Nothing Special   »   [go: up one dir, main page]

JP6752692B2 - Water treatment method and equipment - Google Patents

Water treatment method and equipment Download PDF

Info

Publication number
JP6752692B2
JP6752692B2 JP2016224968A JP2016224968A JP6752692B2 JP 6752692 B2 JP6752692 B2 JP 6752692B2 JP 2016224968 A JP2016224968 A JP 2016224968A JP 2016224968 A JP2016224968 A JP 2016224968A JP 6752692 B2 JP6752692 B2 JP 6752692B2
Authority
JP
Japan
Prior art keywords
water
treated
hydrogen peroxide
water treatment
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016224968A
Other languages
Japanese (ja)
Other versions
JP2018079447A (en
Inventor
一重 高橋
一重 高橋
菅原 広
広 菅原
史生 須藤
史生 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2016224968A priority Critical patent/JP6752692B2/en
Priority to TW106139243A priority patent/TWI732969B/en
Priority to CN201780067197.2A priority patent/CN109890766B/en
Priority to PCT/JP2017/041214 priority patent/WO2018092831A1/en
Priority to KR1020197014171A priority patent/KR102248156B1/en
Publication of JP2018079447A publication Critical patent/JP2018079447A/en
Application granted granted Critical
Publication of JP6752692B2 publication Critical patent/JP6752692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus

Landscapes

  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Water Treatments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、被処理水中の有機物を分解処理する水処理方法および装置に関する。 The present invention relates to a water treatment method and apparatus for decomposing organic substances in the water to be treated.

従来より、半導体装置の製造工程や液晶表示装置の製造工程における洗浄水等の用途として、有機物、イオン成分、微粒子、細菌等が高度に除去された超純水等の純水が使用されている。特に、半導体装置を含む電子部品を製造する際には、その洗浄工程において多量の純水が使用されており、その水質に対する要求も年々高まっている。電子部品製造の洗浄工程等において使用される純水では、純水中に含まれる有機物がその後の熱処理工程において炭化して絶縁不良等を引き起こすことを防止するため、水質管理項目の一つである全有機炭素(TOC;Total Organic Carbon)濃度を極めて低いレベルとすることが求められている。 Conventionally, pure water such as ultrapure water from which organic substances, ionic components, fine particles, bacteria, etc. have been highly removed has been used for applications such as cleaning water in the manufacturing process of semiconductor devices and the manufacturing process of liquid crystal display devices. .. In particular, when manufacturing electronic components including semiconductor devices, a large amount of pure water is used in the cleaning process, and the demand for water quality is increasing year by year. Pure water used in the cleaning process of manufacturing electronic parts is one of the water quality control items in order to prevent organic substances contained in the pure water from carbonizing in the subsequent heat treatment process and causing insulation defects. It is required that the total organic carbon (TOC) concentration be extremely low.

このような純水水質への高度な要求が顕在化するに伴って、近年、純水中に含まれる微量の有機物(TOC成分)を分解し除去する様々な方法の検討がなされている。そのような方法の代表的なものとして、紫外線酸化処理による有機物の分解除去工程が用いられている。 With the emergence of such high demands for pure water quality, various methods for decomposing and removing trace amounts of organic substances (TOC components) contained in pure water have been studied in recent years. As a typical example of such a method, a step of decomposing and removing organic substances by ultraviolet oxidation treatment is used.

一般的には、紫外線酸化処理によって有機物の分解除去を行う場合には、例えばステンレス製の反応槽とその反応槽内に設置された管状の紫外線ランプとを備える紫外線酸化装置を用い、反応槽内に被処理水を導入して被処理水に紫外線を照射する。紫外線ランプとしては、例えば、254nmと185nmの各波長を有する紫外線を発生する低圧紫外線ランプが使用される。被処理水に185nmの波長を含む紫外線が照射されると、被処理水内にヒドロキシルラジカル(・OH)等の酸化種が生成し、この酸化種の酸化力により被処理水中の微量有機物が二酸化炭素や有機酸に分解する。被処理水に対してこのように紫外線酸化処理を施して得られた処理水は、次に、後段に配置されているイオン交換装置に送られ、二酸化炭素や有機酸が除去される。 In general, when decomposing and removing organic substances by ultraviolet oxidation treatment, for example, an ultraviolet oxidizing device equipped with a stainless steel reaction vessel and a tubular ultraviolet lamp installed in the reaction vessel is used in the reaction vessel. Introduce water to be treated and irradiate the water to be treated with ultraviolet rays. As the ultraviolet lamp, for example, a low-pressure ultraviolet lamp that generates ultraviolet rays having wavelengths of 254 nm and 185 nm is used. When the water to be treated is irradiated with ultraviolet rays containing a wavelength of 185 nm, oxidized species such as hydroxyl radical (.OH) are generated in the water to be treated, and the oxidizing power of these oxidized species causes trace organic substances in the water to be treated to be dioxide. Decomposes into carbon and organic acids. The treated water obtained by subjecting the water to be treated to the ultraviolet oxidation treatment in this way is then sent to an ion exchange device arranged in the subsequent stage to remove carbon dioxide and organic acids.

しかしながら、一般的な紫外線酸化装置によるTOCの酸化分解方法では、紫外線ランプを使用するが、紫外線ランプは、非常に高価であるにもかかわらず、使用期間の経過とともに紫外線強度が低下するために、例えば1年に1回程度の交換が必要である。したがって、紫外線酸化装置を用いるTOCの酸化分解は、紫外線ランプの交換費用の削減およびエネルギー消費量の削減といった、ランニングコストの抑制が課題となっている。 However, in the oxidative decomposition method of TOC by a general ultraviolet oxidizing device, an ultraviolet lamp is used. Although the ultraviolet lamp is very expensive, the ultraviolet intensity decreases with the lapse of the period of use. For example, it needs to be replaced about once a year. Therefore, in the oxidative decomposition of TOC using an ultraviolet oxidizing device, it is an issue to suppress running costs such as reduction of replacement cost of an ultraviolet lamp and reduction of energy consumption.

TOCの分解効率を上げるため、例えば特許文献1では、低圧紫外線酸化装置(低圧紫外線ランプによる酸化装置)を用いて被処理水中のTOCを除去する水処理装置として、低圧紫外線酸化装置の前段に、被処理水中に酸素ガスを添加する溶存酸素濃度調整工程を設けたものが提案されている。また特許文献2では、低圧紫外線酸化装置の前段において被処理水に所定量の過酸化水素(H22)を添加することが提案されている。 In order to increase the decomposition efficiency of TOC, for example, in Patent Document 1, as a water treatment device for removing TOC in the water to be treated by using a low-pressure ultraviolet oxidation device (oxidation device using a low-pressure ultraviolet lamp), a low-pressure ultraviolet oxidation device is used in front of the low-pressure ultraviolet oxidation device. It has been proposed that a dissolved oxygen concentration adjusting step of adding oxygen gas to the water to be treated is provided. Further, Patent Document 2 proposes to add a predetermined amount of hydrogen peroxide (H 2 O 2 ) to the water to be treated in the preceding stage of the low-pressure ultraviolet oxidizing apparatus.

ところで近年、水資源の枯渇と悪化に対応するため、超純水を多用する半導体工場などにおいても節水が強く要望されている。節水を実現するためには一度使用した水を回収して再利用することが効果的であり、水回収率を上げるため、例えば、ユースポイントで使用した後のTOC濃度の高い排水を処理し、さらには回収して処理するための技術(排水処理技術、排水回収処理技術)の検討が進められている。TOC濃度の高い排水を超純水生成の原水として回収し再利用するためには、エネルギーコストをかけずに、かつ末端の超純水水質を悪化させないレベルまでTOC濃度を低減させることが必要である。TOC濃度が高い被処理水を処理する技術として、被処理水に対して過酸化水素やオゾン(O3)等の酸化剤を添加し、紫外線照射によってTOCを酸化分解する技術がある。この場合、被処理水におけるTOC濃度はmg/Lオーダーであることが想定されており、また、もともと各種の不純物を多く含んでいる被処理水を対象としていることから、例えば開放系の反応容器を使用して紫外線照射を行っている。そして、紫外線源としては、254nmの波長を発生する低圧紫外線ランプもしくは高圧紫外線ランプが一般に使用されている。 By the way, in recent years, in order to cope with the depletion and deterioration of water resources, there is a strong demand for water saving even in semiconductor factories that use a lot of ultrapure water. In order to save water, it is effective to collect and reuse the water once used. In order to increase the water recovery rate, for example, wastewater with a high TOC concentration after being used at a point of use is treated. Furthermore, studies on technologies for collecting and treating (wastewater treatment technology, wastewater recovery treatment technology) are underway. In order to recover and reuse wastewater with a high TOC concentration as raw water for producing ultrapure water, it is necessary to reduce the TOC concentration to a level that does not incur energy costs and does not deteriorate the quality of ultrapure water at the end. is there. As a technique for treating water to be treated having a high TOC concentration, there is a technique in which an oxidizing agent such as hydrogen peroxide or ozone (O 3 ) is added to the water to be treated and the TOC is oxidatively decomposed by irradiation with ultraviolet rays. In this case, the TOC concentration in the water to be treated is assumed to be on the order of mg / L, and since the water to be treated originally contains a large amount of various impurities, for example, an open reaction vessel. Is used to irradiate ultraviolet rays. As the ultraviolet source, a low-pressure ultraviolet lamp or a high-pressure ultraviolet lamp that generates a wavelength of 254 nm is generally used.

特開2011−167633号公報Japanese Unexamined Patent Publication No. 2011-167633 特開2011−218248号公報Japanese Unexamined Patent Publication No. 2011-218248 特開平5−305297号公報Japanese Unexamined Patent Publication No. 5-305297

被処理水中のTOC成分を分解除去するために、一般に紫外線を照射してTOC成分を酸化させる処理が行われるが、被処理水中のTOCをどれだけ除去できたかという観点で検討すると、これまでの技術は必ずしも最適化されているとは言えない。特に、特許文献2に示されるように過酸化水素を添加した上で紫外線酸化処理を行う場合に、過酸化水素の添加量あるいは濃度以外の要因がTOC除去率に与える影響について、十分な検討がなされてきたとは言えない。そのため、被処理水でのTOC除去率を高めるようとするときに、過度に紫外線照射量を大きくすることとなって、必要電力量が大きくなり、エネルギーコストが上昇し、また装置規模も大きくなるという課題がある。 In order to decompose and remove the TOC component in the water to be treated, a treatment is generally performed to oxidize the TOC component by irradiating it with ultraviolet rays. The technology is not always optimized. In particular, when the ultraviolet oxidation treatment is performed after adding hydrogen peroxide as shown in Patent Document 2, sufficient studies have been made on the influence of factors other than the amount or concentration of hydrogen peroxide added on the TOC removal rate. It cannot be said that it has been done. Therefore, when trying to increase the TOC removal rate in the water to be treated, the amount of ultraviolet irradiation is excessively increased, the required amount of electric power is increased, the energy cost is increased, and the scale of the device is also increased. There is a problem.

本発明の目的は、装置の小型化が可能であって、エネルギーコストを含むランニングコストを抑えることができ、有機物の分解効率を向上させることができる水処理方法および装置を提供することにある。 An object of the present invention is to provide a water treatment method and an apparatus capable of downsizing the apparatus, suppressing running costs including energy costs, and improving the decomposition efficiency of organic substances.

本発明者らは、過酸化水素を添加して紫外線照射を行うことによって被処理水中の有機物の分解処理を行う場合に、被処理水中の溶存酸素濃度がTOC除去率に大きな影響を及ぼすことを見出し、本発明を完成させた。すなわち、本発明の水処理方法は、被処理水の溶存酸素濃度を低減する脱酸素段階と、被処理水に過酸化水素を添加する過酸化水素添加段階と、溶存酸素濃度が低減されかつ過酸化水素が添加された被処理水に対し紫外線を照射する紫外線照射段階と、を有する。 The present inventors have stated that when hydrogen peroxide is added and ultraviolet irradiation is performed to decompose organic substances in the water to be treated, the dissolved oxygen concentration in the water to be treated has a great influence on the TOC removal rate. The heading has completed the present invention. That is, in the water treatment method of the present invention, a deoxidizing step of reducing the dissolved oxygen concentration of the water to be treated, a hydrogen peroxide addition step of adding hydrogen peroxide to the water to be treated, and a dissolved oxygen concentration are reduced and excessive. It has an ultraviolet irradiation step of irradiating the water to be treated with hydrogen oxide with ultraviolet rays.

本発明の水処理装置は、被処理水に含まれる有機物を分解処理する水処理装置であって、被処理水の溶存酸素濃度を低減する脱酸素装置と、前記被処理水に過酸化水素を添加する過酸化水素添加装置と、溶存酸素濃度が低減され過酸化水素が添加された被処理水に対し紫外線を照射する紫外線照射装置と、を有する。 The water treatment apparatus of the present invention is a water treatment apparatus that decomposes and treats organic substances contained in the water to be treated, and is a deoxidizer that reduces the dissolved oxygen concentration of the water to be treated and hydrogen peroxide in the water to be treated. It has a hydrogen peroxide adding device to be added, and an ultraviolet irradiation device for irradiating the water to be treated to which the dissolved oxygen concentration is reduced and hydrogenated with hydrogen.

本発明によれば、被処理水中の有機物の分解効率が向上して高いTOC除去率を達成することができ、それにより装置の小型化とランニングコストの低減とを実現することができる。 According to the present invention, it is possible to improve the decomposition efficiency of organic substances in the water to be treated and achieve a high TOC removal rate, thereby realizing miniaturization of the apparatus and reduction of running cost.

本発明に基づく水処理装置の基本的な構成を示す図である。It is a figure which shows the basic structure of the water treatment apparatus based on this invention. 水処理装置の別の構成例を示す図である。It is a figure which shows another configuration example of a water treatment apparatus. 水処理装置の別の構成例を示す図である。It is a figure which shows another configuration example of a water treatment apparatus. 水処理装置の別の構成例を示す図である。It is a figure which shows another configuration example of a water treatment apparatus. 水処理装置の別の構成例を示す図である。It is a figure which shows another configuration example of a water treatment apparatus. 本発明に基づく水処理装置の適用例を示す図である。It is a figure which shows the application example of the water treatment apparatus based on this invention. 実施例および比較例で用いた装置の構成を示す図である。It is a figure which shows the structure of the apparatus used in an Example and a comparative example.

次に、本発明の好ましい実施の形態について、図面を参照して説明する。 Next, a preferred embodiment of the present invention will be described with reference to the drawings.

図1は、本発明に基づく水処理装置の基本的な構成を示している。図1に示す水処理装置は、被処理水に含まれる有機物を分解処理する水処理装置であり、被処理水が供給されて被処理水の溶存酸素(DO;Disolved oxygen)濃度を低減する脱酸素装置10と、脱酸素装置10の出口に接続され、被処理水に過酸化水素(H22)を添加する過酸化水素添加装置20と、過酸化水素添加装置20の出口に接続され、溶存酸素濃度が低減されて過酸化水素が添加された被処理水に対し紫外線を照射する紫外線照射装置30と、を備えている。紫外線照射装置30としては、185nm以下の波長を含む紫外線を照射して紫外線酸化処理を行う紫外線酸化装置を用いることが好ましい。図1に示す水処理装置では、紫外線照射装置30からの出口水が、この水処理装置によって処理されて外部に供給される水ということになる。 FIG. 1 shows a basic configuration of a water treatment apparatus based on the present invention. The water treatment device shown in FIG. 1 is a water treatment device that decomposes and treats organic substances contained in the water to be treated, and the water to be treated is supplied to reduce the concentration of dissolved oxygen (DO; Disolved oxygen) in the water to be treated. It is connected to the outlets of the oxygen device 10 and the deoxidizer 10, and is connected to the hydrogen peroxide addition device 20 for adding hydrogen peroxide (H 2 O 2 ) to the water to be treated and the outlet of the hydrogen peroxide addition device 20. It is provided with an ultraviolet irradiation device 30 that irradiates the water to be treated with reduced dissolved oxygen concentration and added hydrogen peroxide with ultraviolet rays. As the ultraviolet irradiation device 30, it is preferable to use an ultraviolet oxidation device that irradiates ultraviolet rays having a wavelength of 185 nm or less to perform ultraviolet oxidation treatment. In the water treatment device shown in FIG. 1, the outlet water from the ultraviolet irradiation device 30 is treated by the water treatment device and supplied to the outside.

22を添加して紫外線照射処理を行う従来の水処理装置では、紫外線照射処理のための紫外線照射装置として、波長254nmの紫外線を発する殺菌ランプや高圧水銀ランプが一般的に使用されている。また上述した特許文献2に記載されたシステムは、循環精製処理により超純水を製造するシステムであって、波長185nmの成分を含む紫外線を発生する低圧紫外線酸化装置を使用し、被処理水にH22を加えて紫外線酸化処理を行うものである。波長185nmの紫外線は一般に低圧水銀ランプによって発生するが、低圧水銀ランプは、同時に波長254nmの紫外線も発生する。その割合は、強度比でおよそ1:9であり、波長254nmの成分の方が強度が大きい。波長185nmの紫外線は低強度ではあるものの有機物を直接分解することができるという利点を有する。一方、波長254nmの紫外線は、H22と反応してヒドロキシルラジカル(OH・)を生成することで有機物を分解する。本発明に基づく水処理装置において用いられる紫外線照射装置には、紫外線源として、例えば、波長185nmと波長254nmの両方の紫外線を発生する水銀ランプが用いられるが、それ以外の紫外線源、例えば、紫外線LED(発光ダイオード)を用いることも可能である。 In the conventional water treatment device that performs the ultraviolet irradiation treatment by adding H 2 O 2 , a sterilization lamp or a high-pressure mercury lamp that emits ultraviolet rays having a wavelength of 254 nm is generally used as the ultraviolet irradiation device for the ultraviolet irradiation treatment. There is. Further, the system described in Patent Document 2 described above is a system for producing ultrapure water by circulation purification treatment, and uses a low-pressure ultraviolet oxidation device that generates ultraviolet rays containing a component having a wavelength of 185 nm to prepare water to be treated. H 2 O 2 is added to perform ultraviolet oxidation treatment. Ultraviolet rays having a wavelength of 185 nm are generally generated by a low-pressure mercury lamp, but a low-pressure mercury lamp also generates ultraviolet rays having a wavelength of 254 nm at the same time. The ratio is about 1: 9, and the component having a wavelength of 254 nm has a higher intensity. Ultraviolet rays having a wavelength of 185 nm have the advantage of being able to directly decompose organic substances, although they have low intensity. On the other hand, ultraviolet rays having a wavelength of 254 nm decompose organic substances by reacting with H 2 O 2 to generate hydroxyl radicals (OH ·). In the ultraviolet irradiation device used in the water treatment apparatus based on the present invention, a mercury lamp that generates ultraviolet rays having both a wavelength of 185 nm and a wavelength of 254 nm is used as an ultraviolet source, but other ultraviolet sources such as ultraviolet rays are used. It is also possible to use an LED (light emitting diode).

脱酸素装置10としては、水に溶存する酸素(O2)を除去できるものであれば任意のものを用いることができるが、例えば、真空脱気装置、膜脱気装置および窒素脱気装置のいずれかを用いることができる。真空脱気装置、膜脱気装置および窒素脱気装置は、水中の溶存酸素濃度を低減すると同時に揮発性有機物や炭酸などを気相中に除去し、これらの水中の濃度を低減することができる点で好ましい。その他の脱酸素装置として、水素(H2)を添加した上でパラジウム(Pd)触媒によって酸素を水素と反応させて水とすることにより酸素を除去するものを用いることもできる。 As the deoxidizer 10, any device can be used as long as it can remove oxygen (O 2 ) dissolved in water. For example, a vacuum deaerator, a membrane degasser, and a nitrogen degasser. Either can be used. The vacuum degassing device, the membrane degassing device and the nitrogen degassing device can reduce the dissolved oxygen concentration in water and at the same time remove volatile organic compounds and carbonic acid in the gas phase to reduce the concentration in these waters. Preferred in terms of points. As another deoxidizing device, one that removes oxygen by adding hydrogen (H 2 ) and then reacting oxygen with hydrogen with a palladium (Pd) catalyst to form water can also be used.

水中の溶存酸素濃度は、大気圧下で飽和したときに7〜8mg/L程度である。溶存酸素濃度が低い超純水であっても、大気に曝されると直ちに酸素が溶け込み、溶存酸素濃度が上昇する。したがって、一般に、各種の工程から排出される排水中の溶存酸素濃度は1mg/Lを超え、多くの場合、大気圧下での飽和量に近い値となる。本発明者らの知見によれば、溶存酸素濃度が1mg/Lを超えると、H22を添加して紫外線酸化処理を行っても、必ずしもTOC除去率の向上が見られない。そこで本発明に基づく水処理装置では、脱酸素装置10の出口水の溶存酸素濃度が1mg/L以下となるようにすることが好ましい。溶存酸素は紫外線を吸収するため、溶存酸素濃度が高い場合には、本来は有機物の分解反応に利用されるはずの紫外線量が減少し、有機物分解が進行しにくくなる。その一方で、溶存酸素をある程度除去することにより、紫外線が吸収されることの影響を少なくすることができる。その結果、紫外線が効率的に有機物と反応してTOC除去率が向上する。また、紫外線とH22が効率的に反応し、ヒドロキシルラジカルが生成することで、ヒドロキシルラジカルが有機物と反応してTOC除去率が向上する。したがって、脱酸素装置10の出口水の溶存酸素濃度を1mg/L以下とすることによって、目安としては、大気圧下での飽和量の1/10以下とすることによって、本発明の効果がより顕著に発揮されることとなる。極低濃度、例えばμg/Lまで溶存酸素を低減してもよいが、μg/Lのオーダーまで高度に脱酸素処理を行ったとしても、得られるTOC除去性能に大きな差異は生じない。脱酸素処理に要するコストとTOC除去率とからなる費用対効果を考慮すると、脱酸素装置10の出口水の溶存酸素濃度を0.05mg/L以上1mg/L以下とすることが好ましい。より好ましくは0.05mg/L以上0.5mg/L以下とし、さらに好ましくは0.05mg/L以上0.1mg/Lとする。 The dissolved oxygen concentration in water is about 7 to 8 mg / L when saturated under atmospheric pressure. Even in ultrapure water with a low dissolved oxygen concentration, oxygen dissolves immediately when exposed to the atmosphere, and the dissolved oxygen concentration rises. Therefore, in general, the dissolved oxygen concentration in the wastewater discharged from various steps exceeds 1 mg / L, and in many cases, the value is close to the saturation amount under atmospheric pressure. According to the findings of the present inventors, when the dissolved oxygen concentration exceeds 1 mg / L, the TOC removal rate is not necessarily improved even if H 2 O 2 is added and the ultraviolet oxidation treatment is performed. Therefore, in the water treatment apparatus based on the present invention, it is preferable that the dissolved oxygen concentration of the outlet water of the deoxidizer 10 is 1 mg / L or less. Since dissolved oxygen absorbs ultraviolet rays, when the dissolved oxygen concentration is high, the amount of ultraviolet rays that should originally be used for the decomposition reaction of organic substances decreases, and the decomposition of organic substances becomes difficult to proceed. On the other hand, by removing dissolved oxygen to some extent, the influence of absorption of ultraviolet rays can be reduced. As a result, the ultraviolet rays efficiently react with the organic substances to improve the TOC removal rate. In addition, ultraviolet rays and H 2 O 2 react efficiently to generate hydroxyl radicals, which react with organic substances to improve the TOC removal rate. Therefore, by setting the dissolved oxygen concentration of the outlet water of the oxygen scavenger 10 to 1 mg / L or less, and setting it to 1/10 or less of the saturation amount under atmospheric pressure as a guide, the effect of the present invention can be further improved. It will be exhibited remarkably. Dissolved oxygen may be reduced to an extremely low concentration, for example, μg / L, but even if highly deoxidized treatment is performed to the order of μg / L, there is no significant difference in the obtained TOC removal performance. Considering the cost-effectiveness consisting of the cost required for the deoxidizing treatment and the TOC removal rate, it is preferable that the dissolved oxygen concentration of the outlet water of the deoxidizing device 10 is 0.05 mg / L or more and 1 mg / L or less. It is more preferably 0.05 mg / L or more and 0.5 mg / L or less, and further preferably 0.05 mg / L or more and 0.1 mg / L.

図2は、本発明に基づく水処理装置の別の構成例を示している。図1に示した水処理装置は、紫外線酸化処理によって被処理水中のTOC成分を分解しTOCを除去するものであるが、被処理水中のTOC濃度が高い場合には、紫外線酸化処理の負荷が大きくなりすぎるので、紫外線酸化処理を行う前に、具体的にはH22を添加する前に、被処理水のTOCを低減することが好ましい。図2に示した水処理装置は、図1に示す水処理装置において、紫外線酸化処理を行う紫外線照射装置30として、波長185nmの成分を含む紫外線を発生する紫外線酸化装置31を使用し、脱酸素装置10の前段に逆浸透膜装置15を設けたものである。被処理水はまず逆浸透膜装置15に供給されてそこでTOCが低減され、その後、脱酸素装置10に供給される。その結果、図2に示される水処理装置では、紫外線酸化装置31におけるTOC除去の負荷が軽減される。逆浸透膜装置15として、逆浸透膜が多段に設置された多段処理装置を用いることが好ましい。多段に設けられた逆浸透膜を用いることにより、さらにTOCを排除して、紫外線酸化処理の負荷を低減することができる。 FIG. 2 shows another configuration example of the water treatment apparatus based on the present invention. The water treatment apparatus shown in FIG. 1 decomposes the TOC component in the water to be treated by the ultraviolet oxidation treatment to remove the TOC. However, when the TOC concentration in the water to be treated is high, the load of the ultraviolet oxidation treatment is high. Since it becomes too large, it is preferable to reduce the TOC of the water to be treated before performing the ultraviolet oxidation treatment, specifically before adding H 2 O 2 . The water treatment apparatus shown in FIG. 2 uses the ultraviolet oxidation apparatus 31 that generates ultraviolet rays containing a component having a wavelength of 185 nm as the ultraviolet irradiation apparatus 30 that performs the ultraviolet oxidation treatment in the water treatment apparatus shown in FIG. 1, and deoxidizes. A reverse osmosis membrane device 15 is provided in front of the device 10. The water to be treated is first supplied to the reverse osmosis membrane device 15, where the TOC is reduced, and then supplied to the deoxidizer 10. As a result, in the water treatment apparatus shown in FIG. 2, the load of TOC removal in the ultraviolet oxidizing apparatus 31 is reduced. As the reverse osmosis membrane device 15, it is preferable to use a multi-stage processing device in which the reverse osmosis membrane is installed in multiple stages. By using the reverse osmosis membranes provided in multiple stages, TOC can be further eliminated and the load of the ultraviolet oxidation treatment can be reduced.

逆浸透膜装置15に設けられる逆浸透膜としては、TOC除去能力が高い、例えば海水の淡水化などの用いられるような高阻止率の逆浸透膜を用いることが好ましい。具体的には、有効圧力1MPaあたりの透過流束が0.5m3/m2/d以下であることを特徴するものである。本発明に基づく水処理装置において使用することができる逆浸透膜としては、例えば、SWCシリーズ(Hydranautics社製)、TM800シリーズ(東レ社製)、SW30シリーズ(DOW社製)、HR−ROシリーズ(栗田工業社製)などが挙げられる。より具体的には、SWC5MAX(有効圧力1MPaあたりの透過流束(以下同じ)0.32m3/m2/d)(Hydranautics社製)、SWC6MAX(0.43m3/m2/d社製)(Hydranautics社製)、SW30ULE(0.39m3/m2/d)(DOW社製)、SW30HRLE(0.25m3/m2/d)(DOW社製)、TM820V(0.32m3/m2/d)(東レ社製)、TM820K(0.20m3/m2/d)(東レ社製)、HR−RO(0.36m3/m2/d)(栗田工業社製)などを用いることができる。 As the reverse osmosis membrane provided in the reverse osmosis membrane device 15, it is preferable to use a reverse osmosis membrane having a high TOC removing ability and a high blocking rate such as that used for desalination of seawater. Specifically, it is characterized in that the permeation flux per 1 MPa of effective pressure is 0.5 m 3 / m 2 / d or less. Examples of the reverse osmosis membrane that can be used in the water treatment apparatus based on the present invention include SWC series (manufactured by Hydranautics), TM800 series (manufactured by Toray Industries), SW30 series (manufactured by DOWN), and HR-RO series (manufactured by DH-RO). (Made by Kurita Water Industries, Ltd.). More specifically, SWC5MAX (permeated flow flux per 1 MPa of effective pressure (same below) 0.32 m 3 / m 2 / d) (manufactured by Hydranautics), SWC6MAX (manufactured by 0.43 m 3 / m 2 / d) (Made by Hydranatics), SW30ULE (0.39 m 3 / m 2 / d) (manufactured by DOWN), SW30HRLE (0.25 m 3 / m 2 / d) (manufactured by DOWN), TM820V (0.32 m 3 / m) 2 / d) (manufactured by Toray), TM820K (0.20 m 3 / m 2 / d) (manufactured by Toray), HR-RO (0.36 m 3 / m 2 / d) (manufactured by Kurita Water Industries), etc. Can be used.

なお、透過流束は、透過水量を膜面積で割ったものである。「有効圧力」とは、JIS K3802:2015「膜用語」に記載の、平均操作圧から浸透圧差および二次側圧を差し引いた、膜に働く有効な圧である。なお、平均操作圧は、膜の一次側における膜供給水の圧力(運転圧力)と濃縮水の圧力(濃縮水出口圧力)の平均値で、以下の式により表される。 The permeated flux is the amount of permeated water divided by the membrane area. The "effective pressure" is the effective pressure acting on the membrane, which is described in JIS K3802: 2015 "Membrane Term", which is obtained by subtracting the osmotic pressure difference and the secondary lateral pressure from the average operating pressure. The average operating pressure is the average value of the pressure of the membrane supply water (operating pressure) and the pressure of the concentrated water (concentrated water outlet pressure) on the primary side of the membrane, and is expressed by the following formula.

平均操作圧=(運転圧力+濃縮水出口圧力)/2
有効圧力1MPaあたりの透過流束は、膜メーカーのカタログに記載の情報、例えば、透過水量、膜面積、評価時の回収率、NaCl濃度等から計算することができる。また、1つまたは複数の圧力容器に同一の透過流束である膜が複数本装填されている場合、圧力容器の平均操作圧/2次側圧力、原水水質、透過水量、膜本数等の情報より、装填された膜の透過流束を計算することができる。
Average operating pressure = (operating pressure + concentrated water outlet pressure) / 2
The permeated flux per 1 MPa of effective pressure can be calculated from the information described in the catalog of the membrane manufacturer, for example, the amount of permeated water, the membrane area, the recovery rate at the time of evaluation, the NaCl concentration and the like. In addition, when one or more pressure vessels are loaded with a plurality of membranes having the same permeated flux, information such as average operating pressure / secondary side pressure of the pressure vessel, raw water quality, permeated water amount, number of membranes, etc. Therefore, the permeation flux of the loaded membrane can be calculated.

逆浸透膜の膜形状としては、特に限定されるものではなく、例えば、環状型、平膜型、スパイラル型、中空糸型等が挙げられ、スパイラル型については、4インチ型、8インチ型、16インチ型等のいずれでもあってもよい。 The membrane shape of the reverse osmosis membrane is not particularly limited, and examples thereof include an annular type, a flat membrane type, a spiral type, a hollow fiber type, and the spiral type includes a 4-inch type, an 8-inch type, and the like. It may be any of 16-inch type and the like.

図2に示した水処理装置では、脱酸素装置10の前段に逆浸透膜装置15を設けているが、紫外線酸化処理の負荷を低減するための逆浸透膜装置15の位置は、過酸化水素添加装置20の入口側であればいずれであってもよい。したがって、図3に示すように、脱酸素装置10と逆浸透膜装置15の位置を入れ替え、被処理水がまず脱酸素装置10に供給され、脱酸素装置10の出口水が逆浸透膜装置15を経て過酸化水素添加装置20に供給されるようにしてもよい。 In the water treatment device shown in FIG. 2, a reverse osmosis film device 15 is provided in front of the deoxidizing device 10, but the position of the reverse osmosis film device 15 for reducing the load of the ultraviolet oxidation treatment is hydrogen peroxide. It may be any of the inlet side of the addition device 20. Therefore, as shown in FIG. 3, the positions of the deoxidizer 10 and the reverse osmosis membrane device 15 are exchanged, the water to be treated is first supplied to the deoxidizer 10, and the outlet water of the deoxidizer 10 is the reverse osmosis membrane device 15. May be supplied to the hydrogen peroxide addition device 20 via the above.

本発明においては、紫外線照射装置の出口側に、紫外線酸化処理での分解生成物や被処理水に由来するイオン性不純物を除去するためのイオン交換装置を設けるようにしてもよい。図4に示す水処理装置では、図2に示す水処理装置に対し、さらに、紫外線酸化装置31の出口水が供給されるイオン交換装置35が設けられている。イオン交換装置35からの出口水が、この水処理装置で処理されて外部に供給される水ということになる。 In the present invention, an ion exchange device for removing decomposition products in the ultraviolet oxidation treatment and ionic impurities derived from the water to be treated may be provided on the outlet side of the ultraviolet irradiation device. In the water treatment device shown in FIG. 4, the water treatment device shown in FIG. 2 is further provided with an ion exchange device 35 to which the outlet water of the ultraviolet oxidizing device 31 is supplied. The outlet water from the ion exchange device 35 is the water that is treated by this water treatment device and supplied to the outside.

被処理水に含まれる有機物には、紫外線酸化処理を受ける前の段階からイオン性である物質も含まれるが、H22を添加して行う紫外線酸化処理によって、各種の有機酸や炭酸などのイオン性物質が生成する。イオン交換装置35は、これらのイオン性物質を除去する。イオン交換装置35は、例えば、イオン交換樹脂が充填されたイオン交換塔で構成される。紫外線酸化装置31の出口水におけるイオン性不純物の濃度が大きい場合には、再生型のイオン交換装置を用いることが好ましい。紫外線酸化処理による反応生成物である有機酸や炭酸は水中では陰イオンの形態をとるので、イオン交換装置35に用いられるイオン交換樹脂は、少なくとも陰イオン交換樹脂である。有機酸や炭酸は弱酸であるため、これらを確実に除去するために、陰イオン交換樹脂として強塩基性陰イオン交換樹脂を用いることが好ましい。さらに、イオン交換樹脂として、陰イオン交換樹脂と陽イオン交換樹脂との混合樹脂を用いたり、イオン交換塔として、混合樹脂が充填された混床式イオン交換塔を用いることによって、高純度の処理水を得ることができる。 The organic substances contained in the water to be treated include substances that are ionic from the stage before being subjected to the ultraviolet oxidation treatment, but various organic acids, carbonic acid, etc. are produced by the ultraviolet oxidation treatment performed by adding H 2 O 2. Ionic substances are produced. The ion exchange device 35 removes these ionic substances. The ion exchange device 35 is composed of, for example, an ion exchange tower filled with an ion exchange resin. When the concentration of ionic impurities in the outlet water of the ultraviolet oxidizing device 31 is high, it is preferable to use a regenerative ion exchange device. Since organic acids and carbon dioxide, which are reaction products of the ultraviolet oxidation treatment, take the form of anions in water, the ion exchange resin used in the ion exchange device 35 is at least an anion exchange resin. Since organic acids and carbonic acids are weak acids, it is preferable to use a strongly basic anion exchange resin as the anion exchange resin in order to reliably remove them. Further, high-purity treatment is performed by using a mixed resin of an anion exchange resin and a cation exchange resin as the ion exchange resin, or by using a mixed bed type ion exchange tower filled with the mixed resin as the ion exchange tower. You can get water.

ところで、紫外線酸化装置31の出口水に含まれる過剰なH22は、イオン交換装置35内のイオン交換樹脂を酸化劣化させるおそれがある。そのため、イオン交換装置35の前段でH22を除去することが好ましい。図5に示す水処理装置は、図4に示す水処理装置において、紫外線酸化装置31とイオン交換装置35との間に、水中のH22を分解する過酸化水素分解装置37を設けたものである。紫外線酸化装置31の出口水は、過酸化水素分解装置37を通って過酸化水素が除去され、その後、イオン交換装置35に供給される。過酸化水素分解装置35は、例えば、活性炭が充填された分解塔である。低コストで効果的にH22を分解できるものとして、活性炭を用いることが好ましい。あるいは、過酸化水素分解装置37において、パラジウム(Pd)触媒を用いてH22を分解するようにすることもできる。 By the way, excess H 2 O 2 contained in the outlet water of the ultraviolet oxidizing device 31 may oxidatively deteriorate the ion exchange resin in the ion exchange device 35. Therefore, it is preferable to remove H 2 O 2 before the ion exchange device 35. In the water treatment apparatus shown in FIG. 4, the water treatment apparatus shown in FIG. 4 is provided with a hydrogen peroxide decomposition apparatus 37 for decomposing H 2 O 2 in water between the ultraviolet oxidizing apparatus 31 and the ion exchange apparatus 35. It is a thing. Hydrogen peroxide is removed from the outlet water of the ultraviolet oxidizing device 31 through the hydrogen peroxide decomposition device 37, and then supplied to the ion exchange device 35. The hydrogen peroxide decomposition device 35 is, for example, a decomposition tower filled with activated carbon. It is preferable to use activated carbon as one that can effectively decompose H 2 O 2 at low cost. Alternatively, in the hydrogen peroxide decomposition apparatus 37, H 2 O 2 can be decomposed using a palladium (Pd) catalyst.

以上、本発明に基づく水処理装置に種々の構成例を説明したが、これらの水処理装置は、例えば、TOC濃度が0.1mg/L以上であり、溶存酸素濃度が1mg/Lを超える被処理水中の有機物を分解処理するために用いることできる。本発明によれば、後述する実施例から明らかになるように、mg/LのオーダーでTOCを含む被処理水を高いTOC除去率で処理することができる。また本発明に基づく水処理装置において、紫外線照射装置30あるいは紫外線酸化装置31の出口水における溶存酸素濃度は、例えば、0.1mg/L以下である。 Although various configuration examples have been described above for the water treatment apparatus based on the present invention, these water treatment apparatus have, for example, a TOC concentration of 0.1 mg / L or more and a dissolved oxygen concentration of more than 1 mg / L. It can be used to decompose organic substances in treated water. According to the present invention, as will become clear from the examples described later, water to be treated containing TOC can be treated with a high TOC removal rate on the order of mg / L. Further, in the water treatment device based on the present invention, the dissolved oxygen concentration in the outlet water of the ultraviolet irradiation device 30 or the ultraviolet oxidizing device 31 is, for example, 0.1 mg / L or less.

本発明において被処理水は、例えば、工程排水に由来するものである。本発明の水処理方法は、工程排水、特に半導体製造工程など超純水を使用する工程から排出される排水を回収して処理するために用いられる。本発明の水処理方法によって処理された水は、超純水を生成するための原水として用いることができる。したがって、本発明の水処理方法は、超純水を使用する工程からの排水を回収して処理し、循環再利用のために超純水を生成するために使用することができる。 In the present invention, the water to be treated is derived from, for example, process wastewater. The water treatment method of the present invention is used for collecting and treating process wastewater, particularly wastewater discharged from a process using ultrapure water such as a semiconductor manufacturing process. The water treated by the water treatment method of the present invention can be used as raw water for producing ultrapure water. Therefore, the water treatment method of the present invention can be used to collect and treat wastewater from a step using ultrapure water to generate ultrapure water for circulation reuse.

図6は、本発明に基づく水処理装置の応用例を示している。本発明に基づく水処理装置81は、超純水を使用する工程である超純水使用プロセス83から回収した回収水を被処理水とし、これを処理して有機物を低減した回収水を生成する。超純水使用プロセス83で使用する超純水は、一次純水が供給される超純水製造装置82によって製造されるが、水処理装置81からの有機物を低減した回収水は、一次純水と混合されて超純水製造装置82に供給される。図6に示すシステムでは、水処理装置81を介して超純水の回収再利用が実現しており、超純水使用プロセス83で消費されて回収できなかった超純水の分だけ一次純水を超純水製造装置82に供給すればよいので、大幅な節水を実現することができる。 FIG. 6 shows an application example of a water treatment apparatus based on the present invention. The water treatment apparatus 81 based on the present invention uses the recovered water recovered from the ultrapure water use process 83, which is a step of using ultrapure water, as the water to be treated, and processes this to generate recovered water with reduced organic substances. .. The ultrapure water used in the ultrapure water use process 83 is produced by the ultrapure water production device 82 to which the primary pure water is supplied, but the recovered water from the water treatment device 81 with reduced organic matter is the primary pure water. Is mixed with and supplied to the ultrapure water production apparatus 82. In the system shown in FIG. 6, the recovery and reuse of ultrapure water is realized via the water treatment device 81, and the primary pure water is consumed by the ultrapure water use process 83 and cannot be recovered. Can be supplied to the ultrapure water production apparatus 82, so that significant water saving can be realized.

なお、半導体製造工程に用いられる超純水ではそこに含まれる溶存酸素濃度の上限値として例えば5μg/Lといった値が設定されていることがある。これに対して、超純水の製造に用いられた回収水では、一般に脱酸素処理を行っていないので、溶存酸素が含まれている。本発明の水処理方法では脱酸素処理を行っており、この水処理方法によって得られる処理水での溶存酸素濃度を上述のように0.1mg/L以下とすることができるから、本発明の水処理方法からの処理水を一次純水に混合することによって、全体として、超純水製造における溶存酸素低減のための処理の負荷も低減することができる。 In ultrapure water used in the semiconductor manufacturing process, a value such as 5 μg / L may be set as an upper limit value of the dissolved oxygen concentration contained therein. On the other hand, the recovered water used for producing ultrapure water generally contains dissolved oxygen because it is not deoxidized. In the water treatment method of the present invention, deoxidation treatment is performed, and the dissolved oxygen concentration in the treated water obtained by this water treatment method can be 0.1 mg / L or less as described above. By mixing the treated water from the water treatment method with the primary pure water, it is possible to reduce the treatment load for reducing dissolved oxygen in the production of ultrapure water as a whole.

次に、実施例および比較例に基づいて、本発明をさらに詳しく説明する。 Next, the present invention will be described in more detail based on Examples and Comparative Examples.

[実施例1、比較例1]
図7に示す構成の装置を組み立てた。この装置は、純水に対して膜脱気による脱酸素処理を行ったのちに、イソプロピルアルコール(CH3CH(OH)CH3;IPA)を添加し、さらにH22を添加し、IPAとH22が添加された水に対して紫外線酸化処理を行うようにしたものである。ここで用いる純水の水質は、抵抗率が1MΩ・cm以上、TOCが3μg/L以下、溶存酸素濃度が7.8mg/L、H22濃度が1μg/L以下であった。この装置は、IPAを有機物(TOC成分)として含む純水を被処理水として、この被処理水に含まれる有機物を分解処理する装置であり、IPAを添加する前の膜脱気による脱酸素処理は被処理水の溶存酸素濃度を低減するための処理であると言える。膜脱気によっては水中のIPAは一般に除去されないことを考えれば、図7に示す装置により、IPAを含む被処理水を脱酸素処理に供給して脱酸素処理を行い、その後H22を添加して紫外線酸化処理を行う場合と同じ結果が得られることになる。
[Example 1, Comparative Example 1]
The device having the configuration shown in FIG. 7 was assembled. In this device, pure water is deoxidized by membrane degassing, then isopropyl alcohol (CH 3 CH (OH) CH 3 ; IPA) is added, and then H 2 O 2 is added to IPA. The water to which H 2 O 2 is added is subjected to ultraviolet oxidation treatment. The water quality of the pure water used here had a resistivity of 1 MΩ · cm or more, a TOC of 3 μg / L or less, a dissolved oxygen concentration of 7.8 mg / L, and an H 2 O 2 concentration of 1 μg / L or less. This device uses pure water containing IPA as an organic substance (TOC component) as water to be treated, and decomposes the organic substance contained in the water to be treated. Deoxidizing treatment by membrane degassing before adding IPA. Can be said to be a treatment for reducing the dissolved oxygen concentration of the water to be treated. Considering that IPA in water is generally not removed by membrane degassing, the apparatus shown in FIG. 7 supplies water to be treated containing IPA to the deoxidizing treatment to perform the deoxidizing treatment, and then H 2 O 2 is added. The same result as the case of adding and performing the ultraviolet oxidation treatment will be obtained.

図7に示す装置において、純水は脱酸素装置である膜脱気モジュール11に供給される。膜脱気モジュール11としてはセルガード製「リキセルG284」を用い、膜脱気モジュール11の気相側をポンプ12で減圧にして、溶存酸素濃度が所定濃度となるように脱気処理を施した。膜脱気モジュール11を通過して溶存酸素濃度を低減した水に対し、貯槽51およびポンプ52を介して所定量のIPAをTOC成分として添加した。これにより、溶存酸素濃度が低減された被処理水が生成したことになる。さらにこの被処理水に対し、貯槽21およびポンプ22を介し、所定量のH22を添加した。H22を添加された被処理水の一部を分岐して、その溶存酸素濃度およびTOC濃度をそれぞれ溶存酸素計(DO計)56およびTOC計57でオンライン測定した。DO計56としてはTOAエレクトロニクス社製DO−30Aを用い、TOC計57としてはシーバース社製のSIEVERS900型TOC計を用いた。DO計56での溶存酸素濃度は、膜脱気モジュール11の出口水における溶存酸素濃度となる。TOC計57でのTOC測定値TOC0は、被処理水のTOC濃度となる。 In the apparatus shown in FIG. 7, pure water is supplied to the membrane degassing module 11 which is an oxygen scavenger. As the membrane degassing module 11, "Lixel G284" manufactured by Cellguard was used, and the gas phase side of the membrane degassing module 11 was depressurized by a pump 12 to perform a degassing treatment so that the dissolved oxygen concentration became a predetermined concentration. A predetermined amount of IPA was added as a TOC component to the water that passed through the membrane degassing module 11 and whose dissolved oxygen concentration was reduced, via the storage tank 51 and the pump 52. As a result, water to be treated with a reduced dissolved oxygen concentration is generated. Further, a predetermined amount of H 2 O 2 was added to the water to be treated via the storage tank 21 and the pump 22. A part of the water to be treated to which H 2 O 2 was added was branched, and its dissolved oxygen concentration and TOC concentration were measured online with a dissolved oxygen meter (DO meter) 56 and a TOC meter 57, respectively. A DO-30A manufactured by TOA Electronics Co., Ltd. was used as the DO total 56, and a SIEVERS900 type TOC meter manufactured by Seaverse Co., Ltd. was used as the TOC total 57. The dissolved oxygen concentration in the DO total 56 is the dissolved oxygen concentration in the outlet water of the membrane degassing module 11. The TOC measured value TOC0 in the TOC total 57 is the TOC concentration of the water to be treated.

22が添加された被処理水のうち分岐しなかった方の水を紫外線酸化装置31に供給した。紫外線酸化装置31としては日本フォトサイエンス社製JPW−2を使用し、紫外線酸化装置31内には、紫外線ランプとして、波長254nmの光と波長185nmの光の両方を発生する低圧紫外線ランプ(日本フォトサイエンス社製の165Wの紫外線ランプAZ−9000W)を4本配置した。紫外線酸化装置31の出口水の一部を分岐し、イオン交換装置35に通水し、イオン交換装置35からの出口水すなわちこの水処理装置における処理水のTOC濃度TOC1をTOC計58によって測定した。TOC計58としては、シーバース社製のSIEVERS900型TOC計を用いた。 Of the water to be treated to which H 2 O 2 was added, the water that did not branch was supplied to the ultraviolet oxidizing apparatus 31. JPW-2 manufactured by Nippon Photo Science Co., Ltd. is used as the ultraviolet oxidizing device 31, and a low-pressure ultraviolet lamp (Nippon Photo) that generates both light having a wavelength of 254 nm and light having a wavelength of 185 nm is used as an ultraviolet lamp in the ultraviolet oxidizing device 31. Four 165W ultraviolet lamps (AZ-9000W) manufactured by Science Co., Ltd. were arranged. A part of the outlet water of the ultraviolet oxidizing device 31 was branched and passed through the ion exchange device 35, and the TOC concentration TOC1 of the outlet water from the ion exchange device 35, that is, the treated water in this water treatment device was measured by a TOC total 58. .. As the TOC total 58, a SIEVERS 900 type TOC meter manufactured by Seaverse Co., Ltd. was used.

イオン交換装置35としては、混床式イオン交換装置を用いた。混床式イオン交換装置は、アクリル樹脂製の円筒容器(内径25mm、高さ1000mm)を有し、この容器内に混床のイオン交換樹脂(EG−5A:オルガノ社製)を300mL(層高約600mm)で充填したものである。 As the ion exchange device 35, a mixed bed type ion exchange device was used. The mixed-bed ion exchange device has a cylindrical container (inner diameter 25 mm, height 1000 mm) made of acrylic resin, and 300 mL (layer height) of mixed-bed ion exchange resin (EG-5A: manufactured by Organo Corporation) is placed in this container. It is filled with about 600 mm).

この水処理装置におけるTOC除去率を以下の計算式により定義する:
TOC除去率(%)=((TOC0−TOC1)/TOC0)×100
上述のように、TOC0は、被処理水のTOC濃度、すなわちTOC計57で測定されたTOC濃度であり、TOC1は、イオン交換装置35からの処理水のTOC濃度、すなわちTOC計58によって測定されたTOC濃度である。
The TOC removal rate in this water treatment device is defined by the following formula:
TOC removal rate (%) = ((TOC0-TOC1) / TOC0) x 100
As described above, TOC0 is the TOC concentration of the water to be treated, that is, the TOC concentration measured by the TOC total 57, and TOC1 is the TOC concentration of the treated water from the ion exchange device 35, that is, the TOC total 58. TOC concentration.

膜脱気モジュール11によって紫外線酸化装置31の入口の溶存酸素濃度を50μg/Lとなるように調整し、IPAの添加量を調整して被処理水のTOC濃度(紫外線酸化装置31の入口でのTOC濃度)が500μg/Lであるようにした、この状態で、H22の添加量を0mg/L(比較例1−1)、2.5mg/L(実施例1−1)、5.0mg/L(実施例1−2)、10.0mg/L(実施例1−3)に調整して、それぞれの場合についてTOC除去率を測定した。結果を表1に示す。なお紫外線酸化装置31への供給水量は800L/時間であった。 The membrane degassing module 11 adjusts the dissolved oxygen concentration at the inlet of the ultraviolet oxidizing device 31 to 50 μg / L, and adjusts the amount of IPA added to adjust the TOC concentration of the water to be treated (at the inlet of the ultraviolet oxidizing device 31). The TOC concentration) was set to 500 μg / L, and in this state, the amount of H 2 O 2 added was 0 mg / L (Comparative Example 1-1), 2.5 mg / L (Example 1-1), 5 The TOC removal rate was measured in each case after adjusting to 0.0 mg / L (Example 1-2) and 10.0 mg / L (Example 1-3). The results are shown in Table 1. The amount of water supplied to the ultraviolet oxidizing device 31 was 800 L / hour.

実施例1−1〜1−3と比較例1−1とから、H22を添加することでTOC除去率が向上する結果が得られた。 From Examples 1-1 to 1-3 and Comparative Example 1-1, the result that the TOC removal rate was improved by adding H 2 O 2 was obtained.

またこれとは別に、膜脱気モジュール11をバイパスすることにより溶存酸素濃度が7.8mg/Lとなるように調整し、H22の添加量を0mg/Lとして、TOC除去率を測定した(比較例1−2)。比較例1−2の結果も表1に示す。比較例1−2でのTOC除去率が82%であったことから、被処理水中の溶存酸素濃度を低減し、かつH22が添加された被処理水に紫外線を照射することで、TOC除去率が向上することが分かった。 Separately from this, the dissolved oxygen concentration was adjusted to 7.8 mg / L by bypassing the membrane degassing module 11, and the TOC removal rate was measured with the addition amount of H 2 O 2 being 0 mg / L. (Comparative Example 1-2). The results of Comparative Example 1-2 are also shown in Table 1. Since the TOC removal rate in Comparative Example 1-2 was 82%, the dissolved oxygen concentration in the water to be treated was reduced, and the water to be treated to which H 2 O 2 was added was irradiated with ultraviolet rays. It was found that the TOC removal rate was improved.

Figure 0006752692
Figure 0006752692

[実施例2、比較例2]
被処理水のTOC濃度(紫外線酸化装置31の入口でのTOC濃度)を1000μg/Lとしたこと以外は実施例1−1〜1−3、比較例1−1と同条件で実験を行い、これらをそれぞれ実施例2−1〜2−3、比較例2−1とした。結果を表2に示す。これらからも、被処理水中の溶存酸素濃度を低減し、H22を添加することでTOC除去率が向上する結果が得られた。
[Example 2, Comparative Example 2]
Experiments were conducted under the same conditions as in Examples 1-1 to 1-3 and Comparative Example 1-1, except that the TOC concentration of the water to be treated (TOC concentration at the inlet of the ultraviolet oxidizing device 31) was 1000 μg / L. These were designated as Examples 2-1 to 2-3 and Comparative Example 2-1 respectively. The results are shown in Table 2. From these as well, it was obtained that the TOC removal rate was improved by reducing the dissolved oxygen concentration in the water to be treated and adding H 2 O 2 .

またこれとは別に、膜脱気モジュール11をバイパスすることにより溶存酸素濃度が7.8mg/Lとなるように調整し、H22の添加量を0mg/L(比較例2−2)、2.5mg/L(比較例2−3)として、TOC除去率を測定した。これらの結果も表2に示す。比較例2−2,2−3におけるTOC除去率はいずれも71%であり、溶存酸素濃度を低減させないでH22を添加しても紫外線酸化処理におけるTOC除去率が向上しないことが分かった。 Separately from this, the dissolved oxygen concentration was adjusted to 7.8 mg / L by bypassing the membrane degassing module 11, and the amount of H 2 O 2 added was 0 mg / L (Comparative Example 2-2). , 2.5 mg / L (Comparative Example 2-3), and the TOC removal rate was measured. These results are also shown in Table 2. The TOC removal rate in Comparative Examples 2-2 and 2-3 was 71%, and it was found that the TOC removal rate in the ultraviolet oxidation treatment did not improve even if H 2 O 2 was added without reducing the dissolved oxygen concentration. It was.

Figure 0006752692
Figure 0006752692

[実施例3、比較例3]
紫外線酸化装置31の入口での溶存酸素濃度を500μg/L、H22添加量を0mg/L(比較例3−1)、1.5mg/L(実施例3−1)、2.5mg/L(実施例3−2)、5.0mg/L(実施例3−3)とした以外は、実施例1−1と同様の条件で実験を行った。結果を表3に示す。
[Example 3, Comparative Example 3]
The dissolved oxygen concentration at the inlet of the ultraviolet oxidizing device 31 was 500 μg / L, and the amount of H 2 O 2 added was 0 mg / L (Comparative Example 3-1), 1.5 mg / L (Example 3-1), 2.5 mg. The experiment was carried out under the same conditions as in Example 1-1 except that / L (Example 3-2) and 5.0 mg / L (Example 3-3). The results are shown in Table 3.

Figure 0006752692
Figure 0006752692

[実施例4、比較例4]
紫外線酸化装置31の入口での溶存酸素濃度を1000μg/L、H22添加量を0mg/L(比較例4−1)、1.5mg/L(実施例4−1)、2.0mg/L(実施例4−2)、2.5mg/L(実施例4−3)とした以外は、実施例1−1と同様の条件で実験を行った。結果を表4に示す。
[Example 4, Comparative Example 4]
The dissolved oxygen concentration at the inlet of the ultraviolet oxidizing device 31 was 1000 μg / L, and the amount of H 2 O 2 added was 0 mg / L (Comparative Example 4-1), 1.5 mg / L (Example 4-1), 2.0 mg. The experiment was carried out under the same conditions as in Example 1-1 except that / L (Example 4-2) and 2.5 mg / L (Example 4-3). The results are shown in Table 4.

Figure 0006752692
Figure 0006752692

[実施例5、比較例5]
膜脱気モジュール11によって紫外線酸化装置31の入口の溶存酸素濃度を50μg/Lおよび1000μg/Lとなるように調整し、IPAの添加量を調整して被処理水のTOC濃度(紫外線酸化装置31の入口でのTOC濃度)が100μg/Lとなるようにした。この状態で、H22の添加量を0mg/L(比較例5−1、比較例5−2)、0.2mg/L(実施例5−1)、0.05mg/L(実施例5−2)に調整して、それぞれの場合についてTOC除去率を測定した。紫外線酸化装置31への供給水量は2000L/時間であった。なおそれ以外については実施例1−1と同様の条件で実験を行った。結果を表5に示す。
[Example 5, Comparative Example 5]
The membrane degassing module 11 adjusts the dissolved oxygen concentration at the inlet of the ultraviolet oxidizing device 31 to 50 μg / L and 1000 μg / L, and adjusts the amount of IPA added to adjust the TOC concentration of the water to be treated (ultraviolet oxidizing device 31). The TOC concentration at the entrance of the sample was set to 100 μg / L. In this state, the amount of H 2 O 2 added was 0 mg / L (Comparative Example 5-1 and Comparative Example 5-2), 0.2 mg / L (Example 5-1), and 0.05 mg / L (Example 5-1). After adjusting to 5-2), the TOC removal rate was measured in each case. The amount of water supplied to the ultraviolet oxidizing apparatus 31 was 2000 L / hour. Other than that, the experiment was carried out under the same conditions as in Example 1-1. The results are shown in Table 5.

またこれとは別に、膜脱気モジュール11をバイパスすることにより溶存酸素濃度が7.8mg/Lとなるように調整し、H22の添加量を0mg/L(比較例5−3)としてTOC除去率を測定した。これらの結果も表5に示す。 Separately from this, the dissolved oxygen concentration was adjusted to 7.8 mg / L by bypassing the membrane degassing module 11, and the amount of H 2 O 2 added was 0 mg / L (Comparative Example 5-3). The TOC removal rate was measured as. These results are also shown in Table 5.

Figure 0006752692
Figure 0006752692

10 脱酸素装置
15 逆浸透膜装置
20 過酸化水素添加装置
30 紫外線照射装置
31 紫外線酸化装置
10 Oxygen scavenger 15 Reverse osmosis membrane device 20 Hydrogen peroxide addition device 30 Ultraviolet irradiation device 31 Ultraviolet oxidation device

Claims (14)

被処理水に含まれる有機物を分解処理する水処理方法であって、
前記被処理水の溶存酸素濃度を低減する脱酸素段階と、
前記被処理水に過酸化水素を添加する過酸化水素添加段階と、
溶存酸素濃度が低減されかつ過酸化水素が添加された前記被処理水に対し紫外線を照射する紫外線照射段階と、
前記紫外線照射段階において紫外線が照射された前記被処理水に含まれる過酸化水素を分解する過酸化水素分解段階と、
を有し、
前記脱酸素段階の出口水の溶存酸素濃度が0.05mg/L以上1mg/L以下である水処理方法。
A water treatment method that decomposes organic substances contained in water to be treated.
The deoxidizing step to reduce the dissolved oxygen concentration of the water to be treated, and
The hydrogen peroxide addition step of adding hydrogen peroxide to the water to be treated, and
An ultraviolet irradiation step of irradiating ultraviolet rays to the water to be treated dissolved oxygen concentration is reduced and the hydrogen peroxide is added,
In the ultraviolet irradiation step, a hydrogen peroxide decomposition step of decomposing hydrogen peroxide contained in the water to be treated which has been irradiated with ultraviolet rays, and a hydrogen peroxide decomposition step.
Have a,
Dissolved oxygen concentration 0.05 mg / L or more 1 mg / L der Ru water treatment process following the outlet water of the deoxidation step.
前記紫外線照射段階において、185nm以下の波長を含む紫外線を照射する、請求項1に記載の水処理方法。 The water treatment method according to claim 1, wherein in the ultraviolet irradiation step, ultraviolet rays containing a wavelength of 185 nm or less are irradiated. 前記過酸化水素添加段階の前に、前記被処理水に含まれる有機物を逆浸透処理によって低減する段階をさらに有する、請求項1または2に記載の水処理方法。 The water treatment method according to claim 1 or 2, further comprising a step of reducing organic substances contained in the water to be treated by reverse osmosis treatment before the hydrogen peroxide addition step. 前記逆浸透処理で用いる逆浸透膜は、有効圧力1MPaあたりの透過流束が0.5m3/m2/d以下である、請求項3に記載の水処理方法。 The water treatment method according to claim 3, wherein the reverse osmosis membrane used in the reverse osmosis treatment has a permeation flux of 0.5 m 3 / m 2 / d or less per 1 MPa of effective pressure. 前記水処理方法による処理が行われる前の前記被処理水は、全有機炭素濃度が0.1mg/L以上であり、溶存酸素濃度が1mg/Lを超える、請求項1乃至4のいずれか1項に記載の水処理方法。 Any one of claims 1 to 4, wherein the water to be treated before being treated by the water treatment method has a total organic carbon concentration of 0.1 mg / L or more and a dissolved oxygen concentration of more than 1 mg / L. The water treatment method described in the section. 前記過酸化水素分解段階においてパラジウム触媒を用いて過酸化水素を分解する、請求項1乃至5のいずれか1項に記載の水処理方法。 The water treatment method according to any one of claims 1 to 5, wherein hydrogen peroxide is decomposed using a palladium catalyst in the hydrogen peroxide decomposition step. 前記過酸化水素分解段階の出口水に含まれるイオン性物質を除去する陰イオン交換段階を有する、請求項1乃至6のいずれか1項に記載の水処理方法。 The water treatment method according to any one of claims 1 to 6, further comprising an anion exchange step for removing an ionic substance contained in the outlet water of the hydrogen peroxide decomposition step . 前記被処理水は工程排水に由来し、前記工程排水は超純水を使用する工程からの排出される水であり、前記水処理方法により処理された水が、前記工程で使用する超純水を生成するための原水として用いられる、請求項1乃至7のいずれか1項に記載の水処理方法。 The water to be treated is derived from process wastewater, the process wastewater is water discharged from a process using ultrapure water, and the water treated by the water treatment method is ultrapure water used in the process. The water treatment method according to any one of claims 1 to 7, which is used as raw water for producing water. 被処理水に含まれる有機物を分解処理する水処理装置であって、
前記被処理水の溶存酸素濃度を低減する脱酸素装置と、
前記被処理水に過酸化水素を添加する過酸化水素添加装置と、
溶存酸素濃度が低減され過酸化水素が添加された前記被処理水に対し紫外線を照射する紫外線照射装置と、
前記紫外線照射装置において紫外線が照射された前記被処理水に含まれる過酸化水素を分解する過酸化水素分解装置と、
を有し、
前記脱酸素装置の出口水の溶存酸素濃度が0.05mg/L以上1mg/L以下である水処理装置。
A water treatment device that decomposes and treats organic substances contained in water to be treated.
An oxygen scavenger that reduces the dissolved oxygen concentration in the water to be treated,
A hydrogen peroxide addition device that adds hydrogen peroxide to the water to be treated, and
An ultraviolet irradiation device that irradiates the water to be treated with ultraviolet rays with reduced dissolved oxygen concentration and added hydrogen peroxide.
A hydrogen peroxide decomposition device that decomposes hydrogen peroxide contained in the water to be treated that has been irradiated with ultraviolet rays in the ultraviolet irradiation device, and a hydrogen peroxide decomposition device.
Have a,
The dissolved oxygen concentration in the outlet water deoxygenation device 0.05 mg / L or more 1 mg / L or less der Ru water treatment apparatus.
前記紫外線照射装置は、185nm以下の波長を含む紫外線を照射する紫外線酸化装置である、請求項9に記載の水処理装置。 The water treatment device according to claim 9, wherein the ultraviolet irradiation device is an ultraviolet oxidizing device that irradiates ultraviolet rays having a wavelength of 185 nm or less. 逆浸透膜を有し前記被処理水に含まれる有機物を低減する逆浸透膜装置を前記過酸化水素添加装置の入口側に備える、請求項9または10に記載の水処理装置。 The water treatment apparatus according to claim 9 or 10, further comprising a reverse osmosis membrane apparatus having a reverse osmosis membrane and reducing organic substances contained in the water to be treated on the inlet side of the hydrogenation addition apparatus. 前記逆浸透膜は、有効圧力1MPaあたりの透過流束が0.5m3/m2/d以下である、請求項11に記載の水処理装置。 The water treatment apparatus according to claim 11, wherein the reverse osmosis membrane has a permeation flux of 0.5 m 3 / m 2 / d or less per 1 MPa of effective pressure. 前記水処理装置に供給される前記被処理水は、全有機炭素濃度が0.1mg/L以上であり、溶存酸素濃度が1mg/Lを超える請求項9乃至12のいずれか1項に記載の水処理装置。 The water to be treated, which is supplied to the water treatment apparatus, has a total organic carbon concentration of 0.1 mg / L or more and a dissolved oxygen concentration of more than 1 mg / L according to any one of claims 9 to 12. Water treatment equipment. 前記過酸化水素分解装置は、パラジウム触媒を用いて過酸化水素を分解する、請求項9乃至13のいずれか1項に記載の水処理装置。 The water treatment device according to any one of claims 9 to 13, wherein the hydrogen peroxide decomposition device decomposes hydrogen peroxide using a palladium catalyst .
JP2016224968A 2016-11-18 2016-11-18 Water treatment method and equipment Active JP6752692B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016224968A JP6752692B2 (en) 2016-11-18 2016-11-18 Water treatment method and equipment
TW106139243A TWI732969B (en) 2016-11-18 2017-11-14 Water treatment method and apparatus
CN201780067197.2A CN109890766B (en) 2016-11-18 2017-11-16 Water treatment method and apparatus
PCT/JP2017/041214 WO2018092831A1 (en) 2016-11-18 2017-11-16 Water treatment method and device
KR1020197014171A KR102248156B1 (en) 2016-11-18 2017-11-16 Water treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016224968A JP6752692B2 (en) 2016-11-18 2016-11-18 Water treatment method and equipment

Publications (2)

Publication Number Publication Date
JP2018079447A JP2018079447A (en) 2018-05-24
JP6752692B2 true JP6752692B2 (en) 2020-09-09

Family

ID=62145504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016224968A Active JP6752692B2 (en) 2016-11-18 2016-11-18 Water treatment method and equipment

Country Status (5)

Country Link
JP (1) JP6752692B2 (en)
KR (1) KR102248156B1 (en)
CN (1) CN109890766B (en)
TW (1) TWI732969B (en)
WO (1) WO2018092831A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7183208B2 (en) * 2020-02-14 2022-12-05 栗田工業株式会社 Ultrapure water production device and ultrapure water production method
CN111454851A (en) * 2020-03-20 2020-07-28 苏州禾优泰源农业科技有限公司 Aerobic fermentation system for microorganisms
JP7368310B2 (en) * 2020-05-20 2023-10-24 オルガノ株式会社 Boron removal equipment and boron removal method, and pure water production equipment and pure water production method
NO346187B1 (en) * 2020-07-01 2022-04-11 Niva Norwegian Institute For Water Res Method of neutralizing hydrogen peroxide in wastewater from aquaculture delousing treatment
JP2022175837A (en) * 2021-05-14 2022-11-25 栗田工業株式会社 Ultrapure water production method and apparatus
KR102553948B1 (en) 2023-02-14 2023-07-10 김기수 Water treatment apparatus for reduction

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305297A (en) 1992-04-30 1993-11-19 Kurita Water Ind Ltd Apparatus for treating acid drainage containing organic material
JP3645007B2 (en) * 1995-07-25 2005-05-11 野村マイクロ・サイエンス株式会社 Ultrapure water production equipment
JP3732903B2 (en) * 1996-09-11 2006-01-11 オルガノ株式会社 Ultrapure water production equipment
JPH10174804A (en) * 1996-12-19 1998-06-30 Nomura Micro Sci Co Ltd Ultrapure water production device
JPH11226569A (en) * 1998-02-12 1999-08-24 Japan Organo Co Ltd Apparatus for removing organic substance in water and apparatus for producing ultrapure water
JP3575271B2 (en) * 1998-03-06 2004-10-13 栗田工業株式会社 Pure water production method
JP2003266097A (en) * 2002-03-13 2003-09-24 Kurita Water Ind Ltd Ultrapure water making apparatus
JP5124946B2 (en) * 2006-01-12 2013-01-23 栗田工業株式会社 Removal method of hydrogen peroxide in ultrapure water in ultrapure water production equipment
TW200829520A (en) * 2007-01-08 2008-07-16 Advanced Retec Internat Co Ltd Wastewater recycling system and method of semiconductor process tail gas treatment equipment
TWI461370B (en) * 2007-12-26 2014-11-21 Organo Corp Production method and apparatus for pure water, method and apparatus for manufacturing ozone water, and method and apparatus for cleaning the same
WO2009122884A1 (en) * 2008-03-31 2009-10-08 栗田工業株式会社 Method for producing pure water and pure water production system
CN101423310A (en) * 2008-11-14 2009-05-06 钱志刚 Circulative reuse treatment method of electric ultrapure water
JP5499753B2 (en) 2010-02-18 2014-05-21 栗田工業株式会社 Water treatment method and apparatus
JP5512357B2 (en) 2010-04-05 2014-06-04 オルガノ株式会社 Pure water production method and apparatus
JP2014168743A (en) * 2013-03-04 2014-09-18 Nomura Micro Sci Co Ltd Pure water manufacturing method
JP6228531B2 (en) * 2014-12-19 2017-11-08 栗田工業株式会社 Ultrapure water production apparatus and ultrapure water production method

Also Published As

Publication number Publication date
KR102248156B1 (en) 2021-05-04
TW201829321A (en) 2018-08-16
CN109890766B (en) 2023-04-04
KR20190066055A (en) 2019-06-12
CN109890766A (en) 2019-06-14
TWI732969B (en) 2021-07-11
JP2018079447A (en) 2018-05-24
WO2018092831A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6752692B2 (en) Water treatment method and equipment
JP6752693B2 (en) Water treatment method and equipment
JP5649520B2 (en) Ultrapure water production equipment
JP6228531B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP3491328B2 (en) Ultrapure water production equipment
JP7289206B2 (en) Boron removal device, boron removal method, pure water production device, and pure water production method
WO2009082008A1 (en) Process and apparatus for removal of hydrogen peroxide, process and apparatus for production of ozonized water, and method and apparatus for washing
JP5512357B2 (en) Pure water production method and apparatus
JP2015073923A (en) Ultrapure water production method and system
JP4519930B2 (en) Ultrapure water production method and ultrapure water production apparatus
JPH1199394A (en) Method for removing organic matter in water
JP2017127875A (en) Ultrapure water system and ultrapure water production method
CN111233075A (en) Ultraviolet treatment method and system
JP7368310B2 (en) Boron removal equipment and boron removal method, and pure water production equipment and pure water production method
JP2018118253A (en) Ultrapure water production method and ultrapure water production system
JPH05305297A (en) Apparatus for treating acid drainage containing organic material
JP2006192354A (en) Non-regenerative type ion exchange vessel and ultrapure water production apparatus
JP2011218249A (en) Pure water production method and device
WO2022190608A1 (en) Method and apparatus for treating water
US20240246834A1 (en) Pure water production apparatus and pure water production method
US20210387878A1 (en) Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
JP2005161138A (en) Water treatment method and water treatment apparatus
JP2019107631A (en) UV oxidation treatment method
JP2001300557A (en) Method and device for decomposing difficult-to-decompose organic matter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200819

R150 Certificate of patent or registration of utility model

Ref document number: 6752692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250