Nothing Special   »   [go: up one dir, main page]

JP6758963B2 - Freezer - Google Patents

Freezer Download PDF

Info

Publication number
JP6758963B2
JP6758963B2 JP2016135069A JP2016135069A JP6758963B2 JP 6758963 B2 JP6758963 B2 JP 6758963B2 JP 2016135069 A JP2016135069 A JP 2016135069A JP 2016135069 A JP2016135069 A JP 2016135069A JP 6758963 B2 JP6758963 B2 JP 6758963B2
Authority
JP
Japan
Prior art keywords
oil
compressor
refrigerant
refrigerating
internal mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016135069A
Other languages
Japanese (ja)
Other versions
JP2018004220A (en
Inventor
善彰 宮本
善彰 宮本
創 佐藤
創 佐藤
和巳 長田
和巳 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2016135069A priority Critical patent/JP6758963B2/en
Publication of JP2018004220A publication Critical patent/JP2018004220A/en
Application granted granted Critical
Publication of JP6758963B2 publication Critical patent/JP6758963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Description

本発明は、油分離器を備えた冷凍装置に関するものである。 The present invention relates to a freezer equipped with an oil separator.

冷媒を圧縮する圧縮機(コンプレッサ)に用いられる冷凍機油は、圧縮機から吐出される圧縮冷媒ガス中に混入して冷凍回路中を循環する。この冷凍機油が凝縮器や蒸発器等の熱交換器に入ると熱伝導が阻害されるため、特許文献1等に開示されているように、圧縮機から吐出された圧縮冷媒は油分離器(オイルセパレータ)に通されて冷凍機油を分離される。分離された冷凍機油はキャピラリチューブ等の減圧部により減圧されて圧縮機の吸入側に戻される。 The refrigerating machine oil used in the compressor that compresses the refrigerant is mixed in the compressed refrigerant gas discharged from the compressor and circulates in the refrigerating circuit. When this refrigerating machine oil enters a heat exchanger such as a condenser or an evaporator, heat conduction is hindered. Therefore, as disclosed in Patent Document 1 and the like, the compressed refrigerant discharged from the compressor is an oil separator ( The refrigerating machine oil is separated by passing through an oil separator). The separated refrigerating machine oil is decompressed by a decompressing part such as a capillary tube and returned to the suction side of the compressor.

油分離器は、その容量が大きいほど油分離性能を高められるが、冷蔵車等の車両に搭載されている冷凍装置においては、車両内部スペースの関係で十分なサイズの油分離器を設置できず、例えば小型の油分離器を2箇所に分散させて配置し、これらの油分離器を直列に接続することで必要な油分離性能を確保している。2つの油分離器の底部から延びる油戻し管路は、それぞれキャピラリチューブを介して圧縮機の吸入側に接続される。キャピラリチューブを用いることで、電磁弁等の部材を省き、油戻し管路の構成を簡素化することができる。 The larger the capacity of the oil separator, the higher the oil separation performance. However, in the refrigerating equipment installed in vehicles such as refrigerator cars, it is not possible to install an oil separator of sufficient size due to the space inside the vehicle. For example, small oil separators are dispersed and arranged in two places, and these oil separators are connected in series to ensure the required oil separation performance. The oil return line extending from the bottom of the two oil separators is connected to the suction side of the compressor via a capillary tube, respectively. By using the capillary tube, it is possible to omit members such as a solenoid valve and simplify the configuration of the oil return pipeline.

特開2007−147212号公報JP-A-2007-147212

上記のように、油分離器からの油戻し管路に電磁弁等を設けずにキャピラリチューブを経て圧縮機の吸入側のみに接続すると、冷凍装置の停止時に油分離器からの戻り油の大部分がキャピラリチューブを通過して圧縮機の内部に溜まり込み、圧縮機の起動時に戻り油が液圧縮されて圧縮機が破損する虞がある。
これを防止するべく、従来では冷凍装置の停止時に油分離器からの戻り油が圧縮機の上流側にあるアキュムレータの方に溜まるように、圧縮機とアキュムレータとの間に高低差を設けて対処していたが、これによりアキュムレータの配置位置に制約が加わってしまう。
As described above, if the oil return pipeline from the oil separator is connected only to the suction side of the compressor via the capillary tube without providing a solenoid valve, etc., the amount of oil returned from the oil separator will be large when the refrigeration system is stopped. The portion may pass through the capillary tube and accumulate inside the compressor, and when the compressor is started, the return oil may be liquid-compressed and the compressor may be damaged.
In order to prevent this, conventionally, a height difference is provided between the compressor and the accumulator so that the return oil from the oil separator collects toward the accumulator on the upstream side of the compressor when the refrigerating device is stopped. However, this imposes restrictions on the placement position of the accumulator.

一方、自動車等の車両における冷凍装置においては、設置スペースの関係で圧縮機を小型化する必要があり、圧縮機の内部に油ポンプや油貯留部が設けられていない。このため、圧縮機の内部機構の潤滑は、冷媒中に含まれる冷凍機油の霧によるミスト潤滑となっている。
しかしながら、圧縮機がエンジン等の外部動力によって駆動される開放型である場合には、その主軸が圧縮機ハウジングから外部に突出する部分に設けられる軸受部材や軸シール部材がミスト潤滑のみでは十分に潤滑されない虞があった。
On the other hand, in a refrigerating device for a vehicle such as an automobile, it is necessary to reduce the size of the compressor due to the installation space, and an oil pump or an oil storage unit is not provided inside the compressor. Therefore, the lubrication of the internal mechanism of the compressor is mist lubrication due to the mist of refrigerating machine oil contained in the refrigerant.
However, when the compressor is an open type driven by an external power such as an engine, the bearing member and shaft seal member provided at the portion where the main shaft protrudes outward from the compressor housing are sufficient with mist lubrication alone. There was a risk that it would not be lubricated.

本発明は、このような課題を解決するためになされたものであり、油分離器からの戻り油を利用して圧縮機の潤滑条件を改善するとともに、圧縮機の起動時における液圧縮を防止することができる冷凍装置を提供することを目的とする。 The present invention has been made to solve such a problem, and improves the lubrication condition of the compressor by utilizing the return oil from the oil separator and prevents liquid compression at the time of starting the compressor. It is an object of the present invention to provide a refrigerating apparatus capable of performing.

本発明に係る冷凍装置は、冷媒を圧縮する圧縮機と、前記圧縮機の吐出側から延出する冷媒回路に直列に接続され、前記圧縮機から吐出される前記冷媒中に含まれる冷凍機油を分離・回収する複数の油分離器と、複数の前記油分離器から延出する複数の油戻し管路と、を備え、複数の前記油戻し管路の1本は前記圧縮機の吸入側に接続され、複数の前記油戻し管路の別な1本は前記圧縮機の内部機構部に接続されたものである。 The refrigerating apparatus according to the present invention is connected in series to a compressor that compresses the refrigerant and a refrigerant circuit that extends from the discharge side of the compressor, and contains refrigerating machine oil contained in the refrigerant discharged from the compressor. A plurality of oil separators for separating and collecting and a plurality of oil return pipelines extending from the plurality of oil separators are provided, and one of the plurality of oil return pipelines is located on the suction side of the compressor. Connected, another one of the plurality of oil return conduits is connected to the internal mechanism of the compressor.

上記構成の冷凍装置によれば、複数の油分離器によって吐出冷媒から冷凍機油が分離・回収され、この回収された冷凍機油が、各油分離器から延出する複数の油戻し管路を経て圧縮機の吸入側と、圧縮機の内部機構部とに戻される。このため、戻り油によって圧縮機の内部機構部が強制的に潤滑される。つまり、戻り油を有効に利用して、従来のミスト潤滑のみによる潤滑に比べて圧縮機の潤滑条件を改善することができる。 According to the refrigerating apparatus having the above configuration, the refrigerating machine oil is separated and recovered from the discharged refrigerant by a plurality of oil separators, and the recovered refrigerating machine oil passes through a plurality of oil return pipelines extending from each oil separator. It is returned to the suction side of the compressor and the internal mechanism of the compressor. Therefore, the return oil forcibly lubricates the internal mechanism of the compressor. That is, the return oil can be effectively used to improve the lubrication conditions of the compressor as compared with the conventional lubrication using only mist lubrication.

また、上記のように冷凍機油の戻り先が圧縮機の吸入側と内部機構部とに分散されるため、冷凍装置の停止時に戻り油の全量が圧縮機の吸入側に集中することがない。したがって、圧縮機の起動時における液圧縮を防止することができる。また、従来のように戻り油がアキュムレータに戻るよう圧縮機とアキュムレータとの間に高低差を設ける必要性が低下し、アキュムレータの配置位置の自由度が高められる。 Further, since the return destination of the refrigerating machine oil is dispersed between the suction side of the compressor and the internal mechanism portion as described above, the entire amount of the return oil does not concentrate on the suction side of the compressor when the refrigerating apparatus is stopped. Therefore, it is possible to prevent liquid compression when the compressor is started. Further, it is less necessary to provide a height difference between the compressor and the accumulator so that the return oil returns to the accumulator as in the conventional case, and the degree of freedom in the arrangement position of the accumulator is increased.

上記構成の冷凍装置において、前記圧縮機は、前記内部機構部が前記冷凍機油のミストによって潤滑される開放型圧縮機であり、前記内部機構部に接続される前記油戻し管路は、前記内部機構部のうちの軸受部における軸受部材または軸シール部材の少なくとも一方に接続されるようにしてもよい。 In the refrigerating apparatus having the above configuration, the compressor is an open type compressor in which the internal mechanism portion is lubricated by the mist of the refrigerating machine oil, and the oil return pipeline connected to the internal mechanism portion is inside the inside. It may be connected to at least one of the bearing member and the shaft seal member in the bearing portion of the mechanical portion.

開放型の圧縮機においては、軸受部に設けられる軸受部材や軸シール部材がミスト潤滑のみでは十分に潤滑されない虞があったが、この軸受部における軸受部材や軸シール部材に油戻し管路から戻り油が供給されるため、ミスト潤滑による潤滑が困難な軸受部を強制的に潤滑して潤滑条件を改善することができる。 In an open type compressor, there is a risk that the bearing member and shaft seal member provided in the bearing portion may not be sufficiently lubricated only by mist lubrication, but the bearing member and shaft seal member in this bearing portion are connected from the oil return pipeline. Since the return oil is supplied, it is possible to forcibly lubricate the bearing portion, which is difficult to lubricate by mist lubrication, and improve the lubrication conditions.

上記構成の冷凍装置において、前記内部機構部に接続される前記油戻し管路は、前記複数の油分離器のうち、最も上流側のものから延出するものとするのが好ましい。 In the freezing device having the above configuration, it is preferable that the oil return pipeline connected to the internal mechanism portion extends from the most upstream side of the plurality of oil separators.

上流側の油分離器には下流側の油分離器よりも多くの冷凍機油が回収される。このため、上流側の油分離器から延出する油戻し管路を圧縮機の内部機構部に接続することにより、内部機構部への給油量を多くして潤滑条件を確実に向上させることができる。
また、冷凍機油の回収量が少ない下流側の油分離器から延出する油戻し管路が圧縮機の吸入側に接続されるので、冷凍装置の停止時に圧縮機の吸入側に戻る冷凍機油の量を減少させ、圧縮機の起動時における液圧縮を防止することができる。
More refrigerating machine oil is recovered in the upstream oil separator than in the downstream oil separator. For this reason, by connecting the oil return pipe extending from the oil separator on the upstream side to the internal mechanism of the compressor, the amount of oil supplied to the internal mechanism can be increased and the lubrication conditions can be reliably improved. it can.
In addition, since the oil return line extending from the oil separator on the downstream side where the amount of refrigerating machine oil recovered is small is connected to the suction side of the compressor, the refrigerating machine oil that returns to the suction side of the compressor when the refrigerating device is stopped The amount can be reduced to prevent liquid compression when the compressor is started.

上記構成の冷凍装置において、前記内部機構部に接続される前記油戻し管路に開閉弁を設けてもよい。こうすれば、開閉弁を開閉操作することにより、圧縮機の内部機構部に供給される戻り油の量を必要に応じて制御することができる。
例えば、冷凍装置の中〜高負荷運転時には、圧縮機を通過する冷媒量が多くなることから冷媒中に含まれる冷凍機油の霧によるミスト潤滑が良好になる。このため、開閉弁を閉じるか開度を小さくして内部機構部への戻り油の供給を停止させるか供給量を少なくし、冷凍装置の系統内に冷凍機油が過剰に供給されることを抑制することができる。
In the freezing device having the above configuration, an on-off valve may be provided in the oil return pipeline connected to the internal mechanism portion. By doing so, the amount of return oil supplied to the internal mechanism of the compressor can be controlled as needed by opening and closing the on-off valve.
For example, during medium to high load operation of the refrigerating apparatus, the amount of refrigerant passing through the compressor increases, so that mist lubrication due to the mist of refrigerating machine oil contained in the refrigerant becomes good. For this reason, the on-off valve is closed or the opening is reduced to stop the supply of return oil to the internal mechanism or reduce the supply amount to prevent excessive supply of refrigerating machine oil into the system of the refrigerating apparatus. can do.

また、冷凍装置の低負荷運転時や、蒸発器温度および冷媒圧力(即ち吸入冷媒の密度)がより低下する冷凍運転時には、圧縮機を通過する冷媒量が減少し、冷媒中に含まれる冷凍機油の霧によるミスト潤滑のみでは圧縮機の内部機構部の潤滑が不足する可能性がある。このような場合には開閉弁を開き、内部機構部に戻り油を供給することによって内部機構部を強制的に潤滑し、その潤滑条件を改善することができる。
さらに、冷凍装置の停止時には、開閉弁を閉じておくことにより、油分離器に回収された冷凍機油が高低差圧により油戻し管路を流下して圧縮機に溜まることを防止できる。これにより、圧縮機の起動時における液圧縮を回避することができる。
In addition, during low-load operation of the refrigeration system or during refrigeration operation in which the evaporator temperature and refrigerant pressure (that is, the density of the intake refrigerant) are further lowered, the amount of refrigerant passing through the compressor is reduced, and the refrigerating machine oil contained in the refrigerant is reduced. There is a possibility that the lubrication of the internal mechanism of the compressor will be insufficient only by the mist lubrication by the mist. In such a case, the on-off valve is opened and the oil is supplied back to the internal mechanism to forcibly lubricate the internal mechanism, and the lubrication condition can be improved.
Further, by closing the on-off valve when the refrigerating apparatus is stopped, it is possible to prevent the refrigerating machine oil collected in the oil separator from flowing down the oil return pipe due to the high and low differential pressure and accumulating in the compressor. As a result, it is possible to avoid liquid compression when the compressor is started.

以上のように、本発明に係る冷凍装置によれば、油分離器からの戻り油を利用して圧縮機の潤滑条件を改善するとともに、圧縮機の起動時における液圧縮を防止することができる。 As described above, according to the refrigerating apparatus according to the present invention, it is possible to improve the lubrication condition of the compressor by utilizing the return oil from the oil separator and prevent liquid compression at the time of starting the compressor. ..

本発明の第1実施形態を示す冷凍装置の概略構成図である。It is a schematic block diagram of the freezing apparatus which shows 1st Embodiment of this invention. 図1のII部を拡大した圧縮機の縦断面図である。It is a vertical sectional view of the compressor which enlarged the part II of FIG. 本発明の第2実施形態を示す冷凍装置の概略構成図である。It is a schematic block diagram of the freezing apparatus which shows the 2nd Embodiment of this invention.

以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第1実施形態]
図1は、本発明の第1実施形態を示す冷凍装置の概略構成図である。この冷凍装置1は、例えば冷蔵輸送車における冷蔵室の冷却に用いられる冷却専用の回路であるが、自動車の空調装置等にも応用することができる。
[First Embodiment]
FIG. 1 is a schematic configuration diagram of a freezing device showing the first embodiment of the present invention. The refrigerating device 1 is, for example, a circuit dedicated to cooling used for cooling a refrigerating room in a refrigerated transport vehicle, but can also be applied to an air conditioner for an automobile or the like.

冷凍装置1は、車両のエンジン等に駆動されて冷媒を圧縮する開放型(主軸が外部に突出した形式)の圧縮機2を備えている。圧縮機2は、例えばスクロール式のものであり、ベルト等で回転駆動されるクラッチ付プーリー3と、吸入ポート4と、吐出ポート5とを備えている。冷凍装置1は、圧縮機2の吐出ポート5から延びて吸入ポート4に戻る閉ループ状の冷媒回路7を備えており、その上流側(圧縮機2側)から順に、油分離器8、油分離器9、凝縮器10、レシーバ11、膨張弁12、蒸発器13、アキュムレータ14が接続されている。つまり、2つの油分離器8,9は、圧縮機2の吐出側から延出する冷媒回路7に直列に接続されている。これらの油分離器8,9は、車両搭載スペースの関係で2つに分けられたものである。なお、凝縮器10には冷却ファン10aが設けられ、蒸発器13には送風ファン13aが設けられている。 The refrigerating device 1 includes an open type compressor 2 (a type in which the main shaft protrudes to the outside) that is driven by a vehicle engine or the like to compress the refrigerant. The compressor 2 is, for example, a scroll type compressor, and includes a pulley 3 with a clutch that is rotationally driven by a belt or the like, a suction port 4, and a discharge port 5. The freezing device 1 includes a closed-loop refrigerant circuit 7 that extends from the discharge port 5 of the compressor 2 and returns to the suction port 4, and the oil separator 8 and the oil are separated in this order from the upstream side (compressor 2 side). A vessel 9, a condenser 10, a receiver 11, an expansion valve 12, an evaporator 13, and an accumulator 14 are connected. That is, the two oil separators 8 and 9 are connected in series to the refrigerant circuit 7 extending from the discharge side of the compressor 2. These oil separators 8 and 9 are divided into two in relation to the vehicle mounting space. The condenser 10 is provided with a cooling fan 10a, and the evaporator 13 is provided with a blower fan 13a.

上流側の油分離器8の底部からは油戻し管路16が延出し、その先端が圧縮機2の内部機構部(例えば軸受部26)に接続されている。また、下流側の油分離器9の底部からは油戻し管路17が延出して圧縮機2の吸入側、例えば冷媒回路7における吸入ポート4とアキュムレータ14との間の区間に接続されている。
油戻し管路16にはキャピラリチューブ19と電磁弁20(開閉弁)とが接続され、油戻し管路17にはキャピラリチューブ21が接続されている。上に述べた各部材7〜21は、全て公知のものである。なお、電磁弁20は必須ではないが、電磁弁20を設けることにより、後述するように油戻し管路16から圧縮機2への戻り油の供給量を制御することができる。
An oil return pipe 16 extends from the bottom of the oil separator 8 on the upstream side, and the tip thereof is connected to an internal mechanism portion (for example, a bearing portion 26) of the compressor 2. Further, an oil return pipe 17 extends from the bottom of the oil separator 9 on the downstream side and is connected to the suction side of the compressor 2, for example, a section between the suction port 4 and the accumulator 14 in the refrigerant circuit 7. ..
The capillary tube 19 and the solenoid valve 20 (on-off valve) are connected to the oil return pipe 16, and the capillary tube 21 is connected to the oil return pipe 17. The members 7 to 21 described above are all known. Although the solenoid valve 20 is not essential, by providing the solenoid valve 20, the amount of return oil supplied from the oil return pipe 16 to the compressor 2 can be controlled as described later.

図2は、図1のII部を拡大した圧縮機2の縦断面図である。圧縮機2は、軽合金製のハウジング25を備えており、その内部に設けられた軸受部26に主軸27が軸支されている。主軸27はハウジング25の内部から外部に貫通しており、その外端部に前述のクラッチ付プーリー3が装着されている。軸受部26は、内側のメイン軸受26a(軸受部材)と、外側のサブ軸受26b(軸受部材)と、さらにその外側のリップシール26c(軸シール部材)とを有する構成である。 FIG. 2 is a vertical cross-sectional view of the compressor 2 in which the part II of FIG. 1 is enlarged. The compressor 2 includes a housing 25 made of a light alloy, and a spindle 27 is pivotally supported by a bearing portion 26 provided inside the housing 25. The main shaft 27 penetrates from the inside to the outside of the housing 25, and the above-mentioned pulley 3 with a clutch is attached to the outer end portion thereof. The bearing portion 26 has a configuration including an inner main bearing 26a (bearing member), an outer sub-bearing 26b (bearing member), and an outer lip seal 26c (shaft seal member).

クラッチ付プーリー3がエンジン等の外部動力によって回転駆動され、その内部の電磁クラッチ3aがONになると、クラッチ付プーリー3の回転が主軸27に伝達され、主軸27の内端部に偏心形成されたクランクピン27aがドライブブッシュ28とドライブ軸受29とを介して圧縮機構30の旋回スクロール31を図示しない固定スクロールに対して旋回公転運動させる。これにより、吸入ポート4から吸入された冷媒が圧縮され、図1に示す吐出ポート5から吐出される。 When the pulley 3 with a clutch is rotationally driven by an external force such as an engine and the electromagnetic clutch 3a inside the clutch is turned on, the rotation of the pulley 3 with a clutch is transmitted to the spindle 27, and an eccentric shape is formed at the inner end of the spindle 27. The crank pin 27a swivels and revolves the swivel scroll 31 of the compression mechanism 30 with respect to a fixed scroll (not shown) via the drive bush 28 and the drive bearing 29. As a result, the refrigerant sucked from the suction port 4 is compressed and discharged from the discharge port 5 shown in FIG.

冷媒中には冷凍機油が所定の比率で含有されており、軸受部26および圧縮機構30といった内部機構部が、冷媒中に含まれる冷凍機油のミストによって潤滑されるようになっている。そして、前述の通り、図1に示す上流側の油分離器8の底部から延出する油戻し管路16の他端が、ハウジング25の内部に形成された給油通路35に接続されて軸受部26に繋がっている。この給油通路35は、軸受部26におけるサブ軸受26bとリップシール26cとの間の環状空間Sに連通している。なお、軸受部26に限らず、必要に応じて他の内部機構部に油戻し管路16を連通させてもよい。 Refrigerant oil is contained in the refrigerant in a predetermined ratio, and internal mechanical parts such as the bearing portion 26 and the compression mechanism 30 are lubricated by the mist of the refrigerating machine oil contained in the refrigerant. Then, as described above, the other end of the oil return pipe 16 extending from the bottom of the oil separator 8 on the upstream side shown in FIG. 1 is connected to the oil supply passage 35 formed inside the housing 25 and the bearing portion. It is connected to 26. The oil supply passage 35 communicates with the annular space S between the sub bearing 26b and the lip seal 26c in the bearing portion 26. It should be noted that the oil return pipeline 16 may be communicated not only with the bearing portion 26 but also with other internal mechanism portions as needed.

冷凍装置1は以上のように構成されている。
圧縮機2により圧縮された高温・高圧の冷媒は、吐出ポート5から吐出されて冷媒回路7を流れ、上流側の油分離器8と下流側の油分離器9とを順次通過する際に含有されている大部分の冷凍機油を分離される。冷凍機油を分離された圧縮冷媒は凝縮器10に流れ、ここで冷却ファン10aにより外気と熱交換されて冷却されることにより凝縮されて大半が液相状となる。その際には予め冷媒中の冷凍機油が油分離器8,9において分離されているので熱伝導が阻害されない。
The freezing device 1 is configured as described above.
The high-temperature and high-pressure refrigerant compressed by the compressor 2 is discharged from the discharge port 5, flows through the refrigerant circuit 7, and is contained when sequentially passing through the oil separator 8 on the upstream side and the oil separator 9 on the downstream side. Most of the refrigerating machine oil that has been separated is separated. The compressed refrigerant separated from the refrigerating machine oil flows to the condenser 10, where it is heat-exchanged with the outside air by the cooling fan 10a and cooled to be condensed, and most of it becomes liquid phase. At that time, since the refrigerating machine oil in the refrigerant is separated in the oil separators 8 and 9 in advance, heat conduction is not hindered.

次に、凝縮冷媒はレシーバ11で気液分離され、液相状の凝縮冷媒のみが膨張弁12において膨張して適切な圧力に設定されて蒸発器13に流れる。凝縮冷媒は蒸発器13で気化することにより蒸発器13の熱を奪い、同時に送風ファン13aが作動することにより冷蔵室内の空気が蒸発器13により冷却されて冷蔵室内に吹き出され、冷蔵室内の冷却に供される。蒸発器13で気化した冷媒はアキュムレータ14において未蒸発の液相状冷媒を分離され、気相状冷媒のみが再び圧縮機2の吸入ポート4に吸入される。 Next, the condensed refrigerant is gas-liquid separated by the receiver 11, and only the liquid-phase condensed refrigerant expands in the expansion valve 12, is set to an appropriate pressure, and flows to the evaporator 13. The condensed refrigerant takes heat from the evaporator 13 by vaporizing it in the evaporator 13, and at the same time, the air in the refrigerating chamber is cooled by the evaporator 13 and blown out into the refrigerating chamber by operating the blower fan 13a to cool the refrigerating chamber. It is offered to. The refrigerant vaporized by the evaporator 13 separates the unevaporated liquid-phase refrigerant in the accumulator 14, and only the vapor-phase refrigerant is sucked into the suction port 4 of the compressor 2 again.

下流側の油分離器9において圧縮冷媒から分離された冷凍機油は、キャピラリチューブ21を通過して圧力を低減され、油戻し管路17を経て圧縮機2の吸入側、即ち吸入ポート4に繋がる下流側区間に戻される。冷媒回路7に戻された冷凍機油は冷媒に混合されて圧縮機2に吸入され、圧縮機2内部の軸受部26や圧縮機構30といった内部機構をミスト潤滑する。 The refrigerating machine oil separated from the compressed refrigerant in the oil separator 9 on the downstream side passes through the capillary tube 21 to reduce the pressure, and is connected to the suction side of the compressor 2, that is, the suction port 4 via the oil return pipe 17. It is returned to the downstream section. The refrigerating machine oil returned to the refrigerant circuit 7 is mixed with the refrigerant and sucked into the compressor 2, and mist lubricates the internal mechanisms such as the bearing portion 26 and the compression mechanism 30 inside the compressor 2.

一方、上流側の油分離器8において圧縮冷媒から分離された冷凍機油は、電磁弁20が開いていればキャピラリチューブ19を通過して圧力を低減され、油戻し管路16と圧縮機2の給油通路35(図2参照)とを経て軸受部26に直接供給される。具体的には、図2に示すように、軸受部26に画成された環状空間Sに流れた冷凍機油は、サブ軸受26bとリップシール26cとに流れてこれらを潤滑する。サブ軸受26bを潤滑した冷凍機油はさらにメイン軸受26aを潤滑した後、冷媒に混合されて吐出ポート5から冷媒回路7に吐出される。 On the other hand, if the solenoid valve 20 is open, the refrigerating machine oil separated from the compressed refrigerant in the oil separator 8 on the upstream side passes through the bearing tube 19 to reduce the pressure, and the oil return pipe 16 and the compressor 2 It is directly supplied to the bearing portion 26 via the oil supply passage 35 (see FIG. 2). Specifically, as shown in FIG. 2, the refrigerating machine oil that has flowed into the annular space S defined in the bearing portion 26 flows to the sub-bearing 26b and the lip seal 26c to lubricate them. The refrigerating machine oil that lubricates the sub bearing 26b is further lubricated with the main bearing 26a, mixed with the refrigerant, and discharged from the discharge port 5 to the refrigerant circuit 7.

従来のミスト潤滑のみによる潤滑では、開放型の圧縮機2における軸受部26のサブ軸受26bやリップシール26cが十分に潤滑されない虞があったが、本実地形態によれば、軸受部26に油戻し管路16から戻り油が直接供給されるため、戻り油を有効に利用してミスト潤滑による潤滑が困難な軸受部26を強制的に潤滑し、軸受部26の潤滑条件を改善することができる。 With conventional lubrication using only mist lubrication, there is a risk that the sub-bearing 26b and lip seal 26c of the bearing portion 26 in the open type compressor 2 will not be sufficiently lubricated, but according to this practical form, the bearing portion 26 is oiled. Since the return oil is directly supplied from the return pipeline 16, it is possible to effectively utilize the return oil to forcibly lubricate the bearing portion 26, which is difficult to lubricate by mist lubrication, and improve the lubrication condition of the bearing portion 26. it can.

しかも、本実施形態によれば、油分離器8,9によって回収された冷凍機油の戻り先が圧縮機2の吸入側と軸受部26とに分散されるため、冷凍装置1の停止時に戻り油の全量が圧縮機2の吸入側に集中することがない。したがって、圧縮機2の起動時における液圧縮を防止することができる。また、従来のように戻り油がアキュムレータ14に戻るよう圧縮機2とアキュムレータ14との間に高低差を設ける必要性が低下し、アキュムレータ14の配置位置の自由度が高められる。 Moreover, according to the present embodiment, the return destination of the refrigerating machine oil recovered by the oil separators 8 and 9 is dispersed between the suction side of the compressor 2 and the bearing portion 26, so that the returning oil is returned when the refrigerating device 1 is stopped. The total amount of the above is not concentrated on the suction side of the compressor 2. Therefore, it is possible to prevent liquid compression when the compressor 2 is started. Further, it is less necessary to provide a height difference between the compressor 2 and the accumulator 14 so that the return oil returns to the accumulator 14 as in the conventional case, and the degree of freedom in the arrangement position of the accumulator 14 is increased.

軸受部26に接続される油戻し管路16は、上流側の油分離器8から延出しているが、上流側の油分離器8には下流側の油分離器9よりも多くの冷凍機油が回収されるため、上流側の油分離器8から延出する油戻し管路16を圧縮機2の軸受部26に接続することにより、軸受部26への給油量を多くして潤滑条件を確実に向上させることができる。
また、冷凍機油の回収量が少ない下流側の油分離器9から延出する油戻し管路17が圧縮機2の吸入側に接続されているため、冷凍装置1の停止時に圧縮機2の吸入側に戻る冷凍機油の量を減少させ、圧縮機2の起動時における液圧縮を有効に防止することができる。
The oil return pipeline 16 connected to the bearing portion 26 extends from the oil separator 8 on the upstream side, but the oil separator 8 on the upstream side has more refrigerating machine oil than the oil separator 9 on the downstream side. By connecting the oil return pipeline 16 extending from the oil separator 8 on the upstream side to the bearing portion 26 of the compressor 2, the amount of oil supplied to the bearing portion 26 is increased and the lubrication conditions are adjusted. It can be definitely improved.
Further, since the oil return pipe 17 extending from the oil separator 9 on the downstream side where the recovery amount of the refrigerating machine oil is small is connected to the suction side of the compressor 2, the suction of the compressor 2 is performed when the refrigerating device 1 is stopped. The amount of refrigerating machine oil returning to the side can be reduced, and liquid compression at the time of starting the compressor 2 can be effectively prevented.

上記のように、上流側の油分離器8は冷凍機油の回収量が多いが、この油分離器8から延出する油戻し管路16に電磁弁20を設けたことにより、圧縮機2の軸受部26に供給される戻り油の量を必要に応じて制御することができる。
例えば、冷凍装置1の中〜高負荷運転時には、圧縮機2を通過する冷媒量が多いことから冷媒中に含まれる冷凍機油の霧によるミスト潤滑が良好になる。このため、電磁弁20を閉じるか開度を小さくして軸受部26への戻り油の供給を停止させるか供給量を少なくし、冷凍装置1の系統内に冷凍機油が過剰に供給されることを抑制することができる。
As described above, the oil separator 8 on the upstream side recovers a large amount of refrigerating machine oil, but the compressor 2 has a solenoid valve 20 provided in the oil return pipe 16 extending from the oil separator 8. The amount of return oil supplied to the bearing portion 26 can be controlled as needed.
For example, during medium to high load operation of the refrigerating apparatus 1, since the amount of the refrigerant passing through the compressor 2 is large, mist lubrication due to the mist of the refrigerating machine oil contained in the refrigerant becomes good. Therefore, the solenoid valve 20 is closed or the opening degree is reduced to stop the supply of the return oil to the bearing portion 26 or the supply amount is reduced, so that the refrigerating machine oil is excessively supplied into the system of the refrigerating apparatus 1. Can be suppressed.

また、冷凍装置1の低負荷運転時や、蒸発器13の温度および冷媒圧力がより低下する冷凍運転時等においては、吸入冷媒の密度が低下し、システム全体の冷媒循環量が低下して圧縮機2を通過する冷媒量が減少し、冷媒中に含まれる冷凍機油の霧によるミスト潤滑のみでは軸受部26の潤滑が不足する可能性がある。このような場合には電磁弁20を開き、軸受部26に戻り油を供給することによって軸受部26を強制的に潤滑し、軸受部26の潤滑条件を改善することができる。 Further, during a low load operation of the refrigerating device 1 or a refrigerating operation in which the temperature and the refrigerant pressure of the evaporator 13 are further lowered, the density of the intake refrigerant is lowered, and the refrigerant circulation amount of the entire system is lowered to be compressed. The amount of refrigerant passing through the machine 2 is reduced, and there is a possibility that the lubrication of the bearing portion 26 will be insufficient only by mist lubrication by the mist of the refrigerating machine oil contained in the refrigerant. In such a case, the solenoid valve 20 can be opened and the bearing portion 26 can be forcibly lubricated by supplying oil back to the bearing portion 26 to improve the lubrication condition of the bearing portion 26.

さらに、冷凍装置1の停止時には、電磁弁20を閉じておくことにより、油分離器8に回収された冷凍機油が高低差圧により油戻し管路16を流下して圧縮機2に溜まることを防止できる。これにより、圧縮機2の起動時における液圧縮を回避することができる。なお、必要に応じて下流側の油分離器9から延出する油戻し管路17にも電磁弁20を設けることが考えられる。これにより、冷凍装置1の停止時における油分離器9からの戻り油が圧縮機2の吸入側に過剰に流下することを抑制できる。 Further, when the refrigerating apparatus 1 is stopped, the solenoid valve 20 is closed so that the refrigerating machine oil collected in the oil separator 8 flows down the oil return pipe 16 due to the high and low differential pressure and is accumulated in the compressor 2. Can be prevented. As a result, liquid compression at the time of starting the compressor 2 can be avoided. If necessary, it is conceivable to provide a solenoid valve 20 in the oil return pipe 17 extending from the oil separator 9 on the downstream side. As a result, it is possible to prevent the return oil from the oil separator 9 from flowing down excessively to the suction side of the compressor 2 when the refrigerating device 1 is stopped.

以上のように、本実施形態に係る冷凍装置1によれば、油分離器8,9からの戻り油を有効に利用して圧縮機2の潤滑条件を改善するとともに、圧縮機2の起動時における液圧縮を防止することができる。 As described above, according to the refrigerating apparatus 1 according to the present embodiment, the lubrication conditions of the compressor 2 are improved by effectively utilizing the return oil from the oil separators 8 and 9, and when the compressor 2 is started. It is possible to prevent liquid compression in.

[第2実施形態]
図3は、本発明の第2実施形態を示す冷凍装置の概略構成図である。
この冷凍装置51は、図1に示す冷凍装置1とは逆に、上流側の油分離器8から延出する油戻し管路16が圧縮機2の吸入側に接続され、下流側の油分離器9から延出する油戻し管路17が圧縮機2の軸受部26に接続されている。戻り油の量が多い油戻し管路16には電磁弁20を設けるのが好ましい。必要に応じて油戻し管路17にも電磁弁20を設けてよい。その他の構成は第1実施形態の冷凍装置1と同様である。
[Second Embodiment]
FIG. 3 is a schematic configuration diagram of a freezing device showing a second embodiment of the present invention.
In this refrigerating device 51, contrary to the refrigerating device 1 shown in FIG. 1, an oil return pipe 16 extending from the oil separator 8 on the upstream side is connected to the suction side of the compressor 2, and oil separation on the downstream side is performed. The oil return pipe 17 extending from the vessel 9 is connected to the bearing portion 26 of the compressor 2. It is preferable to provide a solenoid valve 20 in the oil return pipe 16 having a large amount of return oil. If necessary, the solenoid valve 20 may also be provided in the oil return line 17. Other configurations are the same as those of the freezing device 1 of the first embodiment.

この冷凍装置51によれば、第1実施形態の冷凍装置1と同じく、油分離器8,9によって回収された冷凍機油の戻り先が圧縮機2の吸入側と軸受部26とに分散されるため、冷凍装置51の停止時に戻り油の全量が圧縮機2の吸入側に集中することを避け、圧縮機2の起動時における液圧縮を防止することができる。 According to the refrigerating device 51, the return destination of the refrigerating machine oil recovered by the oil separators 8 and 9 is distributed to the suction side of the compressor 2 and the bearing portion 26 as in the refrigerating device 1 of the first embodiment. Therefore, it is possible to prevent the entire amount of the return oil from concentrating on the suction side of the compressor 2 when the refrigerating device 51 is stopped, and to prevent liquid compression when the compressor 2 is started.

また、冷凍機油の回収量が少ない下流側の油分離器9からの戻り油が圧縮機2の軸受部26に戻るようになっているため、油戻し管路17に電磁弁20を設けずにキャピラリチューブ21のみによる減圧を行う構成であっても、冷凍装置51の停止時に圧縮機2に流下する戻り油の量が過大にならず、この点でも圧縮機2の起動時における液圧縮を防止することができる。 Further, since the return oil from the oil separator 9 on the downstream side, which recovers a small amount of refrigerating machine oil, returns to the bearing portion 26 of the compressor 2, the solenoid valve 20 is not provided in the oil return pipe line 17. Even if the pressure is reduced only by the bearing tube 21, the amount of return oil flowing down to the compressor 2 when the refrigerating device 51 is stopped does not become excessive, and this also prevents liquid compression when the compressor 2 is started. can do.

なお、本発明は上記の第1、第2実施形態の構成のみに限定されるものではなく、適宜変更や改良を加えることができ、このように変更や改良を加えた実施形態も本発明の権利範囲に含まれるものとする。
例えば、上記実施形態では、圧縮機2が開放型であるものとして説明したが、密閉型の圧縮機(電動機一体型圧縮機等)であってもよい。
油戻し管路16,17に電磁弁20を設ける場合は、電磁弁20に流量調整機能を持たせることにより、キャピラリチューブ19,21を省略することも考えられる。
また、冷媒回路7に接続されている各構成機器類の種類や形状、位置等は、必ずしも上記実施形態のものである必要はない。
The present invention is not limited to the configurations of the first and second embodiments described above, and changes and improvements can be made as appropriate, and the embodiments with such changes and improvements are also the present invention. It shall be included in the scope of rights.
For example, in the above embodiment, the compressor 2 has been described as being an open type, but a closed type compressor (compressor integrated with an electric motor, etc.) may be used.
When the solenoid valves 20 are provided in the oil return pipes 16 and 17, it is conceivable that the capillary tubes 19 and 21 are omitted by providing the solenoid valves 20 with a flow rate adjusting function.
Further, the type, shape, position, and the like of each component device connected to the refrigerant circuit 7 do not necessarily have to be those of the above embodiment.

1,51 冷凍装置
2 圧縮機
7 冷媒回路
8,9 油分離器
16,17 油戻し管路
19,21 キャピラリチューブ
20 電磁弁(開閉弁)
26 軸受部(圧縮機の内部機構部)
26a メイン軸受(軸受部材)
26b サブ軸受(軸受部材)
26c リップシール(軸シール部材)
1,51 Refrigerant device 2 Compressor 7 Refrigerant circuit 8, 9 Oil separator 16, 17 Oil return line 19, 21 Capillary tube 20 Solenoid valve (open / close valve)
26 Bearing (compressor internal mechanism)
26a Main bearing (bearing member)
26b Sub bearing (bearing member)
26c Lip seal (shaft seal member)

Claims (3)

冷媒を圧縮する圧縮機と、
前記圧縮機の吐出側から延出する冷媒回路に直列に接続され、前記圧縮機から吐出される前記冷媒中に含まれる冷凍機油を分離・回収する複数の油分離器と、
複数の前記油分離器から延出する複数の油戻し管路と、を備え、
複数の前記油戻し管路の1本は前記圧縮機の吸入側に接続され、
複数の前記油戻し管路の別な1本は前記圧縮機の内部機構部に接続されていて、
前記内部機構部に接続される前記油戻し管路は、前記複数の油分離器のうち、最も上流側のものから延出している冷凍装置。
A compressor that compresses the refrigerant and
A plurality of oil separators connected in series to a refrigerant circuit extending from the discharge side of the compressor to separate and recover refrigerating machine oil contained in the refrigerant discharged from the compressor.
A plurality of oil return pipelines extending from the plurality of oil separators are provided.
One of the plurality of oil return pipes is connected to the suction side of the compressor.
Another one of the plurality of oil return pipes is connected to the internal mechanism of the compressor .
Wherein the oil return line connected to the internal mechanism, out of the plurality of oil separators, refrigeration that not extend from the most upstream one device.
前記圧縮機は、前記内部機構部が前記冷凍機油のミストによって潤滑される開放型圧縮機であり、
前記内部機構部に接続される前記油戻し管路は、前記内部機構部のうちの軸受部における軸受部材または軸シール部材の少なくとも一方に接続されている請求項1に記載の冷凍装置。
The compressor is an open compressor in which the internal mechanism is lubricated by the mist of the refrigerating machine oil.
The refrigerating apparatus according to claim 1, wherein the oil return pipeline connected to the internal mechanism portion is connected to at least one of a bearing member or a shaft seal member in the bearing portion of the internal mechanism portion.
前記内部機構部に接続される前記油戻し管路に開閉弁が設けられている請求項1に記載の冷凍装置。The refrigerating apparatus according to claim 1, wherein an on-off valve is provided in the oil return pipeline connected to the internal mechanism portion.
JP2016135069A 2016-07-07 2016-07-07 Freezer Active JP6758963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016135069A JP6758963B2 (en) 2016-07-07 2016-07-07 Freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016135069A JP6758963B2 (en) 2016-07-07 2016-07-07 Freezer

Publications (2)

Publication Number Publication Date
JP2018004220A JP2018004220A (en) 2018-01-11
JP6758963B2 true JP6758963B2 (en) 2020-09-23

Family

ID=60946123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016135069A Active JP6758963B2 (en) 2016-07-07 2016-07-07 Freezer

Country Status (1)

Country Link
JP (1) JP6758963B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112648754B (en) * 2020-12-14 2023-07-14 青岛海信日立空调系统有限公司 Air conditioner circulation system and circulation method thereof
CN115342559A (en) * 2022-08-19 2022-11-15 江苏拓米洛环境试验设备有限公司 Refrigerating system and one-driving-multiple environment simulation test box

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2308481A1 (en) * 1972-02-22 1973-08-30 Sabroe & Co As Thomas Ths DEVICE, FOR EXAMPLE COOLING DEVICE WITH A COMPRESSOR FOR EMISSING A CONDENSABLE GAS IN ITS GAS CONDITION
JPS54109645A (en) * 1978-02-17 1979-08-28 Hitachi Ltd Refrigerating device with screw compressor
JPH0648287Y2 (en) * 1989-04-05 1994-12-12 三菱重工業株式会社 Gas compression unit
JPH0593553A (en) * 1991-10-02 1993-04-16 Hitachi Ltd Helium gas compression device
JPH0626714A (en) * 1992-07-08 1994-02-04 Mitsubishi Heavy Ind Ltd Refrigerant circuit of air conditioner
JP3238973B2 (en) * 1993-02-01 2001-12-17 三洋電機株式会社 Refrigeration equipment
JPH10253177A (en) * 1997-03-12 1998-09-25 Zexel Corp Compressor for transition critical refrigerating cycle
JPH1194378A (en) * 1997-09-25 1999-04-09 Kobe Steel Ltd Oil-cooled refrigerator
JP4239366B2 (en) * 2000-06-06 2009-03-18 株式会社富士通ゼネラル Air conditioner
JP2003042603A (en) * 2001-08-02 2003-02-13 Mitsubishi Electric Corp Refrigerating cycle apparatus, method for manufacturing the same and method for operating the same
JP3939313B2 (en) * 2004-06-03 2007-07-04 三星電子株式会社 Air conditioner and method of operating air conditioner
JP4949817B2 (en) * 2006-12-08 2012-06-13 三菱重工業株式会社 Multistage compressor and refrigeration cycle using the same
JP2015038407A (en) * 2013-08-19 2015-02-26 ダイキン工業株式会社 Refrigerating device

Also Published As

Publication number Publication date
JP2018004220A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
EP2766676B1 (en) Motor cooling and sub-cooling circuits for compressor
US5884498A (en) Turborefrigerator
US7918096B2 (en) Refrigeration system
JP5484890B2 (en) Refrigeration equipment
KR100846567B1 (en) Refrigerating apparatus
US8276400B2 (en) Refrigeration apparatus
JP4114337B2 (en) Refrigeration equipment
JP6758963B2 (en) Freezer
EP3034964A1 (en) Compressor unit, compressor and refrigerant circuit
CN108072198B (en) Compressor assembly, control method thereof and refrigerating/heating system
JP5478927B2 (en) Refrigeration equipment
JP3861913B1 (en) Refrigeration equipment
JP2009257684A (en) Compression refrigerating machine and method for recovering lubricating oil for the same
JP4233843B2 (en) Refrigeration cycle equipment
JP2014190579A (en) Turbo freezer
JP5276499B2 (en) Refrigeration equipment
JP2009063234A (en) Compressor lubricating system
US20160116190A1 (en) Turbo refrigerator
US9970695B2 (en) Oil compensation in a refrigeration circuit
JP5934931B2 (en) Tank for refrigeration cycle apparatus and refrigeration cycle apparatus including the same
JP5554039B2 (en) Transportation refrigeration equipment
JP2014190578A (en) Turbo freezer
JP4815808B2 (en) Rotary compressor
JP4462039B2 (en) Refrigerator with standby
US20160312781A1 (en) Refrigerant compressor lubricant viscosity enhancement

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170621

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200902

R150 Certificate of patent or registration of utility model

Ref document number: 6758963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150