、ホスフィン系化合物とアミノアルキルフェノン系化合物とを併用することがさらに好ましい。
3. 3. Photopolymerization initiator (C)
The active energy ray-curable resin composition of the present invention contains a photopolymerization initiator (C) for initiating the polymerization of the photopolymerizable oligomer (A) and the photopolymerizable monomer (B). The photopolymerization initiator (C) is preferably used in combination of at least two or more kinds of compounds, one of which is preferably a phosphine-based compound or an aminoalkylphenon-based compound, and a phosphine-based compound and an aminoalkylphenon-based compound. It is more preferable to use it in combination with a compound.

光重合開始剤(C)として、ホスフィン系化合物を用いると、近紫外線の長波長側のエネルギーを有効に重合開始反応に活用できるため、活性エネルギー線硬化性樹脂組成物の内部硬化性を高めることができ、硬化物の圧縮永久歪みを低減するのにも効果的である。なお、上述したホスフィン系化合物とは、分子中にP=Oで表されるホスフィンオキシド基を含む化合物であり、より具体的には分子中にホスフィン基とアシル基とが結合している化合物である。ホスフィン系化合物としては、具体的には、特に限定されないが、
2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、2,6−ジメチルベンゾイルジフェニルホスフィンオキサイド、2,6−ジメトキシベンゾイルジフェニルホスフィンオキサイド、2,6−ジクロロベンゾイルジフェニルホスフィンオキサイド、2,3,5,6−テトラメチルベンゾイルジフェニルホスフィンオキサイド等のモノアシルホスフィンオキサイド系化合物;ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルホスフィンオキサイド等のビスアシルホスフィンオキサイド系化合物;2,4,6−トリメチルベンゾイルフェニルホスフィン酸メチルエステル、2,4,6−トリメチルベンゾイルフェニルホスフィン酸エチルエステル、2,4,6−トリメチルベンゾイルフェニルホスフィン酸フェニルエステル及びこれらの類縁体などがよく知られており、市販品では、BASF社製のLUCIRIN(登録商標)TPOやTPO−L、IRGACURE(登録商標)819などが挙げられる。
When a phosphine-based compound is used as the photopolymerization initiator (C), the energy on the long wavelength side of near ultraviolet rays can be effectively utilized in the polymerization initiation reaction, so that the internal curability of the active energy ray-curable resin composition is enhanced. It is also effective in reducing the compression set of the cured product. The above-mentioned phosphine-based compound is a compound containing a phosphine oxide group represented by P = O in the molecule, and more specifically, a compound in which a phosphine group and an acyl group are bonded in the molecule. is there. The phosphine-based compound is not particularly limited, but is not particularly limited.
2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, 2,3,5,6- Monoacylphosphine oxide compounds such as tetramethylbenzoyldiphenylphosphine oxide; bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentyl Bisacylphosphinoxide-based compounds such as phosphine oxide; 2,4,6-trimethylbenzoylphenylphosphinic acid methyl ester, 2,4,6-trimethylbenzoylphenylphosphinic acid ethyl ester, 2,4,6-trimethylbenzoylphenylphosphinic acid Phenyl esters and their analogs are well known, and examples of commercially available products include LUCIRIN (registered trademark) TPO, TPO-L, and IRGACURE (registered trademark) 819 manufactured by BASF.

光重合開始剤(C)として、アミノアルキルフェノン系化合物を用いると、近紫外線の短波長から中波長領域のエネルギーを有効に硬化開始反応に活用できるので、活性エネルギー線硬化性樹脂組成物の表面の硬化性を良好にする効果が得られ、硬化物の表面のべたつきを低減することができる。アミノアルキルフェノン系化合物としては、具体的には、特に限定されないが、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン、2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(4−モルホリニル)フェニル]−1−ブタノン、2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン−1−オン及びこれらの類縁体などがよく知られており、市販品ではBASF社製のIRGACURE(登録商標)シリーズの907、369、379EGなどが挙げられる。 When an aminoalkylphenone-based compound is used as the photopolymerization initiator (C), the energy in the short to medium wavelength region of near ultraviolet rays can be effectively utilized for the curing initiation reaction, so that the surface of the active energy ray-curable resin composition The effect of improving the curability of the cured product can be obtained, and the stickiness of the surface of the cured product can be reduced. The aminoalkylphenone-based compound is not particularly limited, but is 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone, 2- (dimethylamino) -2-[(). 4-Methylphenyl) Methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one and these Relatives are well known, and commercially available products include 907, 369, 379EG of the IRGACURE (registered trademark) series manufactured by BASF.

光重合開始剤(C)の配合割合は、光重合性オリゴマー(A)、光重合性モノマー(B)及び光重合開始剤(C)の合計質量(A+B+C)に対して、0.01〜6質量%とすることが好ましく、0.1〜5質量%とすることがより好ましく、0.5〜3質量%とすることがさらに好ましい。光重合開始剤の配合割合が0.01質量%未満であると、活性エネルギー線照射による硬化が十分に進まず、6質量%を超えると、硬化後のポリマー構造中に残存した未反応の光重合開始剤が揮発してアウトガスとなるため、電子機器に組み込まれた際に問題となる場合があるためである。したがって、光重合性オリゴマー(A)及び光重合性モノマー(B)の合計含有量(A+B)が、光重合性オリゴマー(A)、光重合性モノマー(B)及び光重合開始剤(C)の合計質量(A+B+C)に対して、94〜99.99質量%の範囲とすることが好ましく、95〜99.9質量%とすることがより好ましく、97〜99.5質量%とすることがさらに好ましい。 The blending ratio of the photopolymerization initiator (C) is 0.01 to 6 with respect to the total mass (A + B + C) of the photopolymerizable oligomer (A), the photopolymerizable monomer (B) and the photopolymerization initiator (C). It is preferably 0.1 to 5% by mass, more preferably 0.5 to 3% by mass. If the blending ratio of the photopolymerization initiator is less than 0.01% by mass, curing by active energy ray irradiation does not proceed sufficiently, and if it exceeds 6% by mass, unreacted light remaining in the polymer structure after curing This is because the polymerization initiator volatilizes and becomes outgas, which may cause a problem when incorporated into an electronic device. Therefore, the total content (A + B) of the photopolymerizable oligomer (A) and the photopolymerizable monomer (B) is that of the photopolymerizable oligomer (A), the photopolymerizable monomer (B) and the photopolymerization initiator (C). It is preferably in the range of 94 to 99.99 mass%, more preferably 95 to 99.9 mass%, and further preferably 97 to 99.5 mass% with respect to the total mass (A + B + C). preferable.

4.チクソトロピー付与剤(D)
本発明の活性エネルギー線硬化性樹脂組成物には、上述した光重合性オリゴマー(A)、光重合性モノマー(B)及び光重合開始剤(C)からなる樹脂材料成分にチクソトロピー付与剤(D)が配合され、分散されている。チクソトロピー付与剤(D)は、樹脂材料に分散されることによって、チクソトロピー性、即ち、低せん断速度領域では粘度が高く、高せん断速度領域では粘度が低下するような性質を付与することができる添加剤全般を指しており、例えば、樹脂材料に添加されることによって、膨潤し、かつ水素結合力やファンデルワールス力等の比較的弱い結合力によって、緩やかな編み目構造を形成するような化合物が挙げられる。これらは、タレ止め剤、沈降防止剤、チクソトロピー剤等の名称で塗料添加物として市販されている。このチクソトロピー付与剤が均一に分散された樹脂組成物は、低せん断速度領域では、緩やかな編み目構造が保持されているので見かけの粘度が高く、高せん断速度領域では編み目構造がせん断力によって破壊されるので粘度が低くなるという性質を示す。
4. Thixotropy-imparting agent (D)
In the active energy ray-curable resin composition of the present invention, a thixotropic agent (D) is added to the resin material component composed of the above-mentioned photopolymerizable oligomer (A), photopolymerizable monomer (B) and photopolymerization initiator (C). ) Is blended and dispersed. By being dispersed in the resin material, the thixotropy-imparting agent (D) can impart thixotropy, that is, a property that the viscosity is high in the low shear rate region and the viscosity is low in the high shear rate region. It refers to all agents, for example, a compound that swells when added to a resin material and forms a loose stitch structure due to a relatively weak bonding force such as hydrogen bonding force or van der Waals force. Can be mentioned. These are commercially available as paint additives under the names of anti-sagging agent, anti-sedimentation agent, thixotropy agent and the like. The resin composition in which the thixotropy-imparting agent is uniformly dispersed has a high apparent viscosity in the low shear rate region because a gentle stitch structure is maintained, and the stitch structure is destroyed by the shear force in the high shear rate region. Therefore, it exhibits the property of lowering the viscosity.

このようなチクソトロピー付与剤(D)としては、具体的には、長鎖脂肪酸エステル重合体、アマイドワックス、酸化ポリエチレンワックス、硫酸エステル系アニオン活性剤、ポリカルボン酸、ポリカルボン酸アミン塩、ポリエーテル等の有機化合物や、微粉シリカ、炭酸カルシウム、重質炭酸カルシウム、ベントナイト、セピオライトなどの無機微粒子、テフロン(登録商標)、シリコーンなどの樹脂微粒子などを好ましく用いることができ、微粒子の形状は球形、棒状、鱗片状など適宜用いることができる。このうち、本発明におけるチクソトロピー付与剤(D)としては、流動性とチクソトロピー性とのバランスの観点から、シリカ微粒子がより好ましく、フュームドシリカ微粒子がさらに好ましい。また、フュームドシリカ微粒子のうち、疎水性処理がなされていない親水性のシリカ微粒子が特に好適に用いられる。チクソトロピー付与剤(D)として、親水性のシリカ微粒子を用いることによって、少ない添加量で硬化前の所望の粘性が得られるとともに、硬化後の硬化物についてもE硬度(JIS K6253準拠)の上昇を軽微に抑えられ、さらに、大きな損失係数を維持することが可能となる。ここでフュームドシリカ微粒子とは、シラン化合物を高温雰囲気で処理する事で得られる凝集体の総称であり、得られた凝集体はガラスと同様に、ケイ素、酸素及び水素からなる化合物であり、一般的に親水性シリカと呼ばれている。また、フュームドシリカ微粒子は、工業的に多方面で使用されており、その用途や製法に応じて疎水化と呼ばれる処理が行われる場合がある。この疎水性処理とは、親水性シリカを、炭素を含む有機官能基を有する化合物で処理することにより行われ、それゆえ疎水性シリカ微粒子は炭素成分を含有する。よって、親水性を有する観点から、シリカ微粒子の炭素含有量は低いことが好ましく、具体的にはシリカ微粒子の炭素含有量は、シリカ微粒子全体に対して0.5質量%未満であり、より好ましくは0.3質量%以下であり、さらに好ましくは0.1質量%以下であり、炭素成分を実質的に含まないことが特に好ましい。シリカ微粒子の具体例としては、日本アエロジル社のAEROSIL(登録商標)やトクヤマ社のREOLOSIL(登録商標)、CABOT社のCAB−O−SIL(登録商標)、旭化成ワッカー社製WACKER HDK(登録商標)に代表されるヒュームドシリカ、日本シリカ工業社のNIPSIL(登録商標)、富士シリシア社のSylisia(登録商標)、トクヤマ社のTOKUSIL(登録商標)などが挙げられる。 Specific examples of such a thixotropy-imparting agent (D) include long-chain fatty acid ester polymers, amido wax, polyethylene oxide wax, sulfate ester-based anion activators, polycarboxylic acids, polycarboxylic acid amine salts, and polyethers. Organic compounds such as fine silica, calcium carbonate, heavy calcium carbonate, bentonite, sepiolite and other inorganic fine particles, and Teflon (registered trademark), silicone and other resin fine particles can be preferably used, and the shape of the fine particles is spherical. It can be appropriately used in a rod shape or a scale shape. Of these, as the thixotropy-imparting agent (D) in the present invention, silica fine particles are more preferable, and fumed silica fine particles are further preferable, from the viewpoint of the balance between fluidity and thixotropy. Further, among the fumed silica fine particles, hydrophilic silica fine particles that have not been subjected to hydrophobic treatment are particularly preferably used. By using hydrophilic silica fine particles as the thixotropy-imparting agent (D), the desired viscosity before curing can be obtained with a small amount of addition, and the E hardness (JIS K6253 compliant) of the cured product after curing can be increased. It can be kept to a minimum and a large loss factor can be maintained. Here, the fumed silica fine particles are a general term for aggregates obtained by treating a silane compound in a high temperature atmosphere, and the obtained aggregates are compounds composed of silicon, oxygen and hydrogen, similarly to glass. It is generally called hydrophilic silica. In addition, fumed silica fine particles are industrially used in various fields, and a treatment called hydrophobization may be performed depending on the application and manufacturing method. This hydrophobic treatment is carried out by treating hydrophilic silica with a compound having an organic functional group containing carbon, and therefore the hydrophobic silica fine particles contain a carbon component. Therefore, from the viewpoint of having hydrophilicity, the carbon content of the silica fine particles is preferably low, and specifically, the carbon content of the silica fine particles is less than 0.5% by mass with respect to the entire silica fine particles, which is more preferable. Is 0.3% by mass or less, more preferably 0.1% by mass or less, and it is particularly preferable that the carbon component is substantially not contained. Specific examples of silica fine particles include AEROSIL (registered trademark) manufactured by Aerosil Japan, REOLOSIL (registered trademark) manufactured by Tokuyama Corporation, CAB-O-SIL (registered trademark) manufactured by CABOT, and WACKER HDK (registered trademark) manufactured by Asahi Kasei Wacker Co., Ltd. Examples include fumed silica, NIPSIL (registered trademark) of Nippon Silica Industry Co., Ltd., Silicon (registered trademark) of Fuji Silicia, and TOKUSIL (registered trademark) of Tokuyama Corporation.

上記シリカ微粒子などの微粒子は、活性エネルギー線硬化性樹脂組成物中で分散されると、一次粒子が凝集しながらネットワーク構造を形成し、このネットワーク構造に起因してチクソトロピー性が付与される。微粒子の一次粒径は、樹脂材料への分散性やチクソトロピー性付与効果、粘度が本発明の好ましい状態となるように選択され、具体的には、0.002〜10μmが好ましく、より好ましくは0.005〜1μmであり、さらに好ましくは、0.007〜0.1μmである。微粒子の一次粒径の数値は、SEM又はTEM(透過型電子顕微鏡)で一次粒子が視認できる倍率の画像において、ランダムに選択した1000個の微粒子の一次粒子画像のそれぞれ輪郭の最長径を測定し、相加平均して得られた数値である。なお、該一次粒径に対応する比表面積(DIN66131準拠BET法)は、微粒子がシリカの場合、0.3〜600m/gであり、さらに好ましくは3〜430m/gであり、一層好ましくは30〜600m/gである。When the fine particles such as the silica fine particles are dispersed in the active energy ray-curable resin composition, the primary particles agglomerate to form a network structure, and the thixotropy property is imparted due to this network structure. The primary particle size of the fine particles is selected so that the dispersibility in the resin material, the effect of imparting thixotropy, and the viscosity are in a preferable state of the present invention. Specifically, 0.002 to 10 μm is preferable, and more preferably 0. It is .005 to 1 μm, more preferably 0.007 to 0.1 μm. For the numerical value of the primary particle size of the fine particles, the longest diameter of the contour of each of 1000 randomly selected primary particle images of 1000 fine particles is measured in an image at a magnification at which the primary particles can be visually recognized by SEM or TEM (transmission electron microscope). , It is a numerical value obtained by additive averaging. The specific surface area (DIN66131 compliant BET method) corresponding to the primary particle size is 0.3 to 600 m 2 / g, more preferably 3 to 430 m 2 / g, and more preferably 3 to 430 m 2 / g when the fine particles are silica. Is 30-600 m 2 / g.

チクソトロピー付与剤(D)の配合量は、光重合性オリゴマー(A)、光重合性モノマー(B)及び光重合開始剤(C)の合計(A+B+C)100質量部に対して、1〜40質量部であることが好ましく、シリカ微粒子をチクソトロピー付与剤(D)として用いた場合には2〜30質量がより好ましく、3〜20質量がさらに好ましく、3〜15質量が特に好ましい。チクソトロピー付与剤(D)の添加量が1質量未満であった場合、良好なチクソトロピー性が得られず、40質量を超えると硬化物のE硬度が大きくなりすぎるとともに損失係数が小さくなるためである。
The blending amount of the thixotropy-imparting agent (D) is 1 to 40 mass by mass with respect to 100 parts by mass of the total (A + B + C) of the photopolymerizable oligomer (A), the photopolymerizable monomer (B) and the photopolymerization initiator (C). is preferably part, more preferably 2 to 30 parts by weight in the case of using the silica fine particles thixotropic agent as (D), more preferably 3 to 20 parts by weight, 3 to 15 parts by weight is particularly preferred. If the amount of the thixotropy-imparting agent (D) added is less than 1 part by mass, good thixotropy cannot be obtained, and if it exceeds 40 parts by mass, the E hardness of the cured product becomes too large and the loss coefficient becomes small. Is.

本発明の活性エネルギー線硬化性樹脂組成物には、必要に応じて、本発明の効果を損なわない範囲においてその他の添加剤を配合してもよい。その他の添加剤としては、例えば、充填剤が挙げられ、粉末充填剤のみならず、導電剤、除電剤、難燃剤、緩衝性改良剤及び着色剤なども含まれる。これらの一例を挙げると、粉末充填剤としては、結晶性シリカ、熔融シリカ、炭酸カルシウム、タルク、マイカ、アルミナ、水酸化アルミニウム又はホワイトカーボンなどが挙げられる。また、導電性や除電性の付与にはカーボンブラック、膨張黒鉛粉末、粉末状グラファイト又は金属微粒子などを用いることができる。難燃剤としては、粉末状有機ハロゲン化合物、赤リン、三酸化アンチモン、膨張黒鉛、マグネタイト又は水酸化アルミニウムなどを用いることができる。緩衝性改良剤としては、有機殻を有する中空フィラー(例えば、日本フィライト社製エクスパンセル(登録商標)など)を用いることができる。着色剤としては、各種の顔料や染料を挙げることができ、これら添加剤は、用途により適宜選択して使用すればよい。 If necessary, the active energy ray-curable resin composition of the present invention may contain other additives as long as the effects of the present invention are not impaired. Examples of other additives include fillers, and include not only powder fillers but also conductive agents, antistatic agents, flame retardants, buffering improvers, colorants and the like. Examples of these powder fillers include crystalline silica, molten silica, calcium carbonate, talc, mica, alumina, aluminum hydroxide, white carbon and the like. Further, carbon black, expanded graphite powder, powdered graphite, metal fine particles, or the like can be used to impart conductivity and static elimination property. As the flame retardant, powdered organic halogen compounds, red phosphorus, antimony trioxide, expanded graphite, magnetite, aluminum hydroxide and the like can be used. As the buffering property improving agent, a hollow filler having an organic shell (for example, Expandel (registered trademark) manufactured by Nippon Philite Co., Ltd.) can be used. Examples of the colorant include various pigments and dyes, and these additives may be appropriately selected and used depending on the intended use.

また、本発明の活性エネルギー線硬化性樹脂組成物を硬化させる活性エネルギー線とは、赤外線、可視光線、紫外線、X線、電子線、アルファ線、ベータ線又はガンマ線等をいい、特に紫外線が好適に用いられる。本発明における紫外線には、近紫外線(near UV、波長200〜380nm)、遠紫外線(波長10〜200nm)及び極端紫外線(extreme UV、波長1〜10nm)が含まれる。また、これら活性エネルギー線は、1種単独で使用することも、2種以上を同時に使用することも可能である。これらの活性エネルギー線の線源としては、樹脂組成物を被塗布基体にコーティング又は塗布後、短時間で硬化させることができればよく、特に限定されないが、例えば、低圧水銀ランプ、高圧水銀ランプ、エキシマ紫外線(エキシマUV)ランプ、ハライドランプ、LEDライト又はレーザー等の公知の発生手段のものを利用することができる。また、赤外線の線源としては、例えば、ランプ、抵抗加熱板又はレーザー等が挙げられ、可視光線の線源としては、例えば、直射日光、ランプ、蛍光灯、LEDライト又はレーザー等が挙げられ、電子線の線源としては、例えば、市販されているタングステンフィラメントから発生する熱電子を利用する方式の装置、金属に高電圧パルスを通じて発生させる冷陰極方式およびイオン化したガス状分子と金属電極との衝突により発生する2次電子を利用する2次電子方式の装置等が挙げられる。さらに、アルファ線、ベータ線およびガンマ線の線源としては、例えば、Co60等の核分裂物質が挙げられ、ガンマ線については、加速電子を陽極へ衝突させる真空管等を利用することができる。これら活性エネルギー線は、単独もしくは2種以上を同時に照射してもよい。 Further, the active energy rays that cure the active energy ray-curable resin composition of the present invention refer to infrared rays, visible rays, ultraviolet rays, X-rays, electron beams, alpha rays, beta rays, gamma rays and the like, and ultraviolet rays are particularly preferable. Used for. The ultraviolet rays in the present invention include near ultraviolet rays (near UV, wavelength 200 to 380 nm), far ultraviolet rays (wavelength 10 to 200 nm), and extreme ultraviolet rays (extreme UV, wavelength 1 to 10 nm). Further, these active energy rays can be used alone or in combination of two or more. The source of these active energy rays is not particularly limited as long as the resin composition can be coated on the substrate to be coated or cured in a short time after being coated, and is not particularly limited. For example, a low-pressure mercury lamp, a high-pressure mercury lamp, or an excima. Known generating means such as an ultraviolet (exima UV) lamp, a halide lamp, an LED light, or a laser can be used. Further, examples of the infrared ray source include a lamp, a resistance heating plate, a laser, and the like, and examples of the visible light source include direct sunlight, a lamp, a fluorescent lamp, an LED light, a laser, and the like. Examples of the source of the electron beam include a commercially available device that utilizes thermions generated from a tungsten filament, a cold cathode method that generates a metal through a high voltage pulse, and an ionized gaseous molecule and a metal electrode. Examples thereof include a secondary electron type device that utilizes secondary electrons generated by collision. Further, examples of sources of alpha rays, beta rays and gamma rays include fissile materials such as Co60, and for gamma rays, a vacuum tube or the like that causes accelerated electrons to collide with the anode can be used. These active energy rays may be irradiated alone or in combination of two or more.

5.活性エネルギー線硬化性樹脂組成物の物性
本発明の活性エネルギー線硬化性樹脂組成物は、ビード状吐出物の径膨張(Swell)が起こり難く、塗布後の形状保持性が高いという本発明の作用効果を奏するため、せん断速度0.1〜2s−1において、未硬化時の粘度が10〜5000Pa・s(JIS Z8803準拠 円錐−平板形回転粘度計 25℃)、かつ、せん断速度0.1〜2s−1の範囲におけるチクソトロピー係数が1.1〜10であることが重要である。
5. Physical properties of the active energy ray-curable resin composition The active energy ray-curable resin composition of the present invention has the effect of the present invention that the bead-like discharge material is less likely to expand in diameter (Swell) and has high shape retention after coating. In order to achieve the effect, the viscosity when uncured is 10 to 5000 Pa · s (JIS Z8803 compliant conical-plate type rotational viscometer 25 ° C.) and the shear rate is 0.1 to 0.1 at a shear rate of 0.1 to 2s -1 . It is important that the thixotropy coefficient in the range of 2s -1 is 1.1-10.

まず粘度について、詳細に説明する。本発明の活性エネルギー線硬化性樹脂組成物は、チクソトロピー付与剤が配合されてチクソトロピー性を呈し、非ニュートン流体の特性を示すため、本発明の活性エネルギー線硬化性樹脂組成物の粘度とは見かけ粘度のことをいい、以下見かけ粘度として説明する。本発明の活性エネルギー線硬化性樹脂組成物の未硬化状態での見かけ粘度(以下、単に見かけ粘度と称することもある。)は、JIS Z8803(1991)における「円錐−平板形回転粘度計による粘度測定方法」に従い、25℃条件下で、せん断速度0.1〜2s−1の範囲で測定された値であり、具体的には、せん断速度1.0s−1で測定された値であることが好ましい。なお、未硬化状態とは、活性エネルギー線硬化性樹脂組成物に対し、硬化させるための活性エネルギー線が照射されていない状態である。本発明の活性エネルギー線硬化性樹脂組成物の見かけ粘度は、10〜5000Pa・sが好ましく、20〜5000Pa・sがより好ましく、30〜1000Pa・sがさらに好ましく、50〜800Pa・sが特に好ましい。見かけ粘度が10Pa・s未満であると、ニードル等から吐出した後に流動しすぎて形状保持性に劣り、5000Pa・s超であると、ニードル等からの吐出が困難になり、塗布時の引張応力に対して切れ易くなったり、径膨張が起こり易くなったりするので、好ましくない。なお、見かけ粘度は、光重合性オリゴマー(A)、光重合性モノマー(B)及び光重合開始剤(C)に、チクソトロピー付与剤(D)を分散したのち放置し、粘度変化が5%以下/日となったときに、前記粘度及びチクソトロピー係数の範囲となることが好ましい。First, the viscosity will be described in detail. Since the active energy ray-curable resin composition of the present invention is blended with a thixotropy-imparting agent to exhibit thixotropy and exhibits the characteristics of a non-Newtonian fluid, the viscosity of the active energy ray-curable resin composition of the present invention is apparent. This refers to the viscosity, which will be described below as the apparent viscosity. The apparent viscosity of the active energy ray-curable resin composition of the present invention in an uncured state (hereinafter, may be simply referred to as apparent viscosity) is the viscosity obtained by a conical-plate type rotational viscometer in JIS Z8803 (1991). according measurement methods ", at 25 ° C. under a measured value in the range of shear rate 0.1~2S -1, it is specifically a value measured at a shear rate of 1.0 s -1 Is preferable. The uncured state is a state in which the active energy ray-curable resin composition is not irradiated with the active energy rays for curing. The apparent viscosity of the active energy ray-curable resin composition of the present invention is preferably 10 to 5000 Pa · s, more preferably 20 to 5000 Pa · s, further preferably 30 to 1000 Pa · s, and particularly preferably 50 to 800 Pa · s. .. If the apparent viscosity is less than 10 Pa · s, it will flow too much after being discharged from the needle or the like and the shape retention will be poor. If it is more than 5000 Pa · s, it will be difficult to discharge from the needle or the like and the tensile stress at the time of coating will be applied. However, it is not preferable because it is easy to cut and the diameter is easily expanded. The apparent viscosity is such that the thixotropy-imparting agent (D) is dispersed in the photopolymerizable oligomer (A), the photopolymerizable monomer (B) and the photopolymerization initiator (C) and then left to stand, and the change in viscosity is 5% or less. It is preferable that the viscosity and thixotropy coefficient are in the range of / day.

本発明の活性エネルギー線硬化性樹脂組成物のチクソトロピー係数(以下、単にチクソトロピー係数と称することもある。)は、1.1未満であると、ニードルから吐出した後に流動しすぎて形状保持性に劣り、10超であると、ニードルからの吐出が困難になったり、塗布時の引張応力によってビード状吐出体が切れ易くなったり、径膨張が起こり易くなったりするため、1.1〜10が好ましく、2〜9がより好ましく、2.5〜8がさらに好ましい。ここで、上記チクソトロピー係数(T.I.)は、JIS Z8803準拠 円錐−平板形回転粘度計(25℃)で測定されたせん断速度Dにおける見かけ粘度η(D)と、せん断速度Dにおける見かけ粘度η(D)とから、下記数式1によって求められる値である(ただし、0.1s−1≦D<D≦2s−1)。ここで、チクソトロピー係数は、せん断速度Dとせん断速度Dとの組合せによって変化するが、本発明の活性エネルギー線硬化性樹脂組成物は、せん断速度0.1〜2s−1の範囲内の任意のせん断速度DとDにおける各粘度から下記数式1で求められるチクソトロピー係数が、1.1〜10の範囲内となるものである。なお、せん断速度の選択は、D=D×10とすることが一般的である。If the thixotropy coefficient (hereinafter, also simply referred to as the thixotropy coefficient) of the active energy ray-curable resin composition of the present invention is less than 1.1, it flows too much after being discharged from the needle, resulting in shape retention. Inferior, if it is more than 10, it becomes difficult to discharge from the needle, the bead-shaped discharger is easily cut due to the tensile stress at the time of application, and the diameter expansion is likely to occur. Preferably, 2 to 9 are more preferable, and 2.5 to 8 are even more preferable. Here, the thixotropy coefficient (TI) is the apparent viscosity η (D 1 ) at the shear rate D 1 measured by a JIS Z8803 compliant conical-plate type rotational viscometer (25 ° C.) and the shear rate D 2. It is a value obtained by the following equation 1 from the apparent viscosity η (D 2 ) in (however, 0.1s -1 ≤ D 1 <D 2 ≤ 2s -1 ). Here, the thixotropy coefficient changes depending on the combination of the shear rate D 1 and the shear rate D 2 , but the active energy ray-curable resin composition of the present invention has a shear rate in the range of 0.1 to 2s -1 . The thixotropy coefficient obtained by the following formula 1 from each viscosity at arbitrary shear velocities D 1 and D 2 is in the range of 1.1 to 10. The shear rate is generally selected as D 2 = D 1 × 10.

Figure 0006763612
Figure 0006763612

本発明の活性エネルギー線硬化性樹脂組成物は、見かけ粘度とチクソトロピー係数との組合せ範囲内において、見かけ粘度とチクソトロピー係数を調整することによって、吐出性、ビード状吐出体の形状保持性、低径膨張性(形状精度)、塗布時の引張応力に対するコシの強さのバランスを様々に調整することができる。見かけ粘度とチクソトロピー係数との調整は、例えば、低圧で吐出して塗工する場合には、見かけ粘度を下限側に調整しつつ塗工したビード状吐出体の形状保持されるようにチクソトロピー係数を調整した組成とし、一方、高圧で吐出して塗工する場合には、見かけ粘度を上限側に調整すると共に、高いせん断速度域で見かけ粘度が小さくなるチクソトロピー係数に調整して、径膨張を抑制すればよい。本発明の見かけ粘度とチクソトロピー係数の範囲から外れた組合せでは、本発明の効果が得られ難くなる。具体的には、見かけ粘度が10Pa・s未満かつチクソトロピー係数が1.1未満では、吐出し易くなるが、吐出後に流動しすぎて形状保持性に劣り好ましくない。また、見かけ粘度が5000Pa・s超かつチクソトロピー係数が10超の場合には、吐出圧が高くなり吐出が困難になり、加えて塗布時の引張応力に対して切れ易くなったり、径膨張が起こり易くなったりするので好ましくない。 The active energy ray-curable resin composition of the present invention has a discharge property, a bead-like ejector shape retention property, and a low diameter by adjusting the apparent viscosity and thixotropy coefficient within the range of the combination of the apparent viscosity and the thixotropy coefficient. The balance between expandability (shape accuracy) and stiffness against tensile stress during coating can be adjusted in various ways. To adjust the apparent viscosity and thixotropy coefficient, for example, in the case of discharging and coating at a low pressure, the thixotropy coefficient is adjusted so that the shape of the bead-shaped discharger coated while adjusting the apparent viscosity to the lower limit side is maintained. When the composition is adjusted, on the other hand, when the coating is applied by discharging at high pressure, the apparent viscosity is adjusted to the upper limit side and the thixotropy coefficient is adjusted so that the apparent viscosity becomes smaller in the high shear rate range to suppress the diameter expansion. do it. Combinations outside the range of the apparent viscosity and thixotropy coefficient of the present invention make it difficult to obtain the effects of the present invention. Specifically, when the apparent viscosity is less than 10 Pa · s and the thixotropy coefficient is less than 1.1, it becomes easy to discharge, but it flows too much after discharge and is inferior in shape retention, which is not preferable. Further, when the apparent viscosity exceeds 5000 Pa · s and the thixotropy coefficient exceeds 10, the discharge pressure becomes high and the discharge becomes difficult, and in addition, it becomes easy to break due to the tensile stress at the time of coating and the diameter expands. It is not preferable because it becomes easy.

6.活性エネルギー線硬化性樹脂組成物の硬化物の物性
本発明の活性エネルギー線硬化性樹脂組成物に活性エネルギー線を照射して硬化させた硬化物は、E硬度(JIS K6253準拠)が40以下であり、かつ動的粘弾性測定(JIS K7244−10準拠)における10Hzでの損失係数が0.3以上である。硬化物がこの物性の範囲となることで、低硬度で低反発性であり、優れた緩衝性や防振性が発揮される。また、重合性モノマー(B)の配合成分を適宜調整することにより、圧縮永久歪みも小さくすることができるため、シール材としても好適である。特にシール材に適用する場合には、圧縮永久歪みの値が50%以下、より好ましくは40%以下、更に好ましくは30%以下となるように活性エネルギー線硬化性樹脂組成物の配合成分を調整すればよい。
6. Physical properties of the cured product of the active energy ray-curable resin composition The cured product obtained by irradiating the active energy ray-curable resin composition of the present invention with active energy rays and cured has an E hardness (JIS K6253 compliant) of 40 or less. Yes, and the loss coefficient at 10 Hz in the dynamic viscoelasticity measurement (JIS K7244-10 compliant) is 0.3 or more. When the cured product falls within this range of physical properties, it has low hardness and low resilience, and exhibits excellent cushioning and vibration isolation. Further, by appropriately adjusting the compounding component of the polymerizable monomer (B), the compression set can be reduced, so that it is also suitable as a sealing material. In particular, when applied to a sealing material, the compounding components of the active energy ray-curable resin composition are adjusted so that the value of compression set is 50% or less, more preferably 40% or less, still more preferably 30% or less. do it.

7.活性エネルギー線硬化性樹脂組成物を充填した容器
本発明の活性エネルギー線硬化性樹脂組成物は、容器に充填された態様でシール材等の形成に用いられる。本発明における容器とは、未硬化状態の本発明の活性エネルギー線硬化性樹脂組成物が容器内に充填・封入されて、「活性エネルギー線硬化性樹脂組成物を充填・封入した容器」として販売されるものであって、例えば、シリンジやチューブ等が挙げられる。そのため、本発明における容器には、流体収納部と、流体注入口、流体注出口、流体を注入・注出させるピストンや羽車、キャップ又はシール等が備えられており、流体を貯蔵でき、任意量を注入及び/又は注出できる機能を有する容器が含まれる。この容器には、さらに、ビード状に吐出可能なニードル状塗工部が装着されて使用されるが、予め、容器にニードル状塗工部が取り付けられていてもよく、あるいは一体化形成されていてもよい。さらに、活性エネルギー線硬化性樹脂が紫外線硬化型の場合には、自然光の紫外線による硬化を防止するために、遮光性容器とすることが好ましい。
7. Container filled with active energy ray-curable resin composition The active energy ray-curable resin composition of the present invention is used for forming a sealing material or the like in a container-filled manner. The container in the present invention is sold as a "container filled / sealed with the active energy ray-curable resin composition in an uncured state" in which the active energy ray-curable resin composition of the present invention is filled / sealed in the container. Examples thereof include syringes and tubes. Therefore, the container in the present invention is provided with a fluid storage part, a fluid inlet, a fluid inlet / outlet, a piston or an impeller for injecting / discharging a fluid, a cap, a seal, etc., and can store the fluid, which is optional. Includes containers capable of injecting and / or injecting volumes. The container is further attached with a needle-shaped coating portion capable of discharging in a bead shape, but the needle-shaped coating portion may be attached to the container in advance or is integrally formed. You may. Further, when the active energy ray-curable resin is an ultraviolet curable type, it is preferable to use a light-shielding container in order to prevent curing by ultraviolet rays of natural light.

活性エネルギー線硬化性樹脂組成物を充填した容器は、流体注入口、流体注出口、流体を注入・又は注出させるピストンや羽車、キャップ及びシール等から選択されたものを備えていればよく、最も多用されるものとしては、注射器のような形態の容器や、チューブ型の容器がある。たとえば、チューブ型容器の場合には、流体注入口と流体注出口を持っているタイプ、流体注入と流体注出を兼備して1つの口しか持たないタイプ、当初流体注入口と流体注出口を持っておりながら流体を注入した後は流体注入口を封鎖し流体注出口のみ残すタイプ、当初流体注入口と流体注出口を持っておりながら流体を注入した後は両方を封鎖するタイプ、流体注入口や流体注出口を封鎖する手段が栓、回転溝つきキャップ、ヒートシール又はシール張り付け等から選択されるタイプ等、様々なタイプがある。なお、容器には、加熱手段、冷却手段、減圧手段、加圧手段、吸引手段、蒸発手段、モータ、油圧手段、空気圧手段、計量手段、防塵手段、取り扱い補助手段、表示手段、発生ガス放出手段、逆流防止手段又は温度検知手段等が併設されていてもよい。 The container filled with the active energy ray-curable resin composition may be provided with a container selected from a fluid inlet, a fluid inlet / outlet, a piston or impeller for injecting / or injecting fluid, a cap, a seal, and the like. The most frequently used ones are containers in the form of syringes and tube-shaped containers. For example, in the case of a tube type container, a type that has a fluid inlet and a fluid inlet, a type that has both a fluid injection and a fluid injection and has only one port, and an initial fluid inlet and a fluid inlet. A type that closes the fluid inlet after injecting fluid while holding it and leaves only the fluid inlet, a type that initially has a fluid inlet and a fluid inlet but then seals both after injecting fluid, fluid injection There are various types such as a type in which the means for sealing the inlet and the fluid inlet / outlet is selected from a stopper, a cap with a rotating groove, a heat seal, a seal sticking, and the like. The container includes heating means, cooling means, decompression means, pressurizing means, suction means, evaporation means, motor, hydraulic means, pneumatic means, measuring means, dustproof means, handling assisting means, display means, generated gas discharging means. , Backflow prevention means, temperature detection means, etc. may be installed side by side.

8.活性エネルギー線硬化性樹脂組成物の製造方法
本発明のシール材用活性エネルギー線硬化性樹脂組成物は、公知の樹脂組成物の製造方法により製造される。具体的には、一例として、単軸押出機、二軸押出機、ニーダー、バンバリーミキサー又はロールミル等の混練機を用いて、光重合性オリゴマー(A)、光重合性モノマー(B)及び光重合開始剤(C)を混練した樹脂材料に、チクソトロピー付与剤(D)を添加し、さらに混練して均一に分散することにより製造される。
8. Method for Producing Active Energy Ray Curable Resin Composition The active energy ray curable resin composition for a sealing material of the present invention is produced by a known method for producing a resin composition. Specifically, as an example, a photopolymerizable oligomer (A), a photopolymerizable monomer (B), and photopolymerization using a kneader such as a single-screw extruder, a twin-screw extruder, a kneader, a Banbury mixer, or a roll mill. It is produced by adding a thixotropy-imparting agent (D) to a resin material in which the initiator (C) is kneaded, further kneading the mixture, and uniformly dispersing the mixture.

9.活性エネルギー線硬化性樹脂組成物を用いたシール材とその製造方法
本発明の活性エネルギー線硬化性樹脂組成物を、ニードル状塗工部から加圧手段によってビード状に吐出してビード状吐出体とし、同時もしくは続いて、前記ビード状吐出体に活性エネルギー線を照射して硬化させることによって、ビード状のシール材となる。本発明のシール材は、良好なシール性を有するとともに、低硬度で低反発性であるため、シール材の反発力により筐体を歪めることもなく、安定的に用いることができる。また、圧縮永久歪みが小さいためシール性の経時的信頼性に優れているので、小型で薄厚の筐体のシール材として好適である。
9. Sealing material using the active energy ray-curable resin composition and its manufacturing method The active energy ray-curable resin composition of the present invention is discharged from the needle-like coating portion in a bead shape by a pressurizing means to form a bead-like discharge body. Then, at the same time or subsequently, the bead-shaped discharger is irradiated with active energy rays and cured to obtain a bead-shaped sealing material. Since the sealing material of the present invention has good sealing properties, low hardness and low resilience, it can be used stably without distorting the housing due to the repulsive force of the sealing material. Further, since the compression set is small and the sealing property is excellent over time, it is suitable as a sealing material for a small and thin housing.

シール材の製造方法を、図1を例として参照しつつ詳細に説明する。図1(a)は、ビード状のシール材1を製造する塗工装置9の正面図を示し、図1(b)は、その右側面図を示している。これらの図1(a)及び図1(b)に示す様に、本発明の活性エネルギー線硬化性樹脂組成物が充填された容器5を、X−Y−Z軸方向に移動制御できる三次元塗布装置9に装着する。本実施形態においては、容器5には、圧力空気供給管90を介して加圧手段として高圧空気が供給されている。図1(a)〜図1(c)に示すように、ニードル状塗工部4を備える容器5は、予め三次元塗布装置9にプログラムされたシール形状の描画パターンにしたがって移動しながら、容器5の下端に設けたニードル状塗工部4から試料台(ステージ)B上に載置された被塗布基体20の表面に、シール材用活性エネルギー線硬化性樹脂組成物をビード状に吐出してビード状吐出体10を形成する。次いで活性エネルギー線照射ユニット8からビード状吐出体10に活性エネルギー線を照射することによって、ビード状吐出体10を構成するシール材用活性エネルギー線硬化性樹脂組成物が架橋されてビード状吐出体10が硬化し、シール材1が得られる。容器5のニードル状塗工部4からシール材用活性エネルギー線硬化性樹脂組成物を吐出させるための加圧手段は、図1では高圧空気による加圧空気式を例示したが、油圧又はギヤポンプ式など公知のものを適用できる。また、活性エネルギー線照射によるビード状吐出体10の硬化は、吐出後の任意の時点で可能であるが、ビード状吐出体10の形状保持の観点から、ビード状吐出体を形成するニードル状塗工部4からの吐出とほぼ同時であることが好ましい。また、さらに高いシール材を製造する場合には、形成したビード状吐出体の上にビード状吐出体を重ねるように二回塗工してビード状吐出体10を二段重ねにしてもよい。ビード状のシール材の形状や径寸法は、ニードル状塗工部の吐出孔径や塗工条件で調整できる。ニードル状塗工部の吐出孔の内径(円形の場合)は、用途により適宜選択できるが、1mm以下で従来技術に比較して、本発明の作用効果が優位的に発揮され、0.75mm以下、より好ましくは0.5mm以下で顕著に発揮される。塗工条件としては、ニードル状塗工部からの吐出速度とニードルの移動速度(正確にはニードル吐出口の移動速度)とがある。ニードルからの吐出速度は、活性エネルギー線硬化性樹脂組成物の粘度とチクソトロピー係数によって適宜調整されるが、吐出速度は、吐出圧に依存するので、吐出速度が大き過ぎると(吐出圧が大き過ぎると)、吐出時にビード状吐出体が捩じれたり振れたりして、吐出状態が不安定になったり、径膨張(swell)が大きくなるなどの不具合が生じ易くなるので好ましくない。また、ニードル状塗工部の移動速度は、吐出速度とのバランスで適宜調整されるが、吐出速度よりも移動速度が大きくなるほど、被塗布基体上に吐出されたビード状吐出体とニードル状塗工部の吐出口との間において、ビード状吐出体に掛かる引張応力が増加するが、本発明の活性エネルギー線硬化性樹脂組成物は、コシが強いので、従来品に比べて移動速度を大きくすることができる。また、このコシの強さの利点を利用して、ニードル状塗工部の移動速度を速めて、意図的に引張応力を付加することで、ビード状吐出体の径を細径化してもよい。ただし、移動速度が大きすぎると、ビード状吐出体が切れたり、ビード状吐出体の径が極端に細くなり、ビード状のシール材として機能しなくなるので、好ましくない。 The method for producing the sealing material will be described in detail with reference to FIG. 1 as an example. FIG. 1A shows a front view of a coating device 9 for manufacturing a bead-shaped sealing material 1, and FIG. 1B shows a right side view thereof. As shown in FIGS. 1A and 1B, the container 5 filled with the active energy ray-curable resin composition of the present invention can be moved and controlled in the XYZ axes in three dimensions. It is attached to the coating device 9. In the present embodiment, high-pressure air is supplied to the container 5 as a pressurizing means via the compressed air supply pipe 90. As shown in FIGS. 1 (a) to 1 (c), the container 5 provided with the needle-shaped coating unit 4 moves according to a seal-shaped drawing pattern programmed in the three-dimensional coating device 9 in advance, and is a container. The active energy ray-curable resin composition for a sealing material is discharged in a bead shape from the needle-shaped coating portion 4 provided at the lower end of 5 to the surface of the substrate 20 to be coated placed on the sample table (stage) B. The bead-shaped discharge body 10 is formed. Next, by irradiating the bead-shaped discharge body 10 with active energy rays from the active energy ray irradiation unit 8, the active energy ray-curable resin composition for a sealing material constituting the bead-shaped discharge body 10 is crosslinked to form a bead-shaped discharge body. 10 is cured to obtain a sealing material 1. As the pressurizing means for discharging the active energy ray-curable resin composition for a sealing material from the needle-shaped coating portion 4 of the container 5, the pressurized air type using high-pressure air was exemplified in FIG. 1, but the hydraulic or gear pump type was used. Any known material such as is applicable. Further, the bead-shaped discharge body 10 can be cured by irradiation with active energy rays at any time after the discharge, but from the viewpoint of maintaining the shape of the bead-shaped discharge body 10, a needle-like coating for forming the bead-shaped discharge body 10 is possible. It is preferable that the discharge from the work unit 4 is almost simultaneous. Further, in the case of producing a higher sealing material, the bead-shaped discharge body 10 may be stacked in two stages by coating the bead-shaped discharge body twice so as to be overlapped on the formed bead-shaped discharge body. The shape and diameter of the bead-shaped sealing material can be adjusted by adjusting the discharge hole diameter of the needle-shaped coating portion and the coating conditions. The inner diameter (in the case of a circular shape) of the discharge hole of the needle-shaped coating portion can be appropriately selected depending on the application, but when it is 1 mm or less, the action and effect of the present invention are superiorly exhibited as compared with the prior art, and 0.75 mm or less. , More preferably, it is remarkably exhibited at 0.5 mm or less. The coating conditions include the discharge speed from the needle-shaped coating portion and the movement speed of the needle (to be exact, the movement speed of the needle discharge port). The discharge rate from the needle is appropriately adjusted by the viscosity and thixotropy coefficient of the active energy ray-curable resin composition. However, since the discharge rate depends on the discharge pressure, if the discharge speed is too large (the discharge pressure is too large). And), the bead-shaped discharge body is twisted or shaken at the time of discharge, and problems such as unstable discharge state and large diameter expansion (swell) are likely to occur, which is not preferable. Further, the moving speed of the needle-shaped coating portion is appropriately adjusted in balance with the discharging speed, but the larger the moving speed than the discharging speed, the more the bead-shaped discharging body and the needle-shaped coating discharged on the substrate to be coated. The tensile stress applied to the bead-shaped discharger increases with the discharge port of the work part, but the active energy ray-curable resin composition of the present invention has a strong stiffness, so that the moving speed is higher than that of the conventional product. can do. Further, the diameter of the bead-shaped ejector may be reduced by increasing the moving speed of the needle-shaped coated portion and intentionally applying tensile stress by utilizing the advantage of the strength of the stiffness. .. However, if the moving speed is too high, the bead-shaped discharge body is cut or the diameter of the bead-shaped discharge body becomes extremely small, and the bead-shaped discharge body does not function as a bead-shaped sealing material, which is not preferable.

10.活性エネルギー線硬化性樹脂組成物を用いた緩衝材とその製造方法
本発明の活性エネルギー線硬化性樹脂組成物を、ニードル状塗工部から加圧手段によってビード状またはドット状に吐出して吐出体とし、同時もしくは続いて、吐出体に活性エネルギー線を照射して硬化させることによって、所望の箇所に緩衝材を形成することができる。本発明の緩衝材は、損失係数が大きいので、緩衝性能に優れている。加圧手段や緩衝材の形状や径寸法の調整方法等については、前述したシール材と共通するため省略する。
10. Cushioning material using active energy ray-curable resin composition and its manufacturing method The active energy ray-curable resin composition of the present invention is discharged from a needle-shaped coating portion in a bead shape or a dot shape by a pressurizing means. A cushioning material can be formed at a desired location by forming the body and simultaneously or subsequently irradiating the discharge body with active energy rays to cure it. Since the cushioning material of the present invention has a large loss coefficient, it has excellent cushioning performance. The method of adjusting the shape and diameter of the pressurizing means and the cushioning material is omitted because it is the same as the sealing material described above.

11.活性エネルギー線硬化性樹脂組成物の硬化物の他の用途
本発明の活性エネルギー線硬化性樹脂組成物の硬化物は、少なくとも2つの作用部材間に、ニードル状塗工部から加圧手段によってビード状またはドット状に吐出して吐出体を配置し、同時もしくは続いて、前記吐出体に活性エネルギー線を照射して硬化させることによって、各種用途、例えば、防水用、防塵用、防振用、制振用、応力緩和用、隙間補完用、がたつき防止用、ずれ防止用、衝突音低減用などの用途にも好適に適用できる。また、2つの作用部材間に配置される用途に限らず、例えば、筐体の表面にCIP法でビード状またはドット状の塗工硬化物を複数配置した構造として、外部からの衝撃物が衝突した際の緩衝作用を発揮させる用途や、対向する部材が近接した時にのみシール性や緩衝性を発揮させる構造への適用した場合のように、片面開放の形態で使用する用途にも有効である。また、本発明の活性エネルギー線硬化性樹脂組成物の優れた塗工性は、ニードル状塗工部の吐出孔の内径が1mm以下の場合に顕著に発揮されるが、ニードル状塗工部の吐出孔の内径が1mmを超える場合でも、塗工性や形状保持性、硬化後の低反発性や緩衝性などに優れているので、上述したようなさまざまな用途に好適に適用できる。
11. Other Uses of Cured Product of Active Energy Ray Curable Resin Composition The cured product of the active energy ray curable resin composition of the present invention is beaded between at least two working members by a pressurizing means from a needle-like coating portion. By arranging the discharge bodies by discharging them in a shape or a dot shape, and simultaneously or subsequently irradiating the discharge bodies with active energy rays to cure them, various applications such as waterproofing, dustproofing, and vibration-proofing are used. It can also be suitably applied to applications such as vibration suppression, stress relaxation, gap complementation, rattling prevention, slip prevention, and collision noise reduction. Further, the application is not limited to the use of being arranged between two working members. For example, as a structure in which a plurality of bead-shaped or dot-shaped coated cured products are arranged on the surface of a housing by the CIP method, an impact object from the outside collides. It is also effective for applications where one side is open, such as when it is applied to a structure that exerts a cushioning action when it is used, or when it is applied to a structure that exerts a sealing property or a buffering property only when opposing members are close to each other. .. Further, the excellent coatability of the active energy ray-curable resin composition of the present invention is remarkably exhibited when the inner diameter of the discharge hole of the needle-shaped coated portion is 1 mm or less, but that of the needle-shaped coated portion. Even when the inner diameter of the discharge hole exceeds 1 mm, it is excellent in coatability, shape retention, low resilience after curing, cushioning property, etc., and therefore can be suitably applied to various applications as described above.

以下、本発明を実施例により具体的に説明するが、本発明は、これらの実施例に特に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not particularly limited to these Examples.

以下に記載の実施例及び比較例で使用した光重合性オリゴマー(A)、光重合性モノマー(B)、光重合開始剤(C)及びチクソトロピー付与剤(D)の諸元について、それぞれ表1〜表4に示す。表1に示す光重合性オリゴマー(A)の各材料A−1〜A−5の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)法による測定値であり、具体的には、測定装置としてSHODEX社製GPC−104(分離カラムLF−404(3本連結)、ガードカラムLF−G、RI検出器RI−74S(いずれもSHODEX社製))を用い、溶離液としてテトラヒドロフランを用い、サンプル濃度10mg/4mL、溶離液流量0.3mL/min、及びカラム温度40℃の条件で測定した値である。 Table 1 shows the specifications of the photopolymerizable oligomer (A), the photopolymerizable monomer (B), the photopolymerization initiator (C), and the thixotropy-imparting agent (D) used in Examples and Comparative Examples described below. ~ Shown in Table 4. The weight average molecular weight of each material A-1 to A-5 of the photopolymerizable oligomer (A) shown in Table 1 is a value measured by a gel permeation chromatography (GPC) method, and specifically, as a measuring device, THFEX. GPC-104 manufactured by GPC-104 (separation column LF-404 (three connected), guard column LF-G, RI detector RI-74S (all manufactured by SHODEX)) was used, and tetrahydrofuran was used as an eluent, and the sample concentration was 10 mg. It is a value measured under the conditions of / 4 mL, eluent flow rate 0.3 mL / min, and column temperature 40 ° C.

表2に示す光重合性モノマー(B)は、第1の(メタ)アクリロイル化合物(b1)として材料B−1〜B−5を用い、第2の(メタ)アクリロイル化合物(b2)として材料B−6〜B−10を用い、さらにその他のアクリロイル化合物として材料B−11〜B−13を用いた。このうち、材料B−4であるフェノキシテトラエチレングリコールアクリレートについては、以下実施例及び比較例で必要な量を製造して使用した。具体的な製造方法としては、24.8gのテトラエチレングリコールモノアクリレート(ブレンマーAP−200、日油株式会社製)を、160mLのテトラヒドロフラン中で10.5gの炭酸ナトリウムと共に1時間撹拌しながら還流させた後、ブロモベンゼン17.3gを滴下し、更に4時間還流を継続した後に室温まで冷却した。この反応液を濾過し、テトラヒドロフランを留去した後、シリカゲルクロマトグラフィーを通過させて材料B−4のフェノキシテトラエチレングリコールアクリレートを得た。 As the photopolymerizable monomer (B) shown in Table 2, materials B-1 to B-5 are used as the first (meth) acryloyl compound (b1), and material B is used as the second (meth) acryloyl compound (b2). -6 to B-10 were used, and materials B-11 to B-13 were used as other acryloyl compounds. Of these, the phenoxytetraethylene glycol acrylate, which is the material B-4, was produced and used in the required amounts in the following Examples and Comparative Examples. As a specific production method, 24.8 g of tetraethylene glycol monoacrylate (Blemmer AP-200, manufactured by Nichiyu Co., Ltd.) is refluxed in 160 mL of tetrahydrofuran with 10.5 g of sodium carbonate while stirring for 1 hour. After that, 17.3 g of bromobenzene was added dropwise, and the mixture was further refluxed for 4 hours and then cooled to room temperature. The reaction solution was filtered, tetrahydrofuran was distilled off, and then silica gel chromatography was passed to obtain a phenoxytetraethylene glycol acrylate of material B-4.

Figure 0006763612
Figure 0006763612

Figure 0006763612
Figure 0006763612

Figure 0006763612
Figure 0006763612

Figure 0006763612
Figure 0006763612

実施例及び比較例における樹脂組成物(未硬化物)及びその硬化物の物性の測定方法及び効果の評価方法は、下記のとおりである。
(1)見かけ粘度
JIS Z8803(円錐−平板形回転粘度計)に準じて、ブルックフィールド社製 コーンプレート型粘度計 DT−3Tを使用して、25℃におけるせん断速度1.0s−1にて見かけ粘度を測定した。
The method for measuring the physical properties of the resin composition (uncured product) and the cured product thereof and the method for evaluating the effect in Examples and Comparative Examples are as follows.
(1) Apparent viscosity According to JIS Z8803 (conical-plate type rotational viscometer), using a cone plate type viscometer DT-3T manufactured by Brookfield, apparent viscosity at a shear rate of 1.0 s -1 at 25 ° C. The viscosity was measured.

(2)チクソトロピー係数
上記(1)見かけ粘度と同じ測定方法で測定した、せん断速度0.1s−1及び1.0s−1の見かけ粘度から、上記数式1を用いてチクソトロピー係数を算出した。
(2) thixotropy coefficient above (1) was measured in the same manner as the apparent viscosity, the apparent viscosity of a shear rate 0.1s -1 and 1.0 s -1, was calculated thixotropic coefficients using the equation (1).

(3)損失係数(緩衝性)
透明PPフィルム上に、硬化後に厚み2mmとなるように活性エネルギー線硬化性樹脂組成物をシート状に成形し、天面及び底面から365nmの紫外線をそれぞれ2J/cmずつ照射して硬化させた。シート状の硬化物をφ29mmに抜き成型し測定サンプルとした。測定はレオメーター(ARES−G2、ティー・エイ・インスツルメント・ジャパン株式会社製品)を用いて25℃、10Hzでの損失係数を測定した(JIS K7244−10準拠)。測定した損失係数から緩衝性を評価し、損失係数が0.3以上の場合を緩衝性が「○」(良好)、損失係数が0.3未満の場合を緩衝性が「×」(不適合)と判断した。
(3) Loss coefficient (buffering property)
The active energy ray-curable resin composition was formed into a sheet on a transparent PP film so as to have a thickness of 2 mm after curing, and was cured by irradiating 2 J / cm 2 of ultraviolet rays of 365 nm from the top surface and the bottom surface. .. The sheet-shaped cured product was punched to φ29 mm and molded to prepare a measurement sample. For the measurement, a rheometer (ARES-G2, a product of TA Instruments Japan Co., Ltd.) was used to measure the loss coefficient at 25 ° C. and 10 Hz (JIS K7244-10 compliant). The cushioning property is evaluated from the measured loss coefficient, and when the loss coefficient is 0.3 or more, the buffering property is "○" (good), and when the loss coefficient is less than 0.3, the buffering property is "x" (nonconforming). I decided.

(4)硬度(柔軟性・低反発性)
透明PETフィルム上に、硬化後に厚み2mmとなるように活性エネルギー線硬化性樹脂組成物をシート状に成形し、天面及び底面から365nmの紫外線をそれぞれ2J/cmずつ照射して硬化させた。このようにして得られたシート状の硬化物を5枚重ねて測定サンプルとした。測定は、JIS K6253に準じたタイプEデュロメータを用いてE硬度を測定した。測定したE硬度から柔軟性を評価し、E硬度が40以下の場合を柔軟性が「○」(良好)、E硬度が40超の場合を柔軟性が「×」(不適合)と判断した。
(4) Hardness (flexibility / low resilience)
The active energy ray-curable resin composition was formed into a sheet on a transparent PET film so as to have a thickness of 2 mm after curing, and was cured by irradiating 2 J / cm 2 of ultraviolet rays of 365 nm from the top surface and the bottom surface. .. Five sheet-shaped cured products thus obtained were stacked to prepare a measurement sample. For the measurement, the E hardness was measured using a type E durometer according to JIS K6253. The flexibility was evaluated from the measured E hardness, and it was judged that the flexibility was "○" (good) when the E hardness was 40 or less, and the flexibility was "x" (nonconforming) when the E hardness was more than 40.

(5)圧縮永久歪
活性エネルギー線硬化性樹脂組成物をφ13mm、高さ6.3mmとなる透明な樹脂型に注型し、天面及び底面から365nmの紫外線をそれぞれ2J/cmずつ照射して硬化させたものを測定サンプルとした。JIS K−6262に準じて70℃温度環境下25%圧縮条件で23時間保持した後の歪率を測定した。
(5) Compressed Permanent Strain The active energy ray-curable resin composition is cast into a transparent resin mold having a diameter of 13 mm and a height of 6.3 mm, and irradiated with 2 J / cm 2 of ultraviolet rays of 365 nm from the top and bottom surfaces. The cured sample was used as a measurement sample. According to JIS K-6262, the distortion factor after holding for 23 hours under a 25% compression condition under a temperature environment of 70 ° C. was measured.

(6)径精度:ビード状吐出体の径膨張(Swell)の低減
吐出口の断面形状が円形で内径φ0.5mmのニードルが装着された遮光性シリンジに活性エネルギー線硬化性樹脂組成物を充填した容器を、紫外線照射装置を附属させたエアー加圧式ディスペンシング装置(武蔵エンジニアリング社製 型式ショットマスター(登録商標)200DS)に装着した。400kPaの空気圧を印加して、内径φ0.5mmのニードルから活性エネルギー線硬化性樹脂組成物を吐出してビード状吐出体を形成させると同時にUV照射し、ビード状硬化物とした。ビード状硬化物の断面外径(塗布幅)を、顕微鏡(ニコン社製MM−800/LFA 倍率20倍)で測定し、吐出ニードル内径IDnとビード状硬化物の外径ODbとの比率ODb/IDnで評価し、比率が1.5以下の場合を径精度が「○」(良好)、1.5を超えた場合を径精度が「×」(不適合)とした。
(6) Diameter accuracy: Reduction of diameter expansion (Swell) of bead-shaped discharger A light-shielding syringe equipped with a needle having a circular cross-sectional shape and an inner diameter of φ0.5 mm is filled with an active energy ray-curable resin composition. The container was attached to an air-pressurized dispensing device (Musashi Engineering Co., Ltd. model Shotmaster (registered trademark) 200DS) to which an ultraviolet irradiation device was attached. An air pressure of 400 kPa was applied to discharge an active energy ray-curable resin composition from a needle having an inner diameter of φ0.5 mm to form a bead-shaped ejector, and at the same time, UV irradiation was performed to obtain a bead-shaped cured product. The cross-sectional outer diameter (coating width) of the bead-shaped cured product was measured with a microscope (Nikon MM-800 / LFA magnification 20 times), and the ratio ODb / of the discharge needle inner diameter IDn to the outer diameter ODb of the bead-shaped cured product. Evaluated by IDn, the diameter accuracy was rated as "○" (good) when the ratio was 1.5 or less, and the diameter accuracy was rated as "x" (nonconforming) when the ratio exceeded 1.5.

(7)塗工性(吐出性)
吐出口の断面形状が円形で内径φ0.5mmのニードルが装着された遮光性シリンジに活性エネルギー線硬化性樹脂組成物を充填した容器を、紫外線照射装置を附属させたエアー加圧式ディスペンシング装置(武蔵エンジニアリング社製 型式ショットマスター(登録商標)200DS)に装着した。400kPaの空気圧を印加して、内径φ0.5mmのニードルから活性エネルギー線硬化性樹脂組成物を16mm/sでビード状に吐出するとともに、ニードルを15mm/sの速度で移動させながら、図2に示すパターンのビード状吐出体を形成した。このとき、活性エネルギー線硬化性樹脂組成物をニードルから16mm/sで吐出可能な場合を塗工性が「○」(良好)、吐出可能であるがニードル移動速度(15mm/s)よりも吐出速度が遅く、ビード状吐出体が伸び易い組成物を塗工性が「△」(準良好)、著しく吐出速度が小さいか、吐出困難な組成物を塗工性が「×」(不適合)とした。
(7) Workability (discharge)
An air-pressurized dispensing device with an ultraviolet irradiation device attached to a container filled with an active energy ray-curable resin composition in a light-shielding syringe equipped with a needle having a circular discharge port and an inner diameter of φ0.5 mm. It was attached to Musashi Engineering's model shot master (registered trademark) 200DS). As shown in FIG. 2, an air pressure of 400 kPa is applied to discharge the active energy ray-curable resin composition from a needle having an inner diameter of φ0.5 mm in a bead shape at 16 mm / s, and the needle is moved at a speed of 15 mm / s. A bead-shaped discharger having the pattern shown was formed. At this time, when the active energy ray-curable resin composition can be discharged from the needle at 16 mm / s, the coatability is "○" (good), and the active energy ray-curable resin composition can be discharged, but the discharge is higher than the needle moving speed (15 mm / s). A composition with a slow speed and a bead-like discharger that easily stretches has a coatability of "△" (semi-good), and a composition with a significantly low discharge rate or a composition that is difficult to discharge has a coatability of "x" (nonconforming). did.

(8)ビード状吐出体の未硬化状態での形状保持性
吐出口の断面形状が円形で内径φ0.5mmのニードルが装着された遮光性シリンジに活性エネルギー線硬化性樹脂組成物を充填した容器を、紫外線照射装置を附属させたエアー加圧式ディスペンシング装置(武蔵エンジニアリング社製 型式ショットマスター(登録商標)200DS)に装着した。内径φ0.5mmのニードルからの活性エネルギー線硬化性樹脂組成物の吐出速度とニードルの移動速度とを同じにして、ガラス板(平岡ガラス社製、ソーダガラス)上にビード状吐出体を形成した。ビード状吐出体を30秒間自然放置して、ビード状吐出体の形状変化(ダレの程度)を観察した。評価基準は、ビード状吐出体の幅と高さを、顕微鏡(ニコン製 MM−800−LFA)を用いて測定し、線高さと線幅との比(高さ/幅)が0.9〜1の場合に形状保持性が「◎」(優秀)、0.8〜0.9未満の場合に形状保持性が「○」(良好)、0.5〜0.8未満の場合に形状保持性が「△」(準良好)、0.5未満の場合に形状保持性が「×」(不適合)とした。
(8) Shape retention of bead-shaped discharger in uncured state A container filled with an active energy ray-curable resin composition in a light-shielding syringe equipped with a needle having a circular cross-sectional shape and an inner diameter of φ0.5 mm. Was attached to an air-pressurized dispensing device (Musashi Engineering Co., Ltd. model Shotmaster (registered trademark) 200DS) to which an ultraviolet irradiation device was attached. A bead-shaped discharger was formed on a glass plate (soda glass manufactured by Hiraoka Glass Co., Ltd.) by making the discharge speed of the active energy ray-curable resin composition from a needle having an inner diameter of φ0.5 mm and the movement speed of the needle the same. .. The bead-shaped discharger was allowed to stand naturally for 30 seconds, and the shape change (degree of sagging) of the bead-shaped discharger was observed. The evaluation standard is to measure the width and height of the bead-shaped ejector using a microscope (MM-800-LFA manufactured by Nikon), and the ratio (height / width) of the line height to the line width is 0.9 to. When it is 1, the shape retention is "◎" (excellent), when it is less than 0.8 to 0.9, the shape retention is "○" (good), and when it is less than 0.5 to 0.8, the shape is retained. When the property was "Δ" (semi-good) and less than 0.5, the shape retention was "x" (nonconforming).

[実施例1]
蓋つきプラスチック容器に、表5に示すように、光重合性オリゴマー(A)として材料A−1を10質量部、光重合性モノマー(B)として第1の(メタ)アクリロイル化合物(b1)である材料B−1を90質量部とり、光重合性オリゴマー(A)と光重合性モノマー(B)との合計を100質量部とした。これに、光重合性開始剤(C)として材料C−1を0.5質量部と材料C−2を0.5質量部加え、チクソトロピー付与剤(D)として材料D−1を6.4質量部加えた。次に、この混合物を自転・公転ミキサー(製品名:あわとり錬太郎(登録商標)ARE−250、株式会社シンキー社製品)を用いて、2000rpmにて3分間混練して活性エネルギー線硬化性樹脂組成物を得た。この活性エネルギー線硬化性樹脂組成物の一部を内容量50mLの遮光シリンジに充填し、シリンジ用遠心脱泡機(製品名:アワトロン(登録商標)AW−50、武蔵エンジニアリング株式会社製品)を用いて脱泡処理を行い、活性エネルギー線硬化性樹脂組成物が充填された容器を作製し、径精度、塗工性及びビード状吐出体の形状保持性の評価用サンプルとした。一方、遮光シリンジに充填しなかった残りの活性エネルギー線硬化性樹脂組成物は、見かけ粘度、チクソトロピー係数、損失係数、硬度及び圧縮永久歪の測定用サンプルとした。これらサンプルを用いて、実施例1で得られた活性エネルギー線硬化性樹脂組成物の物性の測定及び評価を行った。
[Example 1]
In a plastic container with a lid, as shown in Table 5, 10 parts by mass of the material A-1 as the photopolymerizable oligomer (A) and the first (meth) acryloyl compound (b1) as the photopolymerizable monomer (B). 90 parts by mass of a certain material B-1 was taken, and the total of the photopolymerizable oligomer (A) and the photopolymerizable monomer (B) was taken as 100 parts by mass. To this, 0.5 parts by mass of material C-1 and 0.5 parts by mass of material C-2 were added as a photopolymerizable initiator (C), and 6.4 parts of material D-1 was added as a thixotropy-imparting agent (D). Added parts by mass. Next, this mixture is kneaded at 2000 rpm for 3 minutes using a rotation / revolution mixer (product name: Awatori Rentaro (registered trademark) ARE-250, Shinky Co., Ltd. product) to make an active energy ray-curable resin. The composition was obtained. A part of this active energy ray-curable resin composition is filled in a light-shielding syringe having an internal volume of 50 mL, and a centrifugal defoaming machine for syringes (product name: Awatron (registered trademark) AW-50, Musashi Engineering Co., Ltd. product) is used. A container filled with the active energy ray-curable resin composition was prepared by defoaming, and used as a sample for evaluating the diameter accuracy, coatability, and shape retention of the bead-shaped ejector. On the other hand, the remaining active energy ray-curable resin composition that was not filled in the light-shielding syringe was used as a sample for measuring apparent viscosity, thixotropy coefficient, loss coefficient, hardness, and compression set. Using these samples, the physical properties of the active energy ray-curable resin composition obtained in Example 1 were measured and evaluated.

[実施例2〜24]
各構成成分を表5〜表9に示す材料及び配合とした以外は、実施例1と同様の方法で実施例2〜24の活性エネルギー線硬化性樹脂組成物を得た。各実施例で得られた活性エネルギー線硬化性樹脂組成物の評価用サンプル及び測定用サンプルを用いて、物性の測定及び評価を行った。結果を表5〜表9に示す。
[Examples 2 to 24]
The active energy ray-curable resin compositions of Examples 2 to 24 were obtained in the same manner as in Example 1 except that the constituents were the materials and formulations shown in Tables 5 to 9. Physical properties were measured and evaluated using the evaluation sample and the measurement sample of the active energy ray-curable resin composition obtained in each example. The results are shown in Tables 5-9.

[実施例25]
蓋つきプラスチック容器に、表9に示すように、光重合性オリゴマー(A)として材料A−1を20質量部、光重合性モノマー(B)として第1の(メタ)アクリロイル化合物(b1)である材料B−1を80質量部とり、光重合性オリゴマー(A)と光重合性モノマー(B)との合計を100質量部とした。これに、チクソトロピー付与剤(D)として材料D−5を5質量部加え、100℃にて15分間静置し、チクソトロピー付与剤(D)を溶融させた状態で内容物を撹拌した。室温まで冷却した後、光重合性開始剤(C)として材料C−3を0.5質量部と材料C−4を0.5質量部加え、この混合物を自転・公転ミキサー(製品名:あわとり錬太郎(登録商標)ARE−250、株式会社シンキー社製品)を用いて、2000rpmにて3分間混練して実施例25の活性エネルギー線硬化性樹脂組成物を得た。その後、実施例1と同様にして、得られた活性エネルギー線硬化性樹脂組成物の評価用サンプル及び測定用サンプルを用いて、物性の測定及び評価を行った。結果を表9に示す。
[Example 25]
In a plastic container with a lid, as shown in Table 9, 20 parts by mass of the material A-1 as the photopolymerizable oligomer (A) and the first (meth) acryloyl compound (b1) as the photopolymerizable monomer (B). 80 parts by mass of a certain material B-1 was taken, and the total of the photopolymerizable oligomer (A) and the photopolymerizable monomer (B) was taken as 100 parts by mass. To this, 5 parts by mass of material D-5 as a thixotropy-imparting agent (D) was added, and the mixture was allowed to stand at 100 ° C. for 15 minutes, and the contents were stirred in a state where the thixotropy-imparting agent (D) was melted. After cooling to room temperature, 0.5 parts by mass of material C-3 and 0.5 parts by mass of material C-4 are added as a photopolymerizable initiator (C), and this mixture is mixed with a rotation / revolution mixer (product name: Awa). The active energy ray-curable resin composition of Example 25 was obtained by kneading at 2000 rpm for 3 minutes using Tori Rentaro (registered trademark) ARE-250, a product of Shinky Co., Ltd. Then, in the same manner as in Example 1, the physical properties were measured and evaluated using the obtained sample for evaluation and the sample for measurement of the active energy ray-curable resin composition. The results are shown in Table 9.

[実施例26〜31]
各構成成分を表10に示す材料及び配合とした以外は、実施例1と同様の方法で実施例26〜31の活性エネルギー線硬化性樹脂組成物を得た。各実施例で得られた活性エネルギー線硬化性樹脂組成物の評価用サンプル及び測定用サンプルを用いて、物性の測定及び評価を行った。結果を表10に示す。
[Examples 26 to 31]
The active energy ray-curable resin compositions of Examples 26 to 31 were obtained in the same manner as in Example 1 except that the constituents were the materials and formulations shown in Table 10. Physical properties were measured and evaluated using the evaluation sample and the measurement sample of the active energy ray-curable resin composition obtained in each example. The results are shown in Table 10.

[比較例1〜15]
各構成成分を表11〜表13に示す材料及び配合とした以外は、実施例1と同様の方法で比較例1〜11及び比較例13〜15の活性エネルギー線硬化性樹脂組成物を得た。また、各構成成分を表13の比較例12に示す材料及び配合とした以外は、実施例25と同様の方法で比較例12の活性エネルギー線硬化性樹脂組成物を得た。実施例1と同様にして、比較例1〜15で得られた各活性エネルギー線硬化性樹脂組成物の物性の測定及び評価を行った。結果を表11〜表13に示す。
[Comparative Examples 1 to 15]
The active energy ray-curable resin compositions of Comparative Examples 1 to 11 and Comparative Examples 13 to 15 were obtained in the same manner as in Example 1 except that the constituents were the materials and formulations shown in Tables 11 to 13. .. Further, the active energy ray-curable resin composition of Comparative Example 12 was obtained in the same manner as in Example 25 except that the constituent components were the materials and formulations shown in Comparative Example 12 in Table 13. In the same manner as in Example 1, the physical properties of each active energy ray-curable resin composition obtained in Comparative Examples 1 to 15 were measured and evaluated. The results are shown in Tables 11 to 13.

Figure 0006763612
Figure 0006763612

Figure 0006763612
Figure 0006763612

Figure 0006763612
Figure 0006763612

Figure 0006763612
Figure 0006763612

Figure 0006763612
Figure 0006763612

Figure 0006763612
Figure 0006763612

Figure 0006763612
Figure 0006763612

Figure 0006763612
Figure 0006763612

Figure 0006763612
Figure 0006763612

表5〜表10に示した実施例1〜31の評価結果から、本発明の活性エネルギー線硬化性樹脂組成物はニードル塗工性、形状保持性及び径精度に優れるとともに、その硬化物はE硬度が40以下かつ損失係数が0.3以上の物性を有しており、柔軟性と緩衝性にも優れていることがわかった。なお、表5〜表10の評価の欄には記載していないが、実施例1〜31の活性エネルギー線硬化性樹脂組成物は、径精度、塗工性及び形状保持性の評価について、ニードル内径がφ1mmのニードルを用いて塗工を行った場合においても、ニードル内径がφ0.5mmのニードルを用いた場合と同様の結果であった。さらに、本発明の構成の範囲において、構成成分として用いる材料及びその配合割合を調整することによって、圧縮永久歪みも小さくできることがわかった。 From the evaluation results of Examples 1 to 31 shown in Tables 5 to 10, the active energy ray-curable resin composition of the present invention is excellent in needle coatability, shape retention and diameter accuracy, and the cured product is E. It was found that it had physical properties with a hardness of 40 or less and a loss coefficient of 0.3 or more, and was also excellent in flexibility and cushioning properties. Although not described in the evaluation column of Tables 5 to 10, the active energy ray-curable resin compositions of Examples 1 to 31 have needles for evaluation of diameter accuracy, coatability and shape retention. Even when the coating was performed using a needle having an inner diameter of φ1 mm, the result was the same as when a needle having an inner diameter of φ0.5 mm was used. Furthermore, it was found that the compression set can be reduced by adjusting the material used as a constituent component and the blending ratio thereof within the scope of the composition of the present invention.

具体的には、以下の構成(i)〜(vi)が、本発明の作用効果を有する活性エネルギー線硬化性樹脂組成物を得るために重要であることがわかった。
(i) 実施例11〜12と比較例1の評価結果の比較及び実施例1〜10及び実施例13〜31の評価結果から、光重合性オリゴマー(A)、光重合性モノマー(B)及び光重合開始剤(C)の合計質量(A+B+C)に対する光重合性オリゴマー(A)及び光重合性モノマー(B)の合計含有量(A+B)の割合が、94〜99.99重量%の範囲であること。
(ii) 実施例1〜31と比較例8〜11の評価結果の比較及び実施例10と比較例7との評価結果の比較から、光重合性モノマー(B)が、上記式1の構造からなる(メタ)アクリロイル化合物(b1)を含み、かつ光重合性モノマー(B)に占める(メタ)アクリロイル化合物(b1)の割合が80重量%以上であること。
(iii) 実施例1〜31と比較例4〜6の評価結果の比較から、光重合性オリゴマー(A)が、エーテル結合を有し、かつ重量平均分子量が10000以上のウレタン(メタ)アクリレートであること。
(iv) 実施例8〜9と比較例2〜3の評価結果の比較及び実施例1〜25の評価結果から、光重合性オリゴマー(A)及び光重合性モノマー(B)の合計質量(A+B)に対する光重合性モノマー(B)の含有量が80〜99重量%であること。
(v) 実施例20〜21と比較例13〜14の評価結果の比較及び実施例1〜25の結果から、チクソトロピー付与剤(D)の添加割合は、光重合性オリゴマー(A)、光重合性モノマー(B)及び光重合開始剤(C)の合計(A+B+C)100質量部に対して、1〜40重量%であること。
(vi) 実施例1〜実施例31と比較例15の評価結果の比較から、光重合性モノマー(B)は式(1)で示される第1の(メタ)アクリロイル化合物(b1)を含み、かつ式(1)中のnの値が0〜4の整数であること。
Specifically, it was found that the following configurations (i) to (vi) are important for obtaining the active energy ray-curable resin composition having the action and effect of the present invention.
(I) From the comparison of the evaluation results of Examples 11 to 12 and Comparative Example 1 and the evaluation results of Examples 1 to 10 and Examples 13 to 31, the photopolymerizable oligomer (A), the photopolymerizable monomer (B) and The ratio of the total content (A + B) of the photopolymerizable oligomer (A) and the photopolymerizable monomer (B) to the total mass (A + B + C) of the photopolymerization initiator (C) is in the range of 94 to 99.99% by weight. There is.
(Ii) From the comparison of the evaluation results of Examples 1 to 31 and Comparative Examples 8 to 11 and the comparison of the evaluation results of Example 10 and Comparative Example 7, the photopolymerizable monomer (B) is derived from the structure of the above formula 1. The (meth) acryloyl compound (b1) is contained, and the ratio of the (meth) acryloyl compound (b1) to the photopolymerizable monomer (B) is 80% by weight or more.
(Iii) From the comparison of the evaluation results of Examples 1 to 31 and Comparative Examples 4 to 6, the photopolymerizable oligomer (A) is a urethane (meth) acrylate having an ether bond and having a weight average molecular weight of 10,000 or more. There is.
(Iv) From the comparison of the evaluation results of Examples 8 to 9 and Comparative Examples 2 to 3 and the evaluation results of Examples 1 to 25, the total mass (A + B) of the photopolymerizable oligomer (A) and the photopolymerizable monomer (B) ), The content of the photopolymerizable monomer (B) is 80 to 99% by mass.
(V) From the comparison of the evaluation results of Examples 20 to 21 and Comparative Examples 13 to 14 and the results of Examples 1 to 25, the addition ratio of the thixotropy-imparting agent (D) was determined by the photopolymerizable oligomer (A) and photopolymerization. 1 to 40% by mass based on 100 parts by mass of the total (A + B + C) of the sex monomer (B) and the photopolymerization initiator (C).
(Vi) From the comparison of the evaluation results of Examples 1 to 31 and Comparative Example 15, the photopolymerizable monomer (B) contains the first (meth) acryloyl compound (b1) represented by the formula (1). Moreover, the value of n in the equation (1) is an integer of 0 to 4.

また、実施例20〜21と比較例13〜14の結果の比較及び実施例1〜31の結果、並びに実施例20及び実施例25と比較例12〜13の結果の比較から、活性エネルギー線硬化性樹脂組成物の見かけ粘度が10〜5000Pa・sであるとともに、チクソトロピー係数が1.1〜10の範囲であることが、優れた塗工性とビード状吐出体の形状保持や径精度を実現するために重要であることがわかった。 Further, from the comparison of the results of Examples 20 to 21 and Comparative Examples 13 to 14, the results of Examples 1 to 31, and the results of Examples 20 and 25 and Comparative Examples 12 to 13, the active energy ray curing The apparent viscosity of the sex resin composition is 10 to 5000 Pa · s, and the thixotropy coefficient is in the range of 1.1 to 10 to realize excellent coatability, shape retention of bead-shaped ejector, and diameter accuracy. It turned out to be important to do.

また実施例2〜4、実施例11〜16及び実施例22〜23の評価結果で示されるように、光重合性モノマー(B)として、上述した式(1)の第1の(メタ)アクリロイル化合物(b1)と上述した式(2)の第2の(メタ)アクリロイル化合物(b2)とを組み合わせて用いることで、硬化物の圧縮永久歪みを小さくできることがわかった。また、実施例2及び実施例13〜16の結果から、光重合性モノマー(B)の配合割合において、第1の(メタ)アクリロイル化合物(b1)と第2の(メタ)アクリロイル化合物(b2)の合計質量に対する第2の(メタ)アクリロイル化合物(b2)の含有量が0.1〜5重量%の範囲であると、活性エネルギー線硬化性樹脂組成物の硬化物のE硬度、損失係数及び圧縮永久歪みの物性がバランスよく向上することがわかった。 Further, as shown in the evaluation results of Examples 2 to 4, Examples 11 to 16 and Examples 22 to 23, as the photopolymerizable monomer (B), the first (meth) acryloyl of the above formula (1) was used. It was found that the compression set of the cured product can be reduced by using the compound (b1) in combination with the second (meth) acryloyl compound (b2) of the above formula (2). Further, from the results of Examples 2 and 13 to 16, the first (meth) acryloyl compound (b1) and the second (meth) acryloyl compound (b2) were found in the blending ratio of the photopolymerizable monomer (B). When the content of the second (meth) acryloyl compound (b2) with respect to the total mass of the active energy ray-curable resin composition is in the range of 0.1 to 5% by weight, the E hardness, loss coefficient and E-hardness of the cured product of the active energy ray-curable resin composition and It was found that the physical properties of compression set were improved in a well-balanced manner.

また、実施例2と実施例28〜31の結果から、式(2)で示される第2の(メタ)アクリロイル化合物(b2)において、式(2)中のmの値を大きくするほど、硬化物の圧縮永久歪みの測定値が大きくなるため、mは1〜20の範囲とすることが好ましいことがわかった。 Further, from the results of Examples 2 and 28 to 31, in the second (meth) acryloyl compound (b2) represented by the formula (2), the larger the value of m in the formula (2), the more the curing. It was found that m is preferably in the range of 1 to 20 because the measured value of the compression set of the object becomes large.

また、実施例2と実施例22〜23の結果の比較から、チクソトロピー付与剤(D)がシリカ微粒子の場合には、シリカ微粒子の炭素含有量が小さいほど硬化物のE硬度が小さく、損失係数が大きい、低硬度で緩衝性に優れた硬化物が得られ、特にシリカ微粒子の炭素含有量が0.5重量%未満の場合が好ましいことがわかった。 Further, from the comparison of the results of Examples 2 and 22 to 23, when the thixotropy-imparting agent (D) is silica fine particles, the smaller the carbon content of the silica fine particles, the smaller the E hardness of the cured product, and the loss coefficient. It was found that a cured product having a large value, low hardness and excellent cushioning property was obtained, and it was particularly preferable that the carbon content of the silica fine particles was less than 0.5% by weight.

また、実施例2及び実施例17〜18と、実施例19との比較から、光重合性開始剤(C)がヒドロキシアルキルフェノン系の実施例19の場合には、表8の評価欄には記載していないが、硬化物の表面粘着性が強かったり、硬化が不十分な部分が表面に発生する場合が見られたことから、光重合性開始剤(C)が、少なくともホスフィン系化合物またはアミノアルキルフェノン系化合物であることが、より好ましいことがわかった。また、実施例2のように、ホスフィン系化合物とアミノアルキルフェノン系化合物を併用することで、硬化物の圧縮永久歪みがさらに優れることがわかった。 Further, from the comparison between Examples 2 and 17 to 18 and Example 19, when the photopolymerizable initiator (C) is hydroxyalkylphenon-based Example 19, the evaluation column in Table 8 shows. Although not described, the photopolymerizable initiator (C) is at least a phosphine-based compound or at least a phosphine-based compound because the surface adhesiveness of the cured product may be strong or a portion that is insufficiently cured may be generated on the surface. It has been found that an aminoalkylphenon-based compound is more preferable. Further, it was found that the combined use of the phosphine compound and the aminoalkylphenon compound as in Example 2 further excellent the compression set of the cured product.

さらに、実施例25の結果から、チクソトロピー付与剤(D)として有機化合物のアマイドワックスを適用した場合でも、シリカ微粒子を適用した場合と同様に本発明の効果が得られることがわかった。 Furthermore, from the results of Example 25, it was found that the effect of the present invention can be obtained even when the organic compound amidowax is applied as the thixotropy-imparting agent (D), as in the case where the silica fine particles are applied.

これらに対して、比較例1のように、光重合性オリゴマー(A)及び光重合性モノマー(B)の合計含有量(A+B)が、光重合性オリゴマー(A)、光重合性モノマー(B)及び光重合開始剤(C)の合計質量(A+B+C)に対して99.99重量%を超えた場合や、比較例2〜3のように、光重合性オリゴマー(A)と光重合性モノマー(B)の配合割合が本発明の構成の範囲から外れた構成の活性エネルギー線硬化性樹脂組成物や、比較例13〜14のようにチクソトロピー付与剤(D)の配合割合が本発明の構成の範囲から外れた活性エネルギー線硬化性樹脂組成物は、ニードル塗布性、形状保持性、径精度に優れたものであっても、硬化物のE硬度は41以上および/または損失係数が0.3未満であり、硬度が大きく、柔軟性と緩衝性にも乏しく、本発明の効果が得られないことがわかった。また、比較例4〜6のように、光重合性オリゴマー(A)がエーテル結合を有さないか、または重量平均分子量が10000未満の場合も、硬化物のE硬度が41以上となり、硬度が大きく、柔軟性が低下して、本発明の効果が得られないことがわかった。また、比較例8〜11のように、光重合性モノマー(B)が、第1の(メタ)アクリロイル化合物(b1)を含まない場合や、比較例7のように、光重合性モノマー(B)に占める第1の(メタ)アクリロイル化合物(b1)の割合が80重量%未満である場合にも、硬化物の損失係数が0.3未満となって緩衝性に乏しい等、本発明の効果が得られないことがわかった。さらに、比較例12〜14のように、活性エネルギー線硬化性樹脂組成物の粘度とチクソトロピー係数が本発明の範囲から外れると、ビード状吐出体を形成する塗工性などにおいて本発明の効果が得られないことがわかった。 On the other hand, as in Comparative Example 1, the total content (A + B) of the photopolymerizable oligomer (A) and the photopolymerizable monomer (B) is the photopolymerizable oligomer (A) and the photopolymerizable monomer (B). ) And the photopolymerization initiator (C) in excess of 99.99% by weight based on the total mass (A + B + C), or as in Comparative Examples 2 and 3, the photopolymerizable oligomer (A) and the photopolymerizable monomer The composition of the present invention is the composition of the active energy ray-curable resin composition having a composition in which the compounding ratio of (B) is out of the range of the composition of the present invention, and the compounding ratio of the thixotropic agent (D) as in Comparative Examples 13 to 14. Even if the active energy ray-curable resin composition out of the range of is excellent in needle coatability, shape retention, and diameter accuracy, the cured product has an E hardness of 41 or more and / or a loss coefficient of 0. It was found that the value was less than 3, the hardness was high, the flexibility and cushioning property were poor, and the effect of the present invention could not be obtained. Further, as in Comparative Examples 4 to 6, when the photopolymerizable oligomer (A) does not have an ether bond or the weight average molecular weight is less than 10,000, the E hardness of the cured product is 41 or more, and the hardness becomes high. It was found that the effect of the present invention could not be obtained because the flexibility was greatly reduced. Further, when the photopolymerizable monomer (B) does not contain the first (meth) acryloyl compound (b1) as in Comparative Examples 8 to 11, or as in Comparative Example 7, the photopolymerizable monomer (B) ), Even when the ratio of the first (meth) acryloyl compound (b1) is less than 80% by weight, the loss coefficient of the cured product is less than 0.3 and the buffering property is poor. Turned out not to be obtained. Further, as in Comparative Examples 12 to 14, when the viscosity and thixotropy coefficient of the active energy ray-curable resin composition deviate from the range of the present invention, the effect of the present invention is obtained in the coatability for forming a bead-shaped ejector and the like. It turned out that I couldn't get it.

本発明の活性エネルギー線硬化性樹脂組成物は、ニードル塗布によりビード状またはドット状のシール材や緩衝材などを形成するために好適に用いられ、狭スペース部分のシール材や緩衝材などとして最適であり、それを組込む電子機器などの小型化やコストダウンに貢献する。また、本発明の活性エネルギー線硬化性樹脂組成物の硬化物は、損失係数が大きく緩衝性や防振性に優れると共に、低硬度で柔軟性に富み低反発性であるため、それを組込む電子機器などの耐衝撃性を向上でき、品質の向上に貢献する。 The active energy ray-curable resin composition of the present invention is suitably used for forming a bead-shaped or dot-shaped sealing material or cushioning material by needle coating, and is optimal as a sealing material or cushioning material for a narrow space portion. This contributes to the miniaturization and cost reduction of electronic devices that incorporate it. Further, the cured product of the active energy ray-curable resin composition of the present invention has a large loss coefficient, is excellent in buffering property and vibration isolating property, and has low hardness, high flexibility, and low resilience. It can improve the impact resistance of equipment and contribute to the improvement of quality.

1 ビード状のシール材
10 ビード状吐出体
11 活性エネルギー線硬化性樹脂組成物
4 ニードル状塗工部
5 活性エネルギー線硬化性樹脂組成物を充填した容器
8 活性エネルギー線照射ユニット
9 三次元制御式塗付装置
90 圧力空気供給管
B 試料台(ステージ)
1 Bead-shaped sealant 10 Bead-shaped ejector 11 Active energy ray-curable resin composition 4 Needle-shaped coating part 5 Container filled with active energy ray-curable resin composition 8 Active energy ray irradiation unit 9 Three-dimensional control type Coating device 90 Pressure air supply pipe B Sample stand (stage)

Claims (5)

光重合性オリゴマー(A)、光重合性モノマー(B)、光重合開始剤(C)及びチクソトロピー付与剤(D)を含有し、
前記光重合性オリゴマー(A)は、質量平均分子量が10000以上のエーテル結合を有するウレタン(メタ)アクリレートであり、
前記光重合性モノマー(B)には、下記式(1)(式中、Rは水素原子又はメチル基、Wはエチレン基又はプロピレン基、nは〜4の整数をそれぞれ示す。)で表される(メタ)アクリロイル化合物(b1)が、前記光重合性モノマー(B)の質量全体のうちの80質量%以上含まれており、
Figure 0006763612
前記光重合性モノマー(B)には、さらに下記式(2)(式中、R は水素原子又はメチル基、Yはエチレン基又はプロピレン基、mは1〜20の整数をそれぞれ示す。)で表される(メタ)アクリロイル化合物(b2)が含まれており、
Figure 0006763612
前記式(2)で示される(メタ)アクリロイル化合物(b2)の含有量は、前記式(1)で示される(メタ)アクリロイル化合物(b1)と前記式(2)で示される(メタ)アクリロイル化合物(b2)の合計質量(b1+b2)に対して、0.1〜5質量%であり、
前記チクソトロピー付与剤(D)は、シリカ微粒子であり、
前記光重合性オリゴマー(A)及び前記光重合性モノマー(B)の合計含有量(A+B)は、前記光重合性オリゴマー(A)、前記光重合性モノマー(B)及び前記光重合開始剤(C)の合計質量(A+B+C)に対して、94〜99.99質量%であり、
前記光重合性モノマー(B)の含有量は、前記光重合性オリゴマー(A)及び前記光重合性モノマー(B)の合計質量(A+B)に対して、80〜99質量%であり、
前記チクソトロピー付与剤(D)は、前記光重合性オリゴマー(A)、前記光重合性モノマー(B)及び前記光重合開始剤(C)の合計(A+B+C)100質量部に対して、3〜15質量部含まれ、
未硬化の状態において、せん断速度0.1〜2s−1における粘度が10〜5000Pa・sかつ、せん断速度0.1〜2s−1の範囲におけるチクソトロピー係数が1.1〜10であることを特徴とする活性エネルギー線硬化性樹脂組成物。
It contains a photopolymerizable oligomer (A), a photopolymerizable monomer (B), a photopolymerization initiator (C) and a thixotropy-imparting agent (D).
The photopolymerizable oligomer (A) is a urethane (meth) acrylate having an ether bond having a mass average molecular weight of 10,000 or more.
The photopolymerizable monomer (B) has the following formula (1) (in the formula, R 1 represents a hydrogen atom or a methyl group, W represents an ethylene group or a propylene group, and n represents an integer of 1 to 4, respectively). The represented (meth) acryloyl compound (b1) is contained in an amount of 80% by mass or more of the total mass of the photopolymerizable monomer (B).
Figure 0006763612
The photopolymerizable monomer (B) further has the following formula (2) (in the formula, R 2 represents a hydrogen atom or a methyl group, Y represents an ethylene group or a propylene group, and m represents an integer of 1 to 20). Contains the (meth) acryloyl compound (b2) represented by
Figure 0006763612
The content of the (meth) acryloyl compound (b2) represented by the formula (2) is the (meth) acryloyl compound (b1) represented by the formula (1) and the (meth) acryloyl represented by the formula (2). It is 0.1 to 5% by mass with respect to the total mass (b1 + b2) of the compound (b2).
The thixotropy-imparting agent (D) is silica fine particles and is
The total content (A + B) of the photopolymerizable oligomer (A) and the photopolymerizable monomer (B) is the photopolymerizable oligomer (A), the photopolymerizable monomer (B), and the photopolymerization initiator (the photopolymerization initiator). It is 94 to 99.99 mass% with respect to the total mass (A + B + C) of C).
The content of the photopolymerizable monomer (B) is 80 to 99% by mass with respect to the total mass (A + B) of the photopolymerizable oligomer (A) and the photopolymerizable monomer (B).
The thixotropy-imparting agent (D) is 3 to 15 based on 100 parts by mass of the total (A + B + C) of the photopolymerizable oligomer (A), the photopolymerizable monomer (B) and the photopolymerization initiator (C). Included by mass,
In the uncured state, the viscosity at a shear rate of 0.1 to 2s -1 is 10 to 5000 Pa · s, and the thixotropy coefficient in the range of a shear rate of 0.1 to 2s -1 is 1.1 to 10. An active energy ray-curable resin composition.
前記チクソトロピー付与剤(D)である前記シリカ微粒子の炭素含有量が0.5質量%未満であることを特徴とする請求項1に記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray-curable resin composition according to claim 1, wherein the silica fine particles, which are the thixotropy-imparting agent (D) , have a carbon content of less than 0.5% by mass. 前記光重合開始剤(C)が少なくとも2種類以上の化合物からなり、少なくとも1種類はホスフィン系化合物またはアミノアルキルフェノン系化合物であることを特徴とする請求項1又は2に記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray curing according to claim 1 or 2 , wherein the photopolymerization initiator (C) is composed of at least two or more kinds of compounds, and at least one kind is a phosphine-based compound or an aminoalkylphenon-based compound. Sex resin composition. 請求項1〜のいずれか1項に記載の活性エネルギー線硬化性樹脂組成物の硬化物からなるシール材。 A sealing material made of a cured product of the active energy ray-curable resin composition according to any one of claims 1 to 3 . 請求項1〜のいずれか1項に記載の活性エネルギー線硬化性樹脂組成物の硬化物からなる緩衝材。 A cushioning material made of a cured product of the active energy ray-curable resin composition according to any one of claims 1 to 3 .
JP2017521935A 2015-06-05 2016-05-30 Active energy ray-curable resin composition, sealing material and cushioning material made of the cured product Expired - Fee Related JP6763612B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015115032 2015-06-05
JP2015115032 2015-06-05
PCT/JP2016/065898 WO2016194870A1 (en) 2015-06-05 2016-05-30 Active energy ray-curable resin composition, and sealing material and buffering material, each of which is formed of cured product of same

Publications (2)

Publication Number Publication Date
JPWO2016194870A1 JPWO2016194870A1 (en) 2018-03-29
JP6763612B2 true JP6763612B2 (en) 2020-09-30

Family

ID=57441315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017521935A Expired - Fee Related JP6763612B2 (en) 2015-06-05 2016-05-30 Active energy ray-curable resin composition, sealing material and cushioning material made of the cured product

Country Status (2)

Country Link
JP (1) JP6763612B2 (en)
WO (1) WO2016194870A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7079490B2 (en) * 2017-08-31 2022-06-02 北川工業株式会社 Vibration damping material
JP7062579B2 (en) * 2018-11-28 2022-05-06 株式会社オートネットワーク技術研究所 Surface protective agent composition and coated wire with terminals
CN112940202B (en) * 2021-02-02 2022-08-05 深圳深凯硅胶制品有限公司 Silica gel for wine bottle cap, preparation method of silica gel and wine bottle cap

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163931A (en) * 1999-12-13 2001-06-19 Three Bond Co Ltd Photocurable sealant composition and member with sealing layer
JP2003105320A (en) * 2001-09-28 2003-04-09 Nippon Mektron Ltd Liquid gasket material for precision instrument and method for producing gasket for precision instrument
JP2004083845A (en) * 2002-06-25 2004-03-18 Nippon Shokubai Co Ltd Resin mortar composition and cured material of the same
US20090192238A1 (en) * 2005-01-14 2009-07-30 Kaneka Corporation Active Energy Ray-Curable Composition And Cured Product Thereof
JP2006274194A (en) * 2005-03-30 2006-10-12 Sanyo Chem Ind Ltd Active energy ray-curable urethane-(meth)acrylate composition
US20100222446A1 (en) * 2005-12-28 2010-09-02 Kaneka Corporation Curable composition for both photoradical curing and thermal radical curing
KR101991255B1 (en) * 2011-12-28 2019-06-20 가부시키가이샤 타이카 Active energy ray curing resin composition, method for manufacturing same, and seal material using same
JP5952707B2 (en) * 2012-10-16 2016-07-13 株式会社ブリヂストン Photo-curable elastomer composition, sealing material, and apparatus

Also Published As

Publication number Publication date
WO2016194870A1 (en) 2016-12-08
JPWO2016194870A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP5376550B1 (en) Active energy ray-curable resin composition, method for producing the same, and sealing material using the same
CN104968690B (en) Photo-curable elastic composition, encapsulant, hard disk drive pad, hard disk drive and device
JP6763612B2 (en) Active energy ray-curable resin composition, sealing material and cushioning material made of the cured product
JP6504346B2 (en) Photocurable resin composition for suppressing short circuit between adjacent electrodes
JP6714414B2 (en) Active energy ray curable resin composition, sealing material and cushioning material made of the cured product
TW201113355A (en) Sealant composition for liquid crystal display device
JP5675863B2 (en) Photocurable elastomer composition, sealing material, hard disk drive gasket and device
JP2008069302A (en) Photocurable sealant composition and component with sealing layer
JP2009096839A (en) Photocurable sealant and manufacturing method of member with sealing layer
JP6521237B2 (en) Photocurable composition
JP7149479B2 (en) PHOTOCURABLE RESIN COMPOSITION, FUEL CELL USING THE SAME, AND SEALING METHOD
JPWO2016117631A1 (en) Photocurable composition
JP5695102B2 (en) Photocurable elastomer composition, gasket for hard disk drive and hard disk drive
JP6570118B2 (en) An active energy ray-curable resin composition, a sealing material using the same, and a method for producing the sealing material.
JP5952707B2 (en) Photo-curable elastomer composition, sealing material, and apparatus
JP2015160927A (en) curable resin composition
JP2013204647A (en) Manufacturing method of gasket
JP6570117B2 (en) An active energy ray-curable resin composition, a sealing material using the same, and a method for producing the sealing material.
JP5695101B2 (en) Photocurable elastomer composition, gasket for hard disk drive and hard disk drive
JP7355559B2 (en) Radical curable sealing material for fuel cells
EP3744740A1 (en) Composition for optical three-dimensional shaping, three-dimensional shaped object, and production method therefor
JP5876659B2 (en) Gasket material, gasket and hard disk device
EP4053203A1 (en) Resin composition
JP2022083550A (en) Sealing composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200907

R150 Certificate of patent or registration of utility model

Ref document number: 6763612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees