Nothing Special   »   [go: up one dir, main page]

JP6747352B2 - Numerical control device and control method - Google Patents

Numerical control device and control method Download PDF

Info

Publication number
JP6747352B2
JP6747352B2 JP2017064562A JP2017064562A JP6747352B2 JP 6747352 B2 JP6747352 B2 JP 6747352B2 JP 2017064562 A JP2017064562 A JP 2017064562A JP 2017064562 A JP2017064562 A JP 2017064562A JP 6747352 B2 JP6747352 B2 JP 6747352B2
Authority
JP
Japan
Prior art keywords
acceleration
temperature
period
threshold value
spindle motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017064562A
Other languages
Japanese (ja)
Other versions
JP2018169664A (en
Inventor
賢祐 久留美
賢祐 久留美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2017064562A priority Critical patent/JP6747352B2/en
Publication of JP2018169664A publication Critical patent/JP2018169664A/en
Application granted granted Critical
Publication of JP6747352B2 publication Critical patent/JP6747352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)

Description

本発明は、数値制御装置と制御方法に関する。 The present invention relates to a numerical control device and a control method.

数値制御装置はサーボモータと送り軸を備える。送り軸はサーボモータで駆動する。数値制御装置は送り軸の加速度増加期間と加速度減少期間を有する。加速度増加期間は送り軸の加速開始時に加速度を増加する期間である。加速度減少期間は送り軸の加速終了時に加速度を減少する期間である。特許文献1記載の数値制御方法は、サーボモータの出力トルクを最大限利用する為に、加速度増加期間における加速度変化の傾きを加速度減少期間における加速度変化の傾きよりも大きく設定すると共に、加速度減少期間内において送り軸の加速度減少速度を一定の第一傾きである第一加速度減少速度から、第一傾きよりも大きな一定の第二傾きである第二加速度減少速度に切替える。 The numerical controller has a servomotor and a feed shaft. The feed shaft is driven by a servo motor. The numerical controller has a feed axis acceleration increasing period and an acceleration decreasing period. The acceleration increasing period is a period during which the acceleration is increased at the start of acceleration of the feed axis. The acceleration reduction period is a period in which the acceleration is reduced at the end of acceleration of the feed axis. The numerical control method described in Patent Document 1 sets the slope of the acceleration change during the acceleration increasing period to be larger than the slope of the acceleration change during the acceleration decreasing period in order to maximize the use of the output torque of the servo motor, and also reduces the acceleration decreasing period. In the above, the acceleration reduction speed of the feed axis is switched from the first acceleration reduction speed which is the constant first inclination to the second acceleration reduction speed which is the constant second inclination which is larger than the first inclination.

特許第5233592号公報Japanese Patent No. 5233592

特許文献1記載の方法は、サーボモータの出力トルクを最大限利用するので、連続運転を行うとオーバヒートが発生し易いという問題点があった。 Since the method described in Patent Document 1 makes maximum use of the output torque of the servo motor, there is a problem that overheating is likely to occur when continuous operation is performed.

本発明の目的は、サーボモータの出力トルクを有効利用しつつオーバヒートを抑制できる数値制御装置と制御方法を提供することである。 An object of the present invention is to provide a numerical control device and a control method capable of suppressing overheat while effectively utilizing the output torque of a servo motor.

請求項1の数値制御装置は、サーボモータと、前記サーボモータで駆動する駆動軸とを備える機械の制御を行い、前記駆動軸の加速開始時に加速度を増加する加速度増加期間と、前記駆動軸の加速終了時に加速度を減少する加速度減少期間とを有する数値制御装置において、前記サーボモータの温度を検出する温度検出手段が検出した温度が第一閾値未満か否か判断する温度判断手段と、前記温度判断手段が前記温度は前記第一閾値未満と判断した場合、前記加速度増加期間における加速度変化の傾きを前記加速度減少期間における加速度の傾きよりも大きく設定すると共に、前記加速度減少期間内において前記駆動軸の加速度減少速度を一定の第一傾きの第一加速度減少速度に設定した後、前記第一傾きよりも大きな一定の第二傾きの第二加速度減少速度に切替える二段加減速制御を実行する第一制御手段と、前記温度判断手段が前記温度は前記第一閾値以上と判断した場合、前記加速度増加期間における加速度変化の傾きと、前記加速度減少期間における加速度変化の傾きとを同一に設定する一段加減速制御を実行する第二制御手段とを備えたことを特徴とする。サーボモータの温度が第一閾値未満の場合、第一制御手段は、加速度増加期間における加速度変化の傾きを加速度減少期間における加速度変化の傾きよりも大きく設定する。数値制御装置はサーボモータの低速回転数側の最大出力トルクを有効利用できる上、加速度減少期間内の駆動軸の加速度減少速度をサーボモータの最大出力トルク特性に接近できる。故に数値制御装置はサーボモータの高速回転数側の最大出力トルクを有効利用でき、駆動軸の位置決めに要する時間を短縮できる。第一制御手段は二段加減速制御を更に実行する。二段加減速制御は、加速度減少期間内にて第一加速度減少速度から第二加速度減少速度に設定する。第二加速度減少速度は、第一加速度減少速度よりも大きい。故に数値制御装置は加速度減少速度をサーボモータの最大出力トルク特性に確実に近似できるので、サーボモータの中高速回転数側の最大出力トルクを有効利用できる。サーボモータの温度が第一閾値以上の場合、サーボモータのオーバヒートを抑制する為、第二制御手段は一段加減速制御を実行する。一段加減速制御は、加速度増加期間にける加速度変化の傾きと、加速度減少期間における加速度変化の傾きとを同一に設定する。故に数値制御装置は駆動軸における制御特性をサーボモータの最大出力トルクで規定する領域内に設定できるので、サーボモータのオーバヒートを抑制できる。数値制御装置はサーボモータの温度が低い場合に高速回転数側の出力トルクを利用できるので、加工周期を短縮できる。数値制御装置はサーボモータの温度が高い場合、二段加減速制御から自動的に一段加減速制御に切替えてサーボモータのオーバヒートを抑制できるので、サーボモータを長時間運転できる。尚、「加速度」とは、例えば正方向に加速運動しているときは正の値、正方向と逆方向に加速運動しているときは負の値を示すものであり、加速及び減速の何れの場合にも示すことができる。 The numerical control device according to claim 1, which controls a machine including a servomotor and a drive shaft driven by the servomotor, increases an acceleration period during which acceleration is increased at the start of acceleration of the drive shaft, and a drive shaft of the drive shaft. In a numerical control device having an acceleration decreasing period for decreasing acceleration at the end of acceleration, temperature judgment means for judging whether or not the temperature detected by the temperature detection means for detecting the temperature of the servo motor is less than a first threshold value, and the temperature. When the determination means determines that the temperature is less than the first threshold, the slope of the acceleration change in the acceleration increasing period is set to be larger than the slope of the acceleration in the acceleration decreasing period, and the drive shaft is set in the acceleration decreasing period. Setting a first acceleration decrease speed having a constant first inclination and then switching to a second acceleration decrease speed having a constant second inclination that is larger than the first inclination. One control means and one step of setting the inclination of acceleration change in the acceleration increasing period and the inclination of acceleration change in the acceleration decreasing period to be the same when the temperature determining means determines that the temperature is equal to or higher than the first threshold value. And a second control means for executing acceleration/deceleration control. When the temperature of the servo motor is less than the first threshold value, the first control unit sets the slope of the acceleration change in the acceleration increasing period to be larger than the slope of the acceleration change in the acceleration decreasing period. The numerical control device can effectively utilize the maximum output torque of the servomotor on the low speed side, and can bring the acceleration reduction speed of the drive shaft within the acceleration reduction period close to the maximum output torque characteristic of the servomotor. Therefore, the numerical control device can effectively use the maximum output torque of the servo motor on the high speed side, and the time required for positioning the drive shaft can be shortened. The first control means further executes the two-step acceleration/deceleration control. In the two-step acceleration/deceleration control, the first acceleration decrease speed is set to the second acceleration decrease speed within the acceleration decrease period. The second acceleration decrease speed is greater than the first acceleration decrease speed. Therefore, the numerical control device can surely approximate the acceleration decrease speed to the maximum output torque characteristic of the servo motor, so that the maximum output torque on the medium-high speed rotation side of the servo motor can be effectively used. When the temperature of the servo motor is equal to or higher than the first threshold value, the second control means executes the one-step acceleration/deceleration control in order to suppress overheating of the servo motor. In the one-step acceleration/deceleration control, the slope of the acceleration change in the acceleration increasing period and the slope of the acceleration change in the acceleration decreasing period are set to be the same. Therefore, the numerical control device can set the control characteristics of the drive shaft within the range defined by the maximum output torque of the servo motor, and thus can suppress overheating of the servo motor. The numerical control device can utilize the output torque on the high-speed rotation side when the temperature of the servo motor is low, so that the machining cycle can be shortened. When the temperature of the servo motor is high, the numerical controller can automatically switch from the two-step acceleration/deceleration control to the one-step acceleration/deceleration control to suppress overheating of the servo motor, so that the servo motor can be operated for a long time. The term "acceleration" refers to a positive value when accelerating in the positive direction and a negative value when accelerating in the opposite direction. Can also be shown.

請求項2の数値制御装置は、前記温度判断手段が前記温度は前記第一閾値未満と判断した場合、前記サーボモータのトルクを検出するトルク検出手段が検出した前記トルクは第二閾値未満か否か判断するトルク判断手段を備え、前記第一制御手段は、前記トルク判断手段が前記トルクは前記第二閾値未満と判断した場合、前記二段加減速制御を実行する第三制御手段と、前記トルク判断手段が前記トルクは前記第二閾値以上と判断した場合、前記一段加減速制御を実行する第四制御手段とを備えてもよい。サーボモータの温度が第一閾値未満で、且つサーボモータのトルクが第二閾値未満の場合、数値制御装置は二段加減速制御を実行するので、高速回転数側の出力トルクを有効利用して加工周期を短縮できる。サーボモータの温度が第一閾値未満であっても、サーボモータのトルクが第二閾値以上の場合、サーボモータに掛かる負荷を軽減する為、数値制御装置は二段加減速制御ではなく一段加減速制御を実行する。故に数値制御装置はサーボモータの負荷を軽減できるので、サーボモータの負荷による故障を防止できる。 The numerical control device according to claim 2, wherein, when the temperature determination means determines that the temperature is less than the first threshold value, the torque detected by the torque detection means for detecting the torque of the servo motor is less than a second threshold value. And a third control means for executing the two-step acceleration/deceleration control, when the torque determination means determines that the torque is less than the second threshold value. If the torque determination means determines that the torque is greater than or equal to the second threshold value, the torque determination means may include fourth control means for executing the one-step acceleration/deceleration control. When the temperature of the servo motor is less than the first threshold value and the torque of the servo motor is less than the second threshold value, the numerical controller executes the two-step acceleration/deceleration control, so that the output torque on the high speed side is effectively used. The processing cycle can be shortened. Even if the temperature of the servo motor is below the first threshold, if the torque of the servo motor is above the second threshold, the numerical controller reduces the load on the servo motor, so that the numerical controller does not perform two-step acceleration/deceleration control but one-step acceleration/deceleration. Execute control. Therefore, the numerical control device can reduce the load on the servo motor, so that the failure due to the load on the servo motor can be prevented.

請求項3の数値制御装置の前記駆動軸は、タップ工具を装着して回転可能な前記機械の主軸であるとよい。一般的に加減速時における発熱は、主軸を送り出す送り軸よりも主軸の方が大きい。送り軸は駆動軸の一例である。タップ動作は、主軸の加速と減速を繰り返すので、加工数が多いと主軸を駆動するサーボモータの発熱は大きくなる。本発明はタップ工具を装着して回転する主軸の加減速を行うことができる数値制御装置において、請求項1又は2の構成を備えるので、タップ動作時に請求項1又は2に記載の効果を得ることができる。 The drive shaft of the numerical controller according to claim 3 is preferably a main shaft of the machine that is rotatable by mounting a tap tool. Generally, heat generation during acceleration/deceleration is larger in the main shaft than in the feed shaft that sends out the main shaft. The feed shaft is an example of a drive shaft. Since the tapping operation repeats acceleration and deceleration of the spindle, the heat generation of the servomotor for driving the spindle increases when the number of machining is large. The present invention provides a numerical control device capable of accelerating and decelerating a rotating spindle by mounting a tap tool, and has the configuration of claim 1 or 2, so that the effect of claim 1 or 2 is obtained during tap operation. be able to.

請求項4の制御方法は、サーボモータと、前記サーボモータで駆動する駆動軸とを備える機械の制御を行い、前記駆動軸の加速開始時に加速度を増加する加速度増加期間と、前記駆動軸の加速終了時に加速度を減少する加速度減少期間とを有する数値制御装置の制御方法において、前記サーボモータの温度を検出する温度検出手段が検出した温度が第一閾値以上か否か判断する温度判断工程と、前記温度判断工程で前記温度は前記第一閾値未満と判断した場合、前記加速度増加期間における加速度変化の傾きを前記加速度減少期間における加速度の傾きよりも大きく設定すると共に、前記加速度減少期間内において前記駆動軸の加速度減少速度を一定の第一傾きの第一加速度減少速度に設定した後、前記第一傾きよりも大きな一定の第二傾きの第二加速度減少速度に切替える二段加減速制御を実行する第一制御工程と、前記温度判断工程で前記温度は前記第一閾値以上と判断した場合、前記加速度増加期間における加速度変化の傾きと、前記加速度減少期間における加速度変化の傾きとを同一に設定する一段加減速制御を実行する第二制御工程とを備えたことを特徴とする。数値制御装置は上記各工程を行うことで、請求項1に記載の効果を得ることができる。 The control method according to claim 4, wherein a machine including a servomotor and a drive shaft driven by the servomotor is controlled, and an acceleration increasing period during which acceleration is increased at the start of acceleration of the drive shaft, and acceleration of the drive shaft. In a control method of a numerical controller having an acceleration decreasing period for decreasing the acceleration at the end, a temperature judging step of judging whether or not the temperature detected by the temperature detecting means for detecting the temperature of the servo motor is equal to or higher than a first threshold value, When it is determined that the temperature is less than the first threshold value in the temperature determination step, the slope of the acceleration change in the acceleration increasing period is set to be larger than the slope of the acceleration in the acceleration decreasing period, and the temperature is reduced in the acceleration decreasing period. The two-step acceleration/deceleration control is performed in which the acceleration decrease speed of the drive axis is set to the first acceleration decrease speed of the constant first inclination, and then the second acceleration decrease speed of the constant second inclination larger than the first inclination is switched. When the temperature is determined to be equal to or higher than the first threshold value in the first control step and the temperature determination step, the slope of the acceleration change in the acceleration increasing period and the slope of the acceleration change in the acceleration decreasing period are set to be the same. And a second control step for executing one-step acceleration/deceleration control. The numerical control device can obtain the effect described in claim 1 by performing each of the above steps.

上述した請求項1から3の発明は、任意に組み合わせることができる。例えば請求項1の全部または一部を備えずに他の請求項2又は3の少なくとも何れか1つの構成を備えたものとしても良い。但し特に、請求項1の構成を備えて、請求項2又は3の少なくとも何れか1つの構成と組み合わせを備えると良い。また、請求項1から3の任意の構成要素を抽出し、組み合わせても良い。本願出願人は、これらのような構成についても特許権を取得する意思を有する。 The inventions of claims 1 to 3 described above can be arbitrarily combined. For example, all or part of claim 1 may not be provided, and at least one of the other claims 2 or 3 may be provided. However, in particular, it is preferable that the configuration of claim 1 is provided, and that at least one configuration of claim 2 or 3 is combined. Moreover, you may extract and combine the arbitrary components of Claim 1 to 3. The applicant of the present application intends to obtain a patent right for such a configuration.

数値制御装置20と工作機械10の電気的構成を示すブロック図。FIG. 3 is a block diagram showing an electrical configuration of the numerical control device 20 and the machine tool 10. 主軸モータの二段加減速制御における加速度変化を示す図表。The chart which shows the acceleration change in two-step acceleration/deceleration control of a spindle motor. 主軸モータの一段加減速制御における加速度変化を示す図表。The chart which shows the acceleration change in one-step acceleration/deceleration control of a spindle motor. タップ加減速制御処理の流れ図。The flowchart of tap acceleration/deceleration control processing. 主軸モータの温度と負荷トルクの夫々の注意閾値と警告閾値の説明図。Explanatory drawing of the caution threshold value and warning threshold value of the temperature and load torque of a spindle motor, respectively.

以下、本発明の実施形態を説明する。図1に示す数値制御装置20は工作機械10の軸移動を制御することで、テーブル(図示略)上面に保持した被削材(図示略)の切削加工を行う。工作機械10の左右方向、前後方向、上下方向は、夫々X軸方向、Y軸方向、Z軸方向である。 Hereinafter, embodiments of the present invention will be described. The numerical controller 20 shown in FIG. 1 controls the axial movement of the machine tool 10 to perform cutting of a work material (not shown) held on the upper surface of a table (not shown). The left-right direction, the front-back direction, and the up-down direction of the machine tool 10 are the X-axis direction, the Y-axis direction, and the Z-axis direction, respectively.

図1を参照し、工作機械10の構成を説明する。工作機械10は、例えばテーブル上面に保持した被削材に対し、Z軸方向に延びる主軸に装着した工具をX軸方向、Y軸方向、Z軸方向に移動して加工(例えばドリル加工、タップ加工、側面加工、旋削加工等)を行う立型工作機械である。工作機械10は図示しない主軸機構、主軸移動機構、工具交換装置等を備える。主軸機構は主軸モータ12を備え、工具を装着した主軸を回転する。主軸移動機構は、Z軸モータ11、X軸モータ13、Y軸モータ14を更に備え、テーブル(図示略)上面に支持した被削材に対し相対的に主軸をXYZの各軸方向に夫々移動する。工具交換装置はマガジンモータ15を備え、複数の工具を収納する工具マガジン(図示略)を駆動し、主軸に装着した工具を他の工具と入れ替え交換する。Z軸モータ11、主軸モータ12、X軸モータ13、Y軸モータ14、マガジンモータ15は、サーボモータである。 The configuration of the machine tool 10 will be described with reference to FIG. The machine tool 10 performs machining (for example, drilling or tapping) by moving a tool mounted on a spindle extending in the Z-axis direction in the X-axis direction, the Y-axis direction, or the Z-axis direction with respect to a work material held on a table upper surface. It is a vertical machine tool that performs machining, side surface machining, turning, etc.). The machine tool 10 is provided with a spindle mechanism, a spindle moving mechanism, a tool changing device, etc., which are not shown. The spindle mechanism includes a spindle motor 12 and rotates a spindle equipped with a tool. The spindle moving mechanism further includes a Z-axis motor 11, an X-axis motor 13, and a Y-axis motor 14, and moves the spindle in each of the XYZ axial directions relative to a work material supported on the upper surface of a table (not shown). To do. The tool changing device is equipped with a magazine motor 15, drives a tool magazine (not shown) that stores a plurality of tools, and replaces the tool mounted on the spindle with another tool. The Z-axis motor 11, the spindle motor 12, the X-axis motor 13, the Y-axis motor 14, and the magazine motor 15 are servo motors.

工作機械10は操作盤16を更に備える。操作盤16は入力部17と表示部18を備える。入力部17は各種入力、指示、設定等を行う為の機器である。表示部18は各種画面を表示する機器である。操作盤16は数値制御装置20の入出力部25に接続する。Z軸モータ11はエンコーダ11Aを備える。主軸モータ12はエンコーダ12Aを備える。X軸モータ13はエンコーダ13Aを備える。Y軸モータ14はエンコーダ14Aを備える。マガジンモータ15はエンコーダ15Aを備える。エンコーダ11A〜15Aは数値制御装置20の後述する駆動回路26〜30に各々接続する。工作機械10は温度センサ40を備える。温度センサ40は主軸モータ12に取り付け、主軸モータ12の温度を常時計測する。 The machine tool 10 further includes an operation panel 16. The operation panel 16 includes an input unit 17 and a display unit 18. The input unit 17 is a device for performing various inputs, instructions, settings and the like. The display unit 18 is a device that displays various screens. The operation panel 16 is connected to the input/output unit 25 of the numerical controller 20. The Z-axis motor 11 includes an encoder 11A. The spindle motor 12 includes an encoder 12A. The X-axis motor 13 includes an encoder 13A. The Y-axis motor 14 includes an encoder 14A. The magazine motor 15 includes an encoder 15A. The encoders 11A to 15A are connected to drive circuits 26 to 30 of the numerical control device 20, which will be described later. The machine tool 10 includes a temperature sensor 40. The temperature sensor 40 is attached to the spindle motor 12 and constantly measures the temperature of the spindle motor 12.

数値制御装置20の電気的構成を説明する。数値制御装置20は、CPU21、ROM22、RAM23、記憶装置24、入出力部25、駆動回路26〜30等を備える。CPU21は数値制御装置20を統括制御する。ROM22は、タップ加減速制御プログラム等の各種プログラムを記憶する。タップ加減速制御プログラムは、後述するタップ加減速制御処理(図4参照)を実行する為のプログラムである。RAM23は各種処理実行中の各種データ、例えば後述する一段加減速フラグ等の各種フラグを記憶する。記憶装置24は不揮発性メモリであり、例えば加工する為のNCプログラムの他、各種データを記憶する。入出力部25は操作盤16に接続する。駆動回路26〜30はサーボアンプである。駆動回路26はZ軸モータ11とエンコーダ11Aに接続する。駆動回路27は主軸モータ12とエンコーダ12Aに接続する。駆動回路28はX軸モータ13とエンコーダ13Aに接続する。駆動回路29はY軸モータ14とエンコーダ14Aに接続する。駆動回路30はマガジンモータ15とエンコーダ15Aに接続する。以下説明は、Z軸モータ11、主軸モータ12、X軸モータ13、Y軸モータ14、マガジンモータ15を総称する場合は、各モータ11〜15と呼ぶ。 The electrical configuration of the numerical controller 20 will be described. The numerical control device 20 includes a CPU 21, a ROM 22, a RAM 23, a storage device 24, an input/output unit 25, drive circuits 26 to 30, and the like. The CPU 21 centrally controls the numerical control device 20. The ROM 22 stores various programs such as a tap acceleration/deceleration control program. The tap acceleration/deceleration control program is a program for executing tap acceleration/deceleration control processing (see FIG. 4) described later. The RAM 23 stores various data during execution of various processes, for example, various flags such as a one-step acceleration/deceleration flag described later. The storage device 24 is a non-volatile memory and stores various data in addition to an NC program for processing, for example. The input/output unit 25 is connected to the operation panel 16. The drive circuits 26 to 30 are servo amplifiers. The drive circuit 26 is connected to the Z-axis motor 11 and the encoder 11A. The drive circuit 27 is connected to the spindle motor 12 and the encoder 12A. The drive circuit 28 is connected to the X-axis motor 13 and the encoder 13A. The drive circuit 29 is connected to the Y-axis motor 14 and the encoder 14A. The drive circuit 30 is connected to the magazine motor 15 and the encoder 15A. In the following description, the Z-axis motor 11, the main-axis motor 12, the X-axis motor 13, the Y-axis motor 14, and the magazine motor 15 are generically referred to as the motors 11 to 15, respectively.

CPU21は、被削材を加工する為のNCプログラムを読取り、送り軸(X軸、Y軸、Z軸)、主軸、マガジン軸等の各駆動軸を目標位置に移動する為の制御指令を駆動回路26〜30に送信する。駆動回路26〜30は、CPU21から受信した制御指令(駆動信号)に応じて対応する各モータ11〜15に駆動電流(パルス)を夫々出力する。駆動回路26〜30はエンコーダ11A〜15Aからフィードバック信号(位置と速度の信号)を受け、各モータ11〜15の位置制御と速度制御を行う。駆動回路26〜30は例えばFPGA回路でもよい。 The CPU 21 reads an NC program for processing a work material, and drives a control command for moving each drive axis such as a feed axis (X axis, Y axis, Z axis), a main axis, and a magazine axis to a target position. Send to circuits 26-30. The drive circuits 26 to 30 output drive currents (pulses) to the corresponding motors 11 to 15 according to the control commands (drive signals) received from the CPU 21, respectively. The drive circuits 26 to 30 receive feedback signals (position and speed signals) from the encoders 11A to 15A and perform position control and speed control of the motors 11 to 15. The drive circuits 26 to 30 may be FPGA circuits, for example.

タップ動作に適用する駆動軸の加減速制御の概要を説明する。タップ動作とは、工作機械10の主軸にタップ工具を装着した状態で、主軸を正転して下降しながら切込み、穴底で逆転して上昇しながら戻すことで、ネジを作る動作である。前者工程はタップ加工、後者工程はタップ戻しである。タップ動作では、CPU21は主軸モータ12を駆動しながらZ軸モータ11を駆動して主軸を昇降する。故にタップ動作時の駆動軸は主軸とZ軸である。Z軸は主軸を送り出す送り軸である。数値制御装置20は、主軸モータ12とZ軸モータ11の高速回転側の出力トルクを有効利用する為、タップ動作に二段加減速制御を原則適用する。 An outline of the drive shaft acceleration/deceleration control applied to the tap operation will be described. The tapping operation is an operation of making a screw by rotating the spindle in the forward direction and making a cut while descending, and then reversing at the bottom of the hole and ascending while the tapping tool is attached to the spindle of the machine tool 10. The former process is tapping and the latter process is tapping back. In the tapping operation, the CPU 21 drives the Z-axis motor 11 while driving the spindle motor 12 to move up and down the spindle. Therefore, the drive axes during the tap operation are the main axis and the Z axis. The Z axis is a feed axis that feeds the main axis. Since the numerical controller 20 effectively uses the output torque of the spindle motor 12 and the Z-axis motor 11 on the high-speed rotation side, the two-step acceleration/deceleration control is basically applied to the tap operation.

後述の如く、二段加減速制御はサーボモータの出力トルクを最大限利用する。例えばタップ動作を連続して行うタップサイクルの場合、Z軸モータ11と主軸モータ12に大きな負荷が掛かる。主軸は被削材に接触する工具から負荷を直接受けるので、加減速時における発熱は、主軸を送り出す送り軸のサーボモータ(Z軸モータ11、X軸モータ13、Y軸モータ14)よりも主軸モータ12の方が大きい。特にタップ動作は、加速と減速を繰り返すので、加工数が多いと主軸モータ12の発熱は大きくなる。サーボモータの温度が上昇すると、オーバヒートは発生し易くなる。数値制御装置20は、主軸モータ12のオーバヒートを抑制する為、主軸モータ12の温度を常時監視する。主軸モータ12の温度が後述する注意閾値未満の場合、数値制御装置20は二段加減速制御でタップ動作を実行する。主軸モータ12の温度が注意閾値以上の場合、数値制御装置20は主軸モータ12の負荷を軽減する為、一段加減速制御に切替えてタップ動作を実行する。 As will be described later, the two-step acceleration/deceleration control maximizes the output torque of the servo motor. For example, in the case of a tap cycle in which tap operations are continuously performed, a large load is applied to the Z-axis motor 11 and the spindle motor 12. Since the spindle receives the load directly from the tool that comes into contact with the work material, the heat generated during acceleration/deceleration is generated by the spindle more than the servomotor (Z-axis motor 11, X-axis motor 13, Y-axis motor 14) of the feed axis that sends out the spindle. The motor 12 is larger. In particular, since the tapping operation repeats acceleration and deceleration, the heat generation of the spindle motor 12 increases when the number of machining is large. When the temperature of the servo motor rises, overheat easily occurs. The numerical controller 20 constantly monitors the temperature of the spindle motor 12 in order to suppress overheating of the spindle motor 12. When the temperature of the spindle motor 12 is lower than a caution threshold value, which will be described later, the numerical control device 20 executes the tap operation by the two-step acceleration/deceleration control. When the temperature of the spindle motor 12 is equal to or higher than the caution threshold value, the numerical controller 20 switches to the single-stage acceleration/deceleration control and executes the tap operation in order to reduce the load on the spindle motor 12.

図2を参照し、タップ動作の二段加減速制御を説明する。CPU21は、例えばNCプログラムを解釈して生成したタップ指令に基づき、目標到達位置までの主軸モータ12とZ軸モータ11の夫々の加速度パターンを決定する。CPU21は決定した加速度パターンと作業者の入力するパラメータに基づき加速度を計算する。CPU21は計算した加速度の指令より求めた位置指令を、主軸モータ12の駆動回路27と、Z軸モータ11の駆動回路26に送信する。 The two-step acceleration/deceleration control of the tap operation will be described with reference to FIG. The CPU 21 determines the respective acceleration patterns of the spindle motor 12 and the Z-axis motor 11 up to the target reaching position based on the tap command generated by interpreting the NC program, for example. The CPU 21 calculates the acceleration based on the determined acceleration pattern and the parameters input by the operator. The CPU 21 transmits the position command obtained from the calculated acceleration command to the drive circuit 27 of the spindle motor 12 and the drive circuit 26 of the Z-axis motor 11.

