JP6631245B2 - Method for producing catalyst for reforming hydrocarbon and method for reforming light hydrocarbon - Google Patents
Method for producing catalyst for reforming hydrocarbon and method for reforming light hydrocarbon Download PDFInfo
- Publication number
- JP6631245B2 JP6631245B2 JP2015251862A JP2015251862A JP6631245B2 JP 6631245 B2 JP6631245 B2 JP 6631245B2 JP 2015251862 A JP2015251862 A JP 2015251862A JP 2015251862 A JP2015251862 A JP 2015251862A JP 6631245 B2 JP6631245 B2 JP 6631245B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- reforming
- nickel
- alumina
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Description
本発明は、軽質炭化水素原料を水蒸気により改質し、水素や一酸化炭素等のガスへ変換する炭化水素改質用触媒(以下、単に「触媒」と呼ぶ場合がある)の製造方法、及び、炭化水素改質用触媒を用いた軽質炭化水素改質方法に関する。 The present invention provides a method for producing a hydrocarbon reforming catalyst (hereinafter, may be simply referred to as “catalyst”) that reforms a light hydrocarbon feedstock with steam and converts it into a gas such as hydrogen or carbon monoxide, and And a light hydrocarbon reforming method using a hydrocarbon reforming catalyst.
水素は新エネルギーの原料として期待されており、水素ステーション用水素製造装置での製造や、家庭や中小事業所などへの普及が期待されている固定用燃料電池システムなどで用いられており、オンサイトでの製造が検討されている。現在、水素ステーションや家庭用燃料電池では、天然ガス、都市ガス、LPG、灯油等を原料として水素を製造しているが、該電池においては貴金属元素を担持した触媒が一般的に使用されているため、非常に高価なシステムとなっている。これらの水素製造システムの普及を目指すためには、システムの低価格化が重要となっており、その中でも、燃料から水素を製造するための改質触媒の価格が、大きな割合を占めている。つまり、改質触媒の更なる高性能化とともに、貴金属の使用量を減らし、低価格化を実現することが、該システムの普及促進に繋がると考えられる。 Hydrogen is expected as a raw material for new energy, and is used in hydrogen production equipment for hydrogen stations and in fixed fuel cell systems that are expected to spread to homes and small and medium-sized business establishments. Production at the site is being considered. At present, hydrogen stations and household fuel cells produce hydrogen using natural gas, city gas, LPG, kerosene, etc. as raw materials, and in such cells, a catalyst supporting a noble metal element is generally used. Therefore, it is a very expensive system. In order to spread these hydrogen production systems, it is important to reduce the price of the systems. Among them, the price of a reforming catalyst for producing hydrogen from fuel accounts for a large proportion. That is, it is considered that realizing a higher performance of the reforming catalyst, reducing the amount of noble metal used, and realizing a lower price will lead to promotion of the system.
したがって、貴金属を用いる触媒から、貴金属の使用量を大幅に低減させた触媒や、より廉価な元素を使用することが望まれている。例えば、より廉価な金属元素として、ニッケルは、その可能性をもった元素の一つである。 Therefore, it is desired to use a catalyst in which the amount of the noble metal used is greatly reduced or a less expensive element from a catalyst using a noble metal. For example, as an inexpensive metal element, nickel is one of the potential elements.
従来より、炭化水素の改質用触媒として最も多用されているニッケル/アルミナ系触媒(例えば、特許文献1)は、アルミナ相が高温度領域でα−アルミナ相に変化し、結晶成長も進行するため、比表面積が急激に低下し、これに応じて反応活性が低下する等の問題がある。また、これらの触媒は、ニッケルを多量に含み、触媒表面で炭素析出が起こりやすいので、それを防止するために、アルカリ成分として、カリウムやカルシウムが添加されていることが多い(特許文献2)。 Conventionally, in a nickel / alumina-based catalyst (for example, Patent Document 1) most frequently used as a hydrocarbon reforming catalyst, an alumina phase changes to an α-alumina phase in a high temperature region, and crystal growth proceeds. Therefore, there is a problem that the specific surface area sharply decreases, and accordingly, the reaction activity decreases. In addition, these catalysts contain a large amount of nickel, and carbon precipitation easily occurs on the surface of the catalyst. Therefore, potassium or calcium is often added as an alkali component to prevent the precipitation (Patent Document 2). .
これらのニッケルを多量に含む触媒の場合、該触媒の使用中に、カリウム化合物が反応装置や配管等に飛散して、腐食の発生等の問題が生ずる可能性がある。加えて、上記触媒は、ニッケルの担持量は多いが、分散度が低く、活性金属が粗大析出しているため、高い反応速度で改質反応を進めることが困難であるという問題がある。更には、これらの触媒により、被毒作用のある硫黄化合物を含有した炭化水素を改質する場合には、活性金属と硫黄との間で安定な化合物が生成されて、硫黄被毒の影響を大きく受けるため、触媒活性が大幅に低下する等の問題がある。 In the case of such a catalyst containing a large amount of nickel, during use of the catalyst, a potassium compound may be scattered to a reaction apparatus, a pipe, or the like, which may cause a problem such as occurrence of corrosion. In addition, the catalyst has a large amount of supported nickel, but has a low dispersity, and has a problem that it is difficult to advance the reforming reaction at a high reaction rate because the active metal is coarsely precipitated. Furthermore, when these catalysts are used to reform hydrocarbons containing sulfur compounds that have a poisoning effect, a stable compound is generated between the active metal and sulfur, thereby reducing the effects of sulfur poisoning. Since it is greatly affected, there is a problem that the catalytic activity is greatly reduced.
一方、アルミナに他の成分を添加することで、複合酸化物として耐熱性担体を用いる方法も報告されている。例えば、アルミナにランタン、リチウムあるはストロンチウムを含浸して調製したもの(例えば、特許文献3〜5)、また、アルミナに、希土類塩からそれらの水酸化物を共沈させて調製したもの(特許文献6)、更にアルミナにマグネシアを添加して焼成したスピネル系のもの(特許文献7)等が報告されている。これらは、いずれも多孔質の担体をまず調製し、その多孔体の細孔内に、ニッケル活性成分を含浸法により担持させることを前提としたものであって、活性成分の微細分散に限界があるため、触媒活性の面で劣るものである。
On the other hand, a method has been reported in which a heat-resistant carrier is used as a composite oxide by adding another component to alumina. For example, those prepared by impregnating alumina with lanthanum, lithium or strontium (for example,
従来の貴金属系の触媒としては、アルミナ等にルテニウム、白金、ロジウム等を担持した触媒が知られている。これらの触媒は、貴金属成分の物性を利用して、炭素析出を抑制する作用を持つため、前記のニッケル系触媒と比較して、炭素の析出が少なく、活性の維持も容易である特徴を有する。しかしながら、これらの触媒も硫黄化合物により被毒され易いという欠点を有するため、通常、脱硫工程を経て硫黄化合物をppbレベルにまで低減した炭化水素を、これらの触媒で改質反応させている(特許文献8)。 As a conventional noble metal-based catalyst, a catalyst in which ruthenium, platinum, rhodium, or the like is supported on alumina or the like is known. Since these catalysts have an action of suppressing carbon deposition by utilizing the physical properties of the noble metal component, they have a feature that carbon deposition is small and the activity is easily maintained as compared with the nickel-based catalyst. . However, since these catalysts also have a disadvantage that they are easily poisoned by sulfur compounds, hydrocarbons whose sulfur compounds have been reduced to the ppb level through a desulfurization step are usually reformed with these catalysts (Patent Reference 8).
また、ニッケルとマグネシウム及びアルミニウムを含んだ酸化物の製造方法として、各金属成分を溶かした水溶液に沈殿剤を添加して、沈殿物(主にハイドロタルサイト構造を形成)を生成させた後、乾燥、焼成した触媒を用いて、炭化水素の改質反応を行っている場合もあるが、硫黄分は全く含まない条件での改質活性しか示されてないことから、実用化に向けて課題を有していた(特許文献9)。 In addition, as a method for producing an oxide containing nickel, magnesium and aluminum, a precipitant is added to an aqueous solution in which each metal component is dissolved to form a precipitate (mainly a hydrotalcite structure), In some cases, the reforming reaction of hydrocarbons is performed using a dried and calcined catalyst. (Patent Document 9).
一方、ニッケルとマグネシウムを含んだ水溶液から沈殿物を生成させ、当該沈殿物とアルミナ粉末と水、又は、アルミナゾルを加えて混合して混合物を生成し、当該混合物を乾燥、焼成して得られた触媒で、石炭やバイオマス等を熱分解したときに発生する重質鎖式炭化水素や縮合多環芳香族炭化水素等を主成分とするタールを含有したガスを改質する触媒が提案されている(特許文献10及び特許文献11)。この反応は、硫黄化合物が多量に存在しても水素や一酸化炭素等を生成する触媒活性を発現するが、反応物質はタールであり、メタン等の軽質炭化水素は分解しても、タールが水素化分解を起こして軽質炭化水素に変化する触媒であった。また、特許文献11では、タールの改質反応を高活性化させるため、セリウム等が添加されていた。
On the other hand, a precipitate was formed from an aqueous solution containing nickel and magnesium, the precipitate was mixed with alumina powder and water, or alumina sol was added to form a mixture, and the mixture was obtained by drying and calcining the mixture. A catalyst has been proposed that reforms a gas containing tar mainly composed of heavy-chain hydrocarbons or condensed polycyclic aromatic hydrocarbons generated when pyrolyzing coal, biomass, or the like. (
本発明は、原料中に硫黄化合物を含んだままであっても、メタン等の軽質炭化水素を水蒸気により改質して、高性能かつ安定的に水素や一酸化炭素等のガスへ変換することができる炭化水素改質用触媒の製造方法、および炭化水改質用触媒を用いた炭化水素改質方法を提供することを目的とする。 The present invention is capable of reforming light hydrocarbons such as methane with steam to convert them into gas such as hydrogen and carbon monoxide with high performance and stability even if the raw materials still contain sulfur compounds. An object of the present invention is to provide a method for producing a hydrocarbon reforming catalyst that can be used, and a hydrocarbon reforming method using the hydrocarbon reforming catalyst.
本発明者らは、触媒を構成する元素の組成に着目して触媒設計を行い、その製造方法について鋭意検討したところ、硫黄化合物を含有するメタン等の軽質炭化水素を水蒸気と反応させて、水素や一酸化炭素等へ変換する触媒として、従来の担持法によるニッケル/アルミナ系触媒、貴金属系触媒やニッケル/マグネシア系触媒と比較して、高活性で、且つ、反応時間に伴う活性低下が小さい触媒の組成を見出した。本発明は、該知見に基づき完成されたものである。 The present inventors focused on the composition of the elements constituting the catalyst, designed the catalyst, and studied the production method diligently.Then, a light hydrocarbon such as methane containing a sulfur compound was reacted with steam to produce hydrogen. Higher activity and less decrease in activity with reaction time as compared to nickel / alumina-based catalysts, noble metal-based catalysts, and nickel / magnesia-based catalysts by conventional loading methods as catalysts for converting to carbon monoxide or the like The composition of the catalyst was found. The present invention has been completed based on this finding.
本発明の要旨は、下記の通りである。 The gist of the present invention is as follows.
[1]ニッケル化合物とマグネシウム化合物との割合が、ニッケルとマグネシウムのモル比で、0.05/0.95〜0.3/0.7となるような混合溶液に、沈殿剤を添加して、ニッケルとマグネシウムを共沈させて水和物の沈殿物を生成し、当該沈殿物に、アルミナゾル、または、アルミナ粉末と水とを、得られる軽質炭化水素の改質用触媒中のアルミナの含有量において5〜30質量%となるように加え、混合して混合物を生成し、当該混合物を乾燥及び焼成して製造した軽質炭化水素の改質用触媒を用いて、軽質炭化水素を改質して、水素及び一酸化炭素を得ることを特徴とする軽質炭化水素の改質方法。
[1] The ratio between the nickel compound and the magnesium compound is 0.05 / 0.95 to 0.3 / 0. 7 , a precipitant is added to the mixed solution to form a precipitate of hydrate by coprecipitating nickel and magnesium, and alumina sol or alumina powder and water are added to the precipitate. The obtained light hydrocarbon reforming catalyst is added so that the content of alumina in the catalyst is 5 to 30% by mass, mixed to form a mixture, and the mixture is dried and calcined to produce a light hydrocarbon. A method for reforming light hydrocarbons, comprising reforming light hydrocarbons using a reforming catalyst to obtain hydrogen and carbon monoxide.
[2]前記ニッケル化合物とマグネシウム化合物との割合が、ニッケルとマグネシウムのモル比で、0.2/0.8〜0.3/0.7(すなわちNi/Mg=0.25〜0.43)となるように製造した前記軽質炭化水素の改質用触媒を用いることを特徴とする前記[1]に記載の軽質炭化水素の改質方法。
[ 2 ] The ratio between the nickel compound and the magnesium compound is 0.2 / 0.8 to 0.3 / 0.7 (that is, Ni / Mg = 0.25 to 0.43) in a molar ratio of nickel to magnesium. The light hydrocarbon reforming method according to the above [1], wherein the light hydrocarbon reforming catalyst produced to satisfy the condition (1) is used.
[3]前記アルミナの含有量において5〜20質量%となるように製造した前記軽質炭化水素の改質用触媒を用いることを特徴とする前記[1]または[2]に記載の軽質炭化水素の改質方法。
[ 3 ] The light hydrocarbon according to [1] or [2], wherein a catalyst for reforming the light hydrocarbon manufactured so as to have an alumina content of 5 to 20% by mass is used. Reforming method.
[4]前記軽質炭化水素中に、硫黄化合物を含有することを特徴とする前記[1]〜[3]のいずれか1つに記載の軽質炭化水素の改質方法。
[ 4 ] The method for reforming a light hydrocarbon according to any one of [1] to [3], wherein the light hydrocarbon contains a sulfur compound.
[5]前記軽質炭化水素が、メタン含有ガスであることを特徴とする前記[4]に記載の軽質炭化水素の改質方法。
[ 5 ] The method for reforming a light hydrocarbon according to the above [4] , wherein the light hydrocarbon is a methane-containing gas.
本発明によれば、メタン等の軽質炭化水素のガスを、安定的に水素や一酸化炭素等の化学物質へ変換することができる。特に、都市ガスやLPG等で付臭剤として含まれる硫黄化合物を含んでいても、脱硫処理をせずにそのまま触媒と接触させて、ガス中の炭化水素を改質して、水素、一酸化炭素等の化学物質へ安定的に変換することができる。 ADVANTAGE OF THE INVENTION According to this invention, the gas of light hydrocarbons, such as methane, can be converted to chemical substances, such as hydrogen and carbon monoxide, stably. In particular, even if a sulfur compound contained as an odorant in city gas or LPG is included, it is brought into contact with a catalyst without desulfurization treatment to reform hydrocarbons in the gas to produce hydrogen, monoxide. It can be converted stably to chemical substances such as carbon.
本発明者らは、天然ガス、LNG、シェールガス、都市ガス、LPG等、硫黄化合物を含む軽質炭化水素を、硫黄化合物を含んだままで触媒と接触させ、軽質炭化水素を水素や一酸化炭素等に安定的に変換する方法について鋭意検討した。ここで述べる軽質炭化水素とは、都市ガスやLPG等に含まれる、C1〜C4のメタン、エタン、エチレン、プロパン、プロピレン、ノルマルブタン、イソブタン等の炭化水素を示す。炭素数が大きいほど分解し易いので、高い活性が得られるが、実際に天然ガス、LNG、シェールガス、都市ガス、LPG等の原料ガス中に含有量が多い、メタン、エタン、プロパンであることが好ましい。 The present inventors contact a light hydrocarbon containing a sulfur compound, such as natural gas, LNG, shale gas, city gas, LPG, etc., with a catalyst while containing the sulfur compound, and convert the light hydrocarbon into hydrogen, carbon monoxide, etc. We studied diligently about the method of stably converting to. The light hydrocarbons described here are C1 to C4 hydrocarbons such as methane, ethane, ethylene, propane, propylene, normal butane, and isobutane contained in city gas and LPG. The higher the number of carbon atoms, the easier it is to decompose, so high activity can be obtained. Is preferred.
その結果、本発明者らは、軽質炭化水素の改質用触媒として、NiMgO系触媒であって、ニッケル、マグネシウム、アルミニウムを構成元素とし、NiMgO、及び、NiXMg1−XAl2O4の結晶相を含有する金属酸化物を触媒として用いることにより、硫黄化合物を含有した軽質炭化水素を改質しても、長期間安定的に触媒活性を維持できることを発見した。ここで、NiXMg1−XAl2O4の結晶相は、例えば、ニッケル化合物及びマグネシウム化合物を含む混合溶液から共沈により、水和物の沈殿物を生成し、この沈殿物の生成後に、アルミニウム成分を加えて混合し、乾燥、焼成することで、得ることができる結晶相であり、X線回折測定等では区別できないが、NiAl2O4、あるいは、MgAl2O4のみの場合もあり得る。
As a result, the present inventors have found that as a catalyst for reforming of light hydrocarbons, a NiMgO catalyst, the constituent elements nickel, magnesium, aluminum, NiMgO, and, Ni X Mg 1-X Al 2
このような現象が観察された理由は、本発明者らの推定によれば、改質反応前に水素による還元処理を行うことで、前記金属酸化物のマトリクス(母相)から、活性金属であるニッケルが触媒表面上でクラスター状に微細析出することから、硫黄被毒による活性低下や炭素析出が生じにくくなると考えられる。これにより、本発明により得られた触媒は、経時劣化が少なく、安定的に軽質炭化水素を改質して、水素や一酸化炭素などへ変換できると考えられる。 The reason that such a phenomenon was observed is that, according to the estimation of the present inventors, by performing reduction treatment with hydrogen before the reforming reaction, the active metal was removed from the matrix (mother phase) of the metal oxide. It is considered that a certain amount of nickel is finely precipitated in the form of clusters on the catalyst surface, so that activity reduction and carbon deposition due to sulfur poisoning hardly occur. Thus, it is considered that the catalyst obtained according to the present invention has little deterioration over time and can stably reform light hydrocarbons and convert them into hydrogen, carbon monoxide, and the like.
本発明では、従来の含浸担持法による触媒の製造方法とは異なり、ニッケル化合物及びマグネシウム化合物を含む混合溶液から共沈により、水和物の沈殿物を生成し、この沈殿物の生成後に、アルミニウム成分を加えて混合し、乾燥、焼成する、固相晶析法により炭化水素の改質用触媒を製造するものであり、(1)活性種金属の微細析出が可能で高速反応が可能であり、(2)析出した活性金属がマトリクスと強固に結合するためシンタリング(凝集)にしくく、活性低下を抑制することが可能である、等の特徴を有する。特に、本発明者らは、ニッケル、マグネシウム、及び、アルミニウムの組成が、触媒活性の安定化に大きく影響することを見出している。すなわち、ニッケル化合物及びマグネシウム化合物を所定の比率で含む混合溶液から共沈により、水和物の沈殿物を生成し、この沈殿物の生成後に、アルミニウム成分をアルミナとして5〜30質量%加えて混合し、乾燥、焼成することで得られる軽質炭化水素の改質用触媒が、特に安定的に軽質炭化水素を改質できることを見出している。 In the present invention, unlike the conventional method for producing a catalyst by the impregnation-supporting method, a precipitate of a hydrate is formed by coprecipitation from a mixed solution containing a nickel compound and a magnesium compound. A catalyst for reforming hydrocarbons is produced by a solid phase crystallization method in which components are added, mixed, dried and calcined. (1) Fine deposition of active species metal is possible and high-speed reaction is possible. (2) The deposited active metal is firmly bonded to the matrix, so that sintering (aggregation) is difficult, and a decrease in activity can be suppressed. In particular, the present inventors have found that the composition of nickel, magnesium, and aluminum greatly affects the stabilization of the catalytic activity. That is, a hydrate precipitate is formed by coprecipitation from a mixed solution containing a nickel compound and a magnesium compound at a predetermined ratio. After the precipitate is formed, 5 to 30% by mass of an aluminum component is added as alumina and mixed. It has been found that a catalyst for reforming light hydrocarbons obtained by drying and calcining can particularly stably reform light hydrocarbons.
<炭化水素の改質用触媒の製造方法>
以下、本発明の好ましい一具体例を示しつつ、本発明の軽質炭化水素の改質用触媒の製造方法について、詳細に説明する。
<Production method of hydrocarbon reforming catalyst>
Hereinafter, the method for producing the light hydrocarbon reforming catalyst of the present invention will be described in detail with reference to a preferred specific example of the present invention.
まず、ニッケル化合物とマグネシウム化合物の混合水溶液に、沈殿剤を添加し、ニッケルとマグネシウムを共沈させて沈殿物を生成する。ニッケル化合物とマグネシウム化合物の混合水溶液を調製する際は、水に対して溶解度の高い各金属化合物を用いることが適当である。例えば、硝酸塩、硫酸塩、炭酸塩、塩化物塩等の無機塩のみならず、酢酸塩等の有機塩も好適に使用可能である。特に好ましくは、焼成後に触媒被毒になり得る不純物が残りにくいと考えられる、硝酸塩、炭酸塩、酢酸塩である。また、それらの水溶液から沈殿物を形成する際に用いる沈殿剤は、上記水溶液のpHを、ニッケル、マグネシウムが水酸化物として沈殿する中性〜塩基性へ変化させるものであれば、特に制限なく用いることができるが、例えば、炭酸カリウム水溶液や炭酸ナトリウム水溶液、水酸化カリウム水溶液や水酸化ナトリウム水溶液、アンモニア水溶液等が好適に使用可能である。 First, a precipitant is added to a mixed aqueous solution of a nickel compound and a magnesium compound, and nickel and magnesium are coprecipitated to form a precipitate. When preparing a mixed aqueous solution of a nickel compound and a magnesium compound, it is appropriate to use each metal compound having high solubility in water. For example, not only inorganic salts such as nitrates, sulfates, carbonates and chlorides, but also organic salts such as acetates can be suitably used. Particularly preferred are nitrates, carbonates, and acetates, which are considered to be less likely to leave impurities that can poison the catalyst after calcination. The precipitant used when forming a precipitate from the aqueous solution is not particularly limited as long as the pH of the aqueous solution is changed from neutral to basic in which nickel and magnesium precipitate as hydroxides. For example, an aqueous solution of potassium carbonate or sodium carbonate, an aqueous solution of potassium hydroxide, an aqueous solution of sodium hydroxide, an aqueous solution of ammonia, or the like can be suitably used.
上記により得られた沈殿物をろ過した後、純水で4〜5回洗浄、ろ過を繰り返し、余分な陽イオン(沈殿剤中のカリウムやナトリウム)や、陰イオン(硝酸、硫酸、炭酸、塩化物、酢酸イオン等)を洗い流すことで、不純物を低減したニッケル/マグネシアの水酸化物からなる混合物が得られる。この沈殿物に、アルミナゾル、または、アルミナ粉末と水を、触媒製造完了時の質量において、5〜30質量%となるように加えて、混合して混合物を生成し、当該混合物を乾燥し、更に焼成することで触媒を製造することができる。
After filtering the precipitate obtained as described above, washing with
別の方法として、ニッケル化合物とマグネシウム化合物とアルミニウムの混合水溶液に、沈殿剤を添加し、ニッケルとマグネシウムとアルミニウムを共沈させて沈殿物を生成する。混合水溶液を調製する際は、水に対して溶解度の高い各金属化合物を用いることが適当である。例えば、硝酸塩、硫酸塩、炭酸塩、塩化物塩等の無機塩のみならず、酢酸塩等の有機塩も好適に使用可能である。特に好ましくは、焼成後に触媒被毒になり得る不純物が残りにくいと考えられる、硝酸塩、炭酸塩、酢酸塩である。また、それらの水溶液から沈殿物を形成する際に用いる沈殿剤は、上記水溶液のpHを、ニッケル、マグネシウムが水酸化物として沈殿する中性〜塩基性へ変化させるものであれば、特に制限なく用いることができるが、例えば、炭酸カリウム水溶液や炭酸ナトリウム水溶液、水酸化カリウム水溶液や水酸化ナトリウム水溶液、アンモニア水溶液等が好適に使用可能である。 As another method, a precipitant is added to a mixed aqueous solution of a nickel compound, a magnesium compound, and aluminum, and nickel, magnesium, and aluminum are co-precipitated to generate a precipitate. When preparing the mixed aqueous solution, it is appropriate to use each metal compound having high solubility in water. For example, not only inorganic salts such as nitrates, sulfates, carbonates and chlorides, but also organic salts such as acetates can be suitably used. Particularly preferred are nitrates, carbonates, and acetates, which are considered to be less likely to leave impurities that can poison the catalyst after calcination. The precipitant used when forming a precipitate from the aqueous solution is not particularly limited as long as the pH of the aqueous solution is changed from neutral to basic in which nickel and magnesium precipitate as hydroxides. For example, an aqueous solution of potassium carbonate or sodium carbonate, an aqueous solution of potassium hydroxide, an aqueous solution of sodium hydroxide, an aqueous solution of ammonia, or the like can be suitably used.
上記により得られた沈殿物をろ過した後、純水で4〜5回洗浄、ろ過を繰り返し、余分な陽イオン(沈殿剤中のカリウムやナトリウム)や、陰イオン(硝酸、硫酸、炭酸、塩化物、酢酸イオン等)を洗い流すことで、不純物を低減したニッケル/マグネシア/アルミニウムの水酸化物からなる混合物が得られる。この沈殿物を乾燥し、更に焼成することで触媒を製造することができる。
上記のいずれの製造方法でも、課題を解決することができて問題無いが、製造の簡易性からは、後者の方が好ましい。
After filtering the precipitate obtained as described above, washing with
Although any of the above manufacturing methods can solve the problem without any problem, the latter is preferable from the viewpoint of simplicity of manufacturing.
ここで、上記混合物の乾燥は、特に温度や乾燥方法を問わず、一般的な乾燥器などによる乾燥方法を使用することができる。また、アルミナを混合した後の混合物は、水分を多量に含んでいるため、乾燥器などで一度に乾燥する前に、エバポレーター等を用いて、減圧下で40〜50℃に加温することで、大部分の水分を乾燥してもよい。乾燥後の混合物は必要に応じて粗粉砕を行った後、焼成すればよい。 Here, for drying the mixture, a drying method using a general dryer can be used regardless of the temperature or the drying method. In addition, since the mixture after mixing the alumina contains a large amount of water, it is heated to 40 to 50 ° C. under reduced pressure using an evaporator or the like before drying at a time in a dryer or the like. Most of the water may be dried. The dried mixture may be subjected to coarse pulverization, if necessary, and then fired.
また、上記混合物の焼成は、空気中で行うことができ、温度は800〜1300℃の範囲であればよい。より好ましくは、900〜1150℃である。焼成温度が高いと混合物の焼結が進行し、強度は上昇するが、比表面積が小さくなるため、触媒活性が低下するため、そのバランスを考慮して決定することが望ましい。焼成後は、そのまま触媒として使用することができるが、必要に応じて、プレス成型等で成型して成型物として使用することもできる。なお、乾燥と焼成の間に、必要に応じて成型工程を加えることもでき、成型後に焼成することもできる。 The firing of the mixture can be performed in air, and the temperature may be in the range of 800 to 1300 ° C. More preferably, it is 900 to 1150 ° C. If the sintering temperature is high, the sintering of the mixture proceeds and the strength increases, but the specific surface area decreases and the catalytic activity decreases. Therefore, it is desirable to determine the balance in consideration of the balance. After firing, it can be used as a catalyst as it is, but if necessary, it can be molded by press molding or the like and used as a molded product. It should be noted that a molding step may be added between the drying and the firing, if necessary, and firing may be performed after the molding.
本発明の改質触媒の製造においては、製造される酸化物状態の触媒重量を100%とした際に、混合するアルミナ重量を差し引き、残りの触媒重量部分がNiMgO固溶体として存在しており、本固溶体中のニッケル及びマグネシウムが所定のモル比になるように、ニッケル化合物及びマグネシウム化合物中の金属を所定のモル比に調整して、製造することが好ましい。すなわち、ニッケルとマグネシウムのモル比が0.1/0.9で、アルミナ混合量が10質量%の触媒を10g調製する場合、1gがアルミナ重量、9gがNiMgOとなり、9gのNiMgOを調製するように、ニッケル化合物とマグネシウムの化合物を0.1/0.9のモル比になるように混合し、沈殿剤を添加して、沈殿物を得ることが好ましい。 In the production of the reforming catalyst of the present invention, when the weight of the produced oxide is 100%, the weight of the mixed alumina is subtracted, and the remaining weight of the catalyst is present as a NiMgO solid solution. It is preferable that the metal in the nickel compound and the magnesium compound is adjusted to a predetermined molar ratio so that nickel and magnesium in the solid solution have a predetermined molar ratio, and the production is preferable. That is, when preparing 10 g of a catalyst having a molar ratio of nickel / magnesium of 0.1 / 0.9 and a mixed amount of alumina of 10% by mass, 1 g becomes alumina weight, 9 g becomes NiMgO, and 9 g of NiMgO is prepared. It is preferable that a nickel compound and a magnesium compound are mixed so as to have a molar ratio of 0.1 / 0.9, and a precipitant is added to obtain a precipitate.
また、改質用触媒中のアルミナの含有量が5〜30質量%となるようにアルミナ混合量を調整した条件において、ニッケルとマグネシウムのモル比は、0.05/0.95〜0.3/0.7の範囲になるように調整する必要がある。すなわち、ニッケル含有量が少なすぎると十分な性能が得られないため、ニッケルのモル比は0.05以上必要である。また、ニッケル含有量は多い方が高活性となるため、ニッケルのモル比は0.1以上がより好ましく、0.2以上が更に好ましい。但し、ニッケルのモル比が0.3以上では、性能が飽和する傾向があることに加え、炭素析出も増加する傾向があるため、ニッケルとマグネシウムのモル比は、0.2/0.8〜0.3/0.7となるように調整することが、より好ましい。当該モル比が0.05/0.95〜0.3/0.7の範囲であれば、硫黄化合物を含有した軽質炭化水素を高性能かつ安定的に改質でき、従来の課題を問題なく解決できる。
なお、本発明における、改質用触媒中の質量割合を算出する際の、母数となる改質用触媒の質量とは、焼成後触媒質量である。
Further, under the condition that the amount of alumina was adjusted so that the content of alumina in the reforming catalyst was 5 to 30% by mass, the molar ratio of nickel to magnesium was 0.05 / 0.95 to 0.3. It is necessary to adjust so as to be in the range of /0.7. That is, if the nickel content is too small, sufficient performance cannot be obtained, so the molar ratio of nickel needs to be 0.05 or more. Since the higher the nickel content, the higher the activity, the molar ratio of nickel is more preferably 0.1 or more, and further preferably 0.2 or more. However, if the molar ratio of nickel is 0.3 or more, the performance tends to be saturated, and carbon deposition tends to increase. Therefore, the molar ratio of nickel to magnesium is 0.2 / 0.8 to 0.8 / 0.8. It is more preferable to adjust so as to be 0.3 / 0.7. When the molar ratio is in the range of 0.05 / 0.95 to 0.3 / 0.7, light hydrocarbons containing sulfur compounds can be reformed with high performance and stability, and the conventional problems can be solved without any problem. Solvable.
In the present invention, when calculating the mass ratio in the reforming catalyst, the mass of the reforming catalyst as a parameter is the mass of the fired catalyst.
ここで、本発明の改質触媒は、活性成分であるニッケル含有量が4.9〜23.6質量%であることが好ましい。4.9質量%未満ではニッケルの改質性能が十分発揮されないため好ましくない。23.6質量%を超える場合には、マトリクスを形成するマグネシウム及びアルミニウムの含有量が少なくなるため、触媒上に析出するニッケル金属の微粒子が粗大化しやすくなり、本反応条件下では性能の経時劣化の恐れがある。 Here, the reforming catalyst of the present invention preferably has a nickel content of 4.9 to 23.6% by mass as an active component. If the amount is less than 4.9% by mass, the reforming performance of nickel is not sufficiently exhibited, which is not preferable. If the content exceeds 23.6% by mass, the content of magnesium and aluminum forming the matrix is reduced, so that the fine particles of nickel metal deposited on the catalyst tend to be coarsened, and the performance deteriorates with time under the reaction conditions. There is a fear.
また、マグネシウムの含有量は28.9〜52.2質量%であることが好ましい。28.9質量%未満ではマグネシウムの有する塩基性酸化物の性質を生かした、触媒性能を長期安定に保持しにくくなる傾向があるため、28.9質量%以上が好ましい。また、52.2%を超える場合は、他のニッケル、アルミニウムの含有量が少なくなるため、触媒の改質活性を十分発揮できなくなる恐れがある。 Further, the content of magnesium is preferably 28.9 to 52.2% by mass. If the amount is less than 28.9% by mass, it tends to be difficult to maintain the catalyst performance stably for a long time by making use of the properties of the basic oxide of magnesium. On the other hand, if it exceeds 52.2%, the content of other nickel and aluminum is reduced, so that the catalyst may not be able to exhibit its reforming activity sufficiently.
更に、アルミナの含有量は5〜30質量%であることが好ましい。5質量%未満では、ニッケルマグネシア主体のセラミックスとなり、マトリクスにNiAl2O4、及び、MgAl2O4の結晶相が少なくなることから、ニッケル金属を微細分散できなくなることから、好ましくない。30質量%を超える場合では、主活性成分であるニッケルの含有量が少なくなるため、触媒の改質活性を十分発揮できなくなる。 Further, the content of alumina is preferably 5 to 30% by mass. If the content is less than 5% by mass, nickel-magnesia-based ceramics will be formed, and the NiAl 2 O 4 and MgAl 2 O 4 crystal phases will be reduced in the matrix. If the content exceeds 30% by mass, the content of nickel, which is the main active component, is reduced, so that the reforming activity of the catalyst cannot be sufficiently exhibited.
なお、本発明の改質触媒は、ニッケル含有量が5.6〜33.0質量%、マグネシウム含有量が23.5〜52.2質量%、アルミナ含有量が5〜20質量%となるように製造することが、更に好ましい。また、ここでいうアルミナは、アルミナゾルまたはアルミナ粉末の状態で、ニッケルとマグネシウムの水酸化物の沈殿物に加えるもの、あるいは、ニッケルとマグネシウムと一緒に共沈させるものである。アルミナゾルで加える場合は、アルミナの粒子が平均で100nm以下のものを用いることが好適である。このような粒径のアルミナは、レーザー回折式粒度分布測定装置(例えば、マルバーン製マスターサイザー3000等)を用いて、粒度分布を把握することができる。また、粉末で加える場合は、可能な限り細かい粒径が好ましく、例えば平均粒径100μm以下が好適であり、混合時には水などを加えてスラリー状で用いることができる。この場合も、アルミナ粒径の粒度分布の確認は、上述のレーザー回折式粒度分布測定装置を用いる他、コールター式粒度分布測定装置(例えば、ベックマン・コールター製Multisizer4等)を用いることもできる。また、各金属種の含有量を上記範囲になるように調製するためには、各出発原料の予め計算の上準備しておくことが好ましい。なお、一度触媒が狙いの成分組成となれば、それ以降はその時の配合で調製すればよい。
The reforming catalyst of the present invention has a nickel content of 5.6 to 33.0% by mass, a magnesium content of 23.5 to 52.2% by mass, and an alumina content of 5 to 20% by mass. It is more preferable to manufacture it. The alumina referred to here is added in the form of alumina sol or alumina powder to the precipitate of hydroxide of nickel and magnesium, or coprecipitated with nickel and magnesium. In the case of adding with alumina sol, it is preferable to use alumina particles having an average particle size of 100 nm or less. The particle size distribution of alumina having such a particle size can be determined by using a laser diffraction type particle size distribution measuring device (for example, Mastersizer 3000 manufactured by Malvern). When the powder is added, the particle size is preferably as small as possible. For example, the average particle size is preferably 100 μm or less. At the time of mixing, water and the like can be added to use the slurry. Also in this case, the particle size distribution of the alumina particle size can be confirmed using a Coulter type particle size distribution measuring device (for example,
表1に代表的な組成における、ニッケル、マグネシウム、アルミナの質量%を示すが、触媒全体量を100質量%として、金属としてニッケル及びマグネシウムの質量%と、酸化物としてアルミナの質量%を示している。 Table 1 shows mass% of nickel, magnesium, and alumina in a typical composition. Assuming that the total amount of the catalyst is 100 mass%, mass% of nickel and magnesium as metals and mass% of alumina as oxides are shown. I have.
また、上記の元素以外に触媒製造工程などで混入する不可避的不純物や、課題解決効果が阻害されない範囲で他成分を例えば5質量%以下で含んでも構わないが、できるだけ不純物が混入しないようにすることが望ましい。 In addition to the above-mentioned elements, unavoidable impurities to be mixed in the catalyst manufacturing process and the like, and other components may be contained at, for example, 5% by mass or less as long as the effect of solving the problem is not impaired. It is desirable.
ここで本発明で製造する改質触媒は、粉体、または成型体のいずれかの形態としてもよく、成型体の場合には、球状、ペレット状、シリンダー状、リング状、ホイール状などでもよい。また、固定床で使用する場合には、成型方法として、造粒、押出成形、プレス成型、打錠成型等が好適に使用可能であるが、特にこれに制限されるものではない。 Here, the reforming catalyst produced in the present invention may be in the form of a powder, or a molded article, and in the case of a molded article, may be spherical, pellet, cylinder, ring, wheel, or the like. . When used on a fixed bed, granulation, extrusion molding, press molding, tablet molding and the like can be suitably used as the molding method, but are not particularly limited thereto.
<炭化水素の改質用触媒を用いた炭化水素の改質方法>
次に、本発明の改質触媒を用いた軽質炭化水素の改質方法について説明する。この改質方法では、上述した触媒を還元した触媒の存在下、硫黄化合物を含有した軽質炭化水素と水蒸気とを接触させて、軽質炭化水素を改質して水素や一酸化炭素等を生成する。軽質炭化水素がメタンの場合は水蒸気との間では、式(1)で表わされるような、スチームリフォーミングが進行する。
<Method of Reforming Hydrocarbon Using Catalyst for Reforming Hydrocarbon>
Next, a method for reforming light hydrocarbons using the reforming catalyst of the present invention will be described. In this reforming method, a light hydrocarbon containing a sulfur compound is brought into contact with steam in the presence of a catalyst obtained by reducing the above-described catalyst, and the light hydrocarbon is reformed to produce hydrogen, carbon monoxide, and the like. . When the light hydrocarbon is methane, steam reforming proceeds with steam as represented by the equation (1).
CH4+H2O→3H2+CO (1) CH 4 + H 2 O → 3H 2 + CO (1)
また、副反応として式(2)のような水性ガスシフト反応も進行する。
CO+H2O→H2+CO2 (2)
Further, a water gas shift reaction such as the formula (2) also proceeds as a side reaction.
CO + H 2 O → H 2 + CO 2 (2)
メタンに限らず、都市ガスやLPGに含まれているメタン以外の、エタン、エチレン、プロパン、プロピレン、ノルマルブタン、イソブタン等の軽質炭化水素でも同様の反応が進行するので、都市ガスまたはLPGをそのまま改質することができる。 Not only methane but also other light hydrocarbons such as ethane, ethylene, propane, propylene, normal butane, and isobutane other than methane contained in city gas and LPG, the same reaction proceeds. Can be modified.
ここで、触媒を還元する際の条件としては、本発明の触媒から活性金属であるニッケル粒子がマトリクスから微細なクラスター状に析出するため、比較的高温で且つ還元性雰囲気にするのであれば特に制限されるものではないが、水素を用いることが一般的であり、または、水素に水蒸気を混合したガス雰囲気下、または、それらのガスに窒素など不活性ガスを混合した雰囲気下であってもよい。また、還元温度は700〜1000℃が好適であり、750〜900℃で行うことが更に好適である。還元時間は、充填する触媒量や触媒に接触させる還元性ガスの流速に依存し、例えば、30分〜1時間程度で行うことが、実用上好適である。 Here, the conditions for reducing the catalyst are as follows: the nickel particles, which are active metals, are precipitated from the catalyst of the present invention in a fine cluster form from the matrix. Although not limited, it is common to use hydrogen, or even under a gas atmosphere in which water vapor is mixed with hydrogen, or under an atmosphere in which an inert gas such as nitrogen is mixed with those gases. Good. The reduction temperature is preferably from 700 to 1000C, and more preferably from 750 to 900C. The reduction time depends on the amount of the catalyst to be charged and the flow rate of the reducing gas to be brought into contact with the catalyst. For example, it is practically preferable to perform the reduction for about 30 minutes to 1 hour.
触媒反応器としては、固定床式、流動床式、移動床式等が好適に用いることができ、その触媒層の入口温度としては、500〜900℃であることが好ましい。触媒層の入口温度が500℃未満の場合は、軽質炭化水素から水素や一酸化炭素への改質活性がほとんど発揮されないため、好ましくない。一方、900℃を超える場合には、耐熱構造化が必要になる等改質装置が高価になるため経済的に不利となる。 As the catalyst reactor, a fixed bed type, a fluidized bed type, a moving bed type or the like can be suitably used, and the inlet temperature of the catalyst layer is preferably 500 to 900 ° C. If the inlet temperature of the catalyst layer is lower than 500 ° C., the activity of reforming light hydrocarbons into hydrogen or carbon monoxide is hardly exhibited, which is not preferable. On the other hand, when the temperature exceeds 900 ° C., the reformer becomes expensive, for example, a heat-resistant structure is required, which is economically disadvantageous.
反応圧力は特に限定されないが、0.1〜0.3MPa(絶対圧)の条件で行うことが好ましい。炭化水素の改質反応が、高い生産性、且つ、コンパクトな装置で改質可能な加圧下で進むことが好ましいが、燃料電池等のコンパクトなシステムでは、圧力を上昇させる条件では圧縮機のモーター消費電力も上昇し、ランニングコストの上昇につながるので、0.3MPa以下とする方が好ましい。また、0.1MPa未満の圧力下では、平衡的には有利な方向ではあるものの、生産性が低いという問題がある。 The reaction pressure is not particularly limited, but it is preferable to carry out the reaction under the conditions of 0.1 to 0.3 MPa (absolute pressure). It is preferable that the hydrocarbon reforming reaction proceeds under pressurization that can be reformed with high productivity and a compact device. However, in a compact system such as a fuel cell, the motor of the compressor must be operated under the condition of increasing the pressure. Since power consumption also increases, leading to an increase in running cost, it is preferable to set the pressure to 0.3 MPa or less. Further, under a pressure of less than 0.1 MPa, there is a problem that productivity is low, although the direction is advantageous in terms of equilibrium.
本発明の改質用触媒を用いた場合には、硫黄化合物が含有した軽質炭化水素の改質反応も安定して進行する。例えば、都市ガスやLPGには、硫黄化合物が付臭剤として、ターシャリーブチルメルカプタン(TBM)等のメルカプタン類や、ジメチルサルファイド(DMS)等のようなサルファイド類が使用され、約3ppm以下の濃度で含有されている。通常、触媒活性成分の硫黄による被毒を抑えるため、脱硫工程により上記物質を低減させて、炭化水素を改質するが、本発明の改質用触媒では、脱流工程を必要としない。また、どのような硫黄化合物も触媒の活性点上で分解して、硫黄が被毒物質となりうると考えられる。 When the reforming catalyst of the present invention is used, the reforming reaction of the light hydrocarbon containing the sulfur compound proceeds stably. For example, a sulfur compound is used as an odorant in city gas or LPG, and mercaptans such as tertiary butyl mercaptan (TBM) and sulfides such as dimethyl sulfide (DMS) are used. It is contained in. Usually, in order to suppress poisoning of the catalytically active component by sulfur, hydrocarbons are reformed by reducing the above substances by a desulfurization step. However, the reforming catalyst of the present invention does not require a deflow step. It is also believed that any sulfur compounds will decompose on the active sites of the catalyst and that sulfur can be a poison.
一方、触媒反応器に充填された炭化水素の改質触媒は、炭化水素から水素や一酸化炭素等への変換時に、触媒表面上に析出する炭素、もしくは硫黄成分が触媒活性成分に吸着することで、触媒が性能劣化する。そこで、劣化した触媒を再生する方法として、触媒反応器へ空気や水蒸気を導入して、空気中の酸素や水蒸気と炭素の反応により触媒上の炭素を除去、もしくは、酸素や水蒸気と硫黄の反応により触媒に吸着した硫黄を除去することで、触媒を再生することが可能である。更に、再生後の触媒は再度、水素により還元させることでニッケル金属のクラスターを微細析出させるが、この水素と触媒上の硫黄が反応することで、触媒上の硫黄を除去することも可能である。 On the other hand, the reforming catalyst for hydrocarbons filled in the catalytic reactor has the effect that carbon or sulfur components that precipitate on the catalyst surface during the conversion of hydrocarbons to hydrogen, carbon monoxide, etc. are adsorbed by the catalytically active components. As a result, the performance of the catalyst deteriorates. Therefore, as a method for regenerating the deteriorated catalyst, air or steam is introduced into the catalytic reactor, and carbon on the catalyst is removed by the reaction of oxygen or steam in the air with carbon, or the reaction of oxygen or steam with sulfur. By removing sulfur adsorbed on the catalyst, the catalyst can be regenerated. Further, the regenerated catalyst is reduced again with hydrogen to cause fine precipitation of nickel metal clusters. By reacting the hydrogen with sulfur on the catalyst, it is possible to remove sulfur on the catalyst. .
以下、実施例に基づいて本発明を具体的に説明するが、本発明は、当該実施例により何ら限定されるものではない。なお、実施例7、実施例8、実施例14、実施例15、実施例19は、参考例である。
Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to the examples. Note that Examples 7, 8, 8, 14, 15, and 19 are reference examples.
(実施例1)
硝酸ニッケルと硝酸マグネシウムを各金属元素のモル比が0.1:0.9になるように、硝酸ニッケル・6水和物を6.32g、硝酸マグネシウム・6水和物を50.12g精秤して、500mLの60℃の純水に溶かして、60℃に加温した混合水溶液を調製したものに、炭酸カリウム30.0gを精秤して、250mLの60℃の純水に溶かして、60℃に加温した炭酸カリウム水溶液を250mL/min程度にゆっくり加え、ニッケルとマグネシウムを水酸化物として共沈させ、撹拌羽根で400rpm程度で十分に撹拌した。その後、60℃に保持したまま1時間程度撹拌を続けて熟成を行った後、吸引ろ過を行い、80℃の純水で数回、洗浄と吸引ろ過を行った。洗浄の確認は、ろ液のpHが中性になっていることを、ポータブルpHメーターやpH試験紙で確認することができる。その後、得られた沈殿物を純水400mL程度の純水に分散させ、アルミナゾルをアルミナとして5質量%となるように加えて、撹拌羽根で350rpm程度で十分混合したものをナスフラスコに移してロータリーエバポレーターに取り付け、減圧下で約50℃に加温することで、水分を蒸発させた。ナスフラスコ内で固化したニッケルとマグネシウムとアルミナの混合物を蒸発皿に移して、120℃で約24時間乾燥した後、乳鉢で粉砕後、粉末をるつぼに移して、空気中950℃で約20時間焼成を行い、Ni0.1Mg0.9Oにアルミナが5質量%混合した触媒を得た。得られた触媒の粉末を、加圧成型器を用いて20mmφの錠剤にプレス成型し、プレス成型体を粗粉砕することで、篩を用いて、0.5〜1.0mmに粒度調整した。得られた触媒の成分は、各実施例及び比較例とともに、表2に示すが、触媒全体量を100質量%として、金属としてニッケル及びマグネシウムの質量%と、酸化物としてアルミナの質量%を示している。
(Example 1)
6.32 g of nickel nitrate hexahydrate and 50.12 g of magnesium nitrate hexahydrate were precisely weighed so that the molar ratio of each metal element between nickel nitrate and magnesium nitrate was 0.1: 0.9. Then, dissolved in 500 mL of 60 ° C. pure water, and prepared a mixed aqueous solution heated to 60 ° C., precisely weighed 30.0 g of potassium carbonate, dissolved in 250 mL of 60 ° C. pure water, An aqueous solution of potassium carbonate heated to 60 ° C. was slowly added to about 250 mL / min, and nickel and magnesium were coprecipitated as hydroxides, and sufficiently stirred at about 400 rpm with a stirring blade. Thereafter, the mixture was aged by continuing stirring for about one hour while maintaining the temperature at 60 ° C., followed by suction filtration, and washing and suction filtration with pure water at 80 ° C. several times. The washing can be confirmed by using a portable pH meter or pH test paper to confirm that the pH of the filtrate is neutral. After that, the obtained precipitate was dispersed in pure water of about 400 mL of pure water, and alumina sol was added so as to have a concentration of 5% by mass as alumina, and the mixture was sufficiently mixed at about 350 rpm with a stirring blade, transferred to an eggplant flask, and rotated. Water was evaporated by attaching to an evaporator and heating to about 50 ° C. under reduced pressure. The mixture of nickel, magnesium, and alumina solidified in the eggplant flask was transferred to an evaporating dish, dried at 120 ° C. for about 24 hours, pulverized in a mortar, transferred to a crucible, and then placed in air at 950 ° C. for about 20 hours Calcination was performed to obtain a catalyst in which 5% by mass of alumina was mixed with Ni 0.1 Mg 0.9 O. The obtained catalyst powder was press-molded into tablets having a diameter of 20 mm using a pressure molding machine, and the press-molded body was roughly pulverized to adjust the particle size to 0.5 to 1.0 mm using a sieve. The components of the obtained catalyst are shown in Table 2 together with the respective examples and comparative examples, where the total amount of the catalyst is 100% by mass, and the mass% of nickel and magnesium as metals and the mass% of alumina as oxides are shown. ing.
上記により得られた触媒を0.08mL用いて、石英製の内径6mmφ、長さ500mmの反応管の中央に位置するように石英ウールで挟み込むように固定し、触媒層中央位置にシース式K型熱電対を挿入し、これら固定床反応管を電気炉中央の位置にセットした。 Using 0.08 mL of the catalyst obtained above, fix it so as to be sandwiched by quartz wool so as to be located at the center of a quartz reaction tube having an inner diameter of 6 mm and a length of 500 mm. A thermocouple was inserted, and the fixed bed reaction tubes were set at the center of the electric furnace.
改質反応を始める前に、まず反応器を窒素雰囲気下で800℃まで昇温した後、水素を100mL/min流しながら、30分間還元処理を行った。その後、800℃のまま、常圧でメタンを14mL、H2Sを3ppmとなる濃度とし、(水蒸気モル数)/(上記メタンの炭素のモル数)=3となるよう、純水を精密ポンプで水蒸気として42mL/min導入しながら、0.1MPaの反応圧力で24時間実験を行った。ここで、実験上の取り扱い易さなどから、触媒被毒物質としてH2Sを使用した。本条件での触媒体積当たりのガス導入速度を表わす空間速度(SV:Space Velocity)は40,000h−1であり、通常の水素製造条件と比べ約10倍の流速で、加速試験条件となる。触媒反応器から出た生成ガスは氷温トラップを経由させて水分を除去した後、TCDガスクロマトグラフ(Yanaco製G2800、カラム:内径2mmφ、長さ4m、SHINCARBON ST、カラム温度120℃、TCD検出器140℃、Arキャリア)によって、ガスの分析を行った。改質反応の活性評価はメタン転化率で判断し、出口ガス中の各ガス成分濃度より、以下の式で算出した。 Before starting the reforming reaction, the reactor was first heated to 800 ° C. under a nitrogen atmosphere, and then subjected to a reduction treatment for 30 minutes while flowing hydrogen at 100 mL / min. Then, while maintaining the temperature at 800 ° C., 14 mL of methane and 3 ppm of H 2 S at normal pressure were used, and pure water was precision pumped so that (molar number of steam) / (molar number of carbon of methane) = 3. The experiment was conducted at a reaction pressure of 0.1 MPa for 24 hours while introducing steam at 42 mL / min. Here, H 2 S was used as a catalyst poisoning substance due to ease of handling in experiments and the like. The space velocity (SV: Space Velocity) representing the gas introduction rate per catalyst volume under these conditions is 40,000 h −1, which is an acceleration test condition at a flow rate that is about 10 times that of ordinary hydrogen production conditions. The product gas discharged from the catalytic reactor was passed through an ice temperature trap to remove water, and then subjected to TCD gas chromatography (Yanaco G2800, column: inner diameter 2 mmφ, length 4 m, SHIN CARBON ST, column temperature 120 ° C., TCD detector Gas analysis was performed using an Ar carrier at 140 ° C.). The activity of the reforming reaction was evaluated based on the methane conversion rate, and was calculated from the concentration of each gas component in the outlet gas by the following equation.
実施例1におけるメタン転化率は、表2のNo.2のように、24時間後でもメタン転化率が70%を保持できた。なお、表2に示す各元素の含有量(質量%)は計算値であるが、実測値の測定方法としては、誘導結合プラズマ法(ICP)と呼ばれる方法を用いることができる。具体的には、試料を粉砕後、アルカリ融解剤(例えば炭酸ナトリウム、ホウ酸ナトリウムなど)を加えて白金坩堝内で加熱融解し、冷却後に塩酸溶液に加温下で全量溶解させる。その溶液をICP分析装置へ挿入すると、装置内の高温プラズマ状態の中で試料溶液が原子化・熱励起し、これが基底状態に戻る際に元素固有の波長の発光スペクトルを生じるため、その発光波長及び強度から含有元素種、量を定性・定量することができる。 The methane conversion in Example 1 is shown in Table 2 As in 2, the methane conversion could be maintained at 70% even after 24 hours. Note that the content (% by mass) of each element shown in Table 2 is a calculated value, but a method called an inductively coupled plasma method (ICP) can be used as a method for measuring an actually measured value. Specifically, after the sample is pulverized, an alkali melting agent (for example, sodium carbonate, sodium borate, etc.) is added and heated and melted in a platinum crucible. After cooling, the whole is dissolved in a hydrochloric acid solution while heating. When the solution is inserted into the ICP analyzer, the sample solution is atomized and thermally excited in the high-temperature plasma state inside the apparatus, and when this returns to the ground state, an emission spectrum with a wavelength specific to the element is generated. The element type and amount contained can be qualitatively and quantitatively determined from the strength and strength.
(実施例2)
実施例1において、Ni0.1Mg0.9Oにアルミナが10質量%混合した触媒とした以外は、全て実施例1と同じ条件で評価した。その結果、表2のNo.3のように、24時間後でもメタン転化率が80%を保持でき、最も高活性を保持できることがわかった。
(Example 2)
The evaluation was performed in the same manner as in Example 1 except that the catalyst was a mixture of Ni 0.1 Mg 0.9 O and 10% by mass of alumina. As a result, in Table 2 No. As shown in FIG. 3, it was found that the methane conversion could be maintained at 80% even after 24 hours, and the highest activity could be maintained.
(実施例3)
実施例1において、Ni0.1Mg0.9Oにアルミナが20質量%混合した触媒とした以外は、全て実施例1と同じ条件で評価した。その結果、表2のNo.4のように、24時間後でもメタン転化率が71%を保持できた。
(Example 3)
The evaluation was performed under the same conditions as in Example 1 except that the catalyst was prepared by mixing 20 mass% of alumina with Ni 0.1 Mg 0.9 O in Example 1. As a result, in Table 2 No. As shown in FIG. 4, the methane conversion could be maintained at 71% even after 24 hours.
(実施例4)
実施例1において、Ni0.1Mg0.9Oにアルミナが30質量%混合した触媒とした以外は、全て実施例1と同じ条件で評価した。その結果、表2のNo.5のように、24時間後でもメタン転化率が58%を保持できた。
(Example 4)
The evaluation was performed under the same conditions as in Example 1 except that the catalyst was a mixture of Ni 0.1 Mg 0.9 O and 30% by mass of alumina. As a result, in Table 2 No. As shown in Fig. 5, the methane conversion could be maintained at 58% even after 24 hours.
(比較例1)
実施例1において、Ni0.1Mg0.9Oにアルミナを混合しない触媒した以外は、全て実施例1と同じ条件で評価した。その結果、表2のNo.1のように、メタン転化理鬱は7時間の時点で40%まで低下して、非常に活性が低かった。
(Comparative Example 1)
In Example 1, the evaluation was performed under the same conditions as in Example 1 except that the catalyst was not mixed with Ni 0.1 Mg 0.9 O without alumina. As a result, in Table 2 No. As in 1, methane conversion depression was reduced to 40% at 7 hours and was very low in activity.
(比較例2)
実施例1において、Ni0.1Mg0.9Oにアルミナが40質量%混合した触媒とした以外は、全て実施例1と同じ条件で評価した。その結果、表2のNo.6のように、メタン転化率は24時間は保持できたが、18%まで低下した。
(Comparative Example 2)
All the evaluations were performed under the same conditions as in Example 1 except that the catalyst was a mixture of Ni 0.1 Mg 0.9 O and 40% by mass of alumina. As a result, in Table 2 No. As in 6, the methane conversion could be maintained for 24 hours, but dropped to 18%.
(比較例3)
実施例1において、Ni0.1Mg0.9Oにアルミナが50質量%混合した触媒とした以外は、全て実施例1と同じ条件で評価した。その結果、表2のNo.7のように、メタン転化率は21時間の時点で、0%となった。
(Comparative Example 3)
All the evaluations were performed under the same conditions as in Example 1 except that the catalyst was a mixture of Ni 0.1 Mg 0.9 O and 50% by mass of alumina. As a result, in Table 2 No. As in 7, the methane conversion was 0% at 21 hours.
(実施例5)
実施例1において、ニッケルとマグネシウムを各金属のモル比が0.06:0.94になるようにしたNi0.06Mg0.94Oにアルミナが10質量%混合した触媒とした以外は、全て実施例1と同じ条件で評価した。その結果、表3のNo.8のように、24時間後でもメタン転化率が72%を保持でき、高活性を保持できることがわかった。
(Example 5)
In Example 1, except that nickel and magnesium were used as catalysts in which alumina was mixed with 10% by mass of Ni 0.06 Mg 0.94 O in which the molar ratio of each metal was 0.06: 0.94, All were evaluated under the same conditions as in Example 1. As a result, in Table 3, No. As shown in Fig. 8, it was found that the methane conversion could be maintained at 72% even after 24 hours, and high activity could be maintained.
(実施例6)
実施例1において、ニッケルとマグネシウムを各金属のモル比が0.2:0.8になるようにしたNi0.2Mg0.8Oにアルミナが10質量%混合した触媒とした以外は、全て実施例1と同じ条件で評価した。その結果、表3のNo.9のように、24時間後でもメタン転化率が96%を保持でき、高活性を保持できることがわかった。
(Example 6)
Except that in Example 1, nickel and magnesium were used as catalysts in which alumina was mixed with 10 mass% of Ni 0.2 Mg 0.8 O in which the molar ratio of each metal was 0.2: 0.8. All were evaluated under the same conditions as in Example 1. As a result, in Table 3, No. As shown in FIG. 9, it was found that the methane conversion could be maintained at 96% even after 24 hours, and high activity could be maintained.
(実施例7)
触媒調製において、硝酸ニッケル、硝酸マグネシウム、硝酸アルミニウムを各金属元素のモル比が0.091:0.822:0.087になるように、硝酸ニッケル・6水和物を5.983g、硝酸マグネシウム・6水和物を47.479g、硝酸アルミニウム・9水和物を7.358g精秤し、500mLの60℃の純水に溶かして、60℃に加温した混合水溶液を調製した。この混合水溶液に、炭酸カリウム29.4gを精秤して、250mLの60℃の純水に溶かして、60℃に加温した炭酸カリウム水溶液を250mL/min程度にゆっくり加え、ニッケル、マグネシウム、アルミニウムを水酸化物として共沈させ、撹拌羽根で400rpm程度で十分に撹拌した。その後、60℃に保持したまま1時間程度撹拌を続けて熟成を行った後、吸引ろ過を行い、80℃の純水で数回、洗浄と吸引ろ過を行った。各水溶液の温度は、アルコール温度計を水溶液中に挿入して測定した。洗浄の確認は、ろ液のpHが中性になっていることを、ポータブルpHメーターやpH試験紙で確認することができる。
(Example 7)
In the preparation of the catalyst, nickel salt, magnesium nitrate, and aluminum nitrate were mixed with 5.983 g of nickel nitrate hexahydrate and magnesium nitrate so that the molar ratio of each metal element was 0.091: 0.822: 0.087. 67.479 g of hexahydrate and 7.358 g of aluminum nitrate 9-hydrate were precisely weighed and dissolved in 500 mL of 60 ° C pure water to prepare a mixed aqueous solution heated to 60 ° C. To this mixed aqueous solution, 29.4 g of potassium carbonate was precisely weighed, dissolved in 250 mL of pure water at 60 ° C., and an aqueous potassium carbonate solution heated to 60 ° C. was slowly added at about 250 mL / min to obtain nickel, magnesium, and aluminum. Was coprecipitated as a hydroxide and sufficiently stirred at about 400 rpm with a stirring blade. Thereafter, the mixture was aged by continuing stirring for about one hour while maintaining the temperature at 60 ° C., followed by suction filtration, and washing and suction filtration with pure water at 80 ° C. several times. The temperature of each aqueous solution was measured by inserting an alcohol thermometer into the aqueous solution. The washing can be confirmed by using a portable pH meter or pH test paper to confirm that the pH of the filtrate is neutral.
その後、得られた沈殿物をナスフラスコに移してロータリーエバポレーターに取り付け、減圧下で約50℃に加温することで、水分を蒸発させた。ナスフラスコ内で固化したニッケル、マグネシウム、アルミナの混合物を蒸発皿に移して、雰囲気温度120℃で約24時間乾燥した。その後、乳鉢で粉砕後、粉末をるつぼに移して、空気中雰囲気温度950℃で約20時間焼成を行い、Ni0.1Mg0.9Oへアルミナ10質量%混合に相当する触媒を約10g得た。得られた触媒の粉末を、加圧成型器を用いて20mmφの錠剤にプレス成型し、プレス成型体を粗粉砕することで、篩を用いて、0.5〜1.0mmに粒度調整した。得られた触媒の成分は、表4に示す。 Thereafter, the obtained precipitate was transferred to an eggplant flask, attached to a rotary evaporator, and heated to about 50 ° C. under reduced pressure to evaporate water. The mixture of nickel, magnesium and alumina solidified in the eggplant flask was transferred to an evaporating dish and dried at an ambient temperature of 120 ° C. for about 24 hours. Then, after pulverizing in a mortar, the powder is transferred to a crucible, and calcined at an atmospheric temperature of 950 ° C. for about 20 hours, and about 10 g of a catalyst corresponding to 10% by mass of alumina mixed with Ni 0.1 Mg 0.9 O is added. Obtained. The obtained catalyst powder was press-molded into tablets having a diameter of 20 mm using a pressure molding machine, and the press-molded body was roughly pulverized to adjust the particle size to 0.5 to 1.0 mm using a sieve. Table 4 shows the components of the obtained catalyst.
上記により得られた触媒を、実施例1と同様に改質反応を行った。その結果、表4の実施例7に示すように、24h反応時点で転化率が78.4%となり、調製方法が異なっても、触媒組成が同じ実施例2と同様に、高活性を保持できることがわかった。 The catalyst thus obtained was subjected to a reforming reaction in the same manner as in Example 1. As a result, as shown in Example 7 in Table 4, the conversion was 78.4% at the time of the reaction for 24 hours, and even if the preparation method was different, high activity could be maintained as in Example 2 having the same catalyst composition. I understood.
(実施例8)
触媒調製において、Ni0.2Mg0.8Oへアルミナ10質量%混合に相当する触媒とする以外は、実施例7と同様に改質反応を行った。その結果、表4の実施例8に示すように、24h反応時点で転化率が97.8%となり、調製方法が異なっても、触媒組成が同じ実施例6と同様に、高活性を保持できることがわかった。
(Example 8)
In the preparation of the catalyst, a reforming reaction was carried out in the same manner as in Example 7, except that a catalyst corresponding to 10% by mass of alumina mixed with Ni 0.2 Mg 0.8 O was used. As a result, as shown in Example 8 of Table 4, the conversion was 97.8% at the time of the reaction for 24 hours, and even if the preparation method was different, high activity could be maintained as in Example 6 having the same catalyst composition. I understood.
(比較例4)
硝酸ニッケル水溶液をアルミナ粉末に、20質量%となるように含浸した酸化物を蒸発皿に移して、120℃で約24時間乾燥した後、粉末をるつぼに移して、空気中500℃で約20時間焼成を行いニッケル/アルミナ触媒を得た以外は、実施例1と同じ条件で評価した。その結果、表5のNo.12のように、メタン転化率は10時間の時点で、0%となった。従来の担持法による触媒では、活性低下が非常に低いことがわかる。
(Comparative Example 4)
An oxide obtained by impregnating an aqueous solution of nickel nitrate with alumina powder to a concentration of 20% by mass was transferred to an evaporating dish and dried at 120 ° C. for about 24 hours. Then, the powder was transferred to a crucible at 500 ° C. Evaluation was performed under the same conditions as in Example 1 except that the nickel / alumina catalyst was obtained by firing for a time. As a result, in Table 5, No. As in 12, the methane conversion was 0% at 10 hours. It can be seen that the activity of the catalyst by the conventional loading method is extremely low.
(比較例5)
アセチルアセトナートルテニウム水溶液をアルミナ粉末に、5質量%となるように含浸した酸化物を蒸発皿に移して、120℃で約24時間乾燥した後、粉末をるつぼに移して、空気中500℃で約20時間焼成を行いルテニウム/アルミナ触媒を得た以外は、実施例1と同じ条件で評価した。その結果、表6のNo.13のように、メタン転化率は75.7%となった。本発明の触媒の性能と同等レベルであるが、貴金属であることから、触媒コストが高価であり、本発明の方が低コストで製造可能である。
(Comparative Example 5)
The oxide impregnated with an aqueous solution of acetylacetonate toruthenium in alumina powder to a concentration of 5% by mass was transferred to an evaporating dish and dried at 120 ° C. for about 24 hours. The powder was transferred to a crucible at 500 ° C. in air. The evaluation was performed under the same conditions as in Example 1 except that calcination was performed for about 20 hours to obtain a ruthenium / alumina catalyst. As a result, in Table 6, No. As in 13, the methane conversion was 75.7%. Although the performance is equivalent to the performance of the catalyst of the present invention, since it is a noble metal, the cost of the catalyst is high, and the present invention can be manufactured at lower cost.
(比較例6)
アセチルアセトナート白金水溶液をアルミナ粉末に、5質量%となるように含浸した酸化物を蒸発皿に移して、120℃で約24時間乾燥した後、粉末をるつぼに移して、空気中500℃で約20時間焼成を行い白金/アルミナ触媒を得た以外は、実施例1と同じ条件で評価した。その結果、表7のNo.14のように、メタン転化率は82.5%となった。本発明の触媒の性能と同等レベルであるが、比較例5のルテニウム以上に高価であることから、触媒コストが高価であり、本発明の方が低コストで製造可能である。
(Comparative Example 6)
An aqueous solution of platinum acetylacetonate in alumina powder impregnated with 5% by mass of an oxide was transferred to an evaporating dish, dried at 120 ° C. for about 24 hours, and then transferred to a crucible at 500 ° C. in air. The evaluation was performed under the same conditions as in Example 1 except that firing was performed for about 20 hours to obtain a platinum / alumina catalyst. As a result, as shown in Table 7, As in 14, the methane conversion was 82.5%. Although the performance is equivalent to the performance of the catalyst of the present invention, since the catalyst is more expensive than the ruthenium of Comparative Example 5, the catalyst cost is higher, and the present invention can be manufactured at lower cost.
(比較例7)NiCeMgO系触媒
硝酸ニッケル、硝酸セリウム、及び、硝酸マグネシウムを各金属元素のモル比が0.1:0.1:0.8になるように精秤して、60℃の加温で混合水溶液を調製したものに、60℃に加温した炭酸カリウム水溶液をゆっくり加え、ニッケル、セリウム、及び、マグネシウムを水酸化物として共沈させ、撹拌羽根で十分に撹拌した。その後、60℃に保持したまま一定時間撹拌を続けて熟成を行った後、吸引ろ過を行い、80℃の純水で十分に洗浄を行った。その後、得られた沈殿物にアルミナゾルをアルミナとして50質量%となるように加えて、撹拌羽根で十分混合したものをナスフラスコに移してロータリーエバポレーターに取り付け、減圧下で約50℃に加温することで、水分を蒸発させた。ナスフラスコ内で固化したニッケルとセリウムとマグネシウムとアルミナの混合物を蒸発皿に移して、120℃で約24時間乾燥した後、乳鉢で粉砕後、粉末をるつぼに移して、空気中950℃で約20時間焼成を行い、Ni0.1Ce0.1Mg0.8Oにアルミナが50質量%混合した触媒を得た。得られた触媒の粉末を、加圧成型器を用いて20mmφの錠剤にプレス成型し、プレス成型体を粗粉砕することで、0.5〜1.0mmに粒度調整して、実施例1と同じ条件で評価した。
(Comparative Example 7) NiCeMgO-based catalyst Nickel nitrate, cerium nitrate, and magnesium nitrate were precisely weighed so that the molar ratio of each metal element was 0.1: 0.1: 0.8, and heated at 60 ° C. An aqueous solution of potassium carbonate heated to 60 ° C. was slowly added to the mixture prepared at room temperature, and nickel, cerium, and magnesium were coprecipitated as hydroxides and sufficiently stirred with a stirring blade. Thereafter, the mixture was aged by continuing stirring for a certain period of time while maintaining the temperature at 60 ° C., followed by suction filtration, and washing with pure water at 80 ° C. sufficiently. Then, alumina sol was added to the obtained precipitate in an amount of 50% by mass as alumina, and the mixture was sufficiently mixed with a stirring blade, transferred to an eggplant flask, attached to a rotary evaporator, and heated to about 50 ° C. under reduced pressure. As a result, water was evaporated. The mixture of nickel, cerium, magnesium, and alumina solidified in the eggplant flask was transferred to an evaporating dish, dried at 120 ° C. for about 24 hours, crushed in a mortar, and then transferred to a crucible at 950 ° C. in air. The firing was performed for 20 hours to obtain a catalyst in which alumina was mixed with Ni 0.1 Ce 0.1 Mg 0.8 O at 50% by mass. The obtained catalyst powder was press-molded into a tablet having a diameter of 20 mm using a pressure molding machine, and the pressed compact was roughly crushed to adjust the particle size to 0.5 to 1.0 mm. Evaluation was performed under the same conditions.
表8のNo.15の結果から、セリウムを添加していない比較例3(表1、No.7)よりも更に短時間で劣化してしまうことが判明した。 No. of Table 8 From the result of No. 15, it was found that the sample deteriorated in a shorter time than Comparative Example 3 in which cerium was not added (Table 1, No. 7).
(比較例8)
比較例7において、アルミナゾルをアルミナとして30質量%となるように加えて、Ni0.1Ce0.1Mg0.8Oにアルミナが30質量%混合した触媒を得ること以外は、実施例1と同じ条件で評価した。
(Comparative Example 8)
In Comparative Example 7, an alumina sol was added so that 30 mass% of alumina, except that alumina Ni 0.1 Ce 0.1 Mg0.8O obtain 30 wt% mixed catalyst, the same as in Example 1 The condition was evaluated.
その結果、表8のNo.15に示すように、17時間でメタン転化率が0となり、セリウムを添加せず、同じアルミナ混合量である実施例4(表1、No.5)と比較して、非常に短時間で劣化してしまうことが判明した。 As a result, as shown in Table 8, As shown in FIG. 15, the methane conversion rate became 0 in 17 hours, and the deterioration was achieved in a very short time as compared with Example 4 (Table 1, No. 5) in which cerium was not added and the same amount of alumina was mixed. It turned out to be.
以上の結果より、従来、タール改質用触媒として高活性であった、セリウムを添加した触媒では、活性劣化が非常に速いことが判明した。 From the above results, it was found that the activity of the catalyst to which cerium was added, which had conventionally been highly active as a tar reforming catalyst, deteriorated very quickly.
(実施例9)
実施例2で調製したNi0.1Mg0.9Oにアルミナが10質量%混合した触媒を用いて、実施例1の改質反応において、常圧で模擬都市ガス(メタンが89.6%、エタンが5.6%、プロパンが3.4%、ノルマルブタンが1.4%)を12ml、H2Sを3ppmとなる濃度とし、(水蒸気モル数)/(上記模擬都市ガス中の炭素のモル数)=3となるよう、純水を精密ポンプで水蒸気として42ml/min導入しながら、0.1MPaの反応圧力で24時間実験を行った。本条件での触媒体積当たりのガス導入速度を表わす空間速度(SV)は40,000h−1であり、通常の水素製造条件と比べ約10倍の流速で、加速試験条件となる。その結果、表9のNo.17のように、24時間経過後でもメタン転化率が91%を保持し、エタン、プロパン、ブタンは転化率99%以上であった。原料ガスが都市ガス成分でも、メタンのみと同様に高活性を示した。エタン、プロパン、ブタンは分解しやすく、炭素析出量が大きくなる問題があるが、本発明での触媒では、24時間の加速試験後でも、炭素析出率は1質量%以下であった。
(Example 9)
Using the catalyst prepared by mixing Ni 0.1 Mg 0.9 O with 10% by mass of alumina prepared in Example 2, in the reforming reaction of Example 1, the simulated city gas (methane was 89.6% , Ethane 5.6%, propane 3.4%, and normal butane 1.4%) in a concentration of 12 ml and H2S at 3 ppm. (Moles of water vapor) / (moles of carbon in the simulated city gas) The experiment was performed at a reaction pressure of 0.1 MPa for 24 hours while introducing pure water as steam at 42 ml / min with a precision pump so that (number) = 3. The space velocity (SV) representing the gas introduction velocity per catalyst volume under these conditions is 40,000 h -1, which is an acceleration test condition at a flow rate that is about 10 times that of ordinary hydrogen production conditions. As a result, in Table 9 No. As shown in FIG. 17, even after 24 hours, the methane conversion was kept at 91%, and the conversion of ethane, propane and butane was 99% or more. Even when the source gas was a city gas component, it showed high activity as well as methane alone. Ethane, propane, and butane are easily decomposed and have a problem of increasing the amount of carbon deposition. However, the catalyst according to the present invention had a carbon deposition rate of 1% by mass or less even after an acceleration test for 24 hours.
(実施例10)
実施例6で調製したNi0.2Mg0.8Oにアルミナが10質量%混合した触媒を用いて、実施例9と同様に、改質反応を行った。その結果、表9のNo.18のように、24時間経過もメタン転化率が97%を保持し、エタン、プロパン、ブタンは転化率ほぼ100%であった。実施例7よりも、更に高活性、長寿命を示した。エタン、プロパン、ブタンは分解しやすく、炭素析出量が大きくなる問題があるが、本発明での触媒では、24時間の加速試験後でも、炭素析出率は約2質量%であった。
(Example 10)
A reforming reaction was carried out in the same manner as in Example 9 using a catalyst prepared by mixing Ni 0.2 Mg 0.8 O with 10% by mass of alumina prepared in Example 6. As a result, in Table 9 No. As shown in FIG. 18, the conversion of methane remained 97% even after 24 hours, and the conversions of ethane, propane and butane were almost 100%. It exhibited higher activity and longer life than Example 7. Ethane, propane, and butane are easily decomposed and have a problem of increasing the amount of carbon deposition. However, the catalyst of the present invention had a carbon deposition rate of about 2% by mass even after an acceleration test for 24 hours.
(実施例11)
実施例1において、ニッケルとマグネシウムを各金属のモル比が0.2:0.8になるようにしたNi0.2Mg0.8Oにアルミナが5質量%混合した触媒を用いる以外は、実施例9と同様に、改質反応を行った。その結果、表9のNo.19のように、24時間経過もメタン転化率が93%を保持し、エタン、プロパン、ブタンも転化率は98%以上であった。エタン、プロパン、ブタンは分解しやすく、炭素析出量が大きくなる問題があるが、本発明での触媒では、24時間の加速試験後でも、炭素析出率は約2.5質量%であった。
(Example 11)
In Example 1, except that a catalyst in which 5% by mass of alumina was mixed with Ni 0.2 Mg 0.8 O in which the molar ratio of each metal was 0.2: 0.8 with nickel and magnesium was used. A reforming reaction was performed in the same manner as in Example 9. As a result, in Table 9 No. As shown in FIG. 19, the methane conversion was maintained at 93% even after 24 hours, and the conversion of ethane, propane and butane was 98% or more. Ethane, propane, and butane are easily decomposed and have a problem of increasing the amount of carbon deposition. However, the catalyst of the present invention had a carbon deposition rate of about 2.5% by mass even after a 24-hour acceleration test.
(実施例12)
実施例1において、ニッケルとマグネシウムを各金属のモル比が0.2:0.8になるようにしたNi0.2Mg0.8Oにアルミナが30質量%混合した触媒を用いる以外は、実施例9と同様に、改質反応を行った。その結果、表9のNo.20のように、24時間経過もメタン転化率が89%を保持し、エタン、プロパン、ブタンも転化率は95%以上であった。エタン、プロパン、ブタンは分解しやすく、炭素析出量が大きくなる問題があるが、本発明での触媒では、24時間の加速試験後でも、炭素析出率は約1.8質量%であった。
(Example 12)
In Example 1, except that a catalyst in which 30% by mass of alumina was mixed with Ni 0.2 Mg 0.8 O, in which the molar ratio of nickel and magnesium was 0.2: 0.8, was used. A reforming reaction was performed in the same manner as in Example 9. As a result, in Table 9 No. As shown in FIG. 20, the methane conversion was maintained at 89% even after 24 hours, and the conversions of ethane, propane and butane were 95% or more. Ethane, propane, and butane are easily decomposed and have a problem of increasing the amount of carbon deposition. However, the catalyst of the present invention had a carbon deposition rate of about 1.8% by mass even after a 24-hour acceleration test.
(実施例13)
実施例1において、ニッケルとマグネシウムを各金属のモル比が0.3:0.7になるようにしたNi0.3Mg0.7Oにアルミナが10質量%混合した触媒を用いて、実施例7と同様に、改質反応を行った。その結果、表9のNo.21のように、24時間経過もメタン転化率が99.2%を保持し、エタン、プロパン、ブタンは転化率100%であった。実施例8よりも、更に高活性、長寿命を示した。エタン、プロパン、ブタンは分解しやすく、炭素析出量が大きくなる問題があるが、本発明での触媒では、24時間の加速試験後でも、炭素析出率は約3質量%であった。
(Example 13)
In Example 1, nickel and magnesium were mixed using a catalyst in which alumina was mixed with 10 mass% of Ni 0.3 Mg 0.7 O in which the molar ratio of each metal was 0.3: 0.7. A reforming reaction was performed as in Example 7. As a result, in Table 9 No. As shown in FIG. 21, the methane conversion was maintained at 99.2% even after 24 hours, and the conversion of ethane, propane and butane was 100%. It exhibited higher activity and longer life than Example 8. Ethane, propane, and butane are easily decomposed and have a problem of increasing the amount of carbon deposition. However, the catalyst of the present invention had a carbon deposition rate of about 3% by mass even after an acceleration test for 24 hours.
(実施例14)
実施例7で調製したNi0.1Mg0.9Oにアルミナが10質量%混合した触媒を用いて、実施例9と同様に、改質反応を行った。その結果、表10のNo.22のように、24時間経過もメタン転化率90%を保持し、エタン、プロパン、ブタンも転化率は95%以上であった。エタン、プロパン、ブタンは分解しやすく、炭素析出量が大きくなる問題があるが、本発明での触媒では、24時間の加速試験後でも、炭素析出率は約1.8質量%であった。別の触媒調製法でも、同様に高い活性を発現した。
(Example 14)
With alumina were mixed 10 mass% catalyst Ni 0.1 Mg 0.9 O prepared in Example 7, in the same manner as in Example 9 was subjected to reforming reaction. As a result, in Table 10 No. As in No. 22, the methane conversion was maintained at 90% even after 24 hours, and the conversions of ethane, propane, and butane were 95% or more. Ethane, propane, and butane are easily decomposed and have a problem of increasing the amount of carbon deposition. However, the catalyst of the present invention had a carbon deposition rate of about 1.8% by mass even after a 24-hour acceleration test. Other catalyst preparation methods also exhibited high activity.
(実施例15)
実施例8で調製したNi0.2Mg0.8Oにアルミナが10質量%混合した触媒を用いて、実施例9と同様に、改質反応を行った。本実施例では48時間まで反応を行った。その結果、表10のNo.23のように、24時間経過はメタン、エタン、プロパン、ブタンとも転化率は99%以上であった。さらに、48時間経過後でも、メタン転化率は98%、エタン転化率は99%、プロパン、ブタンの転化率は100%であった。本発明での触媒では、48時間の加速試験後でも、炭素析出率は約0.6質量%であった。別の触媒調製法でも、同様に高い活性を発現した。
(Example 15)
A reforming reaction was carried out in the same manner as in Example 9 using a catalyst prepared by mixing Ni 0.2 Mg 0.8 O with 10% by mass of alumina prepared in Example 8. In this example, the reaction was performed for up to 48 hours. As a result, in Table 10 No. As in the case of No. 23, the conversion rate of methane, ethane, propane, and butane over 24 hours was 99% or more. Furthermore, even after 48 hours, the methane conversion was 98%, the ethane conversion was 99%, and the conversions of propane and butane were 100%. The catalyst of the present invention had a carbon deposition rate of about 0.6% by mass even after the accelerated test for 48 hours. Other catalyst preparation methods also exhibited high activity.
(比較例9)
比較例4で調製したニッケル/アルミナ触媒を用いて、実施例7と同様に、改質反応を行った。その結果、表11のNo.24のように、比較例4と同様に、メタン転化率は12時間程度で0%になり、エタン、プロパン、ブタンの転化率も数%まで低下した。さらに、炭素析出率も12質量%と非常に大きくなった。
(Comparative Example 9)
Using the nickel / alumina catalyst prepared in Comparative Example 4, a reforming reaction was carried out in the same manner as in Example 7. As a result, in Table 11 No. As in the case of Comparative Example 4, the conversion of methane became 0% in about 12 hours, and the conversion of ethane, propane and butane also decreased to several%, as in Comparative Example 4. Further, the carbon deposition rate was as large as 12% by mass.
(実施例16)
実施例6で調製したNi0.2Mg0.8Oにアルミナが10質量%混合した触媒を用いて、実施例1の改質反応において、常圧でプロパンガス(プロパンが98%、エタンが0.4%、イソブタンが1.6%、硫黄分が8ppm)を5.7ml、(水蒸気モル数)/(上記模擬都市ガス中の炭素のモル数)=3となるよう、純水を精密ポンプで水蒸気として51.5ml/min導入しながら、0.1MPaの反応圧力で24時間実験を行った。ここで、プロパンガスには、付臭剤として硫黄分が8ppm添加されている。本条件での触媒体積当たりのガス導入速度を表わす空間速度(SV)は40,000h−1であり、通常の水素製造条件と比べ約10倍の流速で、加速試験条件となる。その結果、表12のNo.25に示すように、24時間経過後でもプロパン転化率が98%を保持し、エタン、ブタンは転化率100%であった。原料ガスがプロパンガスでも、メタンのみ、あるいは、都市ガス成分と同様に高活性を示した。
(Example 16)
In a reforming reaction of Example 1, propane gas (98% propane, ethane was 98%) was used in the reforming reaction of Example 1 using a catalyst in which alumina was mixed with 10% by mass of Ni 0.2 Mg 0.8 O prepared in Example 6. 5.7 ml of 0.4%, 1.6% of isobutane, and 8 ppm of sulfur), and purified water was precisely purified so that (molar number of steam) / (molar number of carbon in the simulated city gas) = 3. The experiment was conducted at a reaction pressure of 0.1 MPa for 24 hours while introducing 51.5 ml / min as steam with a pump. Here, 8 ppm of sulfur is added to propane gas as an odorant. The space velocity (SV) representing the gas introduction velocity per catalyst volume under these conditions is 40,000 h -1, which is an acceleration test condition at a flow rate that is about 10 times that of ordinary hydrogen production conditions. As a result, in Table 12 No. As shown in FIG. 25, even after 24 hours, the conversion of propane was 98%, and the conversion of ethane and butane was 100%. Even when the raw material gas was propane gas, only methane or high activity was exhibited as in the case of city gas components.
(実施例17)
実施例11で調製したNi0.2Mg0.8Oにアルミナが5質量%混合した触媒を用いて、実施例16と同様の改質反応を行った。その結果、24時間経過後でもプロパン転化率が95%を保持し、エタン、ブタンは転化率100%であった。原料ガスがプロパンガスでも、メタンのみ、あるいは、都市ガス成分と同様に高活性を示した。
(Example 17)
A reforming reaction similar to that in Example 16 was performed using a catalyst in which 5% by mass of alumina was mixed with Ni 0.2 Mg 0.8 O prepared in Example 11. As a result, even after 24 hours, the conversion of propane was maintained at 95%, and the conversion of ethane and butane was 100%. Even when the raw material gas was propane gas, only methane or high activity was exhibited as in the case of city gas components.
(実施例18)
実施例12で調製したNi0.2Mg0.8Oにアルミナが30質量%混合した触媒を用いて、実施例16と同様の改質反応を行った。その結果、24時間経過後でもプロパン転化率が95%を保持し、エタン、ブタンは転化率100%であった。原料ガスがプロパンガスでも、メタンのみ、あるいは、都市ガス成分と同様に高活性を示した。
(Example 18)
The same reforming reaction as in Example 16 was performed using a catalyst in which 30% by mass of alumina was mixed with Ni 0.2 Mg 0.8 O prepared in Example 12. As a result, even after 24 hours, the conversion of propane was maintained at 95%, and the conversion of ethane and butane was 100%. Even when the raw material gas was propane gas, only methane or high activity was exhibited as in the case of city gas components.
(実施例19)
実施例8で調製したNi0.2Mg0.8Oにアルミナが10質量%混合に相当する触媒を用いて、実施例16と同様の改質反応を行った。その結果、24時間経過後でもプロパン転化率が98%を保持し、エタン、ブタンは転化率ほぼ100%であった。別の触媒調製によって調製した触媒でも、原料ガスがプロパンガスでも、メタンのみ、あるいは、都市ガス成分と同様に高活性を示した。
(Example 19)
The same reforming reaction as in Example 16 was performed using a catalyst corresponding to 10% by mass of alumina mixed with Ni 0.2 Mg 0.8 O prepared in Example 8. As a result, even after 24 hours, the conversion of propane was maintained at 98%, and the conversion of ethane and butane was almost 100%. Even with the catalyst prepared by another catalyst preparation, even when the raw material gas was propane gas, only methane or a high activity was exhibited similarly to the city gas component.
上記比較例及び実施例(試験No.1〜7)により得られたメタン転化率(%)と改質反応時間(h)との関係を、図1のグラフに示す。また、上記実施例9及び10により得られたメタン等の炭化水素の転化率(%)と改質反応時間(h)との関係を、図2及び図3のグラフに示す。さらに、上記実施例15により得られたメタン等の炭化水素の転化率(%)と改質反応時間(h)との関係を、図4に示す。 FIG. 1 is a graph showing the relationship between the methane conversion (%) and the reforming reaction time (h) obtained in the comparative example and the examples (test Nos. 1 to 7). The relationship between the conversion (%) of hydrocarbons such as methane obtained in Examples 9 and 10 and the reforming reaction time (h) is shown in the graphs of FIGS. FIG. 4 shows the relationship between the conversion (%) of hydrocarbons such as methane obtained in Example 15 and the reforming reaction time (h).
Claims (5)
当該沈殿物に、アルミナゾル、または、アルミナ粉末と水とを、得られる軽質炭化水素の改質用触媒中のアルミナの含有量において5〜30質量%となるように加え、混合して混合物を生成し、Alumina sol or alumina powder and water are added to the precipitate so as to have an alumina content of 5 to 30% by mass in the obtained light hydrocarbon reforming catalyst, and mixed to form a mixture. And
当該混合物を乾燥及び焼成して製造した軽質炭化水素の改質用触媒を用いて、Using a catalyst for reforming light hydrocarbons produced by drying and calcining the mixture,
軽質炭化水素を改質して、水素及び一酸化炭素を得ることを特徴とする軽質炭化水素の改質方法。A method for reforming light hydrocarbons, comprising reforming light hydrocarbons to obtain hydrogen and carbon monoxide.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014261334 | 2014-12-24 | ||
JP2014261334 | 2014-12-24 | ||
JP2015157991 | 2015-08-10 | ||
JP2015157991 | 2015-08-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017029970A JP2017029970A (en) | 2017-02-09 |
JP6631245B2 true JP6631245B2 (en) | 2020-01-15 |
Family
ID=57985899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015251862A Active JP6631245B2 (en) | 2014-12-24 | 2015-12-24 | Method for producing catalyst for reforming hydrocarbon and method for reforming light hydrocarbon |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6631245B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021152114A1 (en) * | 2020-01-31 | 2021-08-05 | Basf Se | A process for preparing a molding, a molding and use thereof as methane reforming catalyst |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112449615B (en) | 2018-08-03 | 2023-07-25 | 株式会社新生能源研究 | Steam reforming catalyst |
WO2022184892A1 (en) | 2021-03-04 | 2022-09-09 | Basf Se | Process for the preparation of a mixed metal oxide |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001025142A1 (en) * | 1999-10-01 | 2001-04-12 | Bp Amoco Corporation | Preparing synthesis gas using hydrotalcite-derived nickel catalysts |
JP4098508B2 (en) * | 2001-08-20 | 2008-06-11 | 財団法人 ひろしま産業振興機構 | Method for producing catalyst for reacting hydrocarbon and water vapor, and method for producing hydrogen from hydrocarbon using the catalyst |
JP4222827B2 (en) * | 2002-03-25 | 2009-02-12 | 新日本製鐵株式会社 | Hydrocarbon reforming method |
JP5354142B2 (en) * | 2006-01-16 | 2013-11-27 | 戸田工業株式会社 | Steam reforming catalyst and reaction gas production method |
JP2008105924A (en) * | 2006-09-28 | 2008-05-08 | Idemitsu Kosan Co Ltd | Method for producing hydrogen |
KR101523122B1 (en) * | 2008-03-06 | 2015-05-26 | 도다 고교 가부시끼가이샤 | A porous catalytic body that decomposes hydrocarbons and a manufacturing method thereof, a method for manufacturing mixed reformed gas that comprises hydrogen from hydrocarbon, and a fuel cell system |
US9090465B2 (en) * | 2008-09-24 | 2015-07-28 | Nippon Steel & Sumitomo Metal Corporation | Method for producing catalyst reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas |
CN102949994A (en) * | 2011-08-31 | 2013-03-06 | 中国石油化工股份有限公司 | High-activity steam pre-conversion catalyst for hydrocarbons |
CN104248957B (en) * | 2013-06-25 | 2017-03-01 | 中国石油化工股份有限公司 | Lighter hydrocarbons steam preconversion catalyst and its preparation method and application |
-
2015
- 2015-12-24 JP JP2015251862A patent/JP6631245B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021152114A1 (en) * | 2020-01-31 | 2021-08-05 | Basf Se | A process for preparing a molding, a molding and use thereof as methane reforming catalyst |
Also Published As
Publication number | Publication date |
---|---|
JP2017029970A (en) | 2017-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
de Abreu et al. | Ni catalyst on mixed support of CeO2–ZrO2 and Al2O3: Effect of composition of CeO2–ZrO2 solid solution on the methane steam reforming reaction | |
KR101994152B1 (en) | A Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, Preparation Method Thereof and Methane Reforming Method Threrewith | |
JP5072841B2 (en) | Steam reforming catalyst, hydrogen production apparatus and fuel cell system | |
Mesrar et al. | Syngas production from dry reforming of methane over ni/perlite catalysts: effect of zirconia and ceria impregnation | |
WO2005079979A1 (en) | Catalyst for producing hydrocarbons, method for preparing the same, and method for producing hydrocarbons using the same | |
Hakim et al. | Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts | |
Lin et al. | Hydrogen production by HI decomposition over nickel–ceria–zirconia catalysts via the sulfur–iodine thermochemical water-splitting cycle | |
JP6631245B2 (en) | Method for producing catalyst for reforming hydrocarbon and method for reforming light hydrocarbon | |
Tao et al. | Sol–gel auto-combustion synthesis of Ni–Ce x Zr 1− x O 2 catalysts for carbon dioxide reforming of methane | |
Zou et al. | Preparation adjacent Ni-Co bimetallic nano catalyst for dry reforming of methane | |
Asthana et al. | Impact of La engineered stable phase mixed precursors on physico-chemical features of Cu-based catalysts for conversion of CO2 rich syngas to methanol | |
JP4222839B2 (en) | Hydrocarbon reforming method | |
JP7156113B2 (en) | Catalyst for reforming tar-containing gas, method for producing catalyst for reforming tar-containing gas, and method for reforming tar-containing gas using catalyst for reforming tar-containing gas | |
JP6701778B2 (en) | Method for producing hydrogen by reforming hydrocarbons, apparatus for producing hydrogen, operating method for fuel cell, and operating apparatus for fuel cell | |
JP4776403B2 (en) | Hydrocarbon reforming catalyst | |
AU2012258290A1 (en) | Nickel based catalysts for hydrocarbon reforming | |
JP6089894B2 (en) | Catalyst for producing synthesis gas and method for producing synthesis gas | |
JP5207755B2 (en) | Method for producing hydrocarbon reforming catalyst | |
Wang et al. | Effect of catalyst properties on selectivity in CO 2 methanation with coupling pathway of RWGS and CO methanation | |
Liu et al. | Surface basic site effect on CoLa/m-Al2O3 catalysts for dry reforming of methane | |
CN112154119B (en) | Process for the partial oxidation of hydrocarbons | |
JP7347541B2 (en) | Hydrocarbon reforming catalyst, hydrocarbon reformer, and method for recovering sulfur deterioration of hydrocarbon reforming catalyst | |
JP5462685B2 (en) | Steam reforming catalyst, hydrogen production apparatus and fuel cell system | |
WO2023277188A1 (en) | Catalyst for liquefied petroleum gas synthesis and method for producing liquefied petroleum gas | |
JP7069946B2 (en) | A method for producing a tar-containing gas reforming catalyst, a tar-containing gas reforming catalyst, and a tar-containing gas reforming method using a tar-containing gas reforming catalyst. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180803 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190521 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190719 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191125 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6631245 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |