Nothing Special   »   [go: up one dir, main page]

JP6755029B2 - 繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法 - Google Patents

繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法 Download PDF

Info

Publication number
JP6755029B2
JP6755029B2 JP2018504333A JP2018504333A JP6755029B2 JP 6755029 B2 JP6755029 B2 JP 6755029B2 JP 2018504333 A JP2018504333 A JP 2018504333A JP 2018504333 A JP2018504333 A JP 2018504333A JP 6755029 B2 JP6755029 B2 JP 6755029B2
Authority
JP
Japan
Prior art keywords
fibrous carbon
gas
carbon nanostructure
catalyst carrier
synthesizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018504333A
Other languages
English (en)
Other versions
JPWO2017154529A1 (ja
Inventor
野田 優
優 野田
孝祐 川端
孝祐 川端
利男 大沢
利男 大沢
孝剛 本郷
孝剛 本郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Zeon Corp
Original Assignee
Waseda University
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Zeon Corp filed Critical Waseda University
Publication of JPWO2017154529A1 publication Critical patent/JPWO2017154529A1/ja
Application granted granted Critical
Publication of JP6755029B2 publication Critical patent/JP6755029B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Description

本発明は、繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法に関するものである。
近年、導電性、熱伝導性および機械的特性に優れる材料として、繊維状炭素材料、特にはカーボンナノチューブ(以下、「CNT」と称することがある。)等の繊維状炭素ナノ構造体が注目されている。CNTは、炭素原子により構成される筒状グラフェンシートからなり、その直径はナノメートルオーダーである。
ここで、CNT等の繊維状炭素ナノ構造体は、概して、製造コストが高いため他の材料よりも高価であった。このため、上述したような優れた特性を有するにもかかわらず、その用途は限られていた。さらに、近年、比較的高効率でCNT等を製造することができる製造方法として、触媒を用いたCVD(Chemical Vapor Deposition)法(以下、「触媒CVD法」と称することがある)が用いられてきた。しかし、触媒CVD法でも、製造コストを十分に低減することができなかった。
そこで、粒子状の触媒担持体により流動層を形成し、流動層に対して炭素源を含む原料ガスを供給して触媒担持体表面にてCNTを合成する方法が提案されてきた(例えば、特許文献1参照)。具体的には、特許文献1では、触媒賦活反応器にて触媒担持体を賦活し、触媒賦活反応器の側面に取り付けられた循環管を介して、斜め下方向に配置されたCNT合成器に対して、賦活した触媒担持体を供給する。そして、反応器内で触媒担持体により流動層を形成して、かかる流動層に対して下から炭素源を含む原料ガスをして流動させて、触媒担持体表面でCNTを合成する。
国際公開第2008/128437号
ここで、特許文献1にかかる装置では、触媒賦活反応器の側面と、斜め下に配置されたCNT合成器の側面とを循環管で連通させ、触媒賦活反応器内で循環管より上に積層された触媒担持体がCNT合成器内に流入する構成となっている。しかし、このような構成では、触媒担持体の移動効率に改善の余地があり、さらに、未賦活の触媒担持体がCNT合成器内に流入することを抑制するためには、賦活された触媒担持体が常に循環管の接続位置よりも高い位置にまで積層されている必要があった。このため、特許文献1にかかる装置では、触媒担持体の移動効率を向上して、賦活された触媒担持体の、CNT合成器内への供給効率を向上させる必要があった。また、特許文献1にかかる装置では、触媒賦活中に未賦活の触媒担持体を補充して追加する際に、未賦活の触媒担持体がCNT合成器内に流入することを抑制する必要があった。
そこで、本願発明は、合成器内へ、還元、酸化、触媒付着の何れかの処理がなされていない、即ち未調製の触媒担持体が流入することを抑制すると共に、調製された触媒担持体の供給効率を向上させることができる、繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法を提供することを目的とする。
本発明者らは、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者らは、下部がテーパ状に構成された調製器の下方に合成器を配置した装置構成を採用することで、合成器内への調製された触媒担持体の供給効率を向上させるとともに、未調製の触媒担持体が合成器内に流入することを抑制することができることを新たに見出し、本発明を完成させた。
即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の繊維状炭素ナノ構造体製造装置は、供給された担体粒子を用いて、前記担体粒子上に触媒が担持された粒子状の触媒担持体を調製する調製器と、前記調製器で得られた前記触媒担持体上に繊維状炭素ナノ構造体を合成する繊維状炭素ナノ構造体合成器と、を備える、繊維状炭素ナノ構造体の製造装置であって、前記調製器は、前記担体粒子を収容可能な、下方に向かって内径が小さくなるテーパ部を有するとともに、前記テーパ部の底部には、前記触媒担持体を排出可能に構成された排出口を有し、前記製造装置は、前記排出口と前記繊維状炭素ナノ構造体合成器内とを連通し、前記調製器内にて調製された前記触媒担持体を前記繊維状炭素ナノ構造体合成器内へ移送可能な第1配管と、前記第1配管に接続された第1ガス供給管と、前記排出口から前記調製器内へ第1ガスを供給する、第1ガス供給機構と、前記繊維状炭素ナノ構造体合成器内へ第2ガスを供給する、第2ガス供給機構と、を備え、前記調製器、及び前記第1ガス供給管と前記第1配管との接続部よりも上側の前記第1配管に、前記繊維状炭素ナノ構造体合成器内へ移送される前記触媒担持体の移動を遮断しうる部材を備えないことを特徴とする。本発明の繊維状炭素ナノ構造体製造装置は、担体粒子を導入して、テーパ部の底部より調製器内に送気された第1ガスにより、担体粒子に対して、還元、酸化、及び触媒担持のうちの何れか1以上の処理を施して触媒担持体を調製し、テーパ部の底部に配置された排出口から、調製された触媒担持体を排出するため、合成器内へ未調製の粒子が流入することを抑制すると共に、調製された触媒担持体の供給効率を向上させることができる。
なお、本明細書において、「担体粒子」とは、触媒担持体の核となりうる粒子をいい、「触媒担持体」とは、調製器における調製工程を経て得られる粒子をいう。
また、本発明の繊維状炭素ナノ構造体製造装置は、前記第1ガス供給機構が、前記担体粒子及び/または前記触媒担持体の少なくとも一部を前記調製器内に保持するとともに、該調製器内において前記担体粒子及び/または前記触媒担持体の少なくとも一部を流動させうるガス流量にて、前記第1ガスを供給可能な、第1ガス供給制御機構を備えることが好ましい。触媒担持体を調製器内に確実に保持することで、効率的に触媒担持体を調製状態とすることができるからである。
また、本発明の繊維状炭素ナノ構造体製造装置は、前記調製器及び/又は前記繊維状炭素ナノ構造体合成器が、内部を加熱する加熱機構を更に備えることが好ましい。合成器内部を確実に昇温して、効率的に触媒担持体を調製状態とすることができるからである。
また、本発明の繊維状炭素ナノ構造体製造装置は、前記第1ガス供給機構が、還元性ガス、酸素元素含有ガス、及び触媒材料ガスのうち少なくとも1つを供給可能でありうる。
また、本発明の繊維状炭素ナノ構造体製造装置は、前記繊維状炭素ナノ構造体合成器の後段に設置され、前記第2ガスから、前記繊維状炭素ナノ構造体合成器内で合成された繊維状炭素ナノ構造体が前記触媒担持体上に配置されてなる複合体を分離する分離器を更に備えることが好ましい。繊維状炭素ナノ構造体を表面に有する触媒担持体を効率的に捕集して、繊維状炭素ナノ構造体の収率を向上させることができるからである。
また、本発明の繊維状炭素ナノ構造体製造装置は、前記繊維状炭素ナノ構造体合成器が、該繊維状炭素ナノ構造体合成器内に流入した第2ガスを排出する第2ガス排出口を有し、前記繊維状炭素ナノ構造体合成器の前記第2ガス排出口と前記分離器内とを連通し、前記繊維状炭素ナノ構造体合成器内の前記複合体を前記第2ガスとともに前記分離器へ移送可能な第2配管を更に備えることが好ましい。繊維状炭素ナノ構造体を表面に有する触媒担持体を一層効率的に捕集して、繊維状炭素ナノ構造体の収率を一層向上させることができるからである。
さらに、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の繊維状炭素ナノ構造体製造方法は、上述した繊維状炭素ナノ構造体製造装置を用いて繊維状炭素ナノ構造体を連続的又は半連続的に製造するにあたり、供給された担体粒子に対して第1ガスを接触させて、前記担体粒子上に触媒が担持された粒子状の触媒担持体を連続的又は半連続的に調製する触媒担持体調製工程と、得られた前記触媒担持体を、前記繊維状炭素ナノ構造体合成器に対して連続的又は半連続的に供給する触媒担持体供給工程と、前記繊維状炭素ナノ構造体合成器内で前記触媒担持体上に繊維状炭素ナノ構造体を成長させる成長工程と、前記触媒担持体上に前記繊維状炭素ナノ構造体が配置されてなる複合体を、前記繊維状炭素ナノ構造体合成器から取り出す回収工程と、を含むことを特徴とするものである。かかる方法によれば、効率的に繊維状炭素ナノ構造体を製造することができる。
また、本発明の繊維状炭素ナノ構造体の製造方法において、前記触媒担持体調製工程は、前記調製器内に前記第1ガスとして触媒材料ガスを供給して前記担体粒子に前記触媒材料を付着させるステップを含むことが好ましい。かかる方法によれば、一層効率的に繊維状炭素ナノ構造体を製造することができる。
また、本発明の繊維状炭素ナノ構造体の製造方法において、前記触媒担持体調製工程は、加熱状態の前記調製器内にて前記触媒担持体を加熱するステップを含み、前記触媒担持体供給工程は、加熱された状態の前記触媒担持体を、加熱状態を維持しつつ前記繊維状炭素ナノ構造体合成器に移送するステップを含むことが好ましい。かかる方法によれば、一層効率的に繊維状炭素ナノ構造体を製造することができるからである。
また、本発明の繊維状炭素ナノ構造体の製造方法において、前記触媒担持体調製工程は、前記調製器内に前記第1ガスとして還元性ガスを供給して還元状態の前記触媒担持体を得るステップを含み、前記触媒担持体供給工程は、前記還元性ガスによる還元雰囲気を維持しつつ前記還元状態の触媒担持体を前記繊維状炭素ナノ構造体合成器に移送するステップを含むことが好ましい。かかる方法によれば、一層効率的に繊維状炭素ナノ構造体を製造することができるからである。
本発明によれば、調製された触媒担持体の合成器内への供給効率を向上させるとともに、未調製の触媒担持体が合成器内に流入することを抑制することができる。
本発明の繊維状炭素ナノ構造体製造装置の構成の一例を示す概略図である。
以下、本発明の実施形態について詳細に説明する。
ここで、本発明の繊維状炭素ナノ構造体製造装置は、供給された担体粒子から担体粒子上に触媒が担持された粒子状の触媒担持体を調製し、調製された触媒担持体上にて繊維状炭素ナノ構造体を合成することで、繊維状炭素ナノ構造体を製造することができる。なお、本発明において、「粒子状」とは、アスペクト比が5未満であることをいう。担体粒子や触媒担持体のアスペクト比は、例えば、顕微鏡画像上で、任意に選択した100個の担体粒子/触媒担持体について(最大長径/最大長径に直交する幅)の値を算出し、その平均値を算出することで、確認することができる。また、本発明の繊維状炭素ナノ構造体製造方法は、本発明の繊維状炭素ナノ構造体製造装置を用いて実施することができる。
また、本発明の繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造装置を用いて形成しうる繊維状炭素ナノ構造体としては、例えば、カーボンナノチューブ、及びカーボンナノファイバー等が挙げられる。
(繊維状炭素ナノ構造体製造装置)
図1は、本発明の繊維状炭素ナノ構造体製造装置の構成の一例を示す概略図である。本発明の繊維状炭素ナノ構造体製造装置100は、調製器10、第1配管20、第1ガス供給管30、繊維状炭素ナノ構造体合成器40、及び第2ガス供給管50を備える。第1配管20と第1ガス供給管30とは接続部60にて接続されており、繊維状炭素ナノ構造体製造装置100は、かかる接続部60の下端よりも上側において、調製器10及び第1配管20に、触媒担持体の移動を遮断するための部材を備えない。換言すれば、繊維状炭素ナノ構造体製造装置100は、調製器10内から流下しうる担体粒子及び/又は触媒担持体の移動を遮断するための物理的な機構を備えない。なお、調製器10、第1配管20、第1ガス供給管30、繊維状炭素ナノ構造体合成器40、及び第2ガス供給管50は、特に限定されることなく、例えば、断面形状が円形であるガラス管やステンレス管により構成されうる。
繊維状炭素ナノ構造体製造装置100は、まず、調製器10内に担体粒子を導入し、かかる担体粒子に対して、第1ガス供給管30及び第1配管20を経た第1ガスを下側から供給して、調製器内で流動させることで、担体粒子に対して触媒付着、酸化や還元などの調製工程を実施する。そして、調製工程を経た触媒担持体は、第1配管20を通じて繊維状炭素ナノ構造体合成器40へと移送され、繊維状炭素ナノ構造体の合成に供される。
以下、繊維状炭素ナノ構造体製造装置100の各構成部についてより詳細に説明する。
<調製器>
調製器10は、本体と下方に向かって内径が小さくなるテーパ部11とを有し、本体とテーパ部11、又はテーパ部11にて担体粒子及び/又は触媒担持体70を収容可能である。テーパ部11は、担体粒子及び/又は粒子状の触媒担持体70を収容可能であるともに、テーパ部11の底部に形成された排出口12から触媒担持体70を排出可能に構成されている。なお、図示しないが、調製器10は排出口12よりも上側に、調製器10内に担体粒子を供給する担体粒子供給口10を有しうる。
ここで、調製器10に導入する担体粒子としては、例えば、触媒材料を付着していない粒子、いわゆる無垢の粒子や、触媒材料の付着した粒子、あるいは、使用済みの触媒材料付き担体粒子が挙げられる。すなわち、調製器10では、未だ触媒材料を付着させていない状態の担体粒子に対して触媒材料を付着させることもできるし、還元、酸化などの処理をすることもできる。また、使用済みの触媒担持体など、既に触媒材料が付着している担体粒子に対して、還元、酸化などの処理をすることもできるし、更に触媒材料を付着させることもできる。
担体粒子及び/又は触媒担持体70は、テーパ部11を含む調製器10の内部において流動層を形成している。具体的には、担体粒子及び/又は触媒担持体70は、排出口12を介して第1ガスにより下方向から吹きあげられて調製器10内にて流動する。そして、第1ガスの流量が十分に大きい場合には、略全ての担体粒子及び/又は触媒担持体70が調製器10内にて流動する。また、第1ガスの流量を、略全ての担体粒子及び/又は触媒担持体70を調製器10内にて流動させることができる流量よりも低い流量とすることで、図1に示すように、調製された触媒担持体70の一部を調製器10内にて流動させつつ、他の一部を流下させて、調製器10から排出させることもできる。
ここで、第1ガスは、触媒材料ガス、還元性ガス、乾燥ガス、及び/又は酸素元素含有ガスでありうる。第1ガスの種類により、調製器10における調製処理の内容が決定される。即ち、第1ガスとして触媒材料ガスを供給すれば、担体粒子に対して触媒材料を付着させることができる。また、第1ガスとして還元性ガスを供給すれば、還元状態の触媒担持体を得ることができる。さらに、第1ガスとして乾燥ガスを供給すれば、乾燥した触媒担持体を得ることができる。さらにまた、第1ガスとして酸素元素含有ガスを供給すれば、担体粒子表面を酸化させ、或いは、触媒担持体を焼成することができる。
具体的には、調製器10に対して、無垢の粒子又は使用済みの触媒担持体(即ち、触媒材料を付着しているものの十分な触媒能を発揮しえない状態の触媒担持体)を供給した場合には、第1ガスとして、触媒材料を含むガスを供給することができる。なお、触媒材料としては、特に限定されることなく、Si、Al、Mg、Fe、Co、及びNiを含む群より選択される少なくとも一種の元素を含有する化合物の蒸気が挙げられる。第1ガスには、かかる化合物の蒸気を複数種含有させることもできる。ここで、触媒を担持させるにあたり、繊維状炭素ナノ構造体の製造時に繊維状炭素ナノ構造体の合成に寄与する触媒として機能する触媒成分に先立って、かかる触媒成分を担体粒子上に良好に担持させるための金属酸化物成分を担体粒子上に付着させることが好適である。そして、触媒材料として列挙した上記成分の中でも、Si、Al、及びMgが、このような金属酸化物成分の原料となりうる成分として有効である。なお、担体粒子表面に金属酸化物を担持させる目的において供給する第1ガス中では、Si、Al、及びMgの中から選択される1種以上の元素を含有するガスが、通常0.01体積%以上10体積%以下であり、酸素元素含有ガスが、通常0.01体積%以上21体積%以下である。これらの他に、第1ガスは、不活性ガスを、通常、69体積%以上含みうる。
他方、上記成分の中でも、Fe、Co、及びNiは、担体粒子上又は金属酸化物上にて触媒を形成しうる成分である。そのような成分を含む化合物としては、例えば、トリス(2,4−ペンタンジオナト)鉄(III)、ビス(シクロペンタジエニル)鉄(II)(以下、「フェロセン」とも称する)、塩化鉄(III)、及び鉄カルボニル等のFe含有触媒材料、トリス(2,4−ペンタンジオナト)コバルト(III)、ビス(シクロペンタジエニル)コバルト(II)、及び塩化コバルト(II)等のCo含有触媒材料、及び、ビス(2,4−ペンタンジオナト)ニッケル(II)、及びビス(シクロペンタジエニル)ニッケル(II)等のNi含有触媒材料などが挙げられる。この場合、第1ガスは、通常、Fe、Co、及びNiを含む群より選択される少なくとも一種の元素を含有する化合物の蒸気を、0.001体積%以上10体積%以下、酸素元素含有ガスを、0,01体積%以上21体積%以下含みうる。これらの他に、第1ガスは、窒素などの不活性ガスを、通常、69体積%以上含みうる。
さらに、第1ガスとして供給して担体粒子上に触媒を担持させるために用いる成分としては、Al及びFeが特に好ましい。より具体的には、Alを含む化合物の蒸気により、金属酸化物である酸化アルミニウムからなる層を形成し、かかる層によりFe触媒を担持させれば、得られた触媒担持体の触媒活性が良好となるからである。
さらに、調製器10に対して、第1ガスとして酸素、水蒸気、及び/又は、二酸化炭素等の酸素元素含有ガスを含むガスを供給することで、担体粒子上に残留した不純物や、炭素成分を酸化して除去し、次いで、触媒材料を含むガスを第1ガスとして供給することができる。これらの酸素元素含有ガスは、複数種を混合して用いることもできる。酸化処理により、担体粒子上に付着した不純物や炭素成分等を除去すれば、担体粒子上で触媒を良好に担持させることができるようになる。また、担体粒子の表面を酸化すれば、触媒を担持するための金属酸化物や触媒を良好に担持することができるようになる。なお、担体粒子表面を酸化する目的において供給する酸素元素含有ガスを含む第1ガス中における酸素元素含有ガスの濃度は、通常、1体積%以上であり、好ましくは5体積%以上である。酸化処理を効率的に実施することができるからである。また、担体粒子表面を酸化する目的において供給する酸素元素含有ガスを含む第1ガス中における還元性ガスの濃度は、通常、1体積%未満である。
また、調製器10に対して触媒材料を付着した粒子を供給した場合や、調製器10内にて担体粒子に対して触媒材料を付着させた場合には、第1ガスとして、水素等の還元性ガスを含有するガスを供給することで、還元状態の触媒担持体を得ることができる。この際、第1ガスの1体積%以上が還元性ガスであればよく、100体積%が還元性ガスであってもよい。なお、触媒材料を付着した粒子は、一般的な湿式担持法又は乾式担持法にて触媒材料を付着させ、焼成処理を施す前又は焼成処理を施した後の粒子でありうる。そして、調製器10に、触媒材料の付着した粒子であって焼成処理を施す前の粒子を供給した場合には、必要に応じて、焼成処理を施した上で、第1ガスとして還元性ガスを供給すれば、担体粒子に対して還元処理を施して還元状態の触媒担持体を得ることができる。なお、かかる還元処理は、必ずしも調製器10で実施する必要はなく、後述する繊維状炭素ナノ構造体合成器40にて実施することもできる。また、本明細書において「還元処理」とは、触媒を担持した触媒担持体の周囲環境を還元ガス環境とすると共に、所定の温度以上の高温環境として、触媒を還元状態とするステップを意味する。還元ステップにより、触媒は還元されるとともに、触媒の微粒子化が促進されてCNTの成長に適合した状態となるか、及び/又は、触媒の活性が向上する。例えば、触媒がFeである場合、還元ステップを経ることで、Feは還元されて微粒子化し、触媒担持体上にてナノメートルオーダーの微粒子が多数形成される。このような状態の触媒(還元状態の触媒)はCNTの製造に好適である。
さらに、調製器10では、第1ガスとして乾燥ガスを供給して担体粒子及び/又は触媒担持体と接触させることで、担体粒子及び/又は触媒担持体を乾燥させることができる。なお、乾燥ガスとしては、例えば、露点が−10℃以下の空気を供給することができる。
調製器10内で担体粒子及び/又は触媒担持体70により流動層を形成するにあたり、担体粒子及び/又は触媒担持体70の全てが自重で落下する速度以上であって、担体粒子及び/又は触媒担持体70が調製器10外に飛ばされうる速度未満の速度で、第1ガスを調製器10内に流入させることが好ましい。これにより、流動層を形成する担体粒子及び/又は触媒担持体70の少なくとも一部を調製器10内にて流動状態を保つことが可能となる。なお、落下の速度は担体粒子及び/又は触媒担持体の大きさや密度に基づいて決定することができる。さらに、必要とする触媒担持体の量や、所望の調製処理時間等により、調製器10の容積も定めることができる。このように、テーパ部11の形状及び調製器10の管径及び容積は、必要とする触媒担持体の調製量、担体粒子の粒子径、及び担体粒子の密度等に応じて適宜決定することができる。
さらに、第1ガスの流速の調節を容易にする観点から、例えば、排出口12における径及び調製器10の内径の比率(調製器10の内径:排出口12の内径)は、3:1以上であることが好ましく、通常30:1以下である。ガス流速はガスが通過する管の断面積に応じて異なる。したがって、テーパ部11の上下において径の比率が3:1である場合には、テーパ部11の下部に相当する排出口12におけるガス流速はテーパ部11よりも上側におけるガス流速の約10倍となる。よって、排出口12におけるガス流速を微調整することで、調製器10内におけるガス流速を適度に段階的に調節することができ、流動層を流動状態に保つために必要十分であるガス流速に設定することが容易になる。なお、テーパ部11の上部の管径が下部の管径の3倍未満であれば、第1ガスの流量の調節が難しくなる虞がある。また、テーパ部11の上部の内径が下部の内径の30倍超であれば、担体粒子の均一な流動や、触媒担持体の回収が難しくなる虞がある。
さらに、調製器10は、調製器10内部を加熱する第1加熱機構14をさらに備える。第1加熱機構14は、特に限定されることなく、例えば各種ヒーターにより構成されうる。さらに、第1加熱機構14は調製器10の内部を反応温度まで加熱することができる。なお、反応温度は、通常、400℃以上1200℃以下である。
<第1配管>
第1配管20は、テーパ部11の排出口12に連結されている。さらに、第1配管20は、調製器10と一体であっても良いし、別個の部品として形成されたものが調製器10と接続されたものであっても良い。
<第1ガス供給機構>
テーパ部11の排出口12からテーパ部11内に収容されている担体粒子及び/又は触媒担持体70に向けて第1ガスを供給可能な第1ガス供給機構は、第1ガス供給管30を含んでなる。第1ガス供給管30は、接続部60にて第1配管20に対して接続されている。さらに、第1ガス供給管30は、第1ガス供給制御機構31、及び第1ガス源(図示しない)を備えることが好ましい。第1ガス供給制御機構31は、ガス流量を調節できる限りにおいて特に限定されることなく、例えば、バルブ、インバーターつきのポンプ、及びシャッター等により構成されうる。さらに、第1ガス源は、特に限定されることなく、各種ガスを充てんしたボンベやタンクでありうる。図1では、第1ガス供給管を単一の管として示したが、第1ガス供給管は、各種第1ガス源とそれぞれ接続された複数の管として実装されても良い。この場合、第1ガス供給機構は、各種ガスのうちの一種又は複数種を同時供給可能であるか、或いは、各種ガスのうちの一種又は複数種を切り替えて供給可能な、(マルチ)分岐管及び切替コック等の(マルチ)分岐切替手段を有しうる。
また、図1では、接続部60にて第1ガス供給管30と第1配管20とが直交する態様を示すが、かかる接続部60では、これらの管は必ずしも直交していなくても良い。すなわち、第1ガス供給管30と第1配管20とは、第1ガス供給管30を経て第1配管20に導入された第1ガスが、調製器10内へと導かれる限りにおいて、あらゆる配置態様とすることができる。例えば、第1ガス供給管30は、接続部60にてやや下方に傾いて第1配管20に接続されていると、触媒担持体の移送時に第1ガス供給管30に触媒担持体が入ることを防止できて、一層好適である。ここで、第1ガス供給管30を経て第1配管20に導入された第1ガスを、調製器10方向、即ち上方向に方向づけるためには、第1配管20内において、接続部60の上側と下側との間に圧力勾配を形成する必要がある。より具体的には、第1配管20内の管圧が、接続部60の上側で比較的低く、接続部60の下側で比較的高くなっている必要がある。図1に示すように、第1配管20を中心として繊維状炭素ナノ構造体製造装置100を見た場合に、装置の上側では、調製器10の上端が開放しており、反対に、装置の下側には、後述する繊維状炭素ナノ構造体合成器40が配置されている。このため、第1ガス供給管30を介して、第1ガスを繊維状炭素ナノ構造体製造装置100内に導入すれば、第1配管内の管圧は、接続部60の下側で比較的高くなる。よって、第1ガス供給管30を経て第1配管20に導入された第1ガスは、上方向に方向づけられる。なお、接続部60より下側で、第1配管20に対してバルブ(図示しない)等の第1配管閉塞機構を設けることで、このような圧力勾配を一層容易に形成することができる。なお、第1ガスの流速を弱める、或いは第1ガスの供給を停止して、調製器10内の少なくとも一部の触媒担持体を流下させる場合には、あらかじめかかるバルブ等を開放し、第1配管20に目詰まりが生じることを回避することが好ましい。
<繊維状炭素ナノ構造体合成器>
繊維状炭素ナノ構造体合成器40は、調製器10の下方に配置されている。繊維状炭素ナノ構造体合成器40には、調製器10から移送された、調製された触媒担持体42が充填されている。触媒担持体42上に繊維状炭素ナノ構造体が形成されると、触媒担持体上に繊維状炭素ナノ構造体が配置されてなる複合体43となる。繊維状炭素ナノ構造体合成器40内に充填される触媒担持体42としては、例えば、触媒担持済みの粒子や、焼成済みの粒子、更には、還元済みの粒子が挙げられる。即ち、繊維状炭素ナノ構造体合成器40では、調製器10にて担体粒子上に触媒材料が付着されて形成された触媒担持体や、調製器10にて焼成されて得られた触媒担持体を還元状態としてから、繊維状炭素ナノ構造体を合成することもできるし、調製器10にて還元状態とされた触媒担持体を用いて繊維状炭素ナノ構造体を合成することもできる。
そして、繊維状炭素ナノ構造体合成器40は、粒子状の触媒担持体を用いて繊維状炭素ナノ構造体を合成できる容器である限りにおいて特に限定されることなく、例えば、気流層合成器、固定層合成器、移動層合成器、及び流動層合成器等を用いることができる。特に、繊維状炭素ナノ構造体合成器40は、流動層合成器であることが好ましい。例えば、図1に示すように、繊維状炭素ナノ構造体合成器40は、長手方向が調製器10の長手方向に略一致するように配置されており、下部に多孔質板41を有することが好ましい。さらに、図1では、繊維状炭素ナノ構造体合成器40は、多孔質板41の下方に、第2ガスを器内に供給する第2ガス供給管50が接続されている。なお、第2ガスは、還元性ガス、炭素源を含む原料ガス、酸素元素含有ガス、アルゴン等の希ガス及び窒素等の不活性ガス、又はこれらの混合ガスでありうる。第2ガスとして還元性ガスを供給した場合には、繊維状炭素ナノ構造体合成器40内にて触媒担持体を還元状態とすることができ、第2ガスとして炭素源を含む原料ガスを供給した場合には、触媒担持体上に繊維状炭素ナノ構造体を成長させることができる。さらには、触媒担持体を還元状態とすることに先立ち、第2ガスとして酸素元素含有ガスを導入した際には、供給された触媒担持体を繊維状炭素ナノ構造体合成器40内にて焼成処理することができる。
なお、第2ガス供給管50は、第2ガス供給機構を構成する。第2ガス供給機構は、図示しないが第2ガス供給制御機構をさらに備えることができ、かかる制御機構は、ガス流量を調節できる限りにおいて特に限定されることなく、例えば、バルブ、インバーターつきのポンプ、及びシャッター等により構成されうる。さらに、第2ガス源は、特に限定されることなく、各種ガスを充てんしたボンベやタンクでありうる。図1では、第2ガス供給管を単一の管として示したが、第2ガス供給管は、各種第2ガス源とそれぞれ接続された複数の管として実装されても良い。この場合、第2ガス供給機構は、各種ガスのうちの一種又は複数種を同時供給可能であるか、或いは、各種ガスのうちの一種又は複数種を切り替えて供給可能な、(マルチ)分岐管及び切替コック等の(マルチ)分岐切替手段を有しうる。
さらに、繊維状炭素ナノ構造体合成器40は、合成器内に流入した第2ガスを排出する第2ガス排出口44を有する。そして、第2ガス排出口44には、該第2ガス排出口44と、繊維状炭素ナノ構造体合成器40の後段に配置された分離器80内とを連通し、複合体43を第2ガスとともに分離器80へ移送可能な第2配管90が接続されている。
さらに、繊維状炭素ナノ構造体合成器40は、内部を加熱する第2加熱機構45をさらに備えうる。第2加熱機構45は、特に限定されることなく、例えば各種ヒーターにより構成されうる。さらに、第2加熱機構45は繊維状炭素ナノ構造体合成器40の内部を反応温度まで加熱することができる。なお、反応温度は、通常、400℃以上1200℃以下である。
なお、繊維状炭素ナノ構造体合成器40は、第2ガスとして、例えば、上述したような、アルゴン等の希ガスや、窒素等の不活性ガスを一時的に大流量で供給して、生成した複合体43を分離器80へ移送することもできる。
<分離器>
繊維状炭素ナノ構造体製造装置100は、分離器80を備えることが好ましい。分離器80は、繊維状炭素ナノ構造体合成器40の後段に配置され、第2ガスと、繊維状炭素ナノ構造体合成器内で生成された複合体43を、第2ガスと複合体43とに分離する。分離器80は、特に限定されることなく、ガスと複合体43とを分離できる限りにおいて既存のあらゆる態様の装置により実装可能である。例えば、分離器80は、長手方向が調製器10等の長手方向に沿って配置された容器として構成され、該容器は、第2配管90を経てかかる容器内に移送された複合体を重力沈降によって下部にて収集する。そして、複合体43を分離した残りのガスを、分離器排気口81から排気する。なお、分離器80は、第2配管90と分離器80との接続部83よりも上側に、フィルタ82を備えることが好ましい。複合体43や複合体から脱落した繊維状炭素ナノ構造体が舞い上がったとしても、フィルタ82により捕捉することができるので、これらが分離器排気口81より外に排出されることを防止できるからである。
なお、図1には、上述したような重力沈降式の分離器80を示したが、かかる分離器に代えて、例えばサイクロンやフィルタにより分離器を実装することももちろん可能である。なお、分離器80をフィルタにより実装する場合、上述した不活性ガスの一時的な大流量供給等により発生した圧力により複合体43を含む第2ガスをフィルタでろ過して、複合体43を捕集することができる。
分離器80にて分離した複合体は、例えば、振とうする、液中に投入して撹拌する等の比較的簡易な方法で繊維状炭素ナノ構造体と触媒担持体とに分離することができる。そして、分離された触媒担持体は、任意で、調製器10に再度供給することができる。
なお、実施例にて断面円形であるとして説明した各種構造部の断面形状は、円形に限られず、例えば楕円や矩形などでもよい。
(繊維状炭素ナノ構造体製造方法)
本発明の繊維状炭素ナノ構造体製造方法は、本発明の繊維状炭素ナノ構造体製造装置を用いて繊維状炭素ナノ構造体を連続的又は半連続的に製造する方法である。かかる製造方法は、供給された担体粒子に対して第1ガスを接触させて、担体粒子上に触媒が担持された粒子状の触媒担持体を連続的又は半連続的に調製する触媒担持体調製工程と、得られた触媒担持体を、繊維状炭素ナノ構造体合成器に対して連続的又は半連続的に供給する触媒担持体供給工程と、繊維状炭素ナノ構造体合成器内で触媒担持体上に繊維状炭素ナノ構造体を成長させる成長工程と、触媒担持体上に繊維状炭素ナノ構造体が配置されてなる複合体を、繊維状炭素ナノ構造体合成器から取り出す回収工程と、を含む。本発明の繊維状炭素ナノ構造体製造方法は、連続的、又は半連続的に実施することができる。連続的に実施する際には、触媒担持体調製工程にて、担体粒子を一定速度で調製器に導入し、第1ガスを一定の速度及び組成で調製器に供給し、触媒担持体供給工程にて、触媒担持体を一定の速度で調製器から繊維状炭素ナノ構造体合成器へ移送し、成長工程にて、第2ガスを繊維状炭素ナノ構造体合成器へ一定の速度及び組成で供給し、繊維状炭素ナノ構造体を一定速度で連続的に製造することができる。半連続的に実施する際には、触媒担持体調製工程にて、担体粒子の調製器への供給速度と、第1ガスの調製器への供給速度及び組成と、を時間に対して変調し、触媒担持体供給工程にて、触媒担持体の調製器から繊維状炭素ナノ構造体合成器への移送速度を時間に対して変調し、成長工程にて、第2ガスの繊維状炭素ナノ構造体合成器への供給速度を時間に対して変調し、調製工程と成長工程の少なくとも一部を同時に行うことで、繊維状炭素ナノ構造体を半連続的に製造することができる。
また、本発明の繊維状炭素ナノ構造体製造方法では、担体粒子として供給する粒子や、第1ガス及び第2ガスとして供給するガス種の組み合わせに応じて、種々の処理を実施することができる。以下、繊維状炭素ナノ構造体製造方法の一例を説明する。まず、調製器10及び繊維状炭素ナノ構造体合成器40を加熱状態に保持する。そして、上記触媒担持体調製工程にて、調製器10に対して中程度の流量で第1ガスを供給しつつ担体粒子を充填し(充填ステップ)、触媒材料ガスである第1ガスを大流量で供給して担体粒子に触媒材料を付着させて触媒担持体を得て(触媒付着ステップ)、還元性ガスである第1ガスを供給して触媒担持体を還元状態として(還元ステップ)、上記触媒担持体供給工程にてガス流量を低下又はゼロとして触媒担持体を繊維状炭素ナノ構造体合成器40に移送することができる。さらに、上記成長工程にて繊維状炭素ナノ構造体合成器40に原料ガスである第2ガスを中程度の流量で供給して触媒担持体を流動化しつつ繊維状炭素ナノ構造体を合成した後に、上記回収工程にて不活性ガスである第2ガスの流量を大流量として複合体を回収することが好ましい。そして、上記充填ステップから回収工程までの操作を繰り返すことが好ましい。そして、半連続的に本発明による製造方法を実施する場合には、上記成長工程及び回収工程を行っている間に、上記充填ステップ〜還元ステップを実施して、回収工程を終えて空になった繊維状炭素ナノ構造体合成器40に対して還元済みの触媒担持体を移送することが好ましい。連続的に本発明による製造方法を実施する場合には、上記充填ステップ〜回収工程までをすべて同時進行で実施することも可能である。
以下、半連続的操作により本発明による製造方法を実施する場合と、連続的操作により本発明による製造方法を実施する場合についてそれぞれ例を挙げて説明する。なお、各工程において用いる各種ガスとしては、上述したガスと同様のガスを用いることができる。
―半連続操作―
<触媒担持体調製工程>
触媒担持体調製工程では、担体粒子に対して第1ガスを接触させる。触媒担持体調製工程では、加熱状態の調製器内にて触媒担持体を加熱するステップを実施することが好ましい。そして、加熱状態の調製器内にて、触媒付着ステップにおいて、第1ガスとして、例えば、Si、Al、及びMgの中から選択される1種以上の元素を含有するガスと、酸素等の酸素元素含有ガスとを導入すれば、担体粒子表面に金属酸化物を担持させることができる。なお、そのようなガスとしては、例えば、アルミニウムイソプロポキシド(化学式:Al(O-i-Pr)3[i-Prはイソプロピル基−CH(CH])が挙げられる。そして、例えば、Feを含む化合物の蒸気を含むガスを第1ガスとして供給して金属酸化物上にFe触媒を付着させることができる。そして、還元ステップを実施するにあたり、第1ガスとして、水素、アンモニア、メタン等の還元性ガスを含有するガスを供給して、触媒担持体を還元状態とする。なお、メタンは、第2ガスとして供給された場合には炭素源となりうる。
<触媒担持体供給工程>
そして、調製器10内に導入する第1ガスの流速を小さくする、或いは第1ガスの供給を停止することで、調製器10内の触媒担持体を、第1配管20を通じて繊維状炭素ナノ構造体合成器40に移送することができる。調製工程において還元ステップを実施した場合には、触媒担持体供給工程は、還元された触媒担持体を、加熱状態かつ還元雰囲気を維持しつつ繊維状炭素ナノ構造体合成器40に移送するステップを含むことが好ましい。図1に示すような、調製器10の直下に繊維状炭素ナノ構造体合成器40が備えられる装置構成であれば、調製器10及び繊維状炭素ナノ構造体合成器40の双方を加熱状態とし、また第1ガスの温度を適度な温度範囲とすることで、このような移送態様を実現することができる。
ここで、半連続操作では、調製工程を完了した後に触媒担持体供給工程を実施することができる。具体的には、調製器10に対して、担体粒子を一旦導入した後に追加で導入することなく、各種ガスを第1ガスとして供給し、所定時間反応させた後に、第1ガスの流速を小さくし、或いは第1ガスの供給を停止して、調製器10内の触媒担持体の略全量を流下させる。かかる処理によれば、一旦調製器10と繊維状炭素ナノ構造体合成器40とを加熱状態とした後に、触媒担持体供給工程を「半連続的に」実施して、調製工程を経た触媒担持体を半連続的に繊維状炭素ナノ構造体合成器40に供給することができる。
特に、調製器10において、触媒付着ステップ及び還元ステップを実施する場合には、同じ投入タイミングで投入された担体粒子について、触媒付着処理時間及び還元処理時間を略同一に揃えることができるため有利である。さらに、このような半連続的な触媒付着処理及び触媒還元処理を繰り返した場合に、各回の触媒付着処理時間を同一とすれば、得られる触媒担持体が略均一な触媒担持量を有することとなる。このため、得られた触媒担持体を用いて合成した繊維状炭素ナノ構造体は、径や長さ等の属性が略均一となる。なお、例えば、還元ステップのみを調製器10にて実施する場合であっても、触媒担持体供給工程を「半連続的に」実施する態様によれば、得られる繊維状炭素ナノ構造体を均質化することが可能である。
また、調製工程において触媒付着ステップを行ったあと、還元ステップを行わずに触媒担持体供給工程へと移行しても良い。繊維状炭素ナノ構造体合成器40に移送された触媒担持体を、繊維状炭素ナノ構造体合成器40内で還元することもできる。すなわち、還元ステップは、調製器10或いは繊維状炭素ナノ構造体合成器40の何れにおいても実施することができる。
<成長工程>
成長工程では、炭素源を含む原料ガスを第2ガスとして繊維状炭素ナノ構造体合成器40内に送気し、還元ステップにて形成された触媒担持体表面に存在する触媒微粒子上で、繊維状炭素ナノ構造体を成長させる。なお、炭素源としては、特に限定されることなく、アルキン及びアルケン(オレフィン炭化水素)、アルカン(パラフィン炭化水素)、アルコール、エーテル、アルデヒド、ケトン、芳香族、及び一酸化炭素の中から選択される1種以上を含む炭素原料を用いることができる。成長工程で繊維状炭素ナノ構造体合成器40内に送気する第2ガス中における炭素源を含む原料ガスの濃度は、特に限定されることなく、通常0.5体積%以上である。なお、第2ガスとしての炭素源を含む原料ガスの送気圧力は、特に限定されることなく、例えば、0.001MPa以上1.500MPa以下とすることができる。そして、成長工程に要する時間や、第2ガス中における炭素原料濃度等は、所望の繊維状ナノ構造体の性状及び製造効率に応じて、適宜設定することができる。例えば、成長工程の時間を長くすることで繊維状炭素ナノ構造体の長さを長くすることができる。また、第2ガス中における炭素源を含む原料ガスの割合を上げることで、製造効率を向上させることができる。なお、半連続的な操作では、調製された触媒担持体が一定時間ごとに(半連続的に)供給されるため、成長工程も半連続的に実施することとなる。
<回収工程>
回収工程では、成長工程で得られた、触媒担持体と繊維状炭素ナノ構造体との複合体を、第2ガスとしての不活性ガスを用いることにより、回収する。
<分離工程>
そして、分離工程では、第2ガスより複合体を分離する。
―連続操作(パターン1)―
連続操作では、少なくとも、触媒担持体調製工程、触媒担持体供給工程、成長工程、及び回収工程を同時進行することが可能である。すなわち、加熱状態を保った調製器10と繊維状炭素ナノ構造体合成器40に、担体粒子、第1ガスおよび第2ガスを一定で供給し、調製器10から繊維状炭素ナノ構造体合成器40へ触媒担持体粒子を一定で移送し、繊維状炭素ナノ構造体合成器40から分離器80へ触媒担持体と繊維状炭素ナノ構造体との複合体を一定で移送し、回収することが可能である。具体的には、無垢の粒子、ないし使用済みの触媒材料付き担体粒子を調製器10に一定速度で供給し、第1ガスとして、触媒材料ガス及び酸素元素含有ガスを調製器10に一定速度で供給すると、担体粒子上に触媒材料が付着し酸化処理された触媒担持体が調製される。第1ガス流量を適度に調整することで、触媒担持体が一定速度で繊維状炭素ナノ構造体合成器40に移送され、担体粒子の調製器10への供給速度と、触媒担持体の調製器10から繊維状炭素ナノ構造体合成器40への移送速度を略等しくすることで、調製器10内を定常状態に保つことができる。繊維状炭素ナノ構造体合成器40へは、第2ガスとして、炭素源を含む還元性の原料ガス、或いは、炭素源を含む原料ガスと還元性ガスの混合ガスを一定で供給する。繊維状炭素ナノ構造体合成器40へ移送された、調製された触媒担持体、即ち、触媒材料の付着した酸化処理された触媒担持体は、還元され、触媒担持体上にて繊維状炭素ナノ構造体を成長させ始める。繊維状炭素ナノ構造体合成器40へ移送されてからの時間が長い触媒担持体ほど、その上に繊維状炭素ナノ構造体が長く成長し、第2ガスに同伴されて第2ガス排出口44から第2配管90を経て分離器80へと移送される。また、第2ガスの流量が小さいと、繊維状炭素ナノ構造体が長く成長してからガス流に同伴されるようになるので、長い繊維状炭素ナノ構造体を得ることができる。このとき、触媒担持体の繊維状炭素ナノ構造体合成器40内の滞留時間が長くなるため、調製器10からの触媒担持体の移送速度および調製器10への担体粒子の調製速度を遅くすることが好ましい。他方、第2ガスの流量が大きいと繊維状炭素ナノ構造体は短くてもガス流に同伴されるようになるので、触媒担持体の移送と、担体粒子の供給を速めることが好ましい。
―連続操作(パターン2)―
第1ガスとして触媒材料ガス及び還元性ガスを供給すること以外は、上述したパターン1による連続操作と同様として、連続操作を実施することもできる。具体的には、調製器10に対して、無垢の粒子を一定速度で供給するとともに、第1ガスとして触媒材料ガス及び還元性ガスを一定速度で供給し、得られた触媒材料付着済みかつ還元済みの触媒担持体を一定速度で繊維状炭素ナノ構造体合成器40へと移送することができる。
―連続操作(パターン3)―
担体粒子として触媒材料の付着した粒子を用い、第1ガスとして還元性ガスを供給すること以外は、上述したパターン1による連続操作と同様として、連続操作を実施することもできる。具体的には、調製器10に対して、触媒材料の付着した担体粒子を一定速度で供給するとともに、第1ガスとして還元性ガスを一定速度で供給し、得られた還元済みの触媒担持体を一定速度で繊維状炭素ナノ構造体合成器40へと移送することができる。
本発明によれば、繊維状炭素ナノ構造体合成器内への、未調製の触媒担持体の流入を抑制するとともに、調製された触媒担持体を効率的に供給することができる。
10 調製器
11 テーパ部
12 排出口
14 第1加熱機構
20 第1配管
30 第1ガス供給管
31 第1ガス供給制御機構
40 繊維状炭素ナノ構造体合成器
41 多孔質板
42 調製された触媒担持体
43 複合体
44 第2ガス排出口
45 第2加熱機構
50 第2ガス供給管
60 接続部
70 担体粒子及び/又は触媒担持体
80 分離器
81 分離器排気口
82 フィルタ
83 接続部
90 第2配管
100 繊維状炭素ナノ構造体製造装置

Claims (10)

  1. 供給された担体粒子を用いて、前記担体粒子上に触媒が担持された粒子状の触媒担持体を調製する調製器と、前記調製器で得られた前記触媒担持体上に繊維状炭素ナノ構造体を合成する繊維状炭素ナノ構造体合成器と、を備える、繊維状炭素ナノ構造体の製造装置であって、
    前記調製器は、前記担体粒子を収容可能な、下方に向かって内径が小さくなるテーパ部を有するとともに、前記テーパ部の底部に、前記触媒担持体を排出可能に構成された排出口を有し、
    前記製造装置は、
    前記排出口と前記繊維状炭素ナノ構造体合成器内とを連通し、前記調製器内にて調製された前記触媒担持体を前記繊維状炭素ナノ構造体合成器内へ移送可能な第1配管と、
    前記第1配管に接続された第1ガス供給管と、
    前記排出口から前記調製器内へ第1ガスを供給する、第1ガス供給機構と、
    前記繊維状炭素ナノ構造体合成器内へ第2ガスを供給する、第2ガス供給機構と、を備え、
    前記調製器、及び前記第1ガス供給管と前記第1配管との接続部よりも上側の前記第1配管に、前記繊維状炭素ナノ構造体合成器内へ移送される前記触媒担持体の移動を遮断しうる部材を備えない、
    繊維状炭素ナノ構造体製造装置。
  2. 前記第1ガス供給機構が、前記担体粒子及び/または前記触媒担持体の少なくとも一部を前記調製器内に保持するとともに、該調製器内において前記担体粒子及び/または前記触媒担持体の少なくとも一部を流動させうるガス流量にて、前記第1ガスを供給可能な、第1ガス供給制御機構を備える、
    請求項1に記載の繊維状炭素ナノ構造体製造装置。
  3. 前記調製器及び/又は前記繊維状炭素ナノ構造体合成器が、内部を加熱する加熱機構を更に備える、請求項1又は2に記載の繊維状炭素ナノ構造体製造装置。
  4. 前記第1ガス供給機構が、還元性ガス、酸素元素含有ガス、及び触媒材料ガスのうち少なくとも1つを供給可能な、請求項1〜3記載のいずれかに記載の繊維状炭素ナノ構造体製造装置。
  5. 前記繊維状炭素ナノ構造体合成器の後段に設置され、前記第2ガスから、前記繊維状炭素ナノ構造体合成器内で合成された繊維状炭素ナノ構造体が前記触媒担持体上に配置されてなる複合体を分離する分離器を更に備える、請求項1〜4のいずれかに記載の繊維状炭素ナノ構造体製造装置。
  6. 前記繊維状炭素ナノ構造体合成器が、該繊維状炭素ナノ構造体合成器内に流入した第2ガスを排出する第2ガス排出口を有し、前記繊維状炭素ナノ構造体合成器の前記第2ガス排出口と前記分離器内とを連通し、前記繊維状炭素ナノ構造体合成器内の前記複合体を前記第2ガスとともに前記分離器へ移送可能な第2配管を更に備える、請求項5に記載の繊維状炭素ナノ構造体製造装置。
  7. 請求項1〜6の何れかに記載の繊維状炭素ナノ構造体製造装置を用いて、繊維状炭素ナノ構造体を連続的又は半連続的に製造する方法であって、
    供給された担体粒子に対して第1ガスを接触させて、前記担体粒子上に触媒が担持された粒子状の触媒担持体を連続的又は半連続的に調製する触媒担持体調製工程と、
    得られた前記触媒担持体を、前記繊維状炭素ナノ構造体合成器に対して連続的又は半連続的に供給する触媒担持体供給工程と、
    前記繊維状炭素ナノ構造体合成器内で前記触媒担持体上に繊維状炭素ナノ構造体を成長させる成長工程と、
    前記触媒担持体上に前記繊維状炭素ナノ構造体が配置されてなる複合体を、前記繊維状炭素ナノ構造体合成器から取り出す回収工程と、
    を含む、繊維状炭素ナノ構造体の製造方法。
  8. 前記触媒担持体調製工程は、前記調製器内に前記第1ガスとして触媒材料ガスを供給して前記担体粒子に前記触媒材料を付着させるステップを含む、請求項7に記載の繊維状炭素ナノ構造体の製造方法。
  9. 前記触媒担持体調製工程は、加熱状態の前記調製器内にて前記触媒担持体を加熱するステップを含み、
    前記触媒担持体供給工程は、加熱された状態の前記触媒担持体を、加熱状態を維持しつつ前記繊維状炭素ナノ構造体合成器に移送するステップを含む、請求項7又は8に記載の繊維状炭素ナノ構造体の製造方法。
  10. 前記触媒担持体調製工程は、前記調製器内に前記第1ガスとして還元性ガスを供給して還元状態の前記触媒担持体を得るステップを含み、
    前記触媒担持体供給工程は、前記還元性ガスによる還元雰囲気を維持しつつ前記還元状態の触媒担持体を前記繊維状炭素ナノ構造体合成器に移送するステップを含む、請求項7〜9のいずれかに記載の繊維状炭素ナノ構造体の製造方法。
JP2018504333A 2016-03-08 2017-02-17 繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法 Active JP6755029B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016044574 2016-03-08
JP2016044574 2016-03-08
PCT/JP2017/006000 WO2017154529A1 (ja) 2016-03-08 2017-02-17 繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法

Publications (2)

Publication Number Publication Date
JPWO2017154529A1 JPWO2017154529A1 (ja) 2019-01-17
JP6755029B2 true JP6755029B2 (ja) 2020-09-16

Family

ID=59790388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018504333A Active JP6755029B2 (ja) 2016-03-08 2017-02-17 繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法

Country Status (3)

Country Link
JP (1) JP6755029B2 (ja)
CN (1) CN108778992B (ja)
WO (1) WO2017154529A1 (ja)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19847647A1 (de) * 1998-10-15 2000-04-20 Elenac Gmbh Wirbelschichtverfahren und Reaktor zur Behandlung von Katalysatoren und Katalysatorträgern
CN1141250C (zh) * 2001-05-25 2004-03-10 清华大学 一种流化床连续化制备碳纳米管的方法及其反应装置
JP5447367B2 (ja) * 2008-03-07 2014-03-19 日立化成株式会社 カーボンナノチューブの製造方法及びカーボンナノチューブ製造装置
CN101348249B (zh) * 2008-09-05 2011-03-30 清华大学 一种在颗粒内表面制备碳纳米管阵列的方法
JP2010100518A (ja) * 2008-09-25 2010-05-06 Nissin Electric Co Ltd カーボンナノコイルの製造方法および製造装置
JP5672008B2 (ja) * 2009-01-20 2015-02-18 日本電気株式会社 ナノカーボン複合体の製造方法および製造装置
US9061909B2 (en) * 2009-09-10 2015-06-23 The University Of Tokyo Method for simultaneously producing carbon nanotubes and hydrogen, and device for simultaneously producing carbon nanotubes and hydrogen
KR101864455B1 (ko) * 2010-02-19 2018-06-04 고쿠리츠다이가쿠호우진 도쿄다이가쿠 나노카본재료 제조장치 및 나노카본재료 제조방법
CN102120570B (zh) * 2011-01-22 2013-08-28 广州市白云化工实业有限公司 一种连续化生产碳纳米管的工艺方法
JP2014189431A (ja) * 2013-03-27 2014-10-06 Hitachi Zosen Corp 繊維状カーボン材料の回収システムおよび回収方法
JP2014213289A (ja) * 2013-04-26 2014-11-17 トヨタ自動車株式会社 触媒コンバーター
KR101535388B1 (ko) * 2013-07-19 2015-07-08 주식회사 엘지화학 담지촉매, 이의 제조방법 및 이를 이용하여 제조된 탄소나노구조체의 2차구조물
KR101783512B1 (ko) * 2014-06-13 2017-09-29 주식회사 엘지화학 유동층 반응기 및 이를 이용한 탄소 나노구조물의 제조방법

Also Published As

Publication number Publication date
CN108778992B (zh) 2022-07-08
WO2017154529A1 (ja) 2017-09-14
JPWO2017154529A1 (ja) 2019-01-17
CN108778992A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
JP6056904B2 (ja) カーボンナノチューブ及び水素の同時製造方法、並びに、カーボンナノチューブ及び水素の同時製造装置
JP4914218B2 (ja) 炭素ナノ構造体を製造するシステムおよび方法
JP5594961B2 (ja) 狭小な直径のカーボン単層ナノチューブの合成
JP5549941B2 (ja) ナノ炭素の製造方法及び製造装置
JP5281365B2 (ja) 炭素ナノチューブの生成設備
JPS58180615A (ja) 気相法による炭素繊維の製造方法
WO2004070094A1 (ja) カーボンナノファイバの製造方法及び装置
JP4410010B2 (ja) ナノカーボン材料の製造方法
JP5860547B2 (ja) 長尺なカーボンナノチューブの製造方法および製造装置
JP2021175705A (ja) 複合品を製造するシステム及び方法
JP2021175707A (ja) 複合品を製造するシステム及び方法
JP6403144B2 (ja) 気相法微細炭素繊維の製造方法
WO2014034739A1 (ja) 熱交換式反応管
JP5364904B2 (ja) カーボンナノファイバー集合体の製造方法
JP6755029B2 (ja) 繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法
JP6875705B2 (ja) 粒子処理装置、並びに触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法
JP2006027948A (ja) 単層カーボンナノチューブの製法
Mohammadi et al. Synthesis of carbon nanotubes on macroporous kaolin substrate via a new simple CVD method
KR20040082950A (ko) 기상합성법에 의한 이중벽 탄소나노튜브의 대량 합성 방법
KR20040082949A (ko) 기상합성법에 의한 단일벽 탄소 나노튜브의 대량 합성 방법
JP2010100518A (ja) カーボンナノコイルの製造方法および製造装置
JP7548504B2 (ja) 触媒付着体の製造方法及び製造装置、並びに、繊維状炭素ナノ構造体の製造方法及び製造装置
KR102672016B1 (ko) 활성화 전처리된 촉매를 포함하는 유동화 반응기를 이용하는 수소 및 탄소체 제조방법 및 제조장치
WO2023145841A1 (ja) カーボンナノチューブ集合体の製造方法及び製造装置
US20140330059A1 (en) Method of using carbon nanotubes fuel production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200818

R150 Certificate of patent or registration of utility model

Ref document number: 6755029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250