図2は、タップ動作における主軸モータ12の二段加減速制御の加速度パターンと速度パターンを示す図表である。タップ加工開始時の主軸モータ12の動作は、加速開始当初の加速度増加期間T1、加速度一定の第一定加速度期間T2、加速終了に合わせて加速度を減少する第一加速度減少期間T3、加速終了前の第二加速度減少期間T4の4期間に区分する。 FIG. 2 is a chart showing an acceleration pattern and a speed pattern of the two-step acceleration/deceleration control of the spindle motor 12 in the tap operation. The operation of the spindle motor 12 at the start of tapping is as follows: the acceleration increasing period T1 at the beginning of acceleration, the first constant acceleration period T2 where the acceleration is constant, the first acceleration decreasing period T3 when the acceleration is reduced in accordance with the end of acceleration, and the end of acceleration. The second acceleration reduction period T4 is divided into four periods.

加速度増加期間T1では、目標加速度を作業者が入力した速度V2に基づき式(1)で演算したA1に設定すると共に、加速度増加速度a1(a1=A1/T1)を一定とする。速度V2は、第一定加速度期間T2後の回転速度である。加速度A1と速度V2は、主軸モータ12の最大出力トルク或いはその近傍トルクを使用するように設定する。
・A1=2×V2/(T1+2×T2)・・・(1)
In the acceleration increasing period T1, the target acceleration is set to A1 calculated by the equation (1) based on the speed V2 input by the worker, and the acceleration increasing speed a1 (a1=A1/T1) is kept constant. The speed V2 is the rotation speed after the second constant acceleration period T2. The acceleration A1 and the speed V2 are set so that the maximum output torque of the spindle motor 12 or a torque near it is used.
・A1=2×V2/(T1+2×T2) (1)

第一定加速度期間T2では、加速度A1を維持すると共に、T2経過後、主軸モータ12の回転速度が、作業者が入力した速度V2になるように制御する。この第一定加速度期間T2では、主軸モータ12の最大出力トルク或いはその近傍トルクに対応した加速度A1を維持する為、最大出力トルクの有効利用及び回転時間の短縮化が図れる。 During the first constant acceleration period T2, the acceleration A1 is maintained, and after the lapse of T2, the rotation speed of the spindle motor 12 is controlled to be the speed V2 input by the operator. During this constant acceleration period T2, the acceleration A1 corresponding to the maximum output torque of the spindle motor 12 or a torque near it is maintained, so that the maximum output torque can be effectively used and the rotation time can be shortened.

第一加速度減少期間T3では、目標加速度がA2となるよう制御すると共に、第一加速度減少速度a2(a2=(A2−A1)/T3)を一定とする。目標加速度A2は、作業者が入力した速度V1とV2に基づき式(2)を用いて演算する。
・A2=(2×(V1−V2)−A1×T3)/(T3+T4)・・・(2)
In the first acceleration decrease period T3, the target acceleration is controlled to be A2, and the first acceleration decrease speed a2 (a2=(A2-A1)/T3) is constant. The target acceleration A2 is calculated using equation (2) based on the velocities V1 and V2 input by the operator.
A2=(2*(V1-V2)-A1*T3)/(T3+T4)...(2)

第二加速度減少期間T4では、第一加速度減少速度a2よりも減少速度の大きな第二加速度減少速度a3(a3=−A2/T4)にすると共に、第二加速度減少期間T4の終了時以降は、主軸モータ12の回転速度は作業者が入力した速度V1に維持する。加速度増加期間T1における加速度変化の傾き(加速度増加速度a1)は、加速度減少期間T3,T4における加速度変化の傾き(加速度減少速度a2,a3)よりも大きく設定する。第一加速度減少速度a2は、一定の第一傾きの加速度減少速度であり、第二加速度減少速度a3は、第一傾きよりも大きな一定の第二傾きの加速度減少速度である。 In the second acceleration decrease period T4, the second acceleration decrease speed a3 (a3=−A2/T4), which is larger than the first acceleration decrease speed a2, is set, and after the end of the second acceleration decrease period T4, The rotation speed of the spindle motor 12 is maintained at the speed V1 input by the operator. The inclination of acceleration change (acceleration increasing speed a1) in the acceleration increasing period T1 is set to be larger than the inclination of acceleration change (acceleration decreasing speed a2, a3) in the acceleration decreasing periods T3 and T4. The first acceleration decrease speed a2 is an acceleration decrease speed with a constant first inclination, and the second acceleration decrease speed a3 is an acceleration decrease speed with a constant second inclination that is larger than the first inclination.

一方、タップ加工終了時の主軸モータ12の動作は、減速開始当初の第3加速度減少期間T5、減速終了に合わせて加速度を減少する第4加速度減少期間T6、加速度一定の第二定加速度期間T7、減速終了前の加速度増加期間T8の4期間に区分する。A3、A4は負の値であり、A3<A4、V3<V1とする。 On the other hand, the operation of the spindle motor 12 at the end of tap machining is as follows: the third acceleration reduction period T5 at the beginning of deceleration, the fourth acceleration reduction period T6 in which the acceleration is reduced in accordance with the end of deceleration, and the second constant acceleration period T7 where the acceleration is constant. , The acceleration increase period T8 before the end of deceleration is divided into four periods. A3 and A4 are negative values, and A3<A4 and V3<V1.

第3加速度減少期間T5では、目標加速度を作業者が入力した回転速度V1とV3に基づき式(3)と式(4)で演算したA3,A4に設定すると共に、加速度減少速度a4(a4=A4/T5)を一定とする。
・A3=−2×V3/(2×T7+T8) ・・・(3)
・A4=(2×(V3−V1)−A3×T6)/(T5+T6) ・・・(4)
In the third acceleration reduction period T5, the target acceleration is set to A3 and A4 calculated by the equations (3) and (4) based on the rotation speeds V1 and V3 input by the worker, and the acceleration reduction speed a4 (a4= Keep A4/T5) constant.
・A3=-2×V3/(2×T7+T8) (3)
・A4=(2×(V3-V1)−A3×T6)/(T5+T6) (4)

第4加速度減少期間T6では、目標加速度をA3とすると共に、加速度減少速度a5(a5=(A3−A4)/T6)を一定とする。第二定加速度期間T7では、加速度A3を維持すると共に、主軸モータ12の回転速度が、作業者が入力した目標速度V3になるように制御する。加速度増加期間T8では、加速度減少速度a6(a6=A3/T8)を一定とする。尚、タップ加工後に行うタップ戻しの加速度パターンと速度パターンは、タップ加工の加速度パターンと速度パターンの正負を逆にしたパターンとなるので、説明を省略する。 In the fourth acceleration reduction period T6, the target acceleration is set to A3, and the acceleration reduction speed a5 (a5=(A3-A4)/T6) is set constant. In the second constant acceleration period T7, the acceleration A3 is maintained, and the rotation speed of the spindle motor 12 is controlled to be the target speed V3 input by the operator. In the acceleration increasing period T8, the acceleration decreasing speed a6 (a6=A3/T8) is kept constant. Note that the acceleration pattern and speed pattern for tapping back performed after tapping are patterns in which the positive and negative signs of the acceleration pattern and speed pattern for tapping are reversed, and therefore a description thereof is omitted.

図3を参照し、タップ動作の一段加減速制御を説明する。図3は、タップ動作における主軸モータ12の一段加減速制御の加速度パターンと速度パターンを示す図表である。タップ動作の一段加減速制御は、一般的な加減速制御と同じであるので簡単に説明する。タップ加工開始時の主軸モータ12の動作は、加速開始当初の加速度増加期間T11、加速度一定の第一定加速度期間T12、加速終了に合わせて加速度を減少する加速度減少期間T13の3期間に区分する。タップ加工終了時の主軸モータ12の動作は、減速開始当初の加速度増加期間T14、加速度一定の第二定加速度期間T15、減速終了前の加速度減少期間T16の3期間に区分する。加速度増加期間T11における加速度増加速度の時定数と、加速度減少期間T13における加速度減少速度の時定数と、加速度増加期間T14における加速度増加速度の時定数と、加速度減少期間T16における加速度減少速度の時定数とは同一に設定する。主軸モータ12の加速度パターンは、主軸モータ12の定格によって定まる最大出力トルク特性の領域内に設定する。一段加減速制御では二段加減速制御に比べて、主軸モータ12の高速回転数側で利用できる出力トルクは小さい。故に一段加減速制御は二段加減速制御に比べて、主軸モータ12の負荷を軽減できる。タップ加工後に行うタップ戻しの加速度パターンと速度パターンは、タップ加工の加速度パターンと速度パターンの正負を逆にしたパターンとなるので、説明を省略する。Z軸モータ11は主軸モータ12と同期駆動するので、Z軸モータ11の加速度パターンは、主軸モータ12の加速度パターンと同様である。 The one-step acceleration/deceleration control of the tap operation will be described with reference to FIG. FIG. 3 is a chart showing an acceleration pattern and a speed pattern of the one-step acceleration/deceleration control of the spindle motor 12 in the tap operation. Since the one-step acceleration/deceleration control of the tap operation is the same as the general acceleration/deceleration control, it will be briefly described. The operation of the spindle motor 12 at the start of tapping is divided into three periods, that is, an acceleration increasing period T11 at the beginning of acceleration, a first constant acceleration period T12 where the acceleration is constant, and an acceleration decreasing period T13 in which the acceleration is reduced at the end of acceleration. .. The operation of the spindle motor 12 at the end of tapping is divided into three periods, that is, an acceleration increasing period T14 at the beginning of deceleration, a second constant acceleration period T15 where the acceleration is constant, and an acceleration decreasing period T16 before deceleration. Time constant of the acceleration increasing speed in the acceleration increasing period T11, time constant of the acceleration decreasing speed in the acceleration decreasing period T13, time constant of the acceleration increasing speed in the acceleration increasing period T14, and time constant of the acceleration decreasing speed in the acceleration decreasing period T16. Set the same as. The acceleration pattern of the spindle motor 12 is set within the range of the maximum output torque characteristic determined by the rating of the spindle motor 12. In the one-step acceleration/deceleration control, the output torque that can be used on the high-speed rotation side of the spindle motor 12 is smaller than in the two-step acceleration/deceleration control. Therefore, the one-step acceleration/deceleration control can reduce the load on the spindle motor 12 as compared with the two-step acceleration/deceleration control. The acceleration pattern and speed pattern for tapping back performed after tapping are patterns in which the positive and negative signs of the acceleration pattern and speed pattern for tapping are reversed, and a description thereof will be omitted. Since the Z-axis motor 11 is driven synchronously with the spindle motor 12, the acceleration pattern of the Z-axis motor 11 is the same as the acceleration pattern of the spindle motor 12.

図4、図5を参照し、タップ加減速制御処理を説明する。NCプログラムを解釈して生成した制御指令がタップ指令である度に、CPU21は記憶装置24に記憶するタップ加減速制御プログラムを読出し、本処理を実行する。タップ指令とは、タップ動作の1サイクルを実行する制御指令である。 The tap acceleration/deceleration control process will be described with reference to FIGS. 4 and 5. Every time the control command generated by interpreting the NC program is the tap command, the CPU 21 reads the tap acceleration/deceleration control program stored in the storage device 24 and executes this processing. The tap command is a control command for executing one cycle of tap operation.

図4に示す如く、CPU21は一段加減速フラグを0に初期化する(S1)一段加減速フラグは、例えばRAM23に記憶し、上述の一段加減速制御を実行する場合は1、実行しない場合は0を記憶する。温度センサ40は例えば工作機械10起動時より主軸モータ12の温度を監視する。CPU21は主軸モータ12の温度は注意閾値未満か否か判断する(S2)。図5に示す如く、本実施形態は主軸モータ12の温度を監視する為、監視温度として注意閾値と警告閾値を設定する。注意閾値は、例えば今すぐに加工を停止しなくてもよいが、このまま加工を継続すると主軸モータ12の温度が更に上昇して不具合が発生する可能性が高い温度に設定するとよい。警告閾値は、速やかに加工を停止する必要がある温度に設定するとよく、例えば主軸モータ12の定格に基づき決定するとよい。更に本実施形態は警告閾値を設定してから、警告閾値よりも低い注意閾値を設定するとよい。 As shown in FIG. 4, the CPU 21 initializes the one-step acceleration/deceleration flag to 0 (S1). The one-step acceleration/deceleration flag is stored in, for example, the RAM 23, and is 1 when the above-described one-step acceleration/deceleration control is executed, and is not executed. Remember 0. The temperature sensor 40 monitors the temperature of the spindle motor 12 when the machine tool 10 is started, for example. The CPU 21 determines whether the temperature of the spindle motor 12 is lower than the caution threshold value (S2). As shown in FIG. 5, in the present embodiment, since the temperature of the spindle motor 12 is monitored, a caution threshold value and a warning threshold value are set as the monitoring temperature. The caution threshold does not have to be stopped immediately, for example, but it is preferable to set the temperature at which the temperature of the spindle motor 12 is further increased and a defect may occur if the machining is continued. The warning threshold may be set to a temperature at which machining should be stopped promptly, and may be determined based on the rating of the spindle motor 12, for example. Further, in this embodiment, after setting the warning threshold, it is preferable to set the caution threshold lower than the warning threshold.

主軸モータ12の温度が注意閾値未満の場合(S2:YES)、主軸モータ12の温度は問題無いので、CPU21は主軸モータ12の負荷トルクは注意閾値未満か否か判断する(S5)。主軸モータ12の温度に問題が無くても、主軸モータ12に過大なトルクが発生する場合がある。特にタップ動作の場合、工具を装着した主軸を回転しながら被削材に空けた穴にタップを施すので、送り軸であるZ軸に比べて主軸モータ12には比較的大きな負荷がかかる。故に本実施形態は主軸モータ12の温度に加え、主軸モータ12の負荷トルクも監視する。図5に示す如く、本実施形態は、主軸モータ12の温度と同様に、監視トルクとして注意閾値と警告閾値を設定する。主軸モータ12の負荷トルクは、例えば駆動回路27が検出するとよい。注意閾値は、例えば今すぐに加工を停止しなくても問題無いが、このまま加工を継続すると主軸モータ12に不具合が発生する可能性が高いトルク値に設定するとよい。警告閾値は、速やかに加工を停止する必要があるトルク値に設定するとよく、例えば主軸モータ12の定格に基づき決定するとよい。 If the temperature of the spindle motor 12 is below the caution threshold (S2: YES), there is no problem with the temperature of the spindle motor 12, so the CPU 21 determines whether the load torque of the spindle motor 12 is below the caution threshold (S5). Even if there is no problem in the temperature of the spindle motor 12, excessive torque may be generated in the spindle motor 12. Particularly in the case of the tapping operation, since the hole formed in the work is tapped while the spindle equipped with the tool is rotated, a relatively large load is applied to the spindle motor 12 as compared with the Z axis which is the feed axis. Therefore, in this embodiment, in addition to the temperature of the spindle motor 12, the load torque of the spindle motor 12 is also monitored. As shown in FIG. 5, in the present embodiment, similarly to the temperature of the spindle motor 12, a caution threshold value and a warning threshold value are set as the monitoring torque. The load torque of the spindle motor 12 may be detected by the drive circuit 27, for example. For example, the caution threshold does not have to be a problem even if the machining is not stopped immediately. However, it is preferable to set the torque value at which the spindle motor 12 is likely to malfunction if the machining is continued. The warning threshold value may be set to a torque value that needs to stop machining promptly, and may be determined based on the rating of the spindle motor 12, for example.

主軸モータ12の負荷トルクが注意閾値未満の場合(S5:YES)、主軸モータ12の負荷トルクも問題無いので、CPU21はRAM23に記憶する一段加減速フラグが1か否か判断する(S8)。一段加減速フラグが0の場合(S8:NO)、CPU21は二段加減速制御でタップ動作を実行する(S9)。上記の通り、二段加減速制御は、第一定加速度期間T2にて、主軸モータ12の最大出力トルク或いはその近傍トルクに対応した加速度A1を維持する為、一段加減速制御に比較して、最大出力トルクの有効利用及び回転時間の短縮化が図れる。タップ動作終了後、CPU21は本処理を終了する。 When the load torque of the spindle motor 12 is less than the caution threshold value (S5: YES), the load torque of the spindle motor 12 is not a problem, so the CPU 21 determines whether the one-step acceleration/deceleration flag stored in the RAM 23 is 1 (S8). When the one-step acceleration/deceleration flag is 0 (S8: NO), the CPU 21 executes the tap operation by the two-step acceleration/deceleration control (S9). As described above, in the two-step acceleration/deceleration control, in order to maintain the acceleration A1 corresponding to the maximum output torque of the spindle motor 12 or the torque in the vicinity thereof during the first constant acceleration period T2, the two-step acceleration/deceleration control is It is possible to effectively use the maximum output torque and shorten the rotation time. After the tap operation ends, the CPU 21 ends the present process.

主軸モータ12の温度が注意閾値以上の場合(S2:NO)、CPU21は主軸モータ12の温度が警告閾値未満か否か判断する(S3)。主軸モータ12の温度が警告閾値未満の場合(S3:YES)、今すぐに加工を停止しなくてもよいが、二段加減速制御でタップ動作を行うと主軸モータ12の温度が急速に上昇する可能性が高いので、CPU21は一段加減速フラグを1に設定する(S4)。CPU21はS5に処理を進め、主軸モータ12のトルク負荷が注意閾値未満の場合(S5:YES)、RAM23に記憶する一段加減速フラグは1であるので(S8:YES)、一段加減速制御でタップ動作を実行する(S10)。上記の通り、一段加減速制御は二段加減速制御に比べて、主軸モータ12の高速回転数側で利用できる出力トルクは小さい(図3の第一定加速度期間T12参照)。故に一段加減速制御は、二段加減速制御に比べて、主軸モータ12の負荷を軽減しつつタップ動作を行うことができる。タップ動作終了後、CPU21は本処理を終了する。 When the temperature of the spindle motor 12 is equal to or higher than the caution threshold value (S2: NO), the CPU 21 determines whether the temperature of the spindle motor 12 is lower than the warning threshold value (S3). When the temperature of the spindle motor 12 is lower than the warning threshold value (S3: YES), the machining does not have to be stopped immediately, but when the tap operation is performed by the two-step acceleration/deceleration control, the temperature of the spindle motor 12 rises rapidly. Therefore, the CPU 21 sets the one-step acceleration/deceleration flag to 1 (S4). If the torque load of the spindle motor 12 is less than the caution threshold value (S5: YES), the CPU 21 proceeds to S5 and the one-step acceleration/deceleration flag stored in the RAM 23 is 1 (S8: YES). A tap operation is executed (S10). As described above, the output torque that can be used on the high speed side of the spindle motor 12 in the one-step acceleration/deceleration control is smaller than that in the two-step acceleration/deceleration control (see the constant acceleration period T12 in FIG. 3 ). Therefore, the one-step acceleration/deceleration control can perform the tap operation while reducing the load on the spindle motor 12 as compared with the two-step acceleration/deceleration control. After the tap operation ends, the CPU 21 ends the present process.

主軸モータ12の温度が警告閾値以上の場合(S3:NO)、主軸モータ12は過熱状態であるので、CPU21はアラームを出力して速やかに加工を停止し(S12)、本処理を終了する。故にCPU21は主軸モータ12のオーバヒートを防止できる。 If the temperature of the spindle motor 12 is equal to or higher than the warning threshold value (S3: NO), the spindle motor 12 is in an overheated state, so the CPU 21 outputs an alarm and immediately stops the machining (S12), and ends this processing. Therefore, the CPU 21 can prevent the spindle motor 12 from overheating.

主軸モータ12の温度が注意閾値未満でも(S2:YES)、特にタップ動作では、主軸モータ12の負荷は大きいので、主軸モータ12の負荷トルクが大きい場合がある。主軸モータ12の負荷トルクが注意閾値以上の場合(S5:NO)、CPU21は主軸モータ12の負荷トルクが警告閾値未満か否か判断する(S6)。警告閾値未満の場合(S6:YES)、CPU21は一段加減速フラグを1に設定する(S7)。一段加減速フラグは1なので(S8:YES)、CPU21は一段加減速制御でタップ動作を実行する(S10)。上記の通り、一段加減速制御は二段加減速制御に比べて、主軸モータ12の高速回転数側で利用できる出力トルクは小さい。故に一段加減速制御は、二段加減速制御に比べて、主軸モータ12の負荷を軽減しつつタップ動作を行うことができる。タップ動作終了後、CPU21は本処理を終了する。 Even when the temperature of the spindle motor 12 is lower than the caution threshold value (S2: YES), the load of the spindle motor 12 is large especially in the tap operation, so that the load torque of the spindle motor 12 may be large. When the load torque of the spindle motor 12 is equal to or higher than the caution threshold value (S5: NO), the CPU 21 determines whether the load torque of the spindle motor 12 is less than the warning threshold value (S6). When it is less than the warning threshold value (S6: YES), the CPU 21 sets the one-step acceleration/deceleration flag to 1 (S7). Since the one-step acceleration/deceleration flag is 1 (S8: YES), the CPU 21 executes the tap operation by the one-step acceleration/deceleration control (S10). As described above, the output torque that can be used on the high-speed rotation side of the spindle motor 12 is smaller in the one-step acceleration/deceleration control than in the two-step acceleration/deceleration control. Therefore, the one-step acceleration/deceleration control can perform the tap operation while reducing the load on the spindle motor 12 as compared with the two-step acceleration/deceleration control. After the tap operation ends, the CPU 21 ends the present process.

主軸モータ12の温度が注意閾値未満でも(S2:YES)、主軸モータ12の負荷トルクが警告閾値以上の場合(S5:NO、S6:NO)、主軸モータ12に過度なトルクが発生しているので、CPU21はアラームを出力して速やかに加工を停止し(S12)、本処理を終了する。故にCPU21は過度なトルク負荷による主軸モータ12の故障を防止できる。 Even if the temperature of the spindle motor 12 is below the caution threshold (S2: YES), but the load torque of the spindle motor 12 is equal to or higher than the warning threshold (S5: NO, S6: NO), excessive torque is generated in the spindle motor 12. Therefore, the CPU 21 outputs an alarm and immediately stops the processing (S12), and ends this processing. Therefore, the CPU 21 can prevent a failure of the spindle motor 12 due to an excessive torque load.

例えば、主軸モータ12の温度が注意閾値以上警告閾値未満の範囲内であった結果、一段加減速制御でタップ動作を連続して行い、その後、主軸モータ12の温度が注意閾値未満に低下した場合(S2:YES)、主軸モータの負荷トルクが注意閾値未満であれば(S5:YES)、一段加減速フラグは0であるので(S8:NO)、CPU21は一段加減速制御から二段加減速制御に切替えてタップ動作を行うことができる(S9)。故に数値制御装置20は主軸モータ12の温度に基づき、二段加減速制御と一段下加減速制御に相互に切替えることができる。 For example, when the temperature of the spindle motor 12 is within the range of the caution threshold value or more and less than the warning threshold value, the tap operation is continuously performed in the one-step acceleration/deceleration control, and then the temperature of the spindle motor 12 drops below the caution threshold value. If the load torque of the spindle motor is less than the caution threshold value (S2:YES) (S5:YES), the one-step acceleration/deceleration flag is 0 (S8:NO). The tap operation can be performed by switching to control (S9). Therefore, the numerical controller 20 can switch between the two-step acceleration/deceleration control and the one-step lower acceleration/deceleration control based on the temperature of the spindle motor 12.

上記の通り、CPU21は、主軸モータ12の負荷状態を、主軸モータ12の温度と負荷トルクの二段階で監視する。図5に示す如く、CPU21は、第一判定として、主軸モータ12の温度が二つの閾値で区分する三つの温度範囲のうち何れに属するかを判定する。主軸モータ12の温度が注意閾値以上で且つ警告閾値未満の範囲内の場合、CPU21は一段加減速制御に決定する。主軸モータ12の温度が警告閾値以上の場合、CPU21は加工を速やかに停止する。主軸モータ12の温度が注意閾値未満の場合、第二判定として、主軸モータ12の負荷トルクが二つの閾値で区分する三つのトルク範囲のうち何れに属するかを判定する。主軸モータ12の負荷トルクが注意閾値以上で且つ警告閾値未満の範囲内の場合、CPU21は一段加減速制御に決定する。主軸モータ12の負荷トルクが警告閾値以上の場合、CPU21は加工を速やかに停止する。主軸モータ12の負荷トルクが注意閾値未満の場合、CPU21は二段加減速制御に決定する。 As described above, the CPU 21 monitors the load state of the spindle motor 12 in two stages, the temperature of the spindle motor 12 and the load torque. As shown in FIG. 5, as a first determination, the CPU 21 determines which of the three temperature ranges the temperature of the spindle motor 12 is divided into by two threshold values. When the temperature of the spindle motor 12 is within the range of the caution threshold value or more and the warning threshold value or less, the CPU 21 determines the one-step acceleration/deceleration control. When the temperature of the spindle motor 12 is equal to or higher than the warning threshold value, the CPU 21 immediately stops the machining. When the temperature of the spindle motor 12 is lower than the caution threshold value, as a second determination, it is determined to which of the three torque ranges the load torque of the spindle motor 12 belongs to is divided into two threshold values. When the load torque of the spindle motor 12 is within the range of the caution threshold value or more and the warning threshold value or less, the CPU 21 determines the one-step acceleration/deceleration control. When the load torque of the spindle motor 12 is equal to or higher than the warning threshold value, the CPU 21 immediately stops the machining. When the load torque of the spindle motor 12 is less than the caution threshold, the CPU 21 determines the two-step acceleration/deceleration control.

主軸モータ12の温度は、主軸モータ12が連続運転することに応じて積み重ねで上昇するので、CPU21は主軸モータ12の連続運転に伴う温度変化を検出できる。これに対し、負荷トルクは主軸モータ12の負荷に応じて瞬時に変化するので、主軸モータ12の瞬時的な負荷を検出できるが、負荷トルクだけでは主軸モータ12の連続運転に伴って蓄積する負荷を検出できない。故にCPU21は主軸モータ12の温度判定を第一判定とし、主軸モータ12の温度が注意閾値未満であった時のみ、主軸モータ12に過度なトルクが発生していないかを確認する為、CPU21は第二判定として主軸モータ12の負荷トルクを判定する。故にCPU21は主軸モータ12の負荷状態を精度良く検出できる。 Since the temperature of the spindle motor 12 rises in a stack as the spindle motor 12 continuously operates, the CPU 21 can detect a temperature change associated with the continuous operation of the spindle motor 12. On the other hand, since the load torque changes instantaneously according to the load of the spindle motor 12, it is possible to detect the instantaneous load of the spindle motor 12, but the load torque alone can accumulate the load that accompanies the continuous operation of the spindle motor 12. Cannot be detected. Therefore, the CPU 21 determines the temperature of the spindle motor 12 as the first determination, and only when the temperature of the spindle motor 12 is less than the caution threshold value, the CPU 21 confirms whether excessive torque is generated in the spindle motor 12. As the second determination, the load torque of the spindle motor 12 is determined. Therefore, the CPU 21 can accurately detect the load state of the spindle motor 12.

以上説明の如く、本実施形態の数値制御装置20は工作機械10の動作を制御する。工作機械10は各種モータ11〜15と、該各種モータ11〜15で駆動する駆動軸を備える。各種モータ11〜15はサーボモータである。数値制御装置20のCPU21は、駆動軸の加速度制御において、加速度増加期間と加速度減少期間を有する。加速度増加期間は駆動軸の加速開始時に加速度を増加する期間である。加速度減少期間は、駆動軸の加速終了時に加速度を二段階で減少する期間である。温度センサ40は主軸モータ12の温度を検出する。タップ動作時、CPU21は主軸モータ12の温度が注意閾値未満か否か判断する。タップ動作時、CPU21は主軸モータ12とZ軸モータ11を同時駆動する。主軸モータ12の温度が注意閾値未満の場合、CPU21は主軸モータ12とZ軸モータ11の加減速制御について二段加減速制御を実行する。 As described above, the numerical controller 20 of this embodiment controls the operation of the machine tool 10. The machine tool 10 includes various motors 11 to 15 and drive shafts driven by the various motors 11 to 15. The various motors 11 to 15 are servo motors. The CPU 21 of the numerical controller 20 has an acceleration increasing period and an acceleration decreasing period in the acceleration control of the drive axis. The acceleration increasing period is a period in which the acceleration is increased at the start of acceleration of the drive shaft. The acceleration reduction period is a period in which the acceleration is reduced in two steps at the end of acceleration of the drive shaft. The temperature sensor 40 detects the temperature of the spindle motor 12. During the tap operation, the CPU 21 determines whether the temperature of the spindle motor 12 is lower than the caution threshold value. During the tap operation, the CPU 21 drives the spindle motor 12 and the Z-axis motor 11 simultaneously. When the temperature of the spindle motor 12 is less than the caution threshold value, the CPU 21 executes the two-step acceleration/deceleration control for the acceleration/deceleration control of the spindle motor 12 and the Z-axis motor 11.

二段加減速制御は、加速度増加期間T1における加速度変化の傾きを加速度減少期間T3,T4における加速度の傾きよりも大きく設定すると共に、第一加速度減少期間T3において主軸モータ12の加速度減少速度を一定の第一傾きの第一加速度減少速度a2に設定した後、第二加速度減少期間T4において第一傾きよりも大きな一定の第二傾きの第二加速度減少速度a3に切替える制御である。主軸モータ12の温度が注意閾値以上の場合、CPU21は主軸モータ12とZ軸モータ11の加減速制御について一段加減速制御を実行する。一段加減速制御は、加速度増加期間における加速度変化の傾きと、加速度減少期間における加速度変化の傾きとを同一に設定する制御である。 In the two-step acceleration/deceleration control, the inclination of the acceleration change in the acceleration increasing period T1 is set to be larger than the inclination of the acceleration in the acceleration decreasing periods T3 and T4, and the acceleration decreasing speed of the spindle motor 12 is constant during the first acceleration decreasing period T3. After the first acceleration decreasing speed a2 of the first inclination is set, the control is switched to the second acceleration decreasing speed a3 of the second inclination which is larger than the first inclination in the second acceleration decreasing period T4. When the temperature of the spindle motor 12 is equal to or higher than the caution threshold value, the CPU 21 executes one-step acceleration/deceleration control for the acceleration/deceleration control of the spindle motor 12 and the Z-axis motor 11. The one-step acceleration/deceleration control is control in which the slope of the acceleration change in the acceleration increasing period and the slope of the acceleration change in the acceleration decreasing period are set to be the same.

故に数値制御装置20は主軸モータ12の温度が低い場合に高速回転数側の出力トルクを利用できるので、加工周期を短縮できる。数値制御装置20は主軸モータ12の温度が高い場合、自動的に一段加減速制御に切替えて主軸モータ12とZ軸モータ11のオーバヒートを抑制できるので、主軸モータ12とZ軸モータ11を長時間運転できる。 Therefore, the numerical control device 20 can use the output torque on the high speed side when the temperature of the spindle motor 12 is low, so that the machining cycle can be shortened. When the temperature of the spindle motor 12 is high, the numerical controller 20 can automatically switch to the one-step acceleration/deceleration control to suppress overheating of the spindle motor 12 and the Z-axis motor 11, so that the spindle motor 12 and the Z-axis motor 11 can be operated for a long time. I can drive.

上記実施形態では特に、主軸モータ12の駆動回路27は、主軸モータ12の負荷トルクを検出する。CPU21は温度センサ40が検出した温度が注意閾値未満と判断した場合、駆動回路27が検出した負荷トルクが、負荷トルクの注意閾値以上か否か判断する。主軸モータ12の負荷トルクが注意閾値未満の場合、CPU21は二段加減速制御を実行する。主軸モータ12の負荷トルクが注意閾値以上の場合、主軸モータ12に掛かる負荷を軽減する為、CPU21は一段加減速制御を実行する。故に数値制御装置20は主軸モータ12とZ軸モータ11に掛かる負荷を軽減できるので、主軸モータ12とZ軸モータ11を長時間運転できる。 Particularly in the above embodiment, the drive circuit 27 of the spindle motor 12 detects the load torque of the spindle motor 12. When the CPU 21 determines that the temperature detected by the temperature sensor 40 is lower than the caution threshold, the CPU 21 determines whether the load torque detected by the drive circuit 27 is equal to or higher than the caution threshold of the load torque. When the load torque of the spindle motor 12 is less than the caution threshold value, the CPU 21 executes the two-step acceleration/deceleration control. When the load torque of the spindle motor 12 is equal to or higher than the caution threshold value, the CPU 21 executes one-step acceleration/deceleration control in order to reduce the load applied to the spindle motor 12. Therefore, the numerical controller 20 can reduce the load on the spindle motor 12 and the Z-axis motor 11, so that the spindle motor 12 and the Z-axis motor 11 can be operated for a long time.

上記説明にて、工作機械10は本発明の機械の一例である。温度センサ40は本発明の温度検出手段の一例である。図4のS2の処理を実行するCPU21は本発明の温度判断手段の一例である。第一加速度減少速度a2は本発明の第一加速度減少速度の一例である。第二加速度減少速度a3は本発明の第二加速度減少速度の一例である。S2:YES、S9の処理を実行するCPU21は本発明の第一制御手段の一例である。S2:NO、S4、S8:YES、S10の処理を実行するCPU21は本発明の第二制御手段の一例である。温度の注意閾値は本発明の第一閾値の一例である。負荷トルクの注意閾値は本発明の第二閾値の一例である。S5の処理を実行するCPU21は本発明のトルク判断手段の一例である。S5:YES、S9の処理を実行するCPU21は本発明の第三制御手段の一例である。S5:NO、S7、S8:YES、S10の処理を実行するCPU21は本発明の第四制御手段の一例である。S2の処理は本発明の温度判断工程の一例である。S1、S2:YES、S8:NO、S9の各処理は本発明の第一制御工程の一例である。S2:NO、S4、S8:YES、S10の各処理は本発明の第二制御工程の一例である。 In the above description, the machine tool 10 is an example of the machine of the present invention. The temperature sensor 40 is an example of the temperature detecting means of the present invention. The CPU 21 that executes the process of S2 in FIG. 4 is an example of the temperature determination means of the present invention. The first acceleration decrease speed a2 is an example of the first acceleration decrease speed of the present invention. The second acceleration decrease speed a3 is an example of the second acceleration decrease speed of the present invention. S2: YES, the CPU 21 that executes the processes of S9 is an example of the first control means of the present invention. The CPU 21 that executes the processes of S2: NO, S4, S8: YES, and S10 is an example of the second control means of the present invention. The temperature caution threshold value is an example of the first threshold value of the present invention. The caution threshold value of the load torque is an example of the second threshold value of the present invention. The CPU 21 that executes the processing of S5 is an example of the torque determination means of the present invention. S5: YES, the CPU 21 that executes the processes of S9 is an example of the third control means of the present invention. CPU21 which performs the process of S5:NO, S7, S8:YES, and S10 is an example of the 4th control means of this invention. The process of S2 is an example of the temperature determination process of the present invention. Each processing of S1, S2: YES, S8: NO, S9 is an example of the first control step of the present invention. Each processing of S2:NO, S4, S8:YES, and S10 is an example of the second control step of the present invention.

本発明は上記実施形態に限らず各種変形が可能なことはいうまでもない。上記実施形態は、主軸モータ12の温度を監視し、タップ動作時、主軸モータ12の温度が注意閾値以上になった場合、二段加減速制御から一段加減速制御に切替える。数値制御装置20は、タップ動作以外の動作においても、主軸モータ12の温度に基づき、送り軸の加減速について二段加減速制御と一段加減速制御を相互に切替えてもよい。 Needless to say, the present invention is not limited to the above-described embodiment and various modifications can be made. In the above embodiment, the temperature of the spindle motor 12 is monitored, and when the temperature of the spindle motor 12 becomes equal to or higher than the caution threshold value during tap operation, the two-step acceleration/deceleration control is switched to the one-step acceleration/deceleration control. The numerical controller 20 may switch between the two-step acceleration/deceleration control and the one-step acceleration/deceleration control for the acceleration/deceleration of the feed shaft based on the temperature of the spindle motor 12 even in operations other than the tap operation.

数値制御装置20は例えば主軸を送り出す送り軸のサーボモータ(Z軸モータ11、X軸モータ13、Y軸モータ14)の温度を監視してもよい。数値制御装置20は送り軸のサーボモータの温度に基づき、送り軸の加減速について二段加減速制御と一段加減速制御を相互に切替えてもよい。 The numerical controller 20 may monitor the temperature of, for example, the servomotor (Z-axis motor 11, X-axis motor 13, Y-axis motor 14) of the feed axis that sends out the main axis. The numerical controller 20 may switch between the two-step acceleration/deceleration control and the one-step acceleration/deceleration control for the acceleration/deceleration of the feed axis, based on the temperature of the servomotor of the feed axis.

上記実施形態は、主軸モータ12の温度を判定する第一判定を行い、主軸モータ12の温度が注意閾値未満であったときに、主軸モータ12の負荷トルクを判定する第二判定を行うが、第二判定は省略してもよい。即ち、主軸モータ12の温度が注意閾値未満の場合、CPU21は二段加減速制御を行うようにしてもよい。 In the above embodiment, the first determination for determining the temperature of the spindle motor 12 is performed, and when the temperature of the spindle motor 12 is less than the caution threshold value, the second determination for determining the load torque of the spindle motor 12 is performed. The second determination may be omitted. That is, when the temperature of the spindle motor 12 is lower than the caution threshold value, the CPU 21 may perform the two-step acceleration/deceleration control.

上記実施形態の駆動回路26〜30は数値制御装置20に設けているが、工作機械1に設けてもよい。 Although the drive circuits 26 to 30 of the above embodiment are provided in the numerical control device 20, they may be provided in the machine tool 1.

上記実施形態の工作機械10は、主軸がZ軸方向に延びる立型工作機械であるが、本発明は主軸が水平方向に延びる横型工作機械にも適用できる。 The machine tool 10 of the above-described embodiment is a vertical machine tool whose main axis extends in the Z-axis direction, but the present invention can also be applied to a horizontal machine tool whose main axis extends in the horizontal direction.

本実施形態はCPU21の代わりに、マイクロコンピュータ、ASIC(Application Specific Integrated Circuits)、FPGA(Field Programmable Gate Array)等を、プロセッサとして用いてもよい。移動制御処理は、複数のプロセッサによって分散処理してもよい。プログラムを記憶するROM22及び記憶装置24は、例えばHDD及び又は記憶装置等の他の非一時的な記憶媒体で構成してもよい。非一時的な記憶媒体は、情報を記憶する期間に関わらず、情報を留めておくことが可能な記憶媒体であればよい。非一時的な記憶媒体は、一時的な記憶媒体(例えば、伝送される信号)を含まなくてもよい。タップ加減速制御プログラムは、例えば、図示外のネットワークに接続されたサーバからダウンロードして(即ち、伝送信号として送信され)、フラッシュメモリ等の記憶装置等に記憶してもよい。この場合、プログラムは、サーバに備えられたHDDなどの非一時的な記憶媒体に保存していればよい。 In the present embodiment, instead of the CPU 21, a microcomputer, ASIC (Application Specific Integrated Circuits), FPGA (Field Programmable Gate Array) or the like may be used as a processor. The movement control process may be distributed by a plurality of processors. The ROM 22 and the storage device 24 that store the program may be configured by another non-transitory storage medium such as an HDD and/or a storage device. The non-transitory storage medium may be any storage medium that can retain information regardless of the period in which the information is stored. Non-transitory storage media may not include transitory storage media (eg, transmitted signals). The tap acceleration/deceleration control program may be downloaded from a server connected to a network (not shown) (that is, transmitted as a transmission signal) and stored in a storage device such as a flash memory. In this case, the program may be stored in a non-temporary storage medium such as an HDD provided in the server.

10 工作機械
11 Z軸モータ
12 主軸モータ
20 数値制御装置
21 CPU
27 駆動回路
40 温度センサ
10 Machine tool 11 Z-axis motor 12 Spindle motor 20 Numerical control device 21 CPU
27 Drive circuit 40 Temperature sensor

Claims (4)

サーボモータと、前記サーボモータで駆動する駆動軸とを備える機械の制御を行い、前記駆動軸の加速開始時に加速度を増加する加速度増加期間と、前記駆動軸の加速終了時に加速度を減少する加速度減少期間とを有する数値制御装置において、
前記サーボモータの温度を検出する温度検出手段が検出した温度が第一閾値未満か否か判断する温度判断手段と、
前記温度判断手段が前記温度は前記第一閾値未満と判断した場合、前記加速度増加期間における加速度変化の傾きを前記加速度減少期間における加速度の傾きよりも大きく設定すると共に、前記加速度減少期間内において前記駆動軸の加速度減少速度を一定の第一傾きの第一加速度減少速度に設定した後、前記第一傾きよりも大きな一定の第二傾きの第二加速度減少速度に切替える二段加減速制御を実行する第一制御手段と、
前記温度判断手段が前記温度は前記第一閾値以上と判断した場合、前記加速度増加期間における加速度変化の傾きと、前記加速度減少期間における加速度変化の傾きとを同一に設定する一段加減速制御を実行する第二制御手段と
を備えたこと
を特徴とする数値制御装置。
A machine equipped with a servo motor and a drive shaft driven by the servo motor is controlled, and an acceleration increasing period in which the acceleration is increased at the start of acceleration of the drive shaft and an acceleration decrease period in which the acceleration is decreased at the end of acceleration of the drive shaft. In a numerical control device having a period,
Temperature determining means for determining whether the temperature detected by the temperature detecting means for detecting the temperature of the servo motor is less than a first threshold value,
When the temperature determination unit determines that the temperature is less than the first threshold value, the slope of the acceleration change in the acceleration increasing period is set to be larger than the slope of the acceleration in the acceleration decreasing period, and the temperature is decreased in the acceleration decreasing period. The two-step acceleration/deceleration control is performed in which the acceleration decrease speed of the drive axis is set to the first acceleration decrease speed of the constant first inclination, and then the second acceleration decrease speed of the constant second inclination larger than the first inclination is switched. First control means for
When the temperature determination means determines that the temperature is equal to or higher than the first threshold value, a one-step acceleration/deceleration control is performed to set the slope of acceleration change during the acceleration increase period and the slope of acceleration change during the acceleration decrease period to be the same. And a second control means for controlling the numerical control device.
前記温度判断手段が前記温度は前記第一閾値未満と判断した場合、前記サーボモータのトルクを検出するトルク検出手段が検出した前記トルクは第二閾値未満か否か判断するトルク判断手段を備え、
前記第一制御手段は、
前記トルク判断手段が前記トルクは前記第二閾値未満と判断した場合、前記二段加減速制御を実行する第三制御手段と、
前記トルク判断手段が前記トルクは前記第二閾値以上と判断した場合、前記一段加減速制御を実行する第四制御手段と
を備えたこと
を特徴とする請求項1に記載の数値制御装置。
When the temperature determination means determines that the temperature is less than the first threshold value, the torque detection means that detects the torque of the servo motor includes a torque determination means that determines whether the torque is less than a second threshold value,
The first control means,
When the torque determination means determines that the torque is less than the second threshold value, third control means for executing the two-step acceleration/deceleration control,
The numerical control device according to claim 1, further comprising a fourth control unit that executes the one-step acceleration/deceleration control when the torque determination unit determines that the torque is equal to or more than the second threshold value.
前記駆動軸は、タップ工具を装着して回転可能な前記機械の主軸であること
を特徴とする請求項1又は2に記載の数値制御装置。
The numerical control device according to claim 1, wherein the drive shaft is a main shaft of the machine that is rotatable by mounting a tap tool.
サーボモータと、前記サーボモータで駆動する駆動軸とを備える機械の制御を行い、前記駆動軸の加速開始時に加速度を増加する加速度増加期間と、前記駆動軸の加速終了時に加速度を減少する加速度減少期間とを有する数値制御装置の制御方法において、
前記サーボモータの温度を検出する温度検出手段が検出した温度が第一閾値以上か否か判断する温度判断工程と、
前記温度判断工程で前記温度は前記第一閾値未満と判断した場合、前記加速度増加期間における加速度変化の傾きを前記加速度減少期間における加速度の傾きよりも大きく設定すると共に、前記加速度減少期間内において前記駆動軸の加速度減少速度を一定の第一傾きの第一加速度減少速度に設定した後、前記第一傾きよりも大きな一定の第二傾きの第二加速度減少速度に切替える二段加減速制御を実行する第一制御工程と、
前記温度判断工程で前記温度は前記第一閾値以上と判断した場合、前記加速度増加期間における加速度変化の傾きと、前記加速度減少期間における加速度変化の傾きとを同一に設定する一段加減速制御を実行する第二制御工程と
を備えたこと
を特徴とする制御方法。
A machine equipped with a servo motor and a drive shaft driven by the servo motor is controlled, and an acceleration increasing period in which the acceleration is increased at the start of acceleration of the drive shaft and an acceleration decrease period in which the acceleration is decreased at the end of acceleration of the drive shaft. In a control method of a numerical controller having a period,
A temperature determining step of determining whether or not the temperature detected by the temperature detecting means for detecting the temperature of the servo motor is equal to or higher than a first threshold value;
When it is determined that the temperature is less than the first threshold value in the temperature determination step, the slope of the acceleration change in the acceleration increasing period is set to be larger than the slope of the acceleration in the acceleration decreasing period, and the temperature is reduced in the acceleration decreasing period. The two-step acceleration/deceleration control is performed in which the acceleration decrease speed of the drive axis is set to the first acceleration decrease speed of the constant first inclination, and then the second acceleration decrease speed of the constant second inclination larger than the first inclination is switched. A first control step to
When it is determined that the temperature is equal to or higher than the first threshold value in the temperature determination step, the one-step acceleration/deceleration control is performed to set the slope of the acceleration change in the acceleration increasing period and the slope of the acceleration change in the acceleration decreasing period to be the same. And a second control step for performing the control method.
JP2017064562A 2017-03-29 2017-03-29 Numerical control device and control method Active JP6747352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017064562A JP6747352B2 (en) 2017-03-29 2017-03-29 Numerical control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017064562A JP6747352B2 (en) 2017-03-29 2017-03-29 Numerical control device and control method

Publications (2)

Publication Number Publication Date
JP2018169664A JP2018169664A (en) 2018-11-01
JP6747352B2 true JP6747352B2 (en) 2020-08-26

Family

ID=64018711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017064562A Active JP6747352B2 (en) 2017-03-29 2017-03-29 Numerical control device and control method

Country Status (1)

Country Link
JP (1) JP6747352B2 (en)

Also Published As

Publication number Publication date
JP2018169664A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP5520979B2 (en) Machine tool with collision monitoring device
JP5395720B2 (en) Power failure control device
JP4261470B2 (en) Control device
JP2010250697A (en) Control device for machine tool
JP5319798B2 (en) Motor control device that limits torque command according to input current or power
JP5941087B2 (en) Laser processing equipment that retracts the processing nozzle in the event of power failure
JP2015036833A (en) Interference confirmation device
JP2019144809A (en) Servo control device
JP6407810B2 (en) Machining system that adjusts machining tool rotation speed and workpiece feed speed
US20180129190A1 (en) Machine tool and parameter adjustment method therefor
JP5523875B2 (en) Thread cutting control method
US11106194B2 (en) Numerical controller for continuous cutting control
JP5674449B2 (en) Machine Tools
US11402824B2 (en) Numerical controller
CN108693838B (en) Numerical controller and control method
JP5949537B2 (en) Numerical controller
CN110744356A (en) Abnormality detection device for machine tool
JP6457778B2 (en) Numerical controller
JP6747352B2 (en) Numerical control device and control method
JP6151667B2 (en) Numerical control device having superposition control speed control function
US20230033414A1 (en) Numerical controller
CN112743392B (en) Device and method for monitoring spindle rotation speed in machine tool, and machine tool
JP6077497B2 (en) Numerical control device for repetitive machining
JP6444969B2 (en) Numerical controller
JP2017021472A (en) Machining device and machining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R150 Certificate of patent or registration of utility model

Ref document number: 6747352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150