JP6757183B2 - Receiver and portable electronics - Google Patents
Receiver and portable electronics Download PDFInfo
- Publication number
- JP6757183B2 JP6757183B2 JP2016111906A JP2016111906A JP6757183B2 JP 6757183 B2 JP6757183 B2 JP 6757183B2 JP 2016111906 A JP2016111906 A JP 2016111906A JP 2016111906 A JP2016111906 A JP 2016111906A JP 6757183 B2 JP6757183 B2 JP 6757183B2
- Authority
- JP
- Japan
- Prior art keywords
- light receiving
- light
- incident
- receiver
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Light Receiving Elements (AREA)
Description
本発明は、受光器および携帯型電子機器に関する。 The present invention relates to a receiver and a portable electronic device.
近年、カメラ、近接センサ、方位センサ、加速度センサ、角速度センサ、および、照度センサ等の小型化により、スマートフォン等の携帯型電子機器に上記各種センサが搭載されている。特に、液晶パネルを有する電子機器では、照度センサにより周囲の明るさを測定し、周囲の明るさに応じてバックライトの輝度を適切に調整することができる。視感度に近い分光感度特性での照度測定を実現するために、照度センサに、複数の異なる分光感度特性のフォトダイオードを設け、それぞれのフォトダイオードの光電流を演算する技術が知られている。 In recent years, due to the miniaturization of cameras, proximity sensors, orientation sensors, acceleration sensors, angular velocity sensors, illuminance sensors, and the like, the above-mentioned various sensors have been mounted on portable electronic devices such as smartphones. In particular, in an electronic device having a liquid crystal panel, the ambient brightness can be measured by an illuminance sensor, and the brightness of the backlight can be appropriately adjusted according to the ambient brightness. In order to realize illuminance measurement with spectral sensitivity characteristics close to luminosity factor, a technique is known in which a plurality of photodiodes having different spectral sensitivity characteristics are provided in an illuminance sensor and the photocurrent of each photodiode is calculated.
また、スマートフォンのサブ端末として、腕時計型の端末やメガネ型の携帯型電子機器も実用化されており、常に携帯者の心拍数や運動量等の生体情報をモニタして管理できる環境が整っている。さらに、野外使用されるこれらの携帯型電子機器に紫外線センサを搭載し、太陽光に含まれる紫外線強度を測定することにより、日焼けの防止を促したり、日中に受けた紫外線の積算量を記録したりすることができる。これにより、携帯型電子機器を用いて使用者の健康情報を管理することが可能となる。 In addition, wristwatch-type terminals and glasses-type portable electronic devices have also been put into practical use as sub-terminals for smartphones, and an environment is in place that can constantly monitor and manage biological information such as the heart rate and amount of exercise of the carrier. .. In addition, these portable electronic devices used outdoors are equipped with an ultraviolet sensor to measure the intensity of ultraviolet rays contained in sunlight to promote the prevention of sunburn and record the accumulated amount of ultraviolet rays received during the day. Can be done. This makes it possible to manage the health information of the user using a portable electronic device.
例えば、特許文献1には、UVセンサと照度センサとを備え、各センサに受光器、電圧検出回路、および、光センサ窓が設けられた紫外線測定装置が開示されている。照度センサと紫外線センサとを備える携帯型電子機器において、光センサ窓をできるだけ少なくしてデザイン性を向上させるために、紫外線センサのセンサ窓と照度センサのセンサ窓とを共通化する試みがなされている。 For example, Patent Document 1 discloses an ultraviolet ray measuring device including a UV sensor and an illuminance sensor, each of which is provided with a light receiver, a voltage detection circuit, and an optical sensor window. In a portable electronic device equipped with an illuminance sensor and an ultraviolet sensor, an attempt has been made to make the sensor window of the ultraviolet sensor and the sensor window of the illuminance sensor common in order to reduce the number of optical sensor windows as much as possible and improve the design. There is.
特許文献2には、SOI基板を用いて可視光センサと紫外線センサとを集積した光センサが開示されている。一般的に、紫外線を検出するためには、GaN系やZnO系等の化合物半導体やSOI基板を使ったフォトダイオードが使われてきたが、これらを用いた場合、信号処理用ICとの同一チップ上での集積化が困難で高コストになる。
特許文献3には、異なる分光感度特性を有する複数の接合フォトダイオードが縦方向に配列された構造の2つの受光素子と、一方の受光素子上に設けられたUV(紫外線)カットフィルタとを備え、2つの受光素子の信号強度の差分をとることで紫外線の強度および照度を測定する受光器が開示されている。
このような差分方式を採用することで、低コストで紫外線受光器を実現することができる。紫外線を受光するには、紫外線領域に感度のある最表面のPN接合フォトダイオードを使用する。UVカットフィルタを可視光と赤外光とが透過するため、可視光領域または赤外線領域に感度のある深い位置のPN接合フォトダイオードを用いることにより、照度を測定することも可能となる。 By adopting such a difference method, it is possible to realize an ultraviolet receiver at low cost. To receive ultraviolet light, use the outermost PN junction photodiode that is sensitive to the ultraviolet region. Since visible light and infrared light pass through the UV cut filter, it is possible to measure the illuminance by using a PN junction photodiode at a deep position that is sensitive to the visible light region or the infrared region.
また、上記差分方式は、汎用のシリコン基板を用いることが可能なため、シリコンCMOS(相補型金属酸化膜半導体)プロセスで形成されたセンサ回路と同一チップ上に集積化することにより低コスト化を図ることができる。さらに、上記複数の接合フォトダイオードが縦方向に配列された構造の受光素子で紫外線および照度の両方を検出できるので、スマートフォン等の携帯型電子機器の紫外線センサおよび照度センサの光センサ窓を共通化できる。 Further, since the above difference method can use a general-purpose silicon substrate, the cost can be reduced by integrating it on the same chip as the sensor circuit formed by the silicon CMOS (complementary metal oxide semiconductor) process. Can be planned. Furthermore, since both the ultraviolet rays and the illuminance can be detected by the light receiving element having the structure in which the plurality of junction photodiodes are arranged in the vertical direction, the ultraviolet sensor of the portable electronic device such as a smartphone and the optical sensor window of the illuminance sensor are shared. it can.
上記受光器では、受光素子に対して光が斜めに入射すると、受光素子の正面から光が入射した場合と比べて、受光素子への入射光量がcosθ倍に減少してしまう。また、この受光素子への入射光量の減少に伴って、UVカットフィルタのカットオフ周波数の特性が変化し、短波長側にシフトするため、受光素子への入射光量がさらに減少してしまう。このような受光素子への入射光量の減少を回避するためには、受光素子に入射する光の傾きを検出し、受光素子の正面から入射した光から得られる光電流のみを紫外線等の検出に用いることが考えられる。 In the above-mentioned receiver, when light is obliquely incident on the light receiving element, the amount of light incident on the light receiving element is reduced by cos θ times as compared with the case where the light is incident from the front of the light receiving element. Further, as the amount of incident light on the light receiving element decreases, the characteristics of the cutoff frequency of the UV cut filter change and shift to the short wavelength side, so that the amount of incident light on the light receiving element further decreases. In order to avoid such a decrease in the amount of light incident on the light receiving element, the inclination of the light incident on the light receiving element is detected, and only the photocurrent obtained from the light incident on the front of the light receiving element is used for detecting ultraviolet rays and the like. It is conceivable to use it.
しかし、上記受光器では、受光素子に入射する光の傾きを検出することができないため、受光素子の正面から入射した光から得られる光電流のみを紫外線等の検出に用いることは困難である。 However, since the above-mentioned receiver cannot detect the inclination of the light incident on the light receiving element, it is difficult to use only the photocurrent obtained from the light incident from the front of the light receiving element for detecting ultraviolet rays and the like.
そこで、本発明は、受光素子に入射する光の傾きを検出できる受光器、および、これを備えた携帯型電子機器を提供することを課題とする。 Therefore, an object of the present invention is to provide a light receiver capable of detecting the inclination of light incident on a light receiving element, and a portable electronic device provided with the light receiver.
上記課題を解決すべく、本発明の受光器は、
受光領域を有する受光部と、
上記受光領域の少なくとも一部を覆い、所定の波長領域を有する光を透過させる光フィルタと、
上記受光領域および上記光フィルタを覆う遮光部と、
を備え、
上記受光領域が、第1受光領域と、この第1受光領域の周囲に配置された第2受光領域とで構成され、上記第1受光領域および上記第2受光領域の各々には、光が入射することによって光電流を流す受光素子が設けられており、
上記光フィルタが、上記受光素子が感度を有する波長領域の光の一部を透過させ、
上記遮光部が、上記第1,第2受光領域に光を入射させるための開口部を有し、上記開口部が、上記第1,第2受光領域に入射する光の入射方向に沿って見た平面視において、上記第1受光領域の半分以上の面積を有するように配置されており、
上記開口部を介して上記第1,第2受光領域に入射した光の強度に基づいて、上記受光領域に入射する光の傾きを検出する傾き検出部をさらに備えることを特徴としている。
In order to solve the above problems, the receiver of the present invention
A light receiving part having a light receiving region and
An optical filter that covers at least a part of the light receiving region and transmits light having a predetermined wavelength region.
A light-shielding portion that covers the light-receiving area and the optical filter,
With
The light receiving region is composed of a first light receiving region and a second light receiving region arranged around the first light receiving region, and light is incident on each of the first light receiving region and the second light receiving region. A light receiving element that allows photocurrent to flow is provided.
The optical filter transmits a part of light in a wavelength region in which the light receiving element has sensitivity.
The light-shielding portion has an opening for incident light into the first and second light-receiving regions, and the opening is viewed along the incident direction of the light incident on the first and second light-receiving regions. It is arranged so as to have an area of more than half of the first light receiving region in a plan view.
It is characterized by further including a tilt detecting unit that detects the tilt of the light incident on the light receiving region based on the intensity of the light incident on the first and second light receiving regions through the opening.
本発明の受光器によれば、受光部の第1,第2受光領域に入射する光の強度に基づいて、第1,第2受光領域に入射する光の傾きを検出できる。 According to the light receiver of the present invention, the inclination of the light incident on the first and second light receiving regions can be detected based on the intensity of the light incident on the first and second light receiving regions of the light receiving unit.
以下、本発明の一実施形態を添付図面に従って説明する。なお、以下の説明では、必要に応じて特定の方向あるいは位置を示す用語(例えば、「上」、「下」、「右」、「左」を含む用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が限定されるものではない。また、以下の説明は、本質的に例示に過ぎず、本発明、その適用物、あるいは、その用途を制限することを意図するものではない。さらに、図面は模式的なものであり、各寸法の比率等は現実のものとは必ずしも合致していない。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. In the following description, terms indicating a specific direction or position (for example, terms including "top", "bottom", "right", and "left") are used as necessary, but the use of these terms is used. Is for facilitating the understanding of the invention with reference to the drawings, and the meaning of those terms does not limit the technical scope of the present invention. In addition, the following description is merely an example and is not intended to limit the present invention, its application, or its use. Furthermore, the drawings are schematic, and the ratio of each dimension and the like do not always match the actual ones.
(第1実施形態)
本発明の第1実施形態の受光器1は、図1に示すように、受光部10と、受光部10に接続されたセンサ回路部20とを備えている。なお、第1実施形態の受光器1は、例えば、照度センサとして用いられる。
(First Embodiment)
As shown in FIG. 1, the light receiver 1 of the first embodiment of the present invention includes a
受光部10は、図1に示すように、受光領域13,14を有しており、図3に示すように、受光領域13,14上に、光フィルタ11が設けられている。また、受光部10は、中空の筺体15の内部に配置されている。
As shown in FIG. 1, the
受光部10の受光領域13,14は、図4に示すように、上面視正方形状の第1受光領域13と、この第1受光領域13の周囲に配置された第2受光領域14とで構成されている。第1受光領域13には、第1受光素子PD1が設けられ、第2受光領域14には、第2受光素子PD2が設けられている。第1受光素子PD1は、入射した光の強度に応じて光電流Iin1を流し、第2受光素子PD2は、入射した光の強度に応じて光り電流Iin2を流すようになっている。
As shown in FIG. 4, the
第1,第2受光素子PD1,PD2は、図3に示すように、相互に同一の断面構造を有している。すなわち、第1,第2受光素子PD1,PD2の各々は、P型基板P_subと、P型基板P_sub上に設けられたN型ウェル層N_wellと、N型ウェル層N_well上に設けられたP型拡散層P+とを備えている。 As shown in FIG. 3, the first and second light receiving elements PD1 and PD2 have the same cross-sectional structure as each other. That is, each of the first and second light receiving elements PD1 and PD2 is a P-type substrate P_sub, an N-type well layer N_well provided on the P-type substrate P_sub, and a P-type provided on the N-type well layer N_well. It has a diffusion layer P +.
また、第1,第2受光素子PD1,PD2は、PN接合からなる2つのフォトダイオードPD_visおよびフォトダイオードPD_irを備えている。第1受光素子PD1は、P型拡散層P+とP型基板P_Subとが接地(GND)されており、第2受光素子PD2は、P型基板P_Subが接地されており、P型拡散層P+とN型ウェル層N_wellとが互いに接続されている。 Further, the first and second light receiving elements PD1 and PD2 include two photodiodes PD_vis and a photodiode PD_ir made of a PN junction. In the first light receiving element PD1, the P-type diffusion layer P + and the P-type substrate P_Sub are grounded (GND), and in the second light receiving element PD2, the P-type substrate P_Sub is grounded, and the P-type diffusion layer P + and The N-type well layer N_well is connected to each other.
光フィルタ11は、例えば、視感度補正フィルタであり、図4に示すように、第1,第2受光領域13,14の全体を覆うように設けられている。
The
また、図3に示すように、第1,第2受光素子PD1,PD2の上面には、それぞれ、P型拡散層P+が露出するように、遮蔽部12が設けられている。これにより、外部からの光がP型拡散層P+に入射する。
Further, as shown in FIG. 3, shielding
筺体15は、その受光領域13,14に対向する面に、遮光部16を有している。この遮光部16には、受光領域13,14に光を入射させるための開口部17が設けられている。
The
開口部17は、上面視において、第1受光領域13よりも一回り小さい正方形状を有し、その中心が第1受光領域13の中心と一致ように配置されている。
The
センサ回路部20は、図1に示すように、A/DコンバータADC1,ADC2と、傾き検出部21と、入射状態判定部22とで構成されている。
As shown in FIG. 1, the
A/DコンバータADC1は、第1受光素子PD1に接続されており、光電流Iin1をデジタル信号に変更してデジタル出力値ADCOUNT1を出力する。デジタル出力値ADCOUNT1は、第1受光素子PD1に入射した光の強度に対応する。 The A / D converter ADC1 is connected to the first light receiving element PD1 and changes the photocurrent Iin1 into a digital signal to output the digital output value ADCOUNT1. The digital output value ADCOUNT1 corresponds to the intensity of the light incident on the first light receiving element PD1.
A/DコンバータADC2は、第2受光素子PD2に接続されており、光電流Iin2をデジタル信号に変更してデジタル出力値ADCOUNT2を出力する。デジタル出力値ADCOUNT2は、第2受光素子PD2に入射した光の強度に対応する。 The A / D converter ADC2 is connected to the second light receiving element PD2, changes the photocurrent Iin2 into a digital signal, and outputs a digital output value ADCOUNT2. The digital output value ADCOUNT2 corresponds to the intensity of the light incident on the second light receiving element PD2.
また、A/DコンバータADC1,ADC2は、同じ構成を有しており、図5に示すように、入力端子INと、出力端子OUTと、充電回路23と、比較回路24と、制御回路25と、放電回路26とで構成されている。
Further, the A / D converters ADC1 and ADC2 have the same configuration, and as shown in FIG. 5, the input terminal IN, the output terminal OUT, the charging circuit 23, the
A/DコンバータADC1,ADC2は、例えば、図6に示すように動作する。なお、図6中、CLKはクロック信号を示し、SW1,SW2は図5のスイッチSW1,SW2の開閉状態を示し、Vrefは図5の基準電源V1の電圧を示し、COMPは比較回路24の出力を示し、CHARGEはスイッチSW2の開閉に用いる制御回路25の出力を示す。
The A / D converters ADC1 and ADC2 operate as shown in FIG. 6, for example. In FIG. 6, CLK indicates a clock signal, SW1 and SW2 indicate the open / closed state of switches SW1 and SW2 in FIG. 5, Vref indicates the voltage of the reference power supply V1 in FIG. 5, and COMP indicates the output of the
変換動作開始前は、スイッチSW1が閉じているため、充電回路23(積分回路)の出力VSIGは、基準電源V1の電圧Vrefに充電されている。 Since the switch SW1 is closed before the start of the conversion operation, the output VSIG of the charging circuit 23 (integrating circuit) is charged to the voltage Vref of the reference power supply V1.
A/DコンバータADC1,ADC2は、スイッチSW1がオフすることにより、光電流IinでコンデンサC1に充電を行うことが可能になり、AD変換動作を行う。スイッチSW1のオフ期間がデータ変換期間(充電期間,t_conv)となっており、測定時間に対応する。 When the switch SW1 is turned off, the A / D converters ADC1 and ADC2 can charge the capacitor C1 with the photocurrent Iin, and perform the AD conversion operation. The off period of the switch SW1 is the data conversion period (charging period, t_conv), which corresponds to the measurement time.
データ変換期間(t_conv)では、まず、スイッチSW2をオンして、放電回路26により、コンデンサC1から一定の電荷(Iref×t_clk)を放電させる(プリチャージ期間)。その後、スイッチSW2をオンからオフに切り替えると、充電回路23が光電流Iinにより充電され、その出力VSIGが上昇する。出力VSIGが電圧Vrefを超えると、比較回路24の出力COMPがロー電圧からハイ電圧に切り替わる。これにり、制御回路25の出力がロー電圧からハイ電圧に切り替わってスイッチSW2がオンとなり、放電回路26によって一定の電荷(IREF×I_ref)が放電される。
In the data conversion period (t_conv), first, the switch SW2 is turned on, and a constant charge (Iref × t_clk) is discharged from the capacitor C1 by the discharge circuit 26 (precharge period). After that, when the switch SW2 is switched from on to off, the charging circuit 23 is charged by the photocurrent Iin, and its output VSIG rises. When the output VSIG exceeds the voltage Vref, the output COMP of the
データ変換期間(t_conv)の間、制御回路25のカウンタが、放電時間(制御回路25の出力がロー電圧からハイ電圧になった時間)を数えており、このカウント値が、入力された電荷量に応じた値としてデジタル出力される。カウンタの出力は、A/DコンバータADC1,ADC2の出力ADCOUNT1,ADCOUNT2となる。
During the data conversion period (t_conv), the counter of the
A/DコンバータADC1,ADC2では、光電流Iinにより充電された電荷量と、放電された電荷量とが等しくなるように動作するので、「充電電荷量(Iin×t_conv)=放電電荷量(IREF×t_clk×count)により、下記式(1)が成り立つ。よって、countの最小分解能は、(IREF×t_clk)で決定される。なお、下記式(1)において、t_clkはクロック周期、t_convは充電期間、countは放電時間をカウントした値、IREFは基準電流値を示す。
count=(Iin×t_conv)/(IREF×t_clk)…(1)
Since the A / D converters ADC1 and ADC2 operate so that the amount of charge charged by the photocurrent Iin and the amount of discharged charge are equal to each other, "charge amount (Iin × t_conv) = discharge charge amount (IREF)". The following equation (1) holds by (× t_clk × count). Therefore, the minimum resolution of the count is determined by (IREF × t_clk). In the following equation (1), t_clk is the clock period and t_conv is the charge. The period, count indicates the value obtained by counting the discharge time, and IREF indicates the reference current value.
count = (Iin × t_conv) / (IREF × t_clk)… (1)
傾き検出部21は、デジタル出力値ADCOUNT1,ADCOUNT2に基づいて、受光領域13,14に入射した入射光の傾きを検出する。例えば、第1,第2受光領域13,14に入射する入射光の入射方向を図2に示すL1からL2に変化させると、図4に示すように、第1,第2受光領域13,14に入射する入射光の範囲がL1からL2に変化する。すなわち、デジタル出力値ADCOUNT2は、受光領域13,14に入射する入射光の傾きが大きくなるほど大きくなる。このため、第1,第2受光領域13,14に入射する入射光の傾きは、下記式(2)により求められる。
ADCOUNT2/(ADCOUNT1+ADCOUNT2)…(2)
The
ADCOUNT2 / (ADCOUNT1 + ADCOUNT2) ... (2)
入射状態判定部22は、傾き検出部21により検出された入射光の傾きに基づいて、第1,第2受光領域13,14に入射する光の入射状態が正常であるか否かを判定する。光の入射状態が正常であるか否かは、傾き検出部21により検出された入射光の傾きが所定の閾値以下であるか否かにより判定される。なお、所定の閾値は、遮光部16の開口部17の大きさ、あるいは、第1,第2受光領域13,14に入射する光の強度等に応じて、任意に設定できる。
The incident
このように、第1実施形態の受光器1によれば、受光部10の第1,第2受光領域13,14に入射する光の強度に基づいて、第1,第2受光領域13,14に入射する光の傾きを検出する傾き検出部21を備えている。これにより、第1,第2受光領域13,14に入射する光の傾きを検出できる。
As described above, according to the receiver 1 of the first embodiment, the first and second
このとき、上記式(2)により、第1,第2受光領域13,14に入射する光の傾きが求められる。すなわち、簡単な構成で、第1,第2受光領域13,14に入射する光の傾きを検出できる。
At this time, the inclination of the light incident on the first and second
また、傾き検出部21により検出された光の傾きに基づいて、第1,第2受光領域13,14に入射する光の入射状態が正常であるか否かを判定する入射状態判定部22をさらに備えている。これにより、例えば、第1,第2受光領域13,14に入射する光のうち、入射状態が正常であると判定されたものだけを紫外線強度の検出に用いることで、紫外線強度の検出精度を高めることができる。
Further, the incident
なお、遮光部16の開口部17は、上面視(第1,第2受光領域13,14に入射する光の入射方向に沿って見た平面視)において、第1受光領域13の半分以上の面積を有していればよく、受光器1の設計等に応じて、その形状および大きさを変更できる。例えば、開口部17は、その中心が第1受光領域の中心と一致していなくてもよいし、第1受光領域とは異なる形状を有してもよい。
The
また、開口部17は、第1受光領域と同じ形状および大きさであり、かつ、中心が第1受光領域の中心と一致するように配置するのが好ましい。これにより、光が傾く方向による検知感度の偏りを少なくすることができる。
Further, it is preferable that the
(第2実施形態)
本発明の第2実施形態の受光器101は、図7に示すように、次の点で第1実施形態の受光器1と異なっている。なお、第2実施形態の受光器101は、例えば、紫外線センサとして用いられる。
・受光部110の第1受光領域13に第3,第4受光素子PD11,PD12を設け、第2領域に第5受光素子PD13を設け、第3受光素子PD11全体を覆うように光フィルタ11としてUVカットフィルタを配置した点。
・センサ回路部120に第3〜第5受光素子PD11,PD12,PD13の各々に接続されたA/DコンバータADC1,ADC2,ADC3を設けた点。
(Second Embodiment)
As shown in FIG. 7, the
The third and fourth light receiving elements PD11 and PD12 are provided in the first
A point that the
第3〜第5受光素子PD11,PD12,PD13は、図8,図9に示すように、同じ断面構造を有している。すなわち、第3〜第5受光素子PD11,PD12,OD13の各々は、P型基板P_subと、P型基板P_sub上に形成されたN型ウェル層N_wellと、N型ウェル層N_well上に形成されたP型ウェル層P_wellと、P型ウェル層P_well上に形成されたN型拡散層Nとを備えている。また、P型ウェル層、N型ウェル層、及びP型基板は、接地(GND)されている。 The third to fifth light receiving elements PD11, PD12, and PD13 have the same cross-sectional structure as shown in FIGS. 8 and 9. That is, each of the third to fifth light receiving elements PD11, PD12, and OD13 was formed on the P-type substrate P_sub, the N-type well layer N_well formed on the P-type substrate P_sub, and the N-type well layer N_well. It includes a P-type well layer P_well and an N-type diffusion layer N formed on the P-type well layer P_well. Further, the P-type well layer, the N-type well layer, and the P-type substrate are grounded (GND).
なお、図8は、第3〜第5受光素子PD11,PD12,PD13のフォトダイオードPD_visおよびフォトダイオードPD_irを使用している状態を示し、図9は、第3〜第5受光素子PD11,PD12,PD13のフォトダイオードPD_irを使用している状態を示している。 Note that FIG. 8 shows a state in which the photodiode PD_vis and the photodiode PD_ir of the third to fifth light receiving elements PD11, PD12, PD13 are used, and FIG. 9 shows the state in which the third to fifth light receiving elements PD11, PD12, It shows the state of using the photodiode PD_ir of PD13.
第3〜第5受光素子PD11,PD12,PD13は、3つのPN接合を有しており、P型基板とN型ウェル層とのPN接合により構成されたフォトダイオードPD_irと、N型ウェル層とP型ウェル層とのPN接合により構成されたフォトダイオードPD_visと、P型ウェル層とN型拡散層とのPN接合により構成されたフォトダイオードPD_uvとを備えている。 The third to fifth light receiving elements PD11, PD12, and PD13 have three PN junctions, and include a photodiode PD_ir formed by a PN junction between a P-type substrate and an N-type well layer, and an N-type well layer. It includes a photodiode PD_vis formed by a PN junction with a P-type well layer and a photodiode PD_uv formed by a PN junction between a P-type well layer and an N-type diffusion layer.
第3〜第5受光素子PD11,PD12,PD13の上面には、それぞれ、N型拡散層Nが露出するように、遮蔽部12が設けられている。これにより、外部からの光がN型拡散層Nに入射する。
また、図10に示すように、第3〜第5受光素子PD11,PD12,PD13は、5つのスイッチSW1〜SW5を備えている。スイッチSW1〜SW1は、第3〜第5受光素子PD11,PD12,PD13の各層の接続関係(各フォトダイオードのアノード及びカソードの接続関係)を変更することによって、第3〜第5受光素子PD11,PD12,PD13の分光感度特性を変更するためのスイッチである。スイッチSW1〜5を制御することによって、任意のフォトダイオードの光電流を取り出すことができる。なお、図10では、第3受光素子PD11のみを示している。 Further, as shown in FIG. 10, the third to fifth light receiving elements PD11, PD12, and PD13 are provided with five switches SW1 to SW5. The switches SW1 to SW1 change the connection relationship of each layer of the third to fifth light receiving elements PD11, PD12, PD13 (the connection relationship between the anode and the cathode of each photodiode), thereby changing the connection relationship of the third to fifth light receiving elements PD11, This is a switch for changing the spectral sensitivity characteristics of PD12 and PD13. By controlling switches SW1 to SW5, the photocurrent of any photodiode can be taken out. Note that FIG. 10 shows only the third light receiving element PD11.
第3〜第5受光素子PD11,PD12,PD13は、図11に示す分光感度特性を有している。 The third to fifth light receiving elements PD11, PD12, and PD13 have the spectral sensitivity characteristics shown in FIG.
フォトダイオードPD_uvの光電流を取り出すときの第3〜第5受光素子PD11,PD12,PD13のスイッチの開閉状態を図12に示す。このときの第3〜第5受光素子PD11,PD12,PD13の分光感度特性は、図11中のPD_uvで示す曲線のようになる。 FIG. 12 shows the open / closed state of the switches of the third to fifth light receiving elements PD11, PD12, and PD13 when the photocurrent of the photodiode PD_uv is taken out. The spectral sensitivity characteristics of the third to fifth light receiving elements PD11, PD12, and PD13 at this time are as shown by the curve shown by PD_uv in FIG.
フォトダイオードPD_visおよびフォトダイオードPD_irの光電流を取り出すときの第3〜第5受光素子PD11,PD12,PD13のスイッチの開閉状態を図13に示す。このときの第3〜第5受光素子PD11,PD12,PD13の分光感度特性は、図11中のPD_vis+PD_irで示す曲線のようになる。 FIG. 13 shows the open / closed state of the switches of the third to fifth light receiving elements PD11, PD12, and PD13 when the photocurrents of the photodiode PD_vis and the photodiode PD_ir are taken out. The spectral sensitivity characteristics of the third to fifth light receiving elements PD11, PD12, and PD13 at this time are as shown by the curves shown by PD_vis + PD_ir in FIG.
フォトダイオードPD_irの光電流を取り出すときの第3〜第5受光素子PD11,PD12,PD13のスイッチの開閉状態を図14に示す。このときの第3〜第5受光素子PD11,PD12,PD13の分光感度特性は、図11中のPD_irで示す曲線のようになる。 FIG. 14 shows the open / closed state of the switches of the third to fifth light receiving elements PD11, PD12, and PD13 when the photocurrent of the photodiode PD_ir is taken out. The spectral sensitivity characteristics of the third to fifth light receiving elements PD11, PD12, and PD13 at this time are as shown by the curve shown by PD_ir in FIG.
光フィルタ11は、紫外線の波長領域(波長400nm以下)の光の透過率が、紫外線の波長領域外の光の透過率よりも低いUVカットフィルタであり、図7に示すように、第3受光素子PD11全体を覆っている。この光フィルタ11は、紫外線の波長領域の光を遮断(紫外線の波長領域以外の光を透過)できるものが好ましい。
The
A/DコンバータADC1は、第3受光素子PD11に接続されており、光電流Iin1をデジタル信号に変更してデジタル出力値ADCOUNT1を出力する。デジタル出力値ADCOUNT1は、第3受光素子PD11に入射した光の強度に対応する。 The A / D converter ADC1 is connected to the third light receiving element PD11, changes the photocurrent Iin1 into a digital signal, and outputs a digital output value ADCOUNT1. The digital output value ADCOUNT1 corresponds to the intensity of the light incident on the third light receiving element PD11.
A/DコンバータADC2は、第4受光素子PD12に接続されており、光電流Iin2をデジタル信号に変更してデジタル出力値ADCOUNT2を出力する。デジタル出力値ADCOUNT2は、第4受光素子PD12に入射した光の強度に対応する。 The A / D converter ADC2 is connected to the fourth light receiving element PD12, changes the photocurrent Iin2 into a digital signal, and outputs a digital output value ADCOUNT2. The digital output value ADCOUNT2 corresponds to the intensity of the light incident on the fourth light receiving element PD12.
A/DコンバータADC3は、第5受光素子PD13に接続されており、光電流Iin3をデジタル信号に変更してデジタル出力値ADCOUNT3を出力する。デジタル出力値ADCOUNT3は、第5受光素子PD13に入射した光の強度に対応する。 The A / D converter ADC3 is connected to the fifth light receiving element PD13, changes the photocurrent Iin3 into a digital signal, and outputs a digital output value ADCOUNT3. The digital output value ADCOUNT3 corresponds to the intensity of the light incident on the fifth light receiving element PD13.
A/DコンバータADC1,ADC2,ADC3は、同じ構成を有しており、図5に示すように、入力端子INと、出力端子OUTと、充電回路23と、比較回路24と、制御回路25と、放電回路26とで構成されている。
The A / D converters ADC1, ADC2, and ADC3 have the same configuration, and as shown in FIG. 5, the input terminal IN, the output terminal OUT, the charging circuit 23, the
次に、第2実施形態の受光器101において、紫外線強度を検出する原理について説明する。
Next, the principle of detecting the ultraviolet intensity in the
第2実施形態の受光器1では、事前に、第1,第2受光領域13,14に入射する光の傾き、および、第3,第4受光素子PD11,PD12の光照射量の偏りを求めて、紫外線強度を検出する。ここでは、フォトダイオードPD_visおよびフォトダイオードPD_irの光電流を用いた検出方法について説明する。
In the receiver 1 of the second embodiment, the inclination of the light incident on the first and second
図8に示すように、第3〜第5受光素子PD11,PD12,PD13がフォトダイオードPD_visおよびフォトダイオードPD_irの光電流を取り出すことができるように、各層の接続関係を変更した後、第1,第2受光領域13,14に入射する光の傾きと、第3,第4受光素子PD11,PD12の光照射量の偏りとを事前に検出する。
As shown in FIG. 8, after changing the connection relationship of each layer so that the third to fifth light receiving elements PD11, PD12, PD13 can take out the photocurrents of the photodiode PD_vis and the photodiode PD_ir, the first first. The inclination of the light incident on the second
図15に示すように、第1,第2受光領域13,14に入射する入射光の入射方向をL1からL2に変化させると、図4に示すように、第1,第2受光領域13,14に入射する入射光の範囲がL1からL2に変化する。すなわち、受光領域13,14に入射する入射光の傾きが大きくなるにつれて、第3,第4受光素子PD11,PD12に入射する光の量が減少し、第5受光素子PD13に入射する光の量が増加する。
As shown in FIG. 15, when the incident direction of the incident light incident on the first and second
また、図11に示すように、フォトダイオードPD_visおよびフォトダイオードPD_irの光電流を取り出す場合、第3〜第5受光素子PD11,PD12,PD13は、光フィルタ11の阻止帯域(〜400nm)に感度を殆どもたない。
Further, as shown in FIG. 11, when the photocurrents of the photodiode PD_vis and the photodiode PD_ir are taken out, the third to fifth light receiving elements PD11, PD12, and PD13 are sensitive to the blocking band (up to 400 nm) of the
このため、第1,第2受光領域13,14に入射する光の傾きは、下記式(3)により求められる。なお、下記式(3)において、「ADCOUNT1_vis_ir、ADCOUNT2_vis_ir、ADCOUNT3_vis_ir」は、それぞれ、フォトダイオードPD_visおよびフォトダイオードPD_irの光電流を取り出した場合にA/DコンバータADC1,ADC2,ADC3から出力されたデジタル出力値である。
ADCOUNT3_vis_ir/(ADCOUNT1_vis_ir+ADCOUNT2_vis_ir+ADCOUNT3_vis_ir)…(3)
Therefore, the slope of the light incident on the first and second
ADCOUNT3_vis_ir / (ADCOUNT1_vis_ir + ADCOUNT2_vis_ir + ADCOUNT3_vis_ir)… (3)
入射状態判定部22は、上記式(3)により得られた第1,第2受光領域13,14に入射する光の傾きに基づいて、光の入射状態が正常であるか否かを判定する。光の入射状態が正常であると判定されたデジタル出力値ADCOUNT1〜3を有効値として、紫外線強度の検出に利用する。
The incident
また、第3受光素子PD11の光照射の偏りは下記式(4)により、第4受光素子PD12の光照射の偏りは下記式(5)により求められる。
2×ADCOUNT1_vis_ir/(ADCOUNT1_vis_ir+ADCOUNT2_vis_ir)…(4)
2×ADCOUNT2_vis_ir/(ADCOUNT1_vis_ir+ADCOUNT2_vis_ir)…(5)
Further, the bias of the light irradiation of the third light receiving element PD11 is obtained by the following formula (4), and the bias of the light irradiation of the fourth light receiving element PD12 is obtained by the following formula (5).
2 × ADCOUNT1_vis_ir / (ADCOUNT1_vis_ir + ADCOUNT2_vis_ir)… (4)
2 × ADCOUNT2_vis_ir / (ADCOUNT1_vis_ir + ADCOUNT2_vis_ir)… (5)
続いて、紫外線強度を検出する。まず、第3,第4受光素子PD11,PD12の光照射に偏りがない場合について説明する。 Subsequently, the ultraviolet intensity is detected. First, a case where the light irradiation of the third and fourth light receiving elements PD11 and PD12 is not biased will be described.
なお、このとき、第3,第4受光素子PD11,PD12は、図12に示すフォトダイオードPD_uvの光電流を取り出すときのスイッチの開閉状態となっている。 At this time, the third and fourth light receiving elements PD11 and PD12 are in the open / closed state of the switch when the photocurrent of the photodiode PD_uv shown in FIG. 12 is taken out.
図16に示すように、フォトダイオードPD_uvの分光感度特性のピーク波長は約450nmである。なお、受光素子におけるPN接合の接合深さを調整することにより、このピーク波長を調整することができる As shown in FIG. 16, the peak wavelength of the spectral sensitivity characteristic of the photodiode PD_uv is about 450 nm. The peak wavelength can be adjusted by adjusting the junction depth of the PN junction in the light receiving element.
また、図17に示すように、光フィルタ11は、400nm以下の波長の光の透過率が低く、400nm以上の波長の光の透過率は、ほぼ100%である。
Further, as shown in FIG. 17, the
第3受光素子PD11には、光フィルタ11を透過した光が入射する。このため、第3受光素子PD11の分光感度特性は、図18に示すものとなる。一方で、第4受光素子PD12の上部には光フィルタ11が設けられていないため、第4受光素子PD12の分光感度特性は、図16に示すものとなる。
Light transmitted through the
受光器101のセンサ回路部20において、傾き検出部21が、デジタル出力値ADCOUNT2とデジタル出力値ADCOUNT1との差分を算出する。この差分は、第4受光素子PD12に入射した光の強度から、第3受光素子PD11に入射した光の強度を差し引いたものとなるため、受光部110全体における分光感度特性は、図19に示すものとみなすことができる。
In the
これにより、受光部110が、波長が400nm以下の紫外線領域のみに感度を持つため、紫外線強度を正確に検出することができる。
As a result, since the
次に、第3,第4受光素子PD11,PD12の光照射が偏っている場合について説明する。 Next, a case where the light irradiation of the third and fourth light receiving elements PD11 and PD12 is biased will be described.
紫外線強度を検出するときの主な測定対象光源である太陽光は、広い分光特性をもっていることから、紫外線強度を検出するときの第3,第4受光素子PD11(PD_uv),PD12(PD_uv)に照射される光量の偏りと、上記式(4),(5)により事前に検出した第3,第4受光素子PD11(PD_vis+PD_ir),PD12(PD_vis+PD_ir)の光照射の偏りとには相関があると言える。 Since sunlight, which is the main light source to be measured when detecting ultraviolet intensity, has a wide spectral characteristic, it is used for the third and fourth light receiving elements PD11 (PD_uv) and PD12 (PD_uv) when detecting ultraviolet intensity. The bias of the amount of light to be irradiated and the bias of the light irradiation of the third and fourth light receiving elements PD11 (PD_vis + PD_ir) and PD12 (PD_vis + PD_ir) detected in advance by the above equations (4) and (5) It can be said that there is a correlation.
すなわち、紫外線強度を検出するときに出力されたA/DコンバータADC1のデジタル出力値ADCOUNT1_uv、および、A/DコンバータADC2からのデジタル出力値ADCOUNT2_uvを事前に検出した第3,第4受光素子PD11,PD12の光照射の偏りにより補正することで、紫外線強度を正確に検出することができる。 That is, the digital output value ADCOUNT1_uv of the A / D converter ADC1 output when the ultraviolet intensity is detected, and the digital output value ADCOUNT2_uv from the A / D converter ADC2 are detected in advance in the third and fourth light receiving elements PD11, By correcting the bias of the light irradiation of PD12, the ultraviolet intensity can be detected accurately.
事前に検出した第3,第4受光素子PD11,PD12の光照射の偏りにより補正されたA/DコンバータADC1のデジタル出力値ADCOUNT1_uv2は、次の式(6)により、A/DコンバータADC2のデジタル出力値ADCOUNT2_uv2は、次の式(7)により求められる。式(6),(7)では、A/DコンバータADC1,ADC2のデジタル出力値ADCOUNT1_uv,ADCOUNT2_uvに、事前に検出した第3,第4受光素子PD11,PD12の光照射の偏りの逆数を掛けている。
ADCOUNT1_uv2=ADCOUNT1_uv×(ADCOUNT1_vis_ir+ADCOUNT2_vis_ir)/2×ADCOUNT1_vis_ir…(6)
ADCOUNT2_uv2=ADCOUNT2_uv×(ADCOUNT1_vis_ir+ADCOUNT2_vis_ir)/2×ADCOUNT2_vis_ir…(7)
The digital output value ADCOUNT1_uv2 of the A / D converter ADC1 corrected by the bias of the light irradiation of the third and fourth light receiving elements PD11 and PD12 detected in advance is the digital output value of the A / D converter ADC2 according to the following equation (6). The output value ADCOUNT2_uv2 is obtained by the following equation (7). In equations (6) and (7), the digital output values ADCOUNT1_uv and ADCOUNT2_uv of the A / D converters ADC1 and ADC2 are multiplied by the reciprocal of the light irradiation bias of the third and fourth light receiving elements PD11 and PD12 detected in advance. There is.
ADCOUNT1_uv2 = ADCOUNT1_uv × (ADCOUNT1_vis_ir + ADCOUNT2_vis_ir) / 2 × ADCOUNT1_vis_ir… (6)
ADCOUNT2_uv2 = ADCOUNT2_uv × (ADCOUNT1_vis_ir + ADCOUNT2_vis_ir) / 2 × ADCOUNT2_vis_ir… (7)
上記式(5),(6)により得られたデジタル出力値ADCOUNT1_uv2,ADCOUNT2_uv2を差分することで、受光部110が、波長が400nm以下の紫外線領域のみに感度を持ち、紫外線強度を正確に検出することができる。
By differentiating the digital output values ADCOUNT1_uv2 and ADCOUNT2_uv2 obtained by the above equations (5) and (6), the
第2実施形態の受光器101によれば、第1受光領域13に第3,第4受光素子PD11,PD12が設けられ、第1受光素子PD11全体が、光フィルタ11で覆われている。これにより、例えば、紫外線強度の検出において、第1,第2受光領域13,14に入射する光の傾きに加えて、第3,第4受光素子PD11,PD12の光照射の偏りを考慮することができるので、紫外線強度の検出精度を高めることができる。
According to the
なお、上記式(4),(5)により得られた3,第4受光素子PD11,PD12の光照射の偏りが1から大きく外れる場合(第3,第3受光素子PD11,PD12のどちらかに殆ど光が照射されていない場合)、補正の精度が担保できない。この場合、補正不可として、上記式(6),(7)により得られたデジタル出力値を無効値とする。 When the bias of the light irradiation of the third and fourth light receiving elements PD11 and PD12 obtained by the above formulas (4) and (5) greatly deviates from 1 (either of the third and third light receiving elements PD11 and PD12). The accuracy of the correction cannot be guaranteed (when almost no light is applied). In this case, the correction is not possible, and the digital output values obtained by the above equations (6) and (7) are set as invalid values.
また、例えば、フォトダイオードPD_visおよびフォトダイオードPD_irの光電流に変えて、フォトダイオードPD_irの光電流を使用することもできる。この場合、図9に示すように、第3〜第5受光素子PD11,PD12,PD13がフォトダイオードPD_irの光電流を取り出すことができるように、各層の接続関係を変更する。そして、第1,第2受光領域13,14に入射する光の傾きと、第3,第4受光素子PD11,PD12の光照射量の偏りとを事前に検出し、事前に検出された第1,第2受光領域13,14に入射する光の傾きと、第3,第4受光素子PD11,PD12の光照射量の偏りとに基づいて、紫外線強度を検出する。
Further, for example, the photocurrent of the photodiode PD_ir can be used instead of the photocurrent of the photodiode PD_vis and the photodiode PD_ir. In this case, as shown in FIG. 9, the connection relationship of each layer is changed so that the third to fifth light receiving elements PD11, PD12, and PD13 can take out the photocurrent of the photodiode PD_ir. Then, the inclination of the light incident on the first and second
第2実施形態の受光器101では、光フィルタ11は、第3受光素子PD11全体を覆うように配置されているが、これに限らない。例えば、図20に示すように、第3フォトダイオードPD11の一部を覆うように、光フィルタ11を配置してもよい。この場合の第3受光素子PD11の分光感度特性は、図21に示すものとなり、受光部110全体における分光感度特性は、図22に示すものとみなすことができる。
In the
(第3実施形態)
第2実施形態の受光器101では、受光部110の第1受光領域13に第3,第4受光素子PD11,PD12を設けているが、これに限らない。例えば、図23に示すように、受光部210の第1受光領域13に第3,第4受光素子PD11,PD12をそれぞれ2つ設けてもよい。
(Third Embodiment)
In the
第3実施形態の受光器201では、上面視において、第1受光領域13の対向する辺の中間を結ぶように遮蔽部12が設けられ、遮蔽部12で覆われた4つの領域にそれぞれ第3,第4受光素子PD11,PD12が設けられている。第3,第4受光素子PD11,PD12は、その一方が他方と隣接しないように配置され、第3受光素子PD11上を光フィルタ11が覆っている。
In the
このように第3,第4受光素子PD11,PD12を配置することで、第3,第4受光素子PD11,PD12の光照射量の偏りを少なくすることができる。 By arranging the third and fourth light receiving elements PD11 and PD12 in this way, it is possible to reduce the bias of the light irradiation amount of the third and fourth light receiving elements PD11 and PD12.
なお、第1受光領域13の分割数を増加させることにより、第3,第4受光素子PD11,PD12の光照射量の偏りをさらに少なくすることができる。
By increasing the number of divisions of the first
(第4実施形態)
第1実施形態の受光器1では、受光部10の第1,第2受光領域13,14全体を覆うように光フィルタ11を配置しているが、これに限らない。例えば、図24に示すように、受光部310の第1受光領域13全体と第2受光領域14の一部とを覆うように光フィルタ11を配置してもよい。
(Fourth Embodiment)
In the light receiver 1 of the first embodiment, the
第4実施形態の受光器301では、上面視において、第1,第2受光領域13,14のうちの第2受光領域14の外周縁部を除く部分が覆われるように、光フィルタ11を配置している。この場合でも、第1実施形態の受光器1と同様の方法で、第1,第2受光領域13,14に入射する光の傾きを検出することができる。
In the
(第5実施形態)
第2実施形態の受光器101では、受光部110の第1受光領域13の第3受光素子PD11全体を覆うように光フィルタ11を配置しているが、これに限らない。例えば、図25に示すように、受光部410の第1受光領域13の第3,第4受光素子PD11,PD12の一部、および、第2受光領域14の一部を覆うように配置してもよい。
(Fifth Embodiment)
In the
第5実施形態の受光器401では、光フィルタ11を5つ備えており、第1受光領域13に1つの光フィルタ11を、第2受光領域13に4つの光フィルタ11を配置している。第1受光領域13に配置されている光フィルタ11は、上面視において、第3,第4受光素子PD11,PD12の一部を覆うように配置されている。第2受光領域14に配置されている光フィルタ11は、相互に重なることなく、第2受光領域14の外周に沿って配置されている。この場合でも、第2実施形態の受光器101と同様の方法で、第1,第2受光領域13,14に入射する光の傾きを検出することができる。
The
上記第1〜第5実施形態の受光器1,101,201,301,401は、例えば、携帯型電子機器に適用することができる。
The
本発明および実施形態をまとめると、次のようになる。 The present invention and embodiments can be summarized as follows.
本発明の受光器1,101,201,301,401は、
受光領域13,14を有する受光部10,110,210,310,410と、
上記受光領域13,14の少なくとも一部を覆い、所定の波長領域を有する光を透過させる光フィルタ11と、
上記受光領域13,14および上記光フィルタ11を覆う遮光部16と、
を備え、
上記受光領域13,14が、第1受光領域13と、この第1受光領域13の周囲に配置された第2受光領域14とで構成され、上記第1,第2受光領域13,14の各々には、光が入射することによって光電流を流す受光素子PD1,PD2,PD11,PD12,PD13が設けられており、
上記光フィルタ11が、上記受光素子PD1,PD2,PD11,PD12,PD13が感度を有する波長領域の光の一部を透過させ、
上記遮光部16が、上記受光領域13,14に光を入射させるための開口部を有し、上記開口部17が、上記第1,第2受光領域13,14に入射する光の入射方向に沿って見た平面視において、上記第1受光領域13の半分以上の面積を有するように配置されており、
上記開口部17を介して上記第1,第2受光領域13,14に入射した光の強度に基づいて、上記第1,第2受光領域13,14に入射する光の傾きを検出する傾き検出部21をさらに備えることを特徴としている。
The receivers 1,101,201,301,401 of the present invention are
An
A light-shielding
With
The
The
The light-shielding
Inclination detection that detects the inclination of the light incident on the first and second
上記構成によれば、受光部10,110,210,310,410の第1,第2受光領域13,14に入射する光の強度に基づいて、第1,第2受光領域13,14に入射する光の傾きを検出できる。
According to the above configuration, it is incident on the first and second
また、一実施形態の受光器1,101,201,301,401では、
上記傾き検出部21により検出された上記光の傾きに基づいて、上記第1,第2受光領域13,14に入射する光の入射状態が正常であるか否かを判定する入射状態判定部22をさらに備える。
Further, in the receivers 1,101,201,301,401 of one embodiment,
Incident
上記実施形態によれば、例えば、第1,第2受光領域13,14に入射する光のうち、入射状態が正常であると判定されたものだけを紫外線強度の検出に用いることで、紫外線強度の検出精度を高めることができる。
According to the above embodiment, for example, among the lights incident on the first and second
また、一実施形態の受光器1,101,201,301,401では、
上記第1受光領域13に、複数の受光素子PD11,PD12が設けられ、
上記光フィルタ11は、所定の波長領域の光の透過率が、この所定の波長領域の光の透過率よりも低くなるように構成され、
上記複数の受光素子PD11,PD12のいずれか一方が、上記光フィルタ11で覆われている。
Further, in the receivers 1,101,201,301,401 of one embodiment,
A plurality of light receiving elements PD11 and PD12 are provided in the first
The
One of the plurality of light receiving elements PD11 and PD12 is covered with the
上記実施形態によれば、例えば、紫外線強度の検出において、第1,第2受光領域13,14に入射する光の傾きに加えて、受光素子PD11,PD12の光照射の偏りを考慮することができるので、紫外線強度の検出精度を高めることができる。
According to the above embodiment, for example, in detecting the intensity of ultraviolet rays, it is possible to consider the bias of light irradiation of the light receiving elements PD11 and PD12 in addition to the inclination of the light incident on the first and second
本発明の携帯型電子機器は、上記受光器を備えている。 The portable electronic device of the present invention includes the above-mentioned receiver.
上記構成によれば、受光素子に入射する光の傾きを検出できる受光器を備えた携帯型電子機器が得られる。 According to the above configuration, a portable electronic device provided with a light receiver capable of detecting the inclination of light incident on the light receiving element can be obtained.
上記第1〜第5実施形態で述べた構成要素は、適宜、組み合わせてもよく、また、適宜、選択、置換、あるいは、削除してもよいことは、勿論である。 Of course, the components described in the first to fifth embodiments may be combined as appropriate, and may be appropriately selected, replaced, or deleted as appropriate.
1,101,201,301,401 受光器
10,110,210,310,410 受光部
11 光フィルタ
12 遮蔽部
13 第1受光領域
14 第2受光領域
15 筺体
16 遮光部
17 開口部
20、120 センサ回路部
21 傾き検出部
22 入射状態判定部
23 充電回路
24 比較回路
25 制御回路
26 放電回路
PD1 第1受光素子
PD2 第2受光素子
PD3 第3受光素子
PD4 第4受光素子
PD5 第5受光素子
1,101,201,301,401 Receiver 10,110,210,310,410
Claims (4)
上記受光領域の少なくとも一部を覆い、所定の波長領域を有する光を透過させる光フィルタと、
上記受光領域および上記光フィルタを覆う遮光部と、
を備え、
上記受光領域が、第1受光領域と、この第1受光領域の周囲に配置された第2受光領域とで構成され、上記第1受光領域および上記第2受光領域の各々には、光が入射することによって光電流を流す受光素子が設けられており、
上記光フィルタが、上記受光素子が感度を有する波長領域の光の一部を透過させ、
上記遮光部が、上記第1,第2受光領域に光を入射させるための開口部を有し、上記開口部が、上記第1,第2受光領域が配置された平面視において、上記第1受光領域の半分以上の面積を有するように配置されており、
上記開口部を介して上記第1,第2受光領域に入射した光の強度に基づいて、上記受光領域に入射する光の傾きを検出する傾き検出部をさらに備えることを特徴とする受光器。 A light receiving part having a light receiving region arranged on a flat surface ,
An optical filter that covers at least a part of the light receiving region and transmits light having a predetermined wavelength region.
A light-shielding portion that covers the light-receiving area and the optical filter,
With
The light receiving region is composed of a first light receiving region and a second light receiving region arranged around the first light receiving region, and light is incident on each of the first light receiving region and the second light receiving region. A light receiving element that allows photocurrent to flow is provided.
The optical filter transmits a part of light in a wavelength region in which the light receiving element has sensitivity.
The light-shielding portion has an opening for allowing light to enter the first and second light-receiving areas, and the opening is the first in a plan view in which the first and second light-receiving areas are arranged . It is arranged so as to have an area of more than half of the light receiving area.
A receiver further comprising a tilt detecting unit that detects the tilt of light incident on the light receiving region based on the intensity of light incident on the first and second light receiving regions through the opening.
上記傾き検出部により検出された上記光の傾きに基づいて、上記第1,第2受光領域に入射する光の入射状態が正常であるか否かを判定する入射状態判定部をさらに備えることを特徴とする受光器。 In the receiver according to claim 1,
An incident state determining unit for determining whether or not the incident state of the light incident on the first and second light receiving regions is normal based on the inclination of the light detected by the inclination detecting unit is further provided. A featured receiver.
上記第1受光領域に、複数の上記受光素子が設けられ、
上記複数の受光素子のいずれか一方が、上記光フィルタで覆われていることを特徴とする受光器。 In the receiver according to claim 1 or 2,
A plurality of the light receiving elements are provided in the first light receiving region.
A receiver characterized in that one of the plurality of light receiving elements is covered with the optical filter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016111906A JP6757183B2 (en) | 2016-06-03 | 2016-06-03 | Receiver and portable electronics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016111906A JP6757183B2 (en) | 2016-06-03 | 2016-06-03 | Receiver and portable electronics |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017219340A JP2017219340A (en) | 2017-12-14 |
JP6757183B2 true JP6757183B2 (en) | 2020-09-16 |
Family
ID=60657937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016111906A Active JP6757183B2 (en) | 2016-06-03 | 2016-06-03 | Receiver and portable electronics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6757183B2 (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5918414A (en) * | 1982-07-23 | 1984-01-30 | Takashi Mori | Sunlight direction sensor |
JP3785326B2 (en) * | 2001-02-21 | 2006-06-14 | 株式会社堀場製作所 | Photodetector |
JP2008014939A (en) * | 2006-06-07 | 2008-01-24 | Eko Instruments Trading Co Ltd | Solar radiation measurement system, and program for measuring solar radiation |
JP2010008289A (en) * | 2008-06-27 | 2010-01-14 | Sharp Corp | Portable terminal device |
JP5906943B2 (en) * | 2012-05-24 | 2016-04-20 | 株式会社デンソー | Optical sensor |
JP6223779B2 (en) * | 2013-10-28 | 2017-11-01 | シャープ株式会社 | Photodetector and electronic device |
WO2015151651A1 (en) * | 2014-04-04 | 2015-10-08 | シャープ株式会社 | Photodetector and mobile electronic device |
US9627424B2 (en) * | 2014-11-19 | 2017-04-18 | Silicon Laboratories Inc. | Photodiodes for ambient light sensing and proximity sensing |
-
2016
- 2016-06-03 JP JP2016111906A patent/JP6757183B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017219340A (en) | 2017-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6072978B2 (en) | Receiver and portable electronic device | |
TWI527256B (en) | A light detection device and an image display device | |
US10924703B2 (en) | Sensors and systems for the capture of scenes and events in space and time | |
US8461533B2 (en) | Radiation sensor | |
CN101738255B (en) | Photodetecting semiconductor apparatus and mobile device | |
US8552379B2 (en) | Radiation sensor | |
US9006636B2 (en) | Radiation sensor | |
JP5323903B2 (en) | Sensor circuit and electronic equipment | |
JP6250863B2 (en) | Receiver and portable electronic device | |
JP5886437B2 (en) | Sensors, display devices, mobile phones, and digital cameras | |
US20160037070A1 (en) | Multi-mode power-efficient light and gesture sensing in image sensors | |
US9188482B2 (en) | Optical sensor with special discrimination | |
KR20090069247A (en) | Photodetection semiconductor device, photodetector, and image display device | |
CN107560727B (en) | Optical sensor and calibration method thereof | |
WO2018223634A1 (en) | Photoelectric detection circuit and photoelectric detector | |
EP2643667A1 (en) | Radiation sensor | |
JP6757183B2 (en) | Receiver and portable electronics | |
US20160091363A1 (en) | Optical sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190320 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200330 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20200330 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20200417 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200804 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200828 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6757183 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |