Nothing Special   »   [go: up one dir, main page]

JP6634040B2 - Vacuum insulation material, method for manufacturing vacuum insulation material, and refrigerator - Google Patents

Vacuum insulation material, method for manufacturing vacuum insulation material, and refrigerator Download PDF

Info

Publication number
JP6634040B2
JP6634040B2 JP2017008920A JP2017008920A JP6634040B2 JP 6634040 B2 JP6634040 B2 JP 6634040B2 JP 2017008920 A JP2017008920 A JP 2017008920A JP 2017008920 A JP2017008920 A JP 2017008920A JP 6634040 B2 JP6634040 B2 JP 6634040B2
Authority
JP
Japan
Prior art keywords
thickness
heat insulating
pressing
insulating material
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017008920A
Other languages
Japanese (ja)
Other versions
JP2018115755A (en
Inventor
祐志 新井
祐志 新井
越後屋 恒
恒 越後屋
久保田 剛
剛 久保田
一輝 柏原
一輝 柏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2017008920A priority Critical patent/JP6634040B2/en
Priority to CN201711377931.3A priority patent/CN108332002A/en
Publication of JP2018115755A publication Critical patent/JP2018115755A/en
Application granted granted Critical
Publication of JP6634040B2 publication Critical patent/JP6634040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/029Shape or form of insulating materials, with or without coverings integral with the insulating materials layered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Description

本発明は、真空断熱材及びその製造方法並びにこの真空断熱材を備えた冷蔵庫に関する。   The present invention relates to a vacuum heat insulating material, a method for manufacturing the same, and a refrigerator provided with the vacuum heat insulating material.

地球温暖化を防止する社会の取り組みとして、二酸化炭素(CO)の排出抑制を図るため様々な分野で省エネルギー化が推進されている。近年の電気製品、特に冷熱関連の家電製品である冷蔵庫においても、消費電力量を低減する観点から断熱性能を向上したものが主流になってきている。そのためには、断熱性が高く、冷蔵庫内部の冷熱が冷蔵庫の外部に逃げない構造が不可欠である。 2. Description of the Related Art As a social initiative to prevent global warming, energy saving has been promoted in various fields in order to reduce carbon dioxide (CO 2 ) emissions. In recent years, electric appliances, particularly refrigerators, which are home appliances related to cooling and heating, have become mainstream with improved heat insulation performance from the viewpoint of reducing power consumption. For that purpose, a structure that has high heat insulation properties and does not allow the cold heat inside the refrigerator to escape to the outside of the refrigerator is essential.

一般的には、冷蔵庫は冷蔵庫本体である断熱箱体と、その断熱箱体に設けられる貯蔵室の前面開口部を開閉する貯蔵室扉とで構成されている。冷蔵庫内部の冷熱が冷蔵庫の外部に逃げないようにするためには、断熱箱体と貯蔵室扉の断熱性能を向上させればよい。多くの場合、真空断熱材と硬質ウレタンフォームを断熱箱体や貯蔵室扉の内部に配置して断熱性能を向上させている。例えば、断熱箱体の外箱又は内箱の内部表面に平板状の真空断熱材を貼り付け、外箱と内箱の間に硬質ウレタンフォームを充填して冷熱の移動を抑制している。また、例えば、貯蔵室扉の外板内側に平板状の真空断熱材を貼り付け、外板と内板の間に硬質ウレタンフォームを充填して冷熱の移動を抑制している。   In general, a refrigerator includes a heat insulating box which is a refrigerator main body, and a storage room door which opens and closes a front opening of a storage room provided in the heat insulating box. In order to prevent the cold heat inside the refrigerator from escaping to the outside of the refrigerator, the heat insulating performance of the heat insulating box and the storage room door may be improved. In many cases, a vacuum heat insulating material and rigid urethane foam are arranged inside a heat insulating box or a storage room door to improve heat insulating performance. For example, a flat vacuum heat insulating material is attached to the inner surface of the outer box or the inner box of the heat insulating box, and rigid urethane foam is filled between the outer box and the inner box to suppress the transfer of cold heat. Further, for example, a flat vacuum heat insulating material is attached to the inside of the outer plate of the storage room door, and hard urethane foam is filled between the outer plate and the inner plate to suppress the transfer of cold heat.

近年、真空断熱材の断熱性能を向上させることを目的とした研究開発が精力的に進められている。そして、そのような真空断熱材が、例えば、特許文献1に記載されている。   In recent years, research and development aimed at improving the heat insulating performance of vacuum heat insulating materials have been vigorously pursued. And such a vacuum heat insulating material is described in Patent Document 1, for example.

特許文献1には、ガラス繊維を厚み方向に積層したガラス繊維の積層体からなる芯材と、前記芯材を被覆するガスバリア性を有する外包材とを備え、前記外包材の内部が減圧して密閉された真空断熱材が記載されている。
そして、この真空断熱材の前記芯材は、ガラス繊維の自重で繊維が僅かに変形を始める温度、又はプレス時の上下方向からの加重によりガラス繊維が変形可能となる温度であって、ガラス繊維の断面形状が大きく変化しない程度の温度で加圧成形されてガラス繊維の熱変形により繊維が延伸されている。
また、この真空断熱材は、繊維相互の結着でなく、ガラス繊維の一部が繊維相互間で絡み合って形状を保持している。
特許文献1には、前記した構成とすることにより、真空断熱材の断熱性能が大幅に改善された旨記載されている。
Patent Literature 1 includes a core material made of a glass fiber laminate in which glass fibers are laminated in a thickness direction, and an outer packaging material having a gas barrier property for covering the core material. A hermetically sealed vacuum insulation is described.
The core material of the vacuum heat insulating material is at a temperature at which the glass fiber starts to slightly deform under its own weight, or at a temperature at which the glass fiber can be deformed by a vertical load during pressing. Is molded under pressure at a temperature at which the cross-sectional shape of the glass fiber does not change significantly, and the glass fiber is stretched by thermal deformation.
Further, in this vacuum heat insulating material, some of the glass fibers are not tied to each other but are entangled between the fibers to maintain the shape.
Patent Literature 1 describes that the above-described configuration significantly improves the heat insulating performance of a vacuum heat insulating material.

特許第3580315号公報Japanese Patent No. 3580315

特許文献1に記載の真空断熱材に用いられている芯材の原綿はガラス繊維の一部が繊維相互間で絡み合って形状を保持しているに過ぎないため、外包材(包装体)に挿入するにあたってガラス繊維(無機繊維)がつぶれてしまい、寸法精度が悪化するという問題があった。   The raw cotton of the core material used for the vacuum heat insulating material described in Patent Document 1 is inserted into the outer packaging material (packaging body) because only a part of the glass fiber is entangled between the fibers to keep the shape. In doing so, there is a problem that glass fibers (inorganic fibers) are crushed and dimensional accuracy is deteriorated.

また、前記したように、特許文献1に記載の真空断熱材は、ガラス繊維の一部が繊維相互間で絡み合って形状を保持しているに過ぎないので、この真空断熱材は、包装体が破れたり、真空包装時に包装体の一部をカットしたりした場合に、厚みや形状が元の寸法に戻る率(復元率)が高いという問題があった。   In addition, as described above, in the vacuum heat insulating material described in Patent Document 1, only a part of glass fibers is entangled between fibers to keep the shape. When the package is torn or a part of the package is cut at the time of vacuum packaging, there is a problem in that the rate at which the thickness or shape returns to the original size (restoration rate) is high.

本発明は前記状況に鑑みてなされたものであり、寸法精度が高く、復元率が低い真空断熱材及びその製造方法並びにこの真空断熱材を備えた冷蔵庫を提供することを課題とする。   The present invention has been made in view of the above circumstances, and has as its object to provide a vacuum heat insulating material having high dimensional accuracy and a low restoration rate, a method of manufacturing the same, and a refrigerator including the vacuum heat insulating material.

前記課題を解決した本発明に係る真空断熱材は、無機繊維の集合体であり、前記集合体の表面に前記無機繊維の少なくとも一部を融着させた融着層が形成されている芯材と、前記芯材を内包すると共に、内部が減圧状態に保たれている包装体と、を有し、前記融着層の厚さが0.1mm以上2mm以下、前記無機繊維の厚さ方向の中間位置のプレス後の温度が歪点よりも低く、前記無機繊維のプレス前の厚みが120mm以上、前記無機繊維のプレス直後の厚みと、プレスしてから3日後の厚みとから、{(3日後の厚み/プレス直後の厚み)−1}×100で算出される復元率が25%以下であることとしているA vacuum heat insulating material according to the present invention that has solved the above-mentioned problem is a core material which is an aggregate of inorganic fibers, and a fusion layer formed by fusing at least a part of the inorganic fibers is formed on a surface of the aggregate. If, while enclosing the core material, inside have a, a packaging body is kept in a vacuum state, the thickness of the fusion layer is 0.1mm or more 2mm or less, in the thickness direction of the inorganic fibers The temperature after pressing at the intermediate position is lower than the strain point, the thickness of the inorganic fiber before pressing is 120 mm or more, and the thickness of the inorganic fiber immediately after pressing and the thickness of the inorganic fiber three days after pressing are represented by Δ (3 The restoration rate calculated by (thickness after day / thickness immediately after pressing) -1} × 100 is 25% or less .

本発明に係る真空断熱材の製造方法は、無機繊維の集合体である芯材を前記無機繊維の歪点よりも高い温度でプレスし、前記集合体の表面に前記無機繊維の少なくとも一部を融着させた融着層を形成する融着層形成工程と、前記融着層を形成した芯材を包装体に内包させ、前記包装体の内部を減圧状態にしつつ密封する真空密封工程と、を有し、前記融着層形成工程において前記融着層の厚さを0.1mm以上2mm以下とすると共に、前記無機繊維の厚さ方向の中間位置のプレス後の温度を歪点よりも低くし、前記融着層形成工程でプレスする前の前記無機繊維の厚みが120mm以上であり、前記無機繊維のプレス直後の厚みと、プレスしてから3日後の厚みとから、{(3日後の厚み/プレス直後の厚み)−1}×100で算出される復元率が25%以下であることとしているThe manufacturing method of the vacuum heat insulating material according to the present invention, the core material which is an aggregate of inorganic fibers is pressed at a temperature higher than the strain point of the inorganic fibers, at least a part of the inorganic fibers on the surface of the aggregate. A fusion layer forming step of forming a fusion layer that has been fused, a vacuum sealing step of enclosing the core material having the fusion layer formed therein in a package, and sealing the inside of the package while reducing the pressure inside the package; It has a, as well as the thickness of the bonding layer and 0.1mm or 2mm or less in the bonding layer forming step, the temperature after pressing the middle position in the thickness direction of the inorganic fibers lower than the strain point Then, the thickness of the inorganic fiber before pressing in the fusion layer forming step is 120 mm or more, and the thickness of the inorganic fiber immediately after pressing and the thickness of three days after pressing are represented by Δ (after three days) Thickness / thickness immediately after pressing) -1 x 100 Based index is a 25% or less.

本発明に係る冷蔵庫は、無機繊維の集合体であり、前記集合体の表面に前記無機繊維の少なくとも一部を融着させた融着層が形成されている芯材と、前記芯材を内包すると共に、内部が減圧状態に保たれている包装体と、を有する真空断熱材を、外箱と内箱とによって形成される断熱箱体の内部と、前記断熱箱体に形成された貯蔵室を開閉する外板と内板とによって形成される貯蔵室扉の内部と、貯蔵温度帯の異なる部屋を仕切る仕切断熱壁の内部と、のうちの少なくとも一つに備えており、前記融着層の厚さが0.1mm以上2mm以下、前記無機繊維の厚さ方向の中間位置のプレス後の温度が歪点よりも低く、前記無機繊維のプレス前の厚みが120mm以上、前記無機繊維のプレス直後の厚みと、プレスしてから3日後の厚みとから、{(3日後の厚み/プレス直後の厚み)−1}×100で算出される復元率が25%以下であることとしている。 The refrigerator according to the present invention is an aggregate of inorganic fibers, and includes a core having a fusion layer formed by fusing at least a part of the inorganic fibers on a surface of the aggregate, and including the core. And a package having an interior kept in a decompressed state, and a vacuum insulation material having an inner box formed by an outer box and an inner box, and a storage chamber formed in the insulation box. The inside of a storage room door formed by an outer plate and an inner plate that opens and closes, and the inside of a partition hot wall that partitions rooms having different storage temperature zones, and the fusion layer 0.1 mm or more and 2 mm or less, the temperature after pressing at an intermediate position in the thickness direction of the inorganic fiber is lower than the strain point, and the thickness of the inorganic fiber before pressing is 120 mm or more, and the pressing of the inorganic fiber is performed. From the thickness immediately after and the thickness three days after pressing, (3 days after the thickness / press immediately thickness) -1} recovery rate calculated in × 100 is present as 25% or less.

本発明によれば、寸法精度が高く、復元率が低い真空断熱材、真空断熱材及びその製造方法並びにこの真空断熱材を備えた冷蔵庫を提供することができる。   According to the present invention, it is possible to provide a vacuum heat insulating material having high dimensional accuracy and a low restoration rate, a vacuum heat insulating material, a method for manufacturing the same, and a refrigerator provided with the vacuum heat insulating material.

本実施形態に係る真空断熱材の構成を説明する概略断面図である。It is an outline sectional view explaining the composition of the vacuum heat insulating material concerning this embodiment. 無機繊維の一例を示す走査型電子顕微鏡像である。倍率は500倍であり、図中、中央下方のスケールバーは50μmを表している。It is a scanning electron microscope image which shows an example of an inorganic fiber. The magnification is 500 times, and the scale bar at the lower center in the figure represents 50 μm. 本実施形態に係る冷蔵庫の構成を説明する正面図である。It is a front view explaining the composition of the refrigerator concerning this embodiment. 図3のA−A線断面図である。FIG. 4 is a sectional view taken along line AA of FIG. 3. 各プレス温度で10分プレスした場合における芯材の厚みの復元量を示すグラフである。It is a graph which shows the restoration | restoring amount of the thickness of a core material at the time of pressing for 10 minutes at each press temperature. 各プレス温度でプレスした無機繊維の走査型電子顕微鏡像である。走査型電子顕微鏡像の倍率は、左欄が200倍であり、中欄及び右欄が1000〜2000倍である。It is a scanning electron microscope image of the inorganic fiber pressed at each press temperature. The magnification of the scanning electron microscope image is 200 times in the left column, and 1000 to 2000 times in the middle and right columns.

以下、適宜図面を参照して本発明係る真空断熱材、真空断熱材の製造方法及び冷蔵庫を実施するための形態(実施形態)について詳細に説明する。   Hereinafter, a mode (embodiment) for implementing a vacuum heat insulating material, a method for manufacturing a vacuum heat insulating material, and a refrigerator according to the present invention will be described in detail with reference to the drawings as appropriate.

[真空断熱材]
図1は、本実施形態に係る真空断熱材の構成を説明する概略断面図である。
図1に示すように、真空断熱材1は、芯材2と、包装体3と、を有する。
(芯材)
芯材2は、無機繊維の集合体であり、この集合体の表面に無機繊維の少なくとも一部を融着させた融着層2aが形成されている。
無機繊維は、ガラス繊維、セラミック繊維、ロックウールなどを用いることができるが、これらに限定されない。
無機繊維の集合体とは、任意の製造方法で製造された無数の無機繊維が絡み合って一体的に形成された原綿をいう。原綿の形状は、例えば、所定の厚みを有するシート状とするのが好ましいが、これに限定されない。無機繊維の集合体は、製造方法の都合上、前記原綿を一つのみを用いてもよいし、複数個用いてもよい。つまり、前記したようにシート状の原綿である場合は、一層のみとしてもよいし、複数層重ねてもよい。
[Vacuum insulation]
FIG. 1 is a schematic sectional view illustrating the configuration of the vacuum heat insulating material according to the present embodiment.
As shown in FIG. 1, the vacuum heat insulating material 1 has a core material 2 and a package 3.
(Core material)
The core material 2 is an aggregate of inorganic fibers, and a fusion layer 2a formed by fusing at least a part of the inorganic fibers is formed on the surface of the aggregate.
As the inorganic fiber, glass fiber, ceramic fiber, rock wool, or the like can be used, but is not limited thereto.
The aggregate of inorganic fibers refers to raw cotton integrally formed by intertwining innumerable inorganic fibers manufactured by an arbitrary manufacturing method. The shape of the raw cotton is preferably, for example, a sheet having a predetermined thickness, but is not limited thereto. For the aggregate of inorganic fibers, only one of the raw cottons may be used, or a plurality of the raw cottons may be used for convenience of the manufacturing method. That is, as described above, in the case of a sheet-like raw cotton, it may be a single layer or a plurality of layers.

無機繊維は、例えば、平均繊維径2〜6μmのものを好適に用いることができるが、この範囲外のものも問題なく用いることができる。このような無機繊維は、例えば、遠心法によって得ることができる。   As the inorganic fibers, for example, those having an average fiber diameter of 2 to 6 μm can be suitably used, but those having an average fiber diameter outside this range can be used without any problem. Such an inorganic fiber can be obtained, for example, by a centrifugal method.

融着層2aは、前述したように、集合体の表面に無機繊維の少なくとも一部を融着させたものである。すなわち、融着層2aは、後述する真空断熱材1の製造方法で説明するように、所定の条件で無機繊維の少なくとも一部を融着させたものであるので、芯材2の表面の硬さを芯材2の内部よりも硬くすることができる。従って、真空断熱材1は、この融着層2aを有することによってその形状をしっかりと保つことができるので、真空断熱材1を成形する場合などにおいて寸法精度を高くすることができる。また、真空断熱材1は、無機繊維が包装体3から露出した場合などであっても復元率を低くすることができる。
なお、融着層2aは、寸法精度が高く、復元率が低い真空断熱材1を提供するという所期の効果を奏することができればよく、融着層2aに該当する領域が全て融着したものである必要はない。
As described above, the fusion layer 2a is obtained by fusing at least a part of the inorganic fibers to the surface of the aggregate. That is, the fusion layer 2a is formed by fusing at least a part of the inorganic fibers under predetermined conditions, as described in a method of manufacturing the vacuum heat insulating material 1 described later. The hardness can be made harder than the inside of the core material 2. Therefore, since the vacuum heat insulating material 1 can maintain its shape firmly by having the fusion layer 2a, the dimensional accuracy can be increased when the vacuum heat insulating material 1 is formed. Moreover, the vacuum heat insulating material 1 can lower the restoration rate even when the inorganic fibers are exposed from the package 3.
The fusion layer 2a has only to have the desired effect of providing the vacuum heat insulating material 1 with high dimensional accuracy and low restoration rate, and is obtained by fusing all the regions corresponding to the fusion layer 2a. Need not be.

融着層2aの厚さは2mm以下であるのが好ましく、1mm以下であるのがより好ましい。融着層2aの厚さをこの範囲とすれば、断熱性能に優れ、且つ、寸法精度が高く、復元率が低い真空断熱材1を提供するという所期の効果を確実に奏することができる。なお、前記所期の効果をより確実に奏する観点から、融着層2aの厚さは0.1mm以上とするのがより好ましい。融着層2aの厚さは、無機繊維の種類・厚さと、後述する真空断熱材1の製造方法における融着層形成工程の条件と、を適宜制御することによって任意に調節できる。なお、用いる無機繊維の種類等によって融着層2aの厚さは変わり得るものであるため、融着層形成工程の条件は事前に試験を行うなどして確認しておくのが好ましい。   The thickness of the fusion layer 2a is preferably 2 mm or less, more preferably 1 mm or less. When the thickness of the fusion layer 2a is in this range, the desired effect of providing the vacuum heat insulating material 1 having excellent heat insulating performance, high dimensional accuracy, and low restoration rate can be reliably achieved. It is more preferable that the thickness of the fusion layer 2a be 0.1 mm or more from the viewpoint of more reliably achieving the expected effect. The thickness of the fusion layer 2a can be arbitrarily adjusted by appropriately controlling the type and thickness of the inorganic fiber and the conditions of the fusion layer forming step in the method for manufacturing the vacuum heat insulating material 1 described below. Since the thickness of the fusion layer 2a can vary depending on the type of the inorganic fiber used and the like, it is preferable to confirm the conditions of the fusion layer forming step by performing a test or the like in advance.

融着層2aは、無機繊維の密度が高い状態であるのが好ましい。このように、融着する無機繊維の密度を高くすると、芯材2の表面の硬さをより高く(硬く)することができる。融着層2aの無機繊維の密度は、後述する真空断熱材1の製造方法における融着層形成工程において所定の条件(温度・時間)でプレスを行うことによって高めることができる。   The fusion layer 2a is preferably in a state where the density of the inorganic fibers is high. As described above, when the density of the inorganic fibers to be fused is increased, the hardness of the surface of the core material 2 can be further increased (hardened). The density of the inorganic fibers of the fusion layer 2a can be increased by performing pressing under predetermined conditions (temperature and time) in a fusion layer forming step in a method for manufacturing the vacuum heat insulating material 1 described below.

ここで、図2は、無機繊維の一例を示す走査型電子顕微鏡像(SEM像)である。
図2に示すように、無機繊維2bの表面に針状の結晶2cが形成されていることが好ましい。このようにすると、無機繊維2b同士が密着することを抑制できるので、無機繊維2b同士の密着による熱伝導を抑制できる。
無機繊維2bの表面に形成させる針状の結晶2cの大きさは、無機繊維2bの径より小さくして、熱伝導率を低くするのが好ましい。
また、前記した針状の結晶2cは、硫黄で形成されている。硫黄の熱伝導率は無機繊維2bより低いため、真空断熱材1の熱伝導率を更に低くできる。
針状の結晶2cは、湿式抄造方式によって無機繊維2bをシート化するときの分散剤として硫酸を用いることで形成することができる。
Here, FIG. 2 is a scanning electron microscope image (SEM image) showing an example of the inorganic fiber.
As shown in FIG. 2, it is preferable that needle-like crystals 2c are formed on the surface of the inorganic fibers 2b. In this way, the inorganic fibers 2b can be prevented from sticking to each other, so that the heat conduction due to the adhesion between the inorganic fibers 2b can be suppressed.
It is preferable that the size of the needle-like crystal 2c formed on the surface of the inorganic fiber 2b be smaller than the diameter of the inorganic fiber 2b to lower the thermal conductivity.
The needle-like crystal 2c is formed of sulfur. Since the thermal conductivity of sulfur is lower than that of the inorganic fibers 2b, the thermal conductivity of the vacuum heat insulating material 1 can be further reduced.
The needle-like crystals 2c can be formed by using sulfuric acid as a dispersant when the inorganic fibers 2b are formed into a sheet by a wet papermaking method.

(包装体)
包装体3は、芯材2を内包すると共に、内部が減圧状態(いわゆる真空状態)に保つものである。つまり、包装体3は、真空断熱材1の外装を成すものである。
包装体3は、ガスバリア性を有し、熱溶着可能なラミネートフィルムを好適に用いることができる。ラミネートフィルムは、表面保護層、第1ガスバリア層、第2ガスバリア層、熱溶着層の4層構造であるものを好適に用いることができる。
(Package)
The package 3 contains the core material 2 and maintains the inside in a reduced pressure state (a so-called vacuum state). That is, the package 3 forms an exterior of the vacuum heat insulating material 1.
As the package 3, a laminate film having gas barrier properties and capable of being thermally welded can be suitably used. As the laminate film, a film having a four-layer structure of a surface protective layer, a first gas barrier layer, a second gas barrier layer, and a heat welding layer can be suitably used.

表面保護層は、保護材の役割を持ち、吸湿性の低い樹脂フィルムを用いるのが好ましい。
第1ガスバリア層は樹脂フィルムに金属蒸着層を設け、第2ガスバリア層は酸素バリア性の高い樹脂フィルムに金属蒸着層を設け、第1ガスバリア層と第2ガスバリア層は金属蒸着層同士が向かい合うように貼り合わせたものを用いるのが好ましい。
熱溶着層も表面保護層と同様に吸湿性の低い樹脂フィルムを用いるのが好ましい。
The surface protective layer has a role of a protective material, and it is preferable to use a resin film having low hygroscopicity.
The first gas barrier layer is provided with a metal deposition layer on a resin film, the second gas barrier layer is provided with a metal deposition layer on a resin film having high oxygen barrier properties, and the first gas barrier layer and the second gas barrier layer are opposed to each other. It is preferable to use a material that is adhered to.
It is preferable to use a resin film having low hygroscopicity for the heat-welding layer as well as the surface protective layer.

具体的には、表面保護層は、二軸延伸タイプのポリプロピレン、ポリアミド、ポリエチレンテレフタレート等の樹脂フィルムを用いるのが好ましい。第1ガスバリア層は、アルミニウム蒸着付きの二軸延伸ポリエチレンテレフタレートフィルムとするのが好ましい。第2ガスバリア層は、アルミニウム蒸着付きの二軸延伸エチレンビニルアルコール共重合体樹脂フィルム又はアルミニウム蒸着付きの二軸延伸ポリビニルアルコール樹脂フィルム、又はアルミ箔を用いるのが好ましい。熱溶着層は、未延伸タイプのポリエチレン、ポリプロピレン等の樹脂フィルムを用いるのが好ましい。   Specifically, it is preferable to use a resin film such as a biaxially-stretched polypropylene, polyamide, or polyethylene terephthalate as the surface protective layer. The first gas barrier layer is preferably a biaxially stretched polyethylene terephthalate film with aluminum deposition. As the second gas barrier layer, it is preferable to use a biaxially stretched ethylene vinyl alcohol copolymer resin film with aluminum deposition, a biaxially stretched polyvinyl alcohol resin film with aluminum deposition, or an aluminum foil. It is preferable to use an unstretched resin film such as polyethylene or polypropylene for the heat welding layer.

真空断熱材1は、芯材2の表面に前記した融着層2aを有しており、形状をしっかりと保つことができるので、ガスバリア性を有する包装体3に芯材2を直接且つ容易に内包させることができる。従って、真空断熱材1は、従来、ガスバリア性を有する外袋に芯材を内包させるために用いられてきた内袋が不要となる。そのため、真空断熱材1は、内袋で芯材を包装する作業及び内袋のコストを削減でき、低コスト化を図ることができる。
なお、本実施形態においては、包装体3の補強や芯材2の取扱いの容易化や保存等の目的で、必要に応じて内袋を用いてもよい。
Since the vacuum heat insulating material 1 has the above-mentioned fusion layer 2a on the surface of the core material 2 and can keep the shape firmly, the core material 2 can be directly and easily attached to the package 3 having gas barrier properties. Can be included. Therefore, the vacuum heat insulating material 1 does not require the inner bag which has been used for enclosing the core material in the outer bag having gas barrier properties. Therefore, the vacuum heat insulating material 1 can reduce the cost of the operation of packing the core material in the inner bag and the cost of the inner bag, and can reduce the cost.
In the present embodiment, an inner bag may be used as necessary for the purpose of reinforcing the package 3, facilitating the handling of the core material 2, or storing the core material 2.

なお、真空断熱材1は、包装体3の内側や芯材2の中に合成ゼオライト、活性炭、活性アルミナ、シリカゲルなどのガス吸着剤2dが収納されていてもよい。ガス吸着剤2dは、包装体3の内側や芯材2の中に局所的に存在していてもよいし、分散して存在していてもよい。   The vacuum heat insulating material 1 may contain a gas adsorbent 2d such as synthetic zeolite, activated carbon, activated alumina, or silica gel inside the package 3 or in the core material 2. The gas adsorbent 2d may be present locally inside the package 3 or in the core material 2, or may be present in a dispersed state.

(作用・効果)
以上に説明した本実施形態に係る真空断熱材1は、図1に示すように、無機繊維の集合体である芯材2の表面に前記した融着層2aを有している。そのため、真空断熱材1は、この融着層2aを有することによってその形状をしっかりと保つことができるので、真空断熱材1を成形する場合などにおいて寸法精度を高くすることができる。例えば、真空断熱材1によれば、融着層2aを有しているので、包装体3に内包する前や後記する真空密封工程における真空引き前などにおいて芯材1の端面をカットする場合に、そのカット精度を向上させることができる。また、真空断熱材1は、前記した融着層2aを有しているので、無機繊維が包装体3から露出した場合などであっても復元率を低くすることができる。
(Action / Effect)
As described above, the vacuum heat insulating material 1 according to the present embodiment has the above-described fusion layer 2a on the surface of a core material 2 which is an aggregate of inorganic fibers, as shown in FIG. Therefore, the vacuum heat insulating material 1 can maintain its shape firmly by having the fusion layer 2a, so that the dimensional accuracy can be increased when the vacuum heat insulating material 1 is formed. For example, since the vacuum heat insulating material 1 has the fusion layer 2a, when the end surface of the core material 1 is cut before enclosing in the package 3 or before evacuation in a vacuum sealing step described later, , The cutting accuracy can be improved. In addition, since the vacuum heat insulating material 1 has the above-described fusion layer 2a, the restoration rate can be reduced even when the inorganic fibers are exposed from the package 3.

更に、真空断熱材1によれば、融着層2aを有しているので、芯材2の厚さを薄く保つことができる。そのため、真空断熱材1は、包装体3の寸法を小さくすることができ、低コスト化を図ることができる。   Furthermore, according to the vacuum heat insulating material 1, the thickness of the core material 2 can be kept thin because it has the fusion layer 2a. Therefore, the vacuum heat insulating material 1 can reduce the size of the package 3 and can reduce the cost.

[真空断熱材の製造方法]
次に、本実施形態に係る真空断熱材の製造方法について説明する。
なお、本実施形態に係る真空断熱材の製造方法の説明において、前記した本実施形態に係る真空断熱材1と共通する構成要素については同一の符号を付し、詳細な説明は省略する。
[Manufacturing method of vacuum insulation material]
Next, a method for manufacturing the vacuum heat insulating material according to the present embodiment will be described.
In the description of the method for manufacturing a vacuum heat insulating material according to the present embodiment, the same reference numerals are given to components common to the above-described vacuum heat insulating material 1 according to the present embodiment, and detailed description thereof will be omitted.

本実施形態に係る真空断熱材の製造方法は、融着層形成工程と、真空密封工程と、を有し、これらの工程をこの順で行う。   The method for manufacturing a vacuum heat insulating material according to the present embodiment includes a fusion layer forming step and a vacuum sealing step, and these steps are performed in this order.

(融着層形成工程)
融着層形成工程は、無機繊維の集合体である芯材2を無機繊維の歪点よりも高い温度でプレスし、前記集合体(芯材2)の表面に前記融着層2aを形成する工程である。なお、「歪点」とは、それ以上になると、無機繊維が歪み始める温度をいう。換言すると、それよりも低いと、無機繊維の歪みが生じない温度をいう。つまり、歪点とは、無機繊維の粘性流動が事実上起こり得ない温度をいう。融着層形成工程において、無機繊維の歪点よりも高い温度でプレスすることにより、無機繊維の少なくとも一部が融解し、無機繊維同士を融着させることができる。従って、この融着層形成工程を経た芯材2は、前述したように、その形状をしっかりと保つことができるようになる。
(Fusing layer forming step)
In the fusion layer forming step, the core material 2 which is an aggregate of inorganic fibers is pressed at a temperature higher than the strain point of the inorganic fibers to form the fusion layer 2a on the surface of the aggregate (core material 2). It is a process. The “strain point” means a temperature at which the inorganic fiber starts to be distorted. In other words, if it is lower than this, it means the temperature at which the distortion of the inorganic fiber does not occur. That is, the strain point refers to a temperature at which the viscous flow of the inorganic fiber cannot practically occur. In the fusion layer forming step, by pressing at a temperature higher than the strain point of the inorganic fibers, at least a part of the inorganic fibers is melted, and the inorganic fibers can be fused to each other. Therefore, the core material 2 that has undergone this fusion layer forming step can maintain its shape firmly as described above.

融着層形成工程では、無機繊維の歪点よりも高い温度でプレスするので、芯材2の表面を芯材2の内部に向けて圧縮しつつ融着することになる。そのため、融着層2aは、無機繊維の密度が高い状態となることが多い。このように、無機繊維の密度が高い状態で融着しているため、芯材2の表面の硬さをより高くすることができる。   In the fusion layer forming step, since the pressing is performed at a temperature higher than the strain point of the inorganic fibers, the fusion is performed while compressing the surface of the core material 2 toward the inside of the core material 2. Therefore, the fusion layer 2a often has a state in which the density of the inorganic fibers is high. As described above, since the inorganic fibers are fused with a high density, the hardness of the surface of the core material 2 can be further increased.

融着層形成工程は、所定の型を有し、加熱することのできる金型(図示せず)を用いることによって行うことができる。
金型の加熱温度は、融着層2aを形成する無機繊維の歪点に合わせて適宜設定するとよい。なお、本実施形態においては、無機繊維の歪点よりも高い温度が500℃以上であるのが好ましいため、金型の加熱温度はそれ以上に設定するのが好ましい。但し、無機繊維の歪点が500℃よりも低い場合もあるため、そのような無機繊維を用いる場合は、無機繊維の歪点に応じて適宜金型の加熱温度を変更することができる。例えば、金型の加熱温度は、500〜600℃の範囲で設定することができる。なお、加熱温度が高いほど、繊維先端の溶着部が大きくなることから、500〜550℃の範囲とすることが、より好ましい。
金型による加熱時間は、例えば、10分から20分とすることができるが、融着層2aを形成できればよく、この範囲に限定されない。金型の成形荷重は、例えば、0.05〜0.5MPaとすることができるが、この範囲に限定されない。
The fusion layer forming step can be performed by using a mold (not shown) that has a predetermined mold and can be heated.
The heating temperature of the mold may be appropriately set according to the strain point of the inorganic fibers forming the fusion layer 2a. In the present embodiment, since the temperature higher than the strain point of the inorganic fibers is preferably 500 ° C. or higher, the heating temperature of the mold is preferably set to be higher. However, since the strain point of the inorganic fiber may be lower than 500 ° C., when such an inorganic fiber is used, the heating temperature of the mold can be appropriately changed according to the strain point of the inorganic fiber. For example, the heating temperature of the mold can be set in the range of 500 to 600 ° C. Note that the higher the heating temperature, the larger the welded portion at the fiber tip, so it is more preferable that the temperature be in the range of 500 to 550 ° C.
The heating time by the mold can be, for example, 10 to 20 minutes, but is not limited to this range as long as the fusion layer 2a can be formed. The molding load of the mold can be, for example, 0.05 to 0.5 MPa, but is not limited to this range.

なお、前記した歪点は、例えば、JIS R 3103−2:2001の本文に規定される方法(繊維引き伸ばし法によるガラスの除冷点及びひずみ点の測定方法)や、同規格の附属書1に規定される方法(ビーム曲げ法による除冷点及びひずみ点の測定方法)で測定できる。   The above-mentioned strain point is determined, for example, by a method defined in the text of JIS R 3103-2: 2001 (a method of measuring a cooling point and a strain point of glass by a fiber stretching method) or annex 1 of the standard. It can be measured by a prescribed method (a method of measuring a cooling point and a strain point by a beam bending method).

(真空密封工程)
真空密封工程は、融着層2aを形成した芯材2を包装体3に内包させ、包装体3の内部を減圧状態にしつつ密封する工程である。なお、芯材2を包装体3に内包させるにあたり、必要に応じて芯材2の端面をカットすることができる。このとき、前記したように、芯材2は融着層2aを有しているので、カット精度を向上させることができる。
(Vacuum sealing process)
The vacuum sealing step is a step of enclosing the core material 2 on which the fusion layer 2a is formed in the package 3 and sealing the package 3 while keeping the inside of the package 3 under reduced pressure. When the core material 2 is included in the package 3, the end surface of the core material 2 can be cut as necessary. At this time, as described above, since the core material 2 has the fusion layer 2a, cutting accuracy can be improved.

真空密封工程は、包装体3を熱溶着することのできる真空チャンバ(図示せず)を用いることによって行うことができる。すなわち、芯材2を包装体3で包装し、包装体3の所定の箇所を開口させた状態で真空チャンバ内に配置する。そして、真空チャンバ内を1.0Pa以下の真空度となるように減圧し、排気する。次いで、そのまま真空チャンバ内で包装体3の所定の開口している箇所を熱溶着により密封する。その後、真空チャンバ内を大気圧に戻し、真空チャンバから真空断熱材1を取り出す。このようにして、本実施形態に係る真空断熱材1が完成される。   The vacuum sealing step can be performed by using a vacuum chamber (not shown) to which the package 3 can be thermally welded. That is, the core material 2 is wrapped in the package 3 and placed in a vacuum chamber with a predetermined portion of the package 3 opened. Then, the pressure inside the vacuum chamber is reduced to a degree of vacuum of 1.0 Pa or less, and the inside of the vacuum chamber is evacuated. Next, a predetermined opening of the package 3 is sealed by heat welding in the vacuum chamber as it is. Thereafter, the inside of the vacuum chamber is returned to the atmospheric pressure, and the vacuum heat insulating material 1 is taken out of the vacuum chamber. Thus, the vacuum heat insulating material 1 according to the present embodiment is completed.

(作用・効果)
以上に説明した本実施形態に係る真空断熱材の製造方法によれば、融着層形成工程と、真空密封工程と、を有している。そのため、無機繊維の集合体であり、集合体の表面に無機繊維の少なくとも一部を融着させた融着層2aが形成されている芯材2と、芯材2を内包すると共に、内部が減圧状態に保たれている包装体3と、を有する真空断熱材1を製造することができる。このようにして製造された真空断熱材1は、前記した融着層2aを有しているので、その形状をしっかりと保つことができる。そのため、真空断熱材1は、真空断熱材1を成形する場合などにおいて寸法精度を高くすることができる。また、真空断熱材1は、前記した融着層2aを有しているので、無機繊維が包装体3から露出した場合などであっても復元率を低くすることができる。更に、真空断熱材1の復元率が低いことから、真空密封工程における真空引き時(大気開放時)の寸法変化を少なくすることができる。従って、これによっても真空断熱材1の寸法精度を高くすることに寄与するものである。
(Action / Effect)
According to the method for manufacturing a vacuum heat insulating material according to the present embodiment described above, the method includes the step of forming a fusion layer and the step of vacuum sealing. Therefore, the core material 2 is an aggregate of inorganic fibers, and a fusion layer 2a in which at least a part of the inorganic fibers is fused is formed on the surface of the aggregate. The vacuum heat insulating material 1 having the package 3 kept in a reduced pressure state can be manufactured. Since the vacuum heat insulating material 1 manufactured in this manner has the above-mentioned fusion layer 2a, the shape thereof can be firmly maintained. Therefore, the dimensional accuracy of the vacuum heat insulating material 1 can be increased when the vacuum heat insulating material 1 is formed. In addition, since the vacuum heat insulating material 1 has the above-described fusion layer 2a, the restoration rate can be reduced even when the inorganic fibers are exposed from the package 3. Furthermore, since the restoration rate of the vacuum heat insulating material 1 is low, a dimensional change at the time of evacuation (at the time of opening to the atmosphere) in the vacuum sealing step can be reduced. Therefore, this also contributes to increasing the dimensional accuracy of the vacuum heat insulating material 1.

[冷蔵庫]
次に、図3及び図4を参照して、本実施形態に係る冷蔵庫について説明する。
図3は、本実施形態に係る冷蔵庫の構成を説明する概略断面図である。図4は、図3のA−A線断面図である。
なお、本実施形態に係る冷蔵庫の説明において、前記した本実施形態に係る真空断熱材及びその製造方法と共通する構成要素については同一の符号を付し、詳細な説明は省略する。
[refrigerator]
Next, a refrigerator according to the present embodiment will be described with reference to FIGS.
FIG. 3 is a schematic sectional view illustrating the configuration of the refrigerator according to the present embodiment. FIG. 4 is a sectional view taken along line AA of FIG.
In the description of the refrigerator according to the present embodiment, the same reference numerals are given to the same components as those of the vacuum heat insulating material according to the present embodiment and the method of manufacturing the same, and detailed description thereof will be omitted.

図4に示すように、冷蔵庫10は、上から冷蔵室11、貯氷室12a、上段冷凍室12b、冷凍室13、野菜室14等の貯蔵室を有している。図3にあるように各貯蔵室の前面開口部は扉によって開閉可能に構成されており、上からヒンジ15等を中心に回動する冷蔵室扉16a、16b、貯氷室扉17aと上段冷凍室扉17b、下段冷凍室扉18、野菜室扉19が配置されている。なお、冷蔵室扉16a、16b以外は全て引き出し式の扉であり、貯氷室扉17a、上段冷凍室扉17b、下段冷凍室扉18、野菜室扉19は、扉を引き出すと、各貯蔵室を構成する容器が扉と共に引き出されてくる構成である。   As shown in FIG. 4, the refrigerator 10 has storage rooms such as a refrigerator room 11, an ice storage room 12a, an upper freezing room 12b, a freezing room 13, and a vegetable room 14 from the top. As shown in FIG. 3, the front opening of each storage compartment is configured to be openable and closable by a door, and the refrigerator compartment doors 16a, 16b, the ice storage compartment door 17a, and the upper freezer compartment that rotate from above on the hinge 15 and the like. A door 17b, a lower freezer compartment door 18, and a vegetable compartment door 19 are arranged. Except for the refrigerator compartment doors 16a and 16b, all are drawer-type doors, and the ice storage compartment door 17a, the upper freezing compartment door 17b, the lower freezing compartment door 18, and the vegetable compartment door 19 pull out the respective doors when the doors are pulled out. In this configuration, the container to be configured is pulled out together with the door.

貯氷室扉17a、上段冷凍室扉17b、下段冷凍室扉18、野菜室扉19の貯蔵室側の面には冷蔵庫10の本体と密閉するため、内部に永久磁石を埋設したパッキン20を備えている。このパッキン20は、貯氷室扉17a、上段冷凍室扉17b、下段冷凍室扉18、野菜室扉19の貯蔵室側の外周縁付近に取り付けられている。   The storage compartment side surface of the ice storage compartment door 17a, the upper freezing compartment door 17b, the lower freezing compartment door 18, and the vegetable compartment door 19 is provided with a packing 20 in which a permanent magnet is buried inside in order to hermetically seal with the main body of the refrigerator 10. I have. The packing 20 is mounted near the outer periphery of the storage compartment side of the ice storage compartment door 17a, the upper freezing compartment door 17b, the lower freezing compartment door 18, and the vegetable compartment door 19.

また、冷蔵室11と、製氷室12a及び上段冷凍室12bとの間を区画、断熱するために仕切断熱壁21を配置している。この仕切断熱壁21は、厚さ30〜50mm程度の断熱壁であり、スチロフォーム、発泡断熱材(硬質ウレタンフォーム)などの断熱材32と共に、本実施形態に係る真空断熱材1(1a)を組み合わせて作られている。   In addition, a partitioning hot wall 21 is arranged to partition and insulate the refrigerator compartment 11 from the ice making compartment 12a and the upper freezing compartment 12b. The partitioning hot wall 21 is a heat insulating wall having a thickness of about 30 to 50 mm, and includes a vacuum heat insulating material 1 (1a) according to the present embodiment together with a heat insulating material 32 such as styrofoam or foamed heat insulating material (hard urethane foam). Made in combination.

製氷室12a及び上段冷凍室12bと、下段冷凍室13との間は、制御温度帯が同じであるため区画、断熱する仕切り断熱壁ではなく、パッキン20の受面を形成した仕切り部材22を設けている。   Because the control temperature zone is the same between the ice making room 12a and the upper freezing room 12b, and the lower freezing room 13, a partition member 22 having a receiving surface of the packing 20 is provided instead of a partition and a partition heat insulating wall for heat insulation. ing.

下段冷凍室13と、野菜室14との間を区画、断熱するために仕切断熱壁23を配置している。この仕切断熱壁23は、仕切断熱壁21と同様に厚さ30〜50mm程度の断熱壁であり、スチロフォーム、発泡断熱材(硬質ウレタンフォーム)などの断熱材32と共に、本実施形態に係る真空断熱材1(1b)を組み合わせて作られている。   A partitioning hot wall 23 is arranged to partition and insulate between the lower freezing compartment 13 and the vegetable compartment 14. The partitioning hot wall 23 is a heat insulating wall having a thickness of about 30 to 50 mm similarly to the partitioning hot wall 21, and a vacuum according to the present embodiment, together with a heat insulating material 32 such as a styrofoam or a foamed heat insulating material (hard urethane foam). It is made by combining the heat insulating material 1 (1b).

つまり、冷蔵庫10は、基本的に冷蔵、冷凍等の貯蔵温度帯の異なる部屋(貯蔵室)を仕切る仕切断熱壁の内部に真空断熱材1(1a、1b)を備えている。
また、冷蔵庫10は、真空断熱材1(1c、1d、1e)が、外箱25と内箱26とによって形成される断熱箱体24の内部24bに備えられている。
更に、冷蔵庫10は、真空断熱材1(1f)が、断熱箱体24に形成された貯蔵室を開閉する外板10aと内板10bとによって形成される貯蔵室扉(冷蔵室扉16a、16b、製氷室扉17a、上段冷凍室扉17b、下段冷凍室扉18、野菜室扉19)の内部10cに備えられている。
なお、冷蔵庫10は、真空断熱材1(1a〜1f)を前記した態様で示したうちの少なくとも一つを備えていることによって優れた断熱性を得ることができるが、より優れた断熱性を得る観点から全てを備えていることが好ましい。
冷蔵庫10は、前記した態様とすることで、断熱箱体24内の各貯蔵室と外部とを任意に断熱できる。
That is, the refrigerator 10 basically includes the vacuum heat insulating material 1 (1a, 1b) inside a partitioning hot wall that partitions rooms (storage rooms) having different storage temperature zones such as refrigeration and freezing.
In the refrigerator 10, the vacuum heat insulating material 1 (1c, 1d, 1e) is provided in the inside 24b of the heat insulating box 24 formed by the outer box 25 and the inner box 26.
Further, the refrigerator 10 has a storage room door (refrigeration room doors 16a, 16b) in which the vacuum heat insulating material 1 (1f) is formed by an outer plate 10a and an inner plate 10b which open and close a storage room formed in the heat insulating box 24. , An ice making room door 17a, an upper freezing room door 17b, a lower freezing room door 18, and a vegetable room door 19).
In addition, the refrigerator 10 can obtain excellent heat insulating properties by including at least one of the vacuum heat insulating materials 1 (1a to 1f) described in the above-described embodiment. It is preferable to have all of them from the viewpoint of obtaining.
The refrigerator 10 can arbitrarily insulate the respective storage rooms in the heat insulating box 24 from the outside by adopting the above-described embodiment.

具体的には、外箱25と内箱26との間の空間(断熱箱体24の内部24b)には、真空断熱材1(1c、1d、1e)を配置し、真空断熱材1c、1d、1eをそれぞれ囲むようにして硬質ウレタンフォーム等の断熱材24aを充填している。真空断熱材1cは断熱箱体24の天面側に配置され、真空断熱材1dは断熱箱体24の背面側に配置され、真空断熱材1eは断熱箱体24の底面側に配置されている。
また、断熱箱体24に形成された各貯蔵室を開閉する外板10aと内板10bとによって形成される貯蔵室扉の内部10cにはそれぞれ真空断熱材1fが配置され、外部と断熱している。
Specifically, in a space between the outer box 25 and the inner box 26 (the inside 24b of the heat insulating box 24), the vacuum heat insulating materials 1 (1c, 1d, 1e) are arranged, and the vacuum heat insulating materials 1c, 1d are arranged. 1e are filled with a heat insulating material 24a such as rigid urethane foam. The vacuum heat insulating material 1c is arranged on the top side of the heat insulating box 24, the vacuum heat insulating material 1d is arranged on the back side of the heat insulating box 24, and the vacuum heat insulating material 1e is arranged on the bottom side of the heat insulating box 24. .
In addition, vacuum insulation materials 1f are arranged in the interior 10c of the storage room door formed by the outer plate 10a and the inner plate 10b that open and close each storage room formed in the heat insulating box 24, and insulate the outside from the outside. I have.

なお、冷蔵庫10の本体を構成する断熱箱体24内には上から冷蔵室11、製氷室12a及び上段冷凍室12b、下段冷凍室13、野菜室14の貯蔵室をそれぞれ区画形成しているが、各貯蔵室の配置については特にこれに限定するものではない。また、冷蔵室扉16a、16b、製氷室扉17a、上段冷凍室扉17b、下段冷凍室扉18、野菜室扉19に関しても回転による開閉、引き出しによる開閉及び扉の分割数等、特に限定するものではない。   The storage compartments of the refrigerator compartment 11, the ice making compartment 12a, the upper freezer compartment 12b, the lower freezer compartment 13, and the vegetable compartment 14 are respectively formed from above in the heat insulating box 24 constituting the main body of the refrigerator 10. However, the arrangement of each storage room is not particularly limited to this. The refrigerator doors 16a and 16b, the ice making door 17a, the upper freezing compartment door 17b, the lower freezing compartment door 18, and the vegetable compartment door 19 are also particularly limited in terms of opening / closing by rotation, opening / closing by drawer, and the number of door divisions. is not.

また、冷蔵庫10の冷蔵室11、製氷室12a、上段冷凍室12b、下段冷凍室13、野菜室14などの各室を所定の温度に冷却するために下段冷凍室13の背側には冷却器28が備えられている。この冷却器28は、圧縮機29及び凝縮機30と、図示しないキャピラリーチューブとが接続されて冷凍サイクルを構成している。   Further, a cooler is provided on the back side of the lower freezing compartment 13 to cool each of the refrigerator compartment 11, the ice making compartment 12a, the upper freezing compartment 12b, the lower freezing compartment 13, and the vegetable compartment 14 of the refrigerator 10 to a predetermined temperature. 28 are provided. In the cooler 28, a compressor 29 and a condenser 30 and a capillary tube (not shown) are connected to form a refrigeration cycle.

冷却器28の上方にはこの冷却器28で冷却された冷気を冷蔵庫内に循環して所定の低温温度を保持する送風機31が配設されている。   Above the cooler 28, a blower 31 for circulating the cool air cooled by the cooler 28 in the refrigerator and maintaining a predetermined low temperature is provided.

また、断熱箱体24の天面後方部には冷蔵庫10の運転を制御するための基板や電源基板等の電気部品33を収納するための収納凹部34が形成されており、これに電気部品33を覆うカバー35が設けられている。   A storage recess 34 for storing an electric component 33 such as a board for controlling the operation of the refrigerator 10 and a power supply board is formed in a rear portion of a top surface of the heat insulating box 24. Is provided.

カバー35の高さは、外観意匠性と内容積確保を考慮して、外箱25の天面とほぼ同じ高さになるように配置している。特に限定するものではないが、カバー35の高さが外箱の天面よりも高くなる場合は10mm以内の範囲に収めることが望ましい。   The height of the cover 35 is arranged so as to be substantially the same as the top surface of the outer box 25 in consideration of the appearance design and securing the internal volume. Although not particularly limited, when the height of the cover 35 is higher than the top surface of the outer box, it is desirable that the height be within 10 mm.

これに伴って、収納凹部34は、断熱材24a側に電気部品33を収納する空間だけ窪んだ状態で配置されるので断熱厚さを確保するため必然的に内容積が犠牲になってしまう。逆に内容積をより大きくとると、収納凹部34と内箱26間の断熱材24aの厚さが薄くなってしまい、断熱性能が低下してしまうので、図4に示すように収納凹部34の断熱材24a中に真空断熱材1cを配置して断熱性能を確保、強化するのが好ましい。   Along with this, the storage concave portion 34 is arranged in the heat insulating material 24a side so as to be recessed only in the space for storing the electric component 33, so that the internal volume is necessarily sacrificed in order to secure the heat insulating thickness. Conversely, if the inner volume is made larger, the thickness of the heat insulating material 24a between the storage recess 34 and the inner box 26 becomes thinner, and the heat insulation performance is reduced. Therefore, as shown in FIG. It is preferable to arrange the vacuum heat insulating material 1c in the heat insulating material 24a to secure and enhance the heat insulating performance.

本実施形態においては、真空断熱材1cは、内箱26の上部(天井部分)に設けられた庫内灯のケース(図示せず)と電気部品33に跨るように略Z形状に成形している。なお、カバー35は耐熱性を考慮し鋼板製としている。また、断熱箱体24の背面下部に配置された圧縮機29や凝縮機30は、発熱量の大きい部品であるため、庫内への熱侵入を防止するため、内箱26側への投影面に真空断熱材1eを配置している。   In the present embodiment, the vacuum heat insulating material 1 c is formed into a substantially Z shape so as to straddle the case (not shown) of the interior lamp provided on the upper part (the ceiling part) of the inner box 26 and the electric component 33. I have. The cover 35 is made of a steel plate in consideration of heat resistance. Further, since the compressor 29 and the condenser 30 arranged at the lower rear part of the heat insulating box 24 are components that generate a large amount of heat, a projection surface to the inner box 26 side to prevent heat from entering the inside of the refrigerator. Is provided with a vacuum heat insulating material 1e.

(作用・効果)
以上に説明した本実施形態に係る冷蔵庫10は、外箱25と内箱26とによって形成される断熱箱体24の内部24bと、断熱箱体24に形成された貯蔵室を開閉する外板10aと内板10bとによって形成される貯蔵室扉の内部10cと、貯蔵温度帯の異なる部屋(貯蔵室)を仕切る仕切断熱壁の内部とのうちの少なくとも一つに前記した本実施形態に係る真空断熱材1を備えている。この真空断熱材1は、融着層2aを有しているので、寸法精度が高く、復元率が低いだけでなく、芯材2の厚さを薄く保つことができる。そのため、真空断熱材1を包装する包装体3の寸法を小さくすることができ、また、内袋も不要であるから、これを備える冷蔵庫10の低コスト化を図ることができる。また、冷蔵庫10は、包装体3が破れるなどして真空断熱材1が露出した場合であっても、無機繊維の復元率が低いので、内箱26が変形するなどの現象が生じ難く、また、無機繊維の取扱い・処理・保管などを容易にすることができる。
(Action / Effect)
The refrigerator 10 according to the present embodiment described above includes the inside 24b of the heat insulating box 24 formed by the outer box 25 and the inner box 26, and the outer plate 10a that opens and closes the storage room formed in the heat insulating box 24. The vacuum according to the present embodiment described above is provided in at least one of the inside 10c of the storage room door formed by the inner plate 10b and the inside of the partitioning hot wall separating the rooms (storage rooms) having different storage temperature zones. A heat insulating material 1 is provided. Since the vacuum heat insulating material 1 has the fusion layer 2a, not only the dimensional accuracy is high and the restoration rate is low, but also the thickness of the core material 2 can be kept thin. Therefore, the size of the package 3 for packaging the vacuum heat insulating material 1 can be reduced, and the inner bag is not required, so that the cost of the refrigerator 10 including the same can be reduced. Further, in the refrigerator 10, even when the vacuum heat insulating material 1 is exposed due to the breakage of the package 3 or the like, since the restoration rate of the inorganic fibers is low, phenomena such as deformation of the inner box 26 hardly occur. In addition, the handling, processing and storage of inorganic fibers can be facilitated.

次に、実施例により真空断熱材の効果を確認したので、以下に説明する。
幅300mm×長さ570mm×高さ約150mm(目付量4200g/m)の無機繊維(B3が5%未満、歪点498℃)を用意した。なお、高さは目標値であり、試験に用いた無機繊維の実際の高さは、表1の「初期厚み」に示したとおりである。
そして、表1、図5に示すように、400〜600℃の温度でそれぞれ10分間プレス(成形荷重0.1MPa)を行った。なお、図5は、各プレス温度で10分プレスした場合における芯材の厚みの復元量を示すグラフである。
Next, the effect of the vacuum heat insulating material was confirmed by an example, and will be described below.
An inorganic fiber (B 2 O 3 less than 5%, strain point 498 ° C.) having a width of 300 mm, a length of 570 mm and a height of about 150 mm (basis weight 4200 g / m 2 ) was prepared. The height is a target value, and the actual height of the inorganic fibers used in the test is as shown in “Initial thickness” in Table 1.
Then, as shown in Table 1 and FIG. 5, pressing (forming pressure: 0.1 MPa) was performed at a temperature of 400 to 600 ° C. for 10 minutes, respectively. FIG. 5 is a graph showing the amount of restoration of the thickness of the core material when pressed at each pressing temperature for 10 minutes.

それぞれの無機繊維について、プレス前の厚み(初期厚み)、プレス直後の厚み、プレスしてから3日後の厚みを測定した。なお、これらはそれぞれ表1、図5において順に「初期厚み」、「プレス直後」及び「3日後」と表記している。なお、復元率は、下記式(1)により、プレス直後の厚みから3日後の厚みへの増加量から算出できる。
復元率(%)={(3日後の厚み/プレス直後の厚み)−1}×100 …式(1)
The thickness of each inorganic fiber before pressing (initial thickness), the thickness immediately after pressing, and the thickness three days after pressing were measured. These are described as “initial thickness”, “immediately after pressing”, and “after 3 days” in Table 1 and FIG. 5, respectively. Note that the restoration rate can be calculated from the amount of increase from the thickness immediately after pressing to the thickness three days later from the following equation (1).
Restoration rate (%) = {(thickness after 3 days / thickness immediately after pressing) −1} × 100 Formula (1)

表1及び図5に示すように、400℃や480℃で10分間プレスすることで、プレス直後の厚みは低減できているが、放置する(3日後)と芯材の厚みは大きく復元してしまうことが確認された。
500℃以上×10分間以上プレスすることで、芯材の厚みを低減でき、復元量(復元率)が小さいことが確認された。特に、プレス温度を520℃以上にすると、復元量(復元率)がより小さくなることが確認された。
As shown in Table 1 and FIG. 5, by pressing at 400 ° C. or 480 ° C. for 10 minutes, the thickness immediately after pressing can be reduced, but when left (after 3 days), the thickness of the core material is greatly restored. It was confirmed that it would.
By pressing at 500 ° C. or more × 10 minutes or more, it was confirmed that the thickness of the core material could be reduced and the restoration amount (restoration rate) was small. In particular, it was confirmed that when the pressing temperature was 520 ° C. or higher, the restoration amount (restoration rate) became smaller.

表1に示したものの中から、400℃×10分、480℃×10分、500℃×10分、600℃×10分で処理したものの走査型電子顕微鏡像を撮像した。また、480℃×5分(特許文献1の実施例相当品)で処理したものの走査型電子顕微鏡像を撮像した。その画像を図6に示す。   Scanning electron microscope images of those processed at 400 ° C. × 10 minutes, 480 ° C. × 10 minutes, 500 ° C. × 10 minutes, and 600 ° C. × 10 minutes were taken from those shown in Table 1. In addition, a scanning electron microscope image of the sample processed at 480 ° C. × 5 minutes (equivalent to the example of Patent Document 1) was taken. The image is shown in FIG.

図6のB〜Eに示すように、今回用いた無機繊維では、温度480℃以下でプレスすると、紡糸時の熱で互いに付着した無機繊維がそのままの状態であることが確認できた。つまり、これらの場合、プレス温度が低く、無機繊維の歪点に達していなかったため、紡糸時の熱で互いに付着した無機繊維が剥がれなかったことが確認できた。また、このようにプレス温度が歪点よりも低かったため、無機繊維同士が融着せず、融着層を形成できなかった。そのため、前述したように、プレス直後の厚みは低減できているが、放置する(3日後)と芯材の厚みが大きく復元してしまったものと考えられる。   As shown in FIGS. 6B to 6E, in the inorganic fibers used this time, when pressed at a temperature of 480 ° C. or lower, it was confirmed that the inorganic fibers adhered to each other by heat during spinning were intact. That is, in these cases, since the pressing temperature was low and the strain point of the inorganic fibers did not reach, it was confirmed that the inorganic fibers adhered to each other were not peeled off by the heat during spinning. Further, since the pressing temperature was lower than the strain point, the inorganic fibers did not fuse with each other, and a fused layer could not be formed. For this reason, as described above, the thickness immediately after pressing can be reduced, but it is considered that the thickness of the core material has been largely restored when left (after 3 days).

これに対し、図6のF、Gに示すように、温度500℃以上でプレスすると、紡糸時の熱で互いに付着した繊維が剥がれていることが確認できた。つまり、これらの場合、プレス温度が高く、無機繊維の歪点に達していたため、紡糸時の熱で互いに付着した無機繊維が剥がれたことが確認できた。なお、紡糸時の熱で互いに付着した無機繊維が剥がれるとそこには空間ができるため、無機繊維同士の密着による熱伝導を抑制できる。また、このようにプレス温度が歪点以上であったため、無機繊維の少なくとも一部が融着し(図6のH参照)、融着層を形成できた。これらの無機繊維は、融着層が形成されており、その形状がしっかりと保たれていることが確認できた。そのため、真空断熱材を成形する場合などにおいて寸法精度を高くすることができると考えられる。また、この無機繊維(芯材)を用いた真空断熱材は、無機繊維が包装体から露出した場合などであっても復元率を低くすることができることが確認できた。
なお、表1に示すように、いずれの例も無機繊維の厚さ方向のほぼ中間位置の温度(プレス後の中心温度)が歪点よりも低かったので、芯材の内部までは融着していなかった。このように、芯材の内部までは融着していない態様とすると、空隙率が高いので、より高い断熱性を得ることができる。
On the other hand, as shown in F and G in FIG. 6, when pressed at a temperature of 500 ° C. or more, it was confirmed that the fibers adhered to each other were peeled off by the heat during spinning. That is, in these cases, since the pressing temperature was high and the strain point of the inorganic fibers was reached, it was confirmed that the inorganic fibers adhered to each other were peeled off by the heat during spinning. In addition, when the inorganic fibers attached to each other are peeled off by the heat during spinning, a space is formed in the inorganic fibers, so that heat conduction due to the close contact between the inorganic fibers can be suppressed. In addition, since the pressing temperature was equal to or higher than the strain point, at least a part of the inorganic fibers was fused (see H in FIG. 6), and a fused layer was formed. It was confirmed that these inorganic fibers had a fused layer formed and their shapes were firmly maintained. Therefore, it is considered that the dimensional accuracy can be increased in the case of forming a vacuum heat insulating material or the like. Further, it was confirmed that the vacuum heat insulating material using the inorganic fiber (core material) can reduce the restoration rate even when the inorganic fiber is exposed from the package.
In addition, as shown in Table 1, since the temperature (center temperature after pressing) of the inorganic fiber at the substantially middle position in the thickness direction was lower than the strain point in all the examples, the inside of the core material was fused. I didn't. In this manner, when the core material is not fused to the inside, the porosity is high, so that a higher heat insulating property can be obtained.

これらの結果から、無機繊維の歪点以上で無機繊維の集合体をプレスすることにより、表面に融着層が形成された芯材を得ることができ、また、これを包装体に内包すると共に、内部を減圧状態(真空状態)に保つことで、真空断熱材が得られることが分かった。更に、この真空断熱材を公知の真空断熱材と同様、冷蔵庫に適用できることも分かった。   From these results, by pressing the aggregate of inorganic fibers at or above the strain point of the inorganic fibers, it is possible to obtain a core material having a fusion layer formed on the surface, and enclose this in a package. It was found that a vacuum heat insulating material was obtained by keeping the inside in a reduced pressure state (vacuum state). Further, it has been found that this vacuum heat insulating material can be applied to a refrigerator as well as a known vacuum heat insulating material.

以上、本発明に係る真空断熱材、真空断熱材の製造方法及び冷蔵庫について実施形態により詳細に説明したが、本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、それぞれの実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   As described above, the vacuum heat insulating material, the method for manufacturing the vacuum heat insulating material, and the refrigerator according to the present invention have been described in detail with the embodiments. However, the present invention is not limited to the above embodiments, and includes various modifications. . For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment. Further, for a part of the configuration of each embodiment, it is possible to add, delete, or replace another configuration.

1 真空断熱材
2 芯材
2a 融着層
2b 無機繊維
2c 針状の結晶
3 包装体
10 冷蔵庫
24 断熱箱体
25 外箱
26 内箱
10a 外板
10b 内板
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 2 Core material 2a Fused layer 2b Inorganic fiber 2c Needle-shaped crystal 3 Package 10 Refrigerator 24 Insulated box 25 Outer box 26 Inner box 10a Outer plate 10b Inner plate

Claims (6)

無機繊維の集合体であり、前記集合体の表面に前記無機繊維の少なくとも一部を融着させた融着層が形成されている芯材と、
前記芯材を内包すると共に、内部が減圧状態に保たれている包装体と、を有し、
前記融着層の厚さが0.1mm以上2mm以下、
前記無機繊維の厚さ方向の中間位置のプレス後の温度が歪点よりも低く、
前記無機繊維のプレス前の厚みが120mm以上、
前記無機繊維のプレス直後の厚みと、プレスしてから3日後の厚みとから、{(3日後の厚み/プレス直後の厚み)−1}×100で算出される復元率が25%以下
であることを特徴とする真空断熱材。
A core material which is an aggregate of inorganic fibers, and a fusion layer formed by fusing at least a part of the inorganic fibers to the surface of the aggregate,
Together enclosing the core member, the interior is closed and a packaging body is kept in a reduced pressure state,
The thickness of the fusion layer is 0.1 mm or more and 2 mm or less,
The temperature after pressing at the intermediate position in the thickness direction of the inorganic fiber is lower than the strain point,
The thickness of the inorganic fiber before pressing is 120 mm or more,
From the thickness of the inorganic fiber immediately after pressing and the thickness three days after pressing, the restoration rate calculated by {(thickness after three days / thickness immediately after pressing) -1} × 100 is 25% or less.
Vacuum heat insulating material, characterized in that it.
請求項1において、
前記無機繊維の表面に針状の結晶が形成されていることを特徴とする真空断熱材。
Oite to claim 1,
A vacuum heat insulating material, wherein needle-like crystals are formed on the surface of the inorganic fiber.
請求項において、
前記針状の結晶が硫黄を含むことを特徴とする真空断熱材。
In claim 2 ,
The vacuum heat insulating material, wherein the needle-like crystals contain sulfur.
無機繊維の集合体である芯材を前記無機繊維の歪点よりも高い温度でプレスし、前記集合体の表面に前記無機繊維の少なくとも一部を融着させた融着層を形成する融着層形成工程と、
前記融着層を形成した芯材を包装体に内包させ、前記包装体の内部を減圧状態にしつつ密封する真空密封工程と、を有し、
前記融着層形成工程において、前記融着層の厚さを0.1mm以上2mm以下とすると共に、前記無機繊維の厚さ方向の中間位置のプレス後の温度を歪点よりも低くし、
前記融着層形成工程でプレスする前の前記無機繊維の厚みが120mm以上であり、
前記無機繊維のプレス直後の厚みと、プレスしてから3日後の厚みとから、{(3日後の厚み/プレス直後の厚み)−1}×100で算出される復元率が25%以下である
ことを特徴とする真空断熱材の製造方法。
A core material that is an aggregate of inorganic fibers is pressed at a temperature higher than the strain point of the inorganic fibers to form a fusion layer in which at least a portion of the inorganic fibers is fused to the surface of the aggregate. A layer forming step;
The fusion adhesive layer of the formed core material is contained in the packaging body, have a, a vacuum sealing step of sealing with the inside of the package in a reduced pressure state,
In the fusing layer forming step, while the thickness of the fusing layer is 0.1 mm or more and 2 mm or less, the temperature after pressing at the intermediate position in the thickness direction of the inorganic fiber is lower than the strain point,
The thickness of the inorganic fibers before pressing in the fusion layer forming step is 120 mm or more,
From the thickness of the inorganic fiber immediately after pressing and the thickness three days after pressing, the restoration rate calculated by {(thickness after three days / thickness immediately after pressing) -1} × 100 is 25% or less. A method for producing a vacuum heat insulating material, comprising:
請求項において、
前記融着層形成工程における前記無機繊維の歪点よりも高い温度が500℃以上であることを特徴とする真空断熱材の製造方法。
In claim 4 ,
A method for producing a vacuum heat insulating material, wherein a temperature higher than a strain point of the inorganic fiber in the fusion layer forming step is 500 ° C. or more.
無機繊維の集合体であり、前記集合体の表面に前記無機繊維の少なくとも一部を融着させた融着層が形成されている芯材と、前記芯材を内包すると共に、内部が減圧状態に保たれている包装体と、を有する真空断熱材を、外箱と内箱とによって形成される断熱箱体の内部と、前記断熱箱体に形成された貯蔵室を開閉する外板と内板とによって形成される貯蔵室扉の内部と、貯蔵温度帯の異なる部屋を仕切る仕切断熱壁の内部と、のうちの少なくとも一つに備えており、
前記融着層の厚さが0.1mm以上2mm以下、
前記無機繊維の厚さ方向の中間位置のプレス後の温度が歪点よりも低く、
前記無機繊維のプレス前の厚みが120mm以上、
前記無機繊維のプレス直後の厚みと、プレスしてから3日後の厚みとから、{(3日後の厚み/プレス直後の厚み)−1}×100で算出される復元率が25%以下
であることを特徴とする冷蔵庫。
A core material in which a fusion layer formed by fusing at least a part of the inorganic fiber to the surface of the aggregation is formed of an inorganic fiber, and the core material is included therein, and the inside thereof is in a reduced pressure state. A vacuum heat insulating material having a package held in the inside of a heat insulating box formed by an outer box and an inner box, and an outer plate for opening and closing a storage room formed in the heat insulating box. Provided in at least one of the inside of the storage room door formed by the plate and the inside of the partitioning heat wall that partitions the rooms having different storage temperature zones ,
The thickness of the fusion layer is 0.1 mm or more and 2 mm or less,
The temperature after pressing at the intermediate position in the thickness direction of the inorganic fiber is lower than the strain point,
The thickness of the inorganic fiber before pressing is 120 mm or more,
From the thickness of the inorganic fiber immediately after pressing and the thickness three days after pressing, the restoration rate calculated by {(thickness after three days / thickness immediately after pressing) -1} × 100 is 25% or less.
Refrigerator characterized by Der Rukoto.
JP2017008920A 2017-01-20 2017-01-20 Vacuum insulation material, method for manufacturing vacuum insulation material, and refrigerator Active JP6634040B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017008920A JP6634040B2 (en) 2017-01-20 2017-01-20 Vacuum insulation material, method for manufacturing vacuum insulation material, and refrigerator
CN201711377931.3A CN108332002A (en) 2017-01-20 2017-12-19 Vacuum heat insulation materials, the manufacturing method of vacuum heat insulation materials and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017008920A JP6634040B2 (en) 2017-01-20 2017-01-20 Vacuum insulation material, method for manufacturing vacuum insulation material, and refrigerator

Publications (2)

Publication Number Publication Date
JP2018115755A JP2018115755A (en) 2018-07-26
JP6634040B2 true JP6634040B2 (en) 2020-01-22

Family

ID=62923206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017008920A Active JP6634040B2 (en) 2017-01-20 2017-01-20 Vacuum insulation material, method for manufacturing vacuum insulation material, and refrigerator

Country Status (2)

Country Link
JP (1) JP6634040B2 (en)
CN (1) CN108332002A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020112181A (en) * 2019-01-09 2020-07-27 日立グローバルライフソリューションズ株式会社 Vacuum heat insulating material and its manufacturing method
KR20210006698A (en) 2019-07-09 2021-01-19 엘지전자 주식회사 Vacuum adiabatic body and refrigerator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330816A (en) * 1992-12-23 1994-07-19 Owens-Corning Fiberglas Technology Inc. High R super insulation panel
US5609934A (en) * 1995-01-05 1997-03-11 Schuller International, Inc. Method of manufacturing heat bonded glass fiber insulation boards
KR100359056B1 (en) * 2000-05-12 2002-11-07 한국과학기술연구원 Vacuum insulator using glass white wool and its fabrication method
CN1657282A (en) * 2004-02-04 2005-08-24 松下电器产业株式会社 Vacuum thermally insulating material and method for production thereof, thermally insulated equipment having the vacuum thermally insulating material, and thermally insulated board
JP2010060048A (en) * 2008-09-03 2010-03-18 Panasonic Corp Vacuum heat insulating core material, vacuum heat insulating material using the same, and method of manufacturing the vacuum heat insulating core maerial
KR101560355B1 (en) * 2012-07-27 2015-10-15 히타치 어플라이언스 가부시키가이샤 Vacuum insulation material, refrigerator, equipment using vacuum insulation material
JP6742076B2 (en) * 2015-05-07 2020-08-19 日立グローバルライフソリューションズ株式会社 Vacuum heat insulating material and method for manufacturing vacuum heat insulating material

Also Published As

Publication number Publication date
CN108332002A (en) 2018-07-27
JP2018115755A (en) 2018-07-26

Similar Documents

Publication Publication Date Title
US10539265B2 (en) Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator
JP2017106526A (en) Vacuum heat insulation body, heat insulation equipment including the same, and manufacturing method of vacuum heat insulation body
EP2462393B1 (en) Vacuum insulation member and refrigerator having a vacuum insulation member
US20130200084A1 (en) High-performance vacuum insulation panel and manufacturing method thereof
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
JP6266162B2 (en) Insulating body, vacuum heat insulating material, and method of manufacturing vacuum heat insulating material
JP5455673B2 (en) Vacuum heat insulating material and refrigerator using the same
JP6634040B2 (en) Vacuum insulation material, method for manufacturing vacuum insulation material, and refrigerator
JP5571610B2 (en) Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same
US20180339490A1 (en) Vacuum insulation material, vacuum insulation material manufacturing method, and refrigerator including vacuum insulation material
JP2008256125A (en) Vacuum heat insulating material and refrigerator using the same
JP2016089963A (en) Vacuum heat insulation material and refrigeration using vacuum heat insulation material
JP2013002485A (en) Vacuum thermal insulation material, and refrigerator using the same
JP6910975B2 (en) refrigerator
JP2015200361A (en) Vacuum heat insulation material and refrigerator using the same
JP2006177497A (en) Vacuum thermal insulation material, method of manufacturing the same, and thermal insulation box using the vacuum thermal insulation material
JP2004156824A (en) Refrigerator
JP2020034115A (en) Vacuum heat insulator, and heat-insulating container and heat-insulating wall using the same
JP2009257715A (en) Refrigerator and vacuum heat insulating material
JP2020020431A (en) Vacuum heat insulating body, and heat insulating container and heat insulating wall using the same
JP2015001290A (en) Vacuum heat insulation material and refrigerator
JP2016080063A (en) Process of manufacture of vacuum heat insulation material and refrigerator using this vacuum heat insulation material
JP7474921B2 (en) Vacuum insulation body and insulated container and wall using the same
JP2023073875A (en) refrigerator
JP2014214959A (en) Heat insulation box

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191213

R150 Certificate of patent or registration of utility model

Ref document number: 6634040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150