Nothing Special   »   [go: up one dir, main page]

JP6608344B2 - 探索装置および探索方法 - Google Patents

探索装置および探索方法 Download PDF

Info

Publication number
JP6608344B2
JP6608344B2 JP2016184386A JP2016184386A JP6608344B2 JP 6608344 B2 JP6608344 B2 JP 6608344B2 JP 2016184386 A JP2016184386 A JP 2016184386A JP 2016184386 A JP2016184386 A JP 2016184386A JP 6608344 B2 JP6608344 B2 JP 6608344B2
Authority
JP
Japan
Prior art keywords
value
search
input
result
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016184386A
Other languages
English (en)
Other versions
JP2018049936A (ja
Inventor
健史 大森
潤一 田中
光 小山
優 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016184386A priority Critical patent/JP6608344B2/ja
Priority to US15/658,844 priority patent/US10734261B2/en
Priority to KR1020170106393A priority patent/KR102017604B1/ko
Priority to TW106129091A priority patent/TWI672599B/zh
Priority to TW108126247A priority patent/TWI745723B/zh
Publication of JP2018049936A publication Critical patent/JP2018049936A/ja
Priority to KR1020190105617A priority patent/KR102039394B1/ko
Application granted granted Critical
Publication of JP6608344B2 publication Critical patent/JP6608344B2/ja
Priority to US16/911,669 priority patent/US20200328101A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D1/00Measuring arrangements giving results other than momentary value of variable, of general application
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/041Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a variable is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/903Querying
    • G06F16/90335Query processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、解を探索する探索装置および探索方法に関する。
半導体デバイスの性能向上のため、半導体デバイスを構成する新材料が導入され、同時に半導体デバイスの構造が複雑化する。また、半導体デバイスの加工では、ナノメートルレベルの精度が要求される。また、半導体デバイスの生産性向上のために、当該精度を維持した状態での量産処理を可能な限り継続することが要求される。これらの要求を満たすためには、半導体デバイスは多種の材料および構造を極めて高精度に加工できる必要がある。したがって、半導体デバイスを処理する半導体処理装置の制御範囲が拡大され、多数の制御パラメータが追加される。半導体処理装置を用いることで、高い生産性を維持しながら、高性能な半導体デバイスが生産される。
その一方で、半導体処理装置の性能を十分に引出すためには、半導体処理装置毎に数種から数十種にも及ぶ入力パラメータを決定する必要がある。更に1つの工程内で多数のステップがあり、そのステップ毎に入力パラメータを変更する必要がある。したがって、目標の加工結果が得られる入力パラメータの組み合わせを突き止めることが、極めて困難である。
生産性の維持および向上のためには、半導体デバイスを量産中の半導体処理装置の状態および加工結果のデータを取得する必要がある。これらのデータ取得を目的とした複数のセンサおよびモニタが半導体処理装置に搭載されている。半導体デバイスを量産中の半導体処理装置の状態および加工結果のデータ変動を補正するための制御を実施するためには、センサデータおよびモニタデータと加工結果との関係を解析して、制御用パラメータを見出す必要がある。ナノメートルレベルの加工制御を行うため、半導体処理装置に搭載されるセンサおよび製造状況のモニタの数が増加し、データ取得の頻度も増加している。ている。これにより、取得されるデータ量が増大する。したがって、必要とされる高精度な半導体処理装置の制御方法の開発は、膨大なデータの解析および制御性能の検証が必要であり、極めて困難である。
半導体デバイスのような先端デバイスの製造は、生産性を確保するために、半導体処理装置のエージング方法の開発を要求する。半導体処理装置のエージング方法とは、半導体処理装置間の性能差の抑制、量産中の加工特性の経時変化の補正、および、半導体処理装置のメンテナンスで補正しきれない半導体処理装置間の性能差を縮小するため方法である。半導体処理装置のエージング方法の開発は、高度な知識と技術を持ったトップエンジニアによって実施される。しかし、半導体デバイスの製造におけるウェハ処理枚数および高難度の工程数が増加し続けており、トップエンジニアの人数不足が深刻化している。そのため、データが取得されるだけで解析まで手が回らない工程が増加する。したがって、半導体処理装置自らが自動的に半導体処理装置の性能を引き出す機能、および半導体処理装置の性能を引き出すエンジニアを支援する機能が、半導体処理装置に要求される。
特許文献1は、生物学に基づいた自律学習システムを用いて、製造ツールのレシピをインクリメンタルまたはランダムに変更した際のデータ学習し、その結果を利用して調節されたレシピを生成する技術を開示する。
特表2013−518449号公報
たとえば、半導体処理装置の入力パラメータは、半導体処理装置の動作を決定するパラメータであり、ガス種、ガス流量、圧力、投入電力、電圧、電流、処理時間、加熱温度、冷却温度、ドーズ量、光量といった入力パラメータがある。半導体処理装置の出力パラメータは、半導体処理装置での処理中または処理された処理対象物(処理結果)を監視または計測することで得られるパラメータであり、CD(Critical Dimension)、堆積膜厚、ER(Etch Rate)、加工形状、マスク選択比、更にこれらのウェハ面内分布および均一性といった加工結果を示す出力パラメータがある。また、これらの加工結果と関連のあるセンサデータおよびモニタデータとしては、光反射スペクトル、プラズマ光スペクトル、ウェハ入射電流、ウェハ電圧、ウェハ温度、装置部品温度、更にこれらの空間分布および均一性を示すデータもある。センサデータおよびモニタデータもまた、出力パラメータである。
半導体処理装置の入出力関係を解析するためには、1入力1出力から多入力多出力までの入出力データを解析できる必要がある。そして、目的の出力結果を満たす入力パラメータの組み合わせを得るためには、入力パラメータおよび出力パラメータからなる広大な装置パラメータ空間を探索する必要がある。
たとえば、探索する入力パラメータとして、使用ガス2種の各流量、ガス圧力、放電電力、ウェハ印加バイアス電力という基本的な5種類の入力パラメータを選んだ場合を考える。各入力パラメータの制御範囲は以下の通りである。両ガス流量の制御範囲は100〜200[sccm]、ガス圧力の制御範囲は1〜10[Pa]、放電電力の制御範囲は500〜1500[W]、バイアス電力の制御範囲は0〜100[W]といった典型的な範囲とする。なお、各パラメータを変更する際の最小幅の典型的な値は以下の通りである。両ガス流量の当該値は1[sccm]、ガス圧力の当該値は0.1[Pa]、放電電力の当該値は1[W]、バイアス電力の当該値は1[W]である。
この場合、装置パラメータ空間全体における入力パラメータの制御範囲の全組み合わせ、すなわち探索条件数を概算すると、100×100×100×1000×100=1011となる。探索1回にかかる時間が1分程度の場合には、全探索条件数の探索に10万年以上かかり、実行不可能である。
また、探索1セット分において入力パラメータ毎の値の設定数を10個とすると、探索における入力パラメータの組み合わせは10となる。探索1回の時間が1分程度の場合には、1セット分の探索に2カ月以上の時間が必要となる。探索および探索結果の解析を繰り返して目標の解へ到達するためには、探索1セットにかかる時間は長い場合でも数日以下、望ましくは1時間以下とする必要がある。従って、目標の解に到達するためには、探索における入力パラメータの設定、すなわち探索領域の決定が極めて重要である。
探索1セットにおける探索条件数を100条件、また探索時間を1時間として、この探索を繰り返すことで1日に2000条件を探索した場合には、装置パラメータ空間の条件数1011のうち、1日で0.000002%の領域が探索される。これを1カ月続けた場合、すなわち探索6万セットを実行した場合には装置パラメータ空間のうち0.00006%の領域が探索されたことになる。したがって、探索1セットにおける探索領域が狭い場合において、探索領域をランダムに変更した場合には、最適な解へ到達できる可能性は極めて低い。また、重複した探索領域がある場合には、最適な解への到達に必要な時間はさらに長くなる。
さらに、半導体処理装置の入出力関係は、大半の場合において非線形であり、装置パラメータ空間には多数の局所解が存在する。そのため、1回のデータ解析および推定によって、出力パラメータの値を満たす入力パラメータの値が見つかることは極めて稀である。装置パラメータ空間のうち1%の探索領域に1つ程度の局所解が存在する場合について考えると、探索領域を狭い領域とし、探索領域をランダムに選択すると、探索領域内またはその近傍の最良の解に到達できたとしても、99%の確率で局所解へ到達することになる。したがって、局所解を効率良く避ける、または局所解到達後において解へ到達できる可能性が高くなるように探索領域を決定する必要がある。
しかしながら、上述した特許文献1の技術は、データ学習に際し、レシピをインクリメンタルまたはランダムに変更するにすぎないため、解となる入力パラメータである最良解へ到達できる可能性は極めて低いという問題がある。換言すれば、最良解と比較して劣った結果がとなる局所解に到達してしまう可能性が極めて高くなるという問題がある。
本発明は、半導体処理装置における運用の効率化を図ることを目的とする。
本願において開示される発明の一側面となる探索装置および探索方法は、半導体を処理する半導体処理装置に設定される条件または前記半導体処理装置により前記半導体が処理された結果を示す目標値と、前記条件と前記結果との範囲により規定される探索領域内における前記条件または前記結果のうち前記目標値が示す方の基準値と、の入力を受け付け、前記探索領域内の前記条件の設定値と、当該設定値を前記半導体処理装置に与えた場合の前記結果の実測値と、に基づいて、前記条件と前記結果との関係を示す予測モデルを生成し、生成された予測モデルに、入力された目標値を与えることにより、前記予測モデルから予測値を取得し、前記予測値の存在領域を前記探索領域から特定し、前記予測値に対応する前記結果の実測値が基準値よりも前記目標値に近いか否かを判断し、前記予測値に対応する前記結果の実測値の方が前記目標値に近いと判断された場合、前記予測値を前記基準値に設定し、前記予測値の存在領域を前記探索領域に設定し、前記予測値に対応する前記結果の実測値が前記目標値の達成条件を充足した場合に前記達成条件を充足した予測値を出力することを特徴とする。
本発明の代表的な実施の形態によれば、半導体処理装置における運用の効率化および処理の最適化を図ることができる。前述した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。
図1は、入力パラメータの探索例を示す説明図である。 図2は、半導体製造システムのシステム構成例を示す説明図である。 図3は、探索装置のハードウェア構成例を示すブロック図である。 図4は、探索装置の機能的構成例を示すブロック図である。 図5は、半導体処理装置の制御処理手順例を示すフローチャート1である。 図6は、半導体処理装置の制御処理手順例を示すフローチャート2である。 図7は、半導体処理装置の制御処理手順例を示すフローチャート3である。 図8は、半導体処理装置の制御処理手順例を示すフローチャート4である。 図9は、機差抑制方法を示すフローチャートである。 図10は、経時変化補正方法を示すフローチャートである。
<入力パラメータの探索例>
図1は、入力パラメータの探索例を示す説明図である。図1は、半導体処理装置において目標を満たす出力データ(上述した出力パラメータの値)が得られる入力データ(上述した入力パラメータの値)を探索する際の半導体処理装置に対する入出力データ入力データと出力データとの組み合わせの例を示す。
ここで、半導体処理装置とは、半導体または半導体を含む半導体デバイスを処理する装置である。半導体処理装置は、具体的には、たとえば、リソグラフィ装置、製膜装置、パターン加工装置、イオン注入装置、加熱装置、洗浄装置を含む。リソグラフィ装置は、露光装置、電子線描画装置、X線描画装置を含む。製膜装置は、たとえば、CVD(Chemical Vapor Deposition)、PVD(Physical Vapor Deposition)、蒸着装置、スパッタリング装置、熱酸化装置を含む。パターン加工装置は、たとえば、ウェットエッチング装置、ドライエッチング装置、電子ビーム加工装置、レーザ加工装置を含む。イオン注入装置は、プラズマドーピング装置、イオンビームドーピング装置を含む。加熱装置は、たとえば、抵抗加熱装置、ランプ加熱装置、レーザ加熱装置を含む。洗浄装置は、液体洗浄装置、超音波洗浄装置を含む。
図1は、X1軸およびX2軸の2軸で2次元の座標平面を有するグラフ100を示す。当該座標平面に直交する軸をY軸とする。X1軸は、半導体処理装置への入力となる入力パラメータX1の座標軸であり、X2軸は、半導体処理装置への入力となる入力パラメータX2の座標軸である。X1軸には、入力パラメータX1の値である入力データx1n(n=1,2,3,…)がプロットされ、X2軸には、入力パラメータX2の値である入力データx2nがプロットされる。グラフ100は、入力データx1nおよびx2nで決定される各領域におけるY軸の出力データを、等高線で表現する。例として、出力データy1を含む領域を最大値(すなわち、最良解)とし、y13の領域を最小値とした。また、グラフ100では、X1軸が3分割され、領域x1a、x1b、x1cとする。同様に、グラフ100では、X2軸が3分割され、領域x2a、x2b、x2cとする。
たとえば、目標として、出力データが最も高くなる領域、すなわち、出力データy1が得られる入力データx1nおよびx2nの組み合わせを探索する場合には、解析方法として装置パラメータ空間の出力データynの傾きを取得し、出力データynがより大きくなる方向へ探索を進めればよい。
しかし、その際の出力データがx1aかつx2bで決定される領域の出力データを含んでいない場合、探索は局所解となる頂点の出力データy4’に向かう。またこの結果に従って探索すべき入力パラメータを決定すると、y4’近傍の出力データを集中的に取得することになり、y4’そのものまたはそれに非常に近い出力データが得られる入力パラメータが発見される。すなわち、この探索で取得した入力パラメータの値を用いた解析と更なる探索による出力パラメータの値の取得とを繰り返したとしても、出力データy1に対応する最良解の入力データを見つけることができない。
また、出力データy1の周辺やその他の領域に多数の局所解が存在する場合、装置パラメータ空間の広さに対して、取得した入力パラメータの値が少ないと、探索は局所解に陥ってしまい、出力データy1を発見できない可能性が高くなる。また、推定した解が存在する領域としてx13かつx23の領域が推定されたとする。その後も特許文献1のように探索領域をx13かつx23の一部のような微小な領域に限定すると、出力データynの傾きが非常に小さいため、出力データy1にたどり着くまでの探索回数が膨大になり探索に失敗する可能性がある。また、出力データynの傾きが出力データynに含まれるノイズに埋もれることで、探索に失敗する可能性がある。解析対象である出力データynの質が悪ければ、必然的に解の推定も悪い結果となるため、探索を成功させるためには、解に近付くことができる質の良いデータを取得するための探索空間を指定する必要がある。
図1では、x1n、x2nおよびynという3つのパラメータを用いている。実際の半導体処理装置では多数の入出力パラメータを持つため、図1の各軸の指標を多次元ベクトル化した広大な装置パラメータ空間が探索される。したがって、このような広大な装置パラメータ空間から効率良く解に近付くことができる質の良いデータを取得するために、装置パラメータ空間が指定される必要がある。また、半導体処理装置の入出力関係は、大半の場合において非線形であり、装置パラメータ空間には多数の局所解が存在する。
本実施例では、半導体処理装置の入出力データの解析結果を考慮した上で装置パラメータ空間を探索するための実験条件を自動で決定し、実験結果の検証を自動で行い、これらの自動動作を繰り返す。これにより、装置パラメータ空間を探索して最良解を効率的に取得する。すなわち、目標とする半導体処理装置の状態および加工結果を示す出力パラメータの値が得られる入力パラメータの値を効率的に発見する。
<システム構成例>
図2は、半導体製造システムのシステム構成例を示す説明図である。半導体製造システム200は、半導体処理装置201と、装置制御システム202と、モニタシステム203と、センサシステム204と、データベース205と、自動制御システム(探索装置)206と、を有する。
半導体処理装置201は、上述した通り、ウェハ等の基板や半導体デバイスを処理する装置である。半導体処理装置201は、装置制御システム202、モニタシステム203およびセンサシステム204に接続される。
装置制御システム202は、半導体処理装置201の稼働および処理をする際に半導体処理装置201を制御するシステムである。装置制御システム202は、GUIなどの入力インタフェースを有し、入力インタフェースを介して入力された入力パラメータの値で半導体処理装置201の実行を制御する。また、装置制御システム202は、ネットワークインタフェースを有し、ネットワークインタフェースを介して外部のコンピュータおよびデータベース205から入力パラメータの値を取得する。
装置制御システム202は、レシピ設定コントローラ221と、装置基本設定コントローラ222と、設定エラー検出システム223と、を有する。レシピ設定コントローラ221は、半導体処理装置201の処理中の動作を決定する入力パラメータおよびその値を半導体処理装置201に設定する。装置基本設定コントローラ222は、半導体処理装置201が稼働するための入力パラメータおよびその値を半導体処理装置201に設定する。
設定エラー検出システム223は、装置基本設定コントローラ222での入力パラメータの設定の際に、実際に半導体処理装置201に入力パラメータが設定可能であるかを判定する。具体的には、たとえば、設定エラー検出システム223は、入力された入力パラメータが入力可能な範囲内であるか、また、半導体処理装置201の動作が可能となる入力パラメータの値の組み合わせであるかを判定する。設定不可能な入力パラメータの値またはその組み合わせが検出された場合には、設定エラー検出システム223は、設定エラーとして、エンジニアまたは、半導体処理装置201が接続される上位のシステムへ報告する。設定エラーが発生した際には、入力された入力パラメータの変更中止、または入力された入力パラメータの値を用いた処理を中止したことをログデータとして記録する。
モニタシステム203は、半導体処理装置201での処理中または処理された処理対象物(処理結果)を監視または計測してモニタデータを取得するシステムである。モニタシステム203は、光学式モニタ、電子顕微鏡を用いた加工寸法計測装置、赤外光を用いた温度計測装置、ケルビンプローブフォース顕微鏡を用いた欠陥検出装置、処理対象物の電気特性を評価するプローバ装置を含む。モニタシステム203は、たとえば、処理対象物へ光、レーザ光およびX線を入射させた際の反射、透過、吸収および偏光スペクトルを計測することで、処理対象物の加工形状、処理対象膜の厚さおよび加工欠陥をモニタデータとして取得する。モニタシステム203は、半導体処理装置201に直接接続されている必要はなく、処理対象をモニタシステム203へ運搬することで計測結果を取得し、その結果をデータベース205に保存してもよい。
モニタシステム203は、処理時において処理対象物へ作用するプラズマ、ガス、液体等の処理に使用される媒体、および処理によって発生する生成物を監視する。これらの媒体および生成物は、処理対象物と直接作用したり、その作用の結果発生する物である。モニタシステム203は、光スペクトル計測を用いたプラズマ発光モニタ、赤外分光計測を用いた処理室内の堆積物モニタ、質量分析器を用いた処理対象から放出された原子および分子モニタ、探針を用いた処理室内の電気特性モニタを含む。これらのモニタによる監視は、処理結果を間接的に評価できるモニタデータをリアルタイムかつ処理中においてその場で計測することができる。
センサシステム204は、半導体処理装置201の装置状態を示すセンサデータを取得するシステムである。センサシステム204は、センサの集合体である。センサデータは、電圧、電流、パワー等の電源出力値、整合器内のコンデンサやコイル等の可変電気素子の値、各種使用ガスの流量、装置躯体や装置構成部品の温度、処理室内の圧力、圧力制御弁の開度、バルブ開閉状態、ガス排気速度、処理および装置の動作タイミングおよび動作時刻を含む。
データベース205は、装置制御システム202によって設定される各種入力パラメータの値、半導体処理装置201からの処理結果である出力パラメータの値、モニタシステム203およびセンサシステム204が取得したモニタデータおよびセンサデータを保存する。また、データベース205は、学習データを保存する。学習データとは、過去に半導体処理装置201に与えられた入力パラメータの値(入力データ)と半導体処理装置201から出力された出力パラメータの値(出力データ)の組となる入出力データである。データベース205は、保存する各種データを異なる記憶デバイス302で保存する分散型データベース205でもよい。各システムで取り扱う情報をそれぞれのシステム内に保存する形の分散型のデータベースを構築しても良い。
自動制御システム206は、データベース205に保存されたデータを用いて、目標を満たす解を探索する。目標を満たす解は、半導体処理装置201の稼働に使用される入力パラメータの値、および、処理中の半導体処理装置201の動作に使用される入力パラメータの値のうち、少なくとも一方のパラメータの値である。自動制御システム206は、目標設定コントローラ261と、自律探索システム262と、不安定動作検出システム263と、を有する。
目標設定コントローラ261は、探索開始前の初期値として、目標とする入力パラメータの値、出力パラメータの値、探索結果と目標との差または乖離の許容値の入力を受け付ける。また、目標設定コントローラ261は、探索において1つの条件を実行する時間の上限、探索回数、探索1セットの合計時間の上限、探索全体の合計時間の上限、探索結果の解析時間の上限、解析データ数の上限の入力を受け付けることができる。また、目標設定コントローラ261は、各入力パラメータに対する探索可否の設定、探索する入力パラメータの制御範囲の上限値および下限値、探索する入力パラメータの制御範囲を限定するための値を設定することができる。更に、目標設定コントローラ261は、過去の結果を含む探索開始前の最良の解、その解を得るために用いた解析対象データ、その解析より得られた目標と入力パラメータの関係を説明するモデル関数の入力受け付けることができる。
自律探索システム262は、目標設定コントローラ261へ入力された内容を取得し、1つ以上のパラメータに対して、探索可能な入力パラメータの制御範囲を2つ以上の領域に分けた分割領域を設定する。前述の通り、探索および探索結果の解析を繰り返して目標の解へ到達するためには、探索1セットにかかる時間は長い場合でも数日以下、望ましくは1時間以下とする必要がある。すなわち、探索1セットの探索条件数Ns、探索1セットの探索時間をTs[min]、検索1条件に必要な時間t1[min]とすると、探索回数は式(1.1)となる。
Ts=t1・Ns・・・(1.1)
探索1セットを1日以内とする場合には、Ts≦1440、1時間以内とする場合には、Ts≦60となるように探索条件数Nsを決定すればよい。
探索条件数Nsを増やすためには、探索結果を評価するセンサおよびモニタの計測時間を短くすることが有効である。特に、探索実験中においてリアルタイムで計測が可能なセンサおよびモニタを使用することが有効である。
また、前述した通り、処理結果を間接的に評価できるデータとなる処理対象物へ作用する媒体および処理によって発生する生成物の特性を、センサおよびモニタによって計測することで、リアルタイムかつ処理中においてその場での計測ができる。
探索において変更する入力パラメータの種類が増加するに従い、探索時間Tsが急激に増大する。例えば、入力パラメータの種類の数DaをDa=10とし、各パラメータの領域分割数AをA=3とした場合、全てのパラメータの組合せを探索する場合の探索条件数Nsは式(1.2)となる。
Ns=ADa・・・・(1.2)
探索条件数Nsは59049まで増加する。このような場合、解が存在すると予測される各入力パラメータの値を予測し、当該予測値を中心条件として、探索時に同時に変更可能な入力パラメータの数を制限するのが好ましい。これにより、探索条件数Nsおよび探索時間Tsは実行可能な値になる。中心条件を予測する際には、過去の探索結果またはエンジニアの知識を利用することができる。または、探索の初期値として、適当な中心条件を与え、探索を開始することも可能である。
例えば、入力パラメータの10種のうち5種類について、解が存在すると推定される分割領域が指定された場合、他の5種類を変更することにより、次回の探索条件数Nsは、Ns=3=243にまで少なくできる。また、10種の入力パラメータのうち、一度に変更可能な入力パラメータの種類の数をDcとする。探索条件数Nsは組み合わせ論の記号Cを用いて式(1.3)より求められる。
Figure 0006608344
一度に変更可能な入力パラメータを限定することで、探索条件数Nsを小さくすることができる。例えば変更可能な入力パラメータの種類の数DcをDc=1とすると探索条件数NsはNs=21、同様にDcをDc=2とすると、NsはNs=201まで小さくできる。さらに、入力パラメータの種類のうち、いくつかの入力パラメータにおいて、解が存在すると推定される分割領域を指定する方法と、一度に変更可能なパラメータの種類を指定する方法とを組み合わせることもできる。
不安定動作検出システム263は、探索実行時において、半導体処理装置201が処理動作を継続可能ではあるが、処理が不安定になる場合を検出する。入力パラメータの入力を実行する前段階において、設定エラー検出システム223は入力パラメータが入力可能であるかを確認する。しかし、半導体処理装置201内の機器が制御対象とする媒体および部品は非線形性をもち、更にそれらを組み合わせることで処理を実行する。したがって、設定エラー検出システム223は設定エラー(入力パラメータの入力不可)を検出できずに、実際に処理を実行した際に初めて動作不安定となる入力パラメータが発見される可能性がある。
また、入力パラメータが多くなるほど、装置パラメータ空間は拡大するため、装置パラメータ空間において局所的な不安定動作領域が存在した場合に、事前に検出できない可能性が高くなる。
したがって、不安定動作検出システム263が半導体処理装置201の処理中に半導体処理装置201の不安定動作を検出した場合、半導体処理装置201は、不安定動作となった際の入力パラメータおよびその値を保存し、さらにエンジニアまたは、半導体処理装置201が接続される上位のシステムへ報告する。これにより、半導体処理装置201の不安定動作による処理および探索における動作不良を判断または予測することができる。
不安定動作が検出された場合には、処理完了後に半導体処理装置201を定常動作状態へ復旧するためのシーケンスを実施するか、処理を直ちに停止し、半導体処理装置201を定常動作状態へ復旧するためのシーケンスを実施することで、探索が継続される。
このような不安定動作としては、処理中における局所的な異常放電や放電強度の振動、急激な製膜速度変動や膜質変動、ガス圧力の振動、投入電力の瞬間的な増減や振動等がある。前述した発光スペクトルモニタ、堆積物モニタ、質量分析モニタ、電気特性モニタ、圧力モニタ等のリアルタイムかつ処理中においてその場での計測が可能なモニタが、不安定動作を検出する。
<探索装置のハードウェア構成例>
図3は、探索装置300のハードウェア構成例を示すブロック図である。探索装置300は、探索領域から解となる入力パラメータの値を探索する。自動制御システム206は、探索装置300の一例である。探索装置300は、プロセッサ301と、記憶デバイス302と、入力デバイス303と、出力デバイス304と、通信インターフェース(通信IF305)と、を有する。プロセッサ301、記憶デバイス302、入力デバイス303、出力デバイス304、および通信IF305は、バスにより接続される。プロセッサ301は、探索装置300を制御する。記憶デバイス302は、プロセッサ301の作業エリアとなる。また、記憶デバイス302は、各種プログラムやデータを記憶する非一時的なまたは一時的な記録媒体である。記憶デバイス302としては、たとえば、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)、フラッシュメモリがある。入力デバイス303は、データを入力する。入力デバイス303としては、たとえば、キーボード、マウス、タッチパネル、テンキー、スキャナがある。出力デバイス304は、データを出力する。出力デバイス304としては、たとえば、ディスプレイ、プリンタがある。通信IF305は、ネットワークと接続し、データを送受信する。
<探索装置300の機構的構成例>
図4は、探索装置300の機能的構成例を示すブロック図である。探索装置300は、入力部401と、生成部402と、特定部403と、判断部404と、設定部405と、出力部406と、決定部407と、分割部408と、検出部409と、を有する。各構成401〜409は、具体的には、たとえば、図3に示した記憶デバイス302に記憶されたプログラムをプロセッサ301に実行させることにより実現される機能である。
入力部401は、ユーザ操作またはデータベース205からの読み込みにより、各種データの入力を受け付ける。具体的には、たとえば、入力部401は、半導体デバイスを処理する半導体処理装置201に設定される条件値の入力を受け付ける。半導体処理装置201に設定される条件とは、上述した入力パラメータである。入力パラメータは、具体的には、たとえば、ガス種、ガス流量、圧力、投入電力、電圧、電流、処理時間、加熱温度、冷却温度、ドーズ量、光量を含む。
また、入力部401は、半導体処理装置201により半導体が処理された結果を示す目標値の入力を受け付ける。半導体処理装置201により半導体が処理された結果とは、上述した出力パラメータである。出力パラメータは、具体的には、たとえば、半導体処理装置201による半導体の処理結果と、半導体処理装置201の装置状態に関するデータと、を含む。半導体処理装置201による半導体の処理結果は、具体的には、たとえば、CD(Critical Dimension)、堆積膜厚、ER(Etch Rate)、加工形状、マスク選択比、更にこれらのウェハ面内分布および均一性を含む。半導体処理装置201の処理結果、および半導体処理装置201の装置状態に関するデータは、具体的には、たとえば、光反射スペクトル、プラズマ光スペクトル、ウェハ入射電流、ウェハ電圧、ウェハ温度、装置部品温度、更にこれらの空間分布および均一性を示すデータ(センサデータおよびモニタデータ)を含む。半導体処理装置201により半導体が処理された結果を示す目標値とは、ユーザが要求する半導体処理装置201の出力パラメータの値である。
また、入力部401は、条件(入力パラメータ)と結果(出力パラメータ)との範囲により規定される探索領域内における条件の基準値の入力を受け付ける。探索領域とは、入力パラメータの制御範囲と半導体処理装置201の出力パラメータの制御範囲とにより規定され、入力パラメータの値を探索する領域である。具体的には、たとえば、図1に示した探索領域Aである。条件の基準値とは、入力パラメータの基準値である。具体的には、たとえば、過去に得られた入力パラメータの値である。
また、入力部401は、探索領域内における結果の基準値の入力を受け付ける。結果の基準値とは、入力パラメータの基準値が半導体処理装置201に与えられた場合における半導体処理装置201の出力パラメータの値である。
生成部402は、探索領域内の条件の設定値と、当該設定値を半導体処理装置201に与えた場合の結果の実測値と、に基づいて、条件と結果との関係を示す予測モデルを生成する。条件の設定値とは、たとえば、学習データとして用意された入力パラメータの値である。結果の実測値とは、学習データとして用意された入力パラメータの値(条件の設定値)が半導体処理装置201に与えられた場合における半導体処理装置201の出力パラメータの値である。予測モデルとは、入力パラメータと出力パラメータとの関係を示す関数である。生成部402は、ニューラルネットワーク、サポートベクターマシン等の多入力多出力に応対可能な回帰分析や、相関分析、主成分分析、重回帰分析などの統計分析により、探索領域内の条件の設定値と出力の実測値との関係を示す予測モデルを生成する。
特定部403は、生成部402によって生成された予測モデルに、入力部401によって入力された目標値を与えることにより、目標値に対応する予測値を予測モデルから取得し、予測値の存在領域を探索領域から特定する。また、予測値の存在領域の出力パラメータが未取得の場合には生成部402は、分割領域内における条件の設定値を半導体処理装置201に与えた場合の出力の実測値を、分割領域ごとに取得する。
目標値が半導体処理装置201の出力パラメータの値である場合、特定部403は、予測モデルに当該出力パラメータの値を与えることにより、目標値に対応する予測値として入力パラメータの値を予測モデルから取得する。そして、特定部403は、予測値である入力パラメータの値の存在領域を探索領域から特定する。具体的には、たとえば、図1において、目標値が出力パラメータの値y12である場合、当該目標値y12に対応する予測値は、図1の目標値y12の等高線により特定される入力パラメータX1、X2の値である。したがって、特定部403は、探索領域Aから目標値y12の等高線により特定される入力パラメータX1、X2の値の存在領域A1,A2,A3,A8,A9を特定する。
判断部404は、予測値に対応する目標値が、入力部401によって入力された結果の基準値よりも目標値に近いか否かを判断する。具体的には、たとえば、判断部404は、探索領域Aにおいて、予測値に対応する目標値と目標値との間の距離(第1距離)と、結果の基準値と目標値との間の距離(第2距離)とを求める。距離は、たとえば、ユークリッド距離である。判断部404は、第1距離が第2距離よりも短い場合、予測値に対応する目標値が結果の基準値よりも目標値に近いと判断する。判断部404は、第1距離が第2距離よりも短くない場合、予測値に対応する目標値が結果の基準値よりも目標値に近くないと判断する。
設定部405は、判断部404によって予測値に対応する目標値の方が、結果の基準値よりも目標値に近いと判断された場合、予測値および予測値に対応する目標値を条件の基準値および結果の基準値に設定し、特定部403によって特定された予測値の存在領域を探索領域に設定する。これにより、基準値が目標値に接近し、探索領域も予測値の存在領域に絞り込まれる。
出力部406は、予測値が目標値の達成条件を充足した場合に達成条件を充足した予測値を出力する。達成条件とは、たとえば、目標値の許容範囲である。出力部406は、達成条件を充足した予測値を出力デバイス304の一例であるディスプレイに表示してもよく、通信IF305を介して外部装置に送信してもよく、記憶デバイス302やデータベース205に保存してもよい。
決定部407は、判断部404によって予測値に対応する目標値の方が、結果の基準値よりも目標値に近くないと判断された場合、予測値および予測値に対応する目標値を除外データに決定する(図6のステップS601で後述)。除外データとは、予測モデルに与えてはいけない入力パラメータの値である。
またこの場合、設定部405は、決定部407によって決定された除外データを除いたデータを学習データに設定する。これにより、生成部402は、除外データが存在しない学習データを用いることができる。したがって、解である入力パラメータの値の探索速度の向上を図ることができる。
また、決定部407は、判断部404によって予測値に対応する目標値の方が結果の基準値よりも目標値に近くないと判断された場合、予測値の存在領域を除外領域に決定してもよい(図6のステップS602で後述)。除外領域とは、予測モデルが出力してはいけない入力パラメータの値の領域である。
またこの場合、設定部405は、探索領域から決定部407によって決定された除外領域を除いた残存領域を探索領域に設定する。これにより、目標値に近くない結果しか得られない予測値の範囲を除外して探索領域を絞り込むことができる。したがって、解である入力パラメータの値の探索速度の向上を図ることができる。
分割部408は、探索領域を複数の領域に分割する。具体的には、たとえば、分割部408は、図1に示したように、探索領域Aを9個の領域(分割領域)A1〜A9に分割する。この場合、生成部402は、分割領域内における条件の設定値を半導体処理装置201に与えた場合の出力の実測値を、分割領域ごとに取得する。そして、生成部402は、各分割領域での条件の設定値と出力の実測値とに基づいて、予測モデルを生成する。複数の半導体処理装置201を用いることで、実測値を分割領域ごとに並列に取得することができ、予測モデルの生成速度の向上を図ることができる。
また、設定部405は、判断部404によって、予測値に対応する目標値の方が結果の基準値よりも目標値に近くないと判断された場合、予測値および予測値に対応する目標値を、条件の基準値および結果の基準値に設定せずに、予測値の存在領域を探索領域に設定してもよい(図6のステップS604〜S606で後述)。これにより、探索領域を更に細分化することで、より詳細な解の探索を実行し、解の見逃しがないか確認することができる。
また、決定部407は、上述したように、判断部404によって予測値に対応する目標値の方が結果の基準値よりも前記目標値に近くないと判断された場合、予測値および予測値に対応する目標値を除外データに決定してもよい。この場合、生成部402は、実測値から除外データを除いた残余の実測値と、設定値から残余の実測値に対応する設定値を除いた残余の設定値と、に基づいて、予測モデルを生成してもよい(図7で後述)。これにより、解である入力パラメータの値の探索速度の向上を図ることができる。
また、決定部407は、上述したように、判断部404によって予測値に対応する目標値の方が結果の基準値よりも目標値に近くないと判断された場合、予測値の存在領域を除外領域に決定してもよい。この場合、生成部402は、探索領域から除外領域を除いた残余の探索領域内の条件の設定値と、当該設定値を半導体処理装置201に与えた場合の出力の実測値と、に基づいて、予測モデルを生成してもよい(図8で後述)。これにより、解である入力パラメータの値の探索速度の向上を図ることができる。
検出部409は、半導体処理装置201の出力と、所定の出力しきい値と、に基づいて、半導体処理装置201の不安定動作を検出する。検出部409は、不安定動作検出システム263に相当する。この場合、出力部406は、検出部409による検出結果を出力する。
<半導体処理装置201の制御処理手順例>
図5は、半導体処理装置201の制御処理手順例を示すフローチャート1である。探索装置300は、目標とする半導体処理装置201からの出力値(出力パラメータの目標値)、および探索設定の入力を受け付ける(ステップS501)。探索設定とは、たとえば、探索結果と目標値との差または乖離の許容値、探索において1つの条件を実行する時間の上限、探索回数、探索1セットの合計時間の上限、探索全体の合計時間の上限、探索結果の解析時間の上限、解析データ数の上限、半導体処理装置201からの出力データの取得頻度のしきい値、半導体処理装置201からの出力データ(出力パラメータの値)の取得時間の上限、半導体処理装置201からの出力データ数の下限である。
つぎに、探索装置300は、ベースとなる解の入力およびその解に関する情報の入力を受け付ける(ステップS502)。具体的には、たとえば、探索装置300は、過去に実用いた入力パラメータおよびその入力パラメータを用いた際の出力パラメータ、探索開始前の最良の解(入力パラメータの値)および最良の解を用いた際の出力パラメータ、探索開始前の出力パラメータの目標値、入力パラメータと出力パラメータとの関係を説明するモデル関数の入力を受け付ける。
つぎに、探索装置300は、ステップS502で入力された最良の解を最良解OS1として保存する(ステップS503)。解が無い場合には、解から最も遠いことを示す記号または値が設定される。
つぎに、探索装置300は、基本探索領域を探索領域として設定する(ステップS504)。具体的には、たとえば、探索装置300は、各入力パラメータに対する探索可否の設定、探索する入力パラメータの制御範囲の上限値および下限値、探索する入力パラメータの制御範囲を限定するための値(たとえば、上限値や下限値)を設定する。また、探索装置300は、設定エラー検出システム223によって設定エラーとして判断する入力パラメータの制御範囲を参照して、探索領域を決定する。さらに、探索装置300は、不安定動作検出システム263によって検出されたパラメータを参照して、探索領域を決定する。また、不安定動作検出システム263は過去に、半導体処理装置201の動作が不能または不安定となった入力パラメータの組合せまたは各入力パラメータ範囲の値を保持しており、これを用いて探索装置300は探索領域を決定できる。
たとえば、図1において、入力パラメータの種類としてX1、X2の2つの入力パラメータが選択された場合、入力パラメータX1の制御範囲を[x11,x1n]、入力パラメータX2の制御範囲を[x21,x2n]とすれば、図1に示した全範囲の領域Aが探索領域となる。
ステップS501〜S504の目標設定コントローラ261の入力および設定内容は、自律探索システム262へ渡され、次に説明するステップS505〜S510の手順によって自動探索が実行される。
探索装置300は、探索領域を分割する(ステップS505)。具体的には、たとえば、探索装置300は、1つ以上の入力パラメータに対して、探索可能な入力パラメータの制御範囲を2つ以上の領域に分割する。分割された領域を分割領域と称す。探索条件数が多くなり、所望の時間内に探索が完了できないと予測される場合には、入力パラメータの種類のうちいくつかの入力パラメータにおいて解が存在すると推定される分割領域を指定する方法、および一度に変更可能な入力パラメータの種類を指定する方法を用いることで、探索領域を限定したり、探索条件数を少なくしたりすることができる。またこれら2つの方法を組み合わせることで、探索領域を限定したり、探索条件数を少なくしたりすることができる。
たとえば、図1において、入力パラメータの種類としてX1、X2の2つの入力パラメータが選択された場合、入力パラメータX1の制御範囲[x11,x1n]がx1a,x1b,x1cに分割され、入力パラメータX2の制御範囲[x21,x2n]x2a,x2b,x2cに分割されたとすれば、図1に示した9つの分割領域A1〜A9が得られる。
探索装置300は、分割領域ごとに自律探索を実行する(ステップS506)。具体的には、たとえば、探索装置300は、分割領域および探索条件を用いた自律探索により、各探索条件における半導体処理装置201の入出力データを探索結果として取得する。入出力データとは、半導体処理装置201に与えられる入力パラメータの値(入力データ)と半導体処理装置201から得られる出力パラメータの値(出力データ)の組である。
具体的には、たとえば、探索装置300は、分割領域ごとに、探索条件を満たす入力パラメータの値を選択し、選択した入力パラメータの値を半導体処理装置201に与える。そして、探索装置300は、半導体処理装置201からの出力データ(出力パラメータの値)を取得する。この入力パラメータの値と、当該値に対応する出力パラメータの値と、の組み合わせが、探索結果である。
またこの場合、不安定動作検出システム263は、自律探索実行時において、半導体処理装置201が処理動作を継続可能ではあるが、半導体処理装置201の処理が不安定になる場合を検出する。不安定動作が検出された場合には、処理完了後に半導体処理装置201を定常動作状態へ復旧するためのシーケンスを実施するか、処理を直ちに停止し半導体処理装置201を定常動作状態へ復旧するためのシーケンスを実行することで、目標設定コントローラ261による自律探索を継続する。
探索装置300は、分割領域ごとの探索結果をデータベース205に保存する(ステップS507)。具体的には、たとえば、探索装置300は、分割領域ごとに、自律探索(ステップS506)で用いられた入力パラメータの値と、当該入力パラメータの値を用いて取得された半導体処理装置201の出力パラメータの値と、の組である入出力データを、分割領域ごとの探索結果としてデータベース205に保存する。
探索装置300は、目標(目標出力)を満たす解(入力パラメータ)を予測するための予測モデルを生成する(ステップS508)。具体的には、たとえば、探索装置300は、ステップS507でデータベース205に保存された学習データを用いて、半導体処理装置201の入出力データの関係を示す関数を予測モデルとして生成する。入出力データの関係を解析する方法としては、ニューラルネットワーク、サポートベクター回帰、カーネル法を用いた回帰等の多入力多出力に応対可能な回帰分析を使用できる。また、相関分析、主成分分析、重回帰分析等の統計解析が使用できる。
予測モデルの生成において、出力データとして、たとえば、半導体処理装置201の処理結果に対する間接的な計測値を取得するセンサデータおよびモニタデータが用いられる。出力データの取得頻度が探索設定で規定した頻度よりも低い、または、探索設定で規定した取得時間よりも長く、探索によって取得できる出力データ数が、探索設定で規定した出力データ数よりも少なくなる場合がある。この場合には、出力データの取得数と比較して多くのデータ数が取得可能なセンサデータおよびモニタデータを取得すればよい。これにより、出力データに対するセンサデータおよびモニタデータの関係や、センサデータおよびモニタデータに対する入力データの関係を解析することができる。また、これらの両方の解析結果を用いることで、出力データに対する入力データの関係を求めることができる。
探索装置300は、解が存在する分割領域を推定する(ステップS509)。解が存在すると推定した領域内の出力データが取得済みである場合(ステップS5090A:Yes)、探索装置300は、推定した分割領域中から最良解OS2を特定し、特定した最良解OS2をデータベース205に保存する(ステップS510)。また、解が存在すると推定した領域内の出力データが未取得である場合(ステップS5090A:No)、探索装置300は、推定した領域内の自律探索を実行し(ステップ5060A)、解が存在すると推定した領域内の出力データ、すなわち探索結果を取得し、データベース205に保存する(ステップ5070A)。これらの自律探索および結果の保存はステップ506およびステップ507と同様の処理である。ステップS509の処理は、2通りの方法がある。1つは、予測モデルに、ステップS501で与えられた出力パラメータの目標値を与える方法(第1の推定方法)である。
第1の推定方法では、具体的には、たとえば、探索装置300は、ステップS508で得られた予測モデルに、ステップS501で与えられた出力パラメータの目標値を代入することで、出力パラメータの目標値を満たす解となる入力データ(入力パラメータの値)を推定する。そして、探索装置300は、解となる入力データが存在する分割領域を特定する。たとえば、予測モデルが図1の入出力関係を示す関数である場合、出力パラメータの目標値としてy6が与えられると、分割領域A1〜A9のうち、解が存在する分割領域として、A1、A4、A7の3つの分割領域が推定される。A1、A4、A7の各分割領域において出力データが未取得の場合には、前述した通りステップ5060Aおよびステップ5070Aが実行される。
ステップS510において、探索装置300は、取得済みの出力データより目標値y6と等しい出力データが存在する分割領域、出力データと目標値の差または乖離が許容値(S501で与えられた許容値)より小さい出力データが存在する分割領域、または目標値y6に最も近い出力データが存在する分割領域を特定し、この分割領域を最良解OS2が存在する領域(以下、特定の分割領域)に決定する。特定の分割領域となりうる分割領域が複数特定された場合には、探索装置300は、それら全てを最良解OS2が存在する分割領域に決定する。または、探索装置300は、それら複数の分割領域のうち、出力データと目標値の差または乖離が許容値(S501で与えられた許容値)より小さい出力データ取得できた数が最も多い分割領域を、最良解OS2が存在する分割領域に決定する。上記の例の場合、取得した出力データが、予測モデルが示した図1と同様だったと場合には、y6と等しいまたはy6に近い値が得られた分割領域A1、A4、A7全て、または分割領域A4が特定の分割領域に決定される。探索装置300は、特定の分割領域において出力パラメータの目標値と等しい、出力データと目標値の差または乖離が許容値(S501で与えられた許容値)より小さい、または目標値に最も近い出力データが得られた際の入力パラメータの値を最良解OS2に決定する。
もう1つのステップS509の処理は、予測モデルにステップS501で与えられた出力パラメータの目標値を代入することでは、出力パラメータの目標値を満たす解となる入力パラメータを直接求められない場合に適用できる方法である(第2の推定方法)。第2の推定方法は、予測モデルに一度に与える入力パラメータを一組として、予測モデルに、多数の入力パラメータの組を与え、推定出力パラメータを計算し、最も目標出力に近い結果が得られる入力パラメータの組を取得する方法である。例えば、探索装置300は、各分割領域に含まれるに入力パラメータの組を、分割領域毎に1つ以上作成し、これを予測モデルに与え、その際の出力パラメータを計算することができる。分割領域毎の代表的な推定出力を得る方法としては、分割領域に含まれる入力パラメータの組として、分割領域内の中心座標となる値を用いることができる。
極めて多数の入力パラメータの組を予測モデルに与え推定出力を計算する場合において、計算時間が膨大になる場合には、上記式(1.1)〜式(1.3)を用いて述べた通り、探索装置300は、予測モデルに与える入力パラメータの中心条件を決定し、その中心条件から変更可能な入力パラメータの種類を制限することで、計算時間を抑制することができる。また、中心条件から一度に変更可能なパラメータの数を制限することで、計算時間を抑制することができる。これにより、探索装置300は、予測モデルに与える入力パラメータの組の数を削減しながら、目標出力により近い結果が得られる入力パラメータを得ることができる。中心条件を設定する際には、過去の探索結果またはエンジニアの知識を利用することができる。または、全探索領域の中心座標を中心条件とすることができる。
第2の推定方法では、具体的には、探索装置300は、ステップS508で得られた予測モデルに、入力パラメータの組の値を代入することで、予測値となる出力パラメータの値を取得する。たとえば、予測モデルが図1の入出力関係を示す関数である場合、予測モデルへ入力パラメータの値として、(x11,x21),(x11,x22),(x11,x23),(x12,x21),(x12,x22),(x12,x23),(x13,x21),(x13,x22),(x13,x23),(x1n,x21),(x1n,x22),(x1n,x23)が与えられると、各入力パラメータに対応する推定出力パラメータを得ることができる。
これらの各入力パラメータに対応する出力パラメータが未取得である場合(ステップS5090A:Yes)には、探索装置300は、各入力パラメータを用いて自律探索を実行し(ステップ5060A)、解が存在すると推定した領域内の出力データ、すなわち探索結果を取得しデータベース205に保存する(ステップ5070A)。これらの自律探索および結果の保存はステップ506およびステップ507と同様の処理である。また、各入力パラメータに対応する出力パラメータが取得済みである場合(ステップS5090A:No)、ステップS510に移行する。
そして、ステップS510において、探索装置300は、たとえば、分割領域において、出力パラメータの目標値から最も近い予測値となる出力パラメータの値が得られた入力パラメータの値を最良解OS2に決定する。たとえば、取得した出力データが、予測モデルが示した図1同様だったと場合には、出力パラメータの目標値がy10であった場合、入力パラメータの値(x13,x23)に応じた出力パラメータの値y10が最も近い値となる。したがって、最良解OS2は、(x13,x23)となる。なお、第1の推定方法および第2の推定方法のうち、いずれを適用するかはあらかじめ設定される。
探索装置300は、最良解OS2の値は最良解OS1の値より目標に近い出力パラメータが得られる解であるか否かを判断する(ステップS511)。そして、最良解OS2の値は最良解OS1の値より目標に近い出力パラメータが得られる解である場合(ステップS511:Yes)、ステップS512に移行し、そうでない場合(ステップS511:No)、ステップS601(図6)に移行する。
ステップS511:Yesの場合、探索装置300は、最良解OS2を最良解OS1に設定することで、最良解OS1を更新する(ステップS512)。また、探索装置300は、更新後の最良解OS1の分割領域を探索領域に設定することで、探索領域を更新する(ステップS514)。
このあと、探索装置300は、目標が達成されたか否かを判断する(ステップS514)。目標が達成された場合(ステップS514:Yes)、探索装置300は、制御処理を終了する。一方、目標が達成されていない場合(ステップS514:No)、ステップS505またはステップS601(図6)に移行する。ステップS505またはステップS601(図6)のいずれに移行するかは、あらかじめ設定されていてもよく、その都度、ユーザに選択させてもよい。なお、目標未達成(ステップS514:No)で、かつ、ステップS505に移行する場合、探索装置300は、ステップS513の更新後の探索領域を分割することになる(ステップS505)。
ステップS514では、具体的には、たとえば、更新後の最良解OS1に対応する出力パラメータが目標値と等しいまたは目標値との差が許容範囲内である場合、探索装置300は、目標達成と判断する(ステップS514:Yes)。また、更新後の最良解OS1に対応する出力パラメータが目標値と等しいまたは目標値との差が許容範囲内でなくても、ステップS501で設定した探索時間が経過した場合、目標を達成したと判断する(ステップS514:Yes)。一方、更新後の最良解OS1に対応する出力パラメータが目標値と等しいまたは目標値との差が許容範囲内でなく、かつ、ステップS501で設定した探索時間が経過していない場合、目標未達成と判断する(ステップS514:No)。
図6は、半導体処理装置201の制御処理手順例を示すフローチャート2である。探索装置300は、ステップS509で得られた分割領域内の探索データを除外データに決定する(ステップS601)。具体的には、たとえば、探索装置300は、推定領域内の入力データ(入力パラメータの値)をおよび出力データ(出力パラメータ)を除外データに決定する。除外データは、今後の処理で除外される可能性のあるデータである(実際の解析対象となるデータからの除外は図7のS703、または図6〜図8のS608で実施)。同様に、探索装置300は、ステップS510で得られた分割領域を除外領域に決定する(ステップS602)。除外領域は、今後の処理で除外される可能性のある領域である(実際の解析対象となるデータからの除外は図8のS803、または図6〜図8のS608で実施)。
このあと、探索装置300は、ステップS509で得られた分割領域を分割するか否かを判断する(ステップS603)。分割する場合(ステップS603:Yes)、ステップS604に移行し、分割しない場合(ステップS603:No)、ステップS608に移行する。
ステップS603では、具体的には、たとえば、探索装置300は、ユーザからの分割指示入力の有無により、分割領域を分割するか否かを判断する。また、探索装置300は、強制的に分割領域を分割してもよい(ステップS603:Yes)。
このあと、探索装置300は、ステップS508と同様、予測モデルを生成する(ステップS604)。つぎに、探索装置300は、ステップS509と同様、ステップS603で分割された分割領域群のうち、解が存在する分割領域を推定する(ステップS605)。推定された分割領域を、推定分割領域と称す。そして、探索装置300は、ステップS6090A、S6060A、S6070Aにおいて、ステップS5090A、S5060A、S5070Aと同様の処理を実行する。具体的には、たとえば、解が存在すると推定した領域内の出力データが取得済みである場合(ステップS6090:Yes)には、探索装置300は、推定した分割領域中から最良解OS3を特定し、特定した最良解OS3をデータベース205に保存する(ステップS606)。また同様に、解が存在すると推定した領域内の出力データが未取得である場合(ステップS6090:No)には、探索装置300は、推定した領域内の自律探索を実行し(ステップS6060A)、解が存在すると推定した領域内の出力データ、すなわち探索結果を取得し、データベース205に保存する(ステップS6070A)。
このあと、ステップS511と同様、探索装置300は、最良解OS3に対応する出力パラメータの値は最良解OS1に対応する出力パラメータの値より目標に近い解であるか否かを判断する(ステップS607)。そして、最良解OS3に対応する出力パラメータの値は最良解OS1に対応する出力パラメータの値より目標に近い解である場合(ステップS607:Yes)、ステップS512に移行し、そうでない場合(ステップS607:No)、ステップS608に移行する。ステップS608において、探索装置300は、探索領域から除外領域を除外するか、除外領域の除外および除外データを除外することにより、探索領域を更新して(ステップS608)、ステップS505に移行する。
図7は、半導体処理装置201の制御処理手順例を示すフローチャート3である。フローチャート3は、図6に示したフローチャート2の他の処理例である。なお、図6と同一処理については、同一ステップ番号を付し説明を省略する。探索装置300は、ステップS601のあと、探索装置300は、ステップS601で決定された除外データを除外するか否かを判断する(ステップS703)。除外して解析する場合(ステップS703:Yes)、ステップS604に移行し、除外しないで解析する場合(ステップS703:No)、ステップS608に移行する。
ステップS703では、具体的には、たとえば、探索装置300は、ユーザからの除外指示入力の有無により、除外データを除外して解析するか否かを判断する。また、探索装置300は、強制的に除外データを除外して解析してもよい(ステップS703:Yes)。
このあと、探索装置300は、除外データを使用せずに、分割領域の予測モデルを生成し(ステップS604)、ステップS605、S6090A、S6060A、S6070A、S606、S607、S608を実行する。
図8は、半導体処理装置201の制御処理手順例を示すフローチャート4である。フローチャート4は、図6に示したフローチャート2の他の処理例である。なお、図6と同一処理については、同一ステップ番号を付し説明を省略する。探索装置300は、ステップS602のあと、探索装置300は、ステップS602で決定された除外領域を除外して解析するか否かを判断する(ステップS803)。除外して解析する場合(ステップS803:Yes)、ステップS604に移行し、除外しないで解析する場合(ステップS803:No)、ステップS608に移行する。
ステップS803では、具体的には、たとえば、探索装置300は、ユーザからの除外指示入力の有無により、除外領域内の解(入力パラメータの値)を除外して解析するか否かを判断する。また、探索装置300は、強制的に除外領域を除外して解析してもよい(ステップS803:Yes)。
このあと、探索装置300は、ステップS604と同様、分割領域の予測モデルを生成する(ステップS604)。つぎに、探索装置300は、除外領域内の解(入力パラメータの値)を使用せずに、ステップS603で分割された分割領域群のうち、解が存在する分割領域を推定する(ステップS605)。推定された分割領域を、推定分割領域と称す。そして、探索装置300は、ステップS6090A、S6060A、S6070A、S606、S607、S608を実行する。
なお、本制御処理において、データの解析、保存、転送等の規模が大きくなり、その実行時間が1条件を探索する時間より長くなる場合には、それらの実行と並列して探索を継続することが可能である。その際には、探索条件において変更する入力パラメータ数、同時に変更する入力パラメータ数、探索領域の分割数のうち1つ以上を増加させる。これにより、探索条件数を増加させ、この条件を探索することで、解析等を実行する時間を利用して探索結果を増加させることができる。特に、データの解析に必要な時間は数分から数時間以上になる場合があり、その解析中に探索を継続することで、探索速度を向上させることができる。
<半導体処理装置201の制御処理の適用例1>
つぎに、半導体デバイスの量産前における半導体処理装置201のメンテナンスにおいて、半導体処理装置201の装置差を補正するための制御処理の適用例を示す。ここでは機差抑制の手順を説明する例として、半導体処理装置201を、放電処理を行うエッチング装置とした。また、ここでは放電処理を実行する際の入力パラメータをレシピと称する。放電処理を行うエッチング装置では、補正対象となる出力として、処理結果または処理に用いる放電の特性が挙げられる。補正の方法としては、基準となるエッチング装置と同一の出力が得られるように他のエッチング装置を補正する方法、または複数のエッチング装置の出力が均一となるように補正する方法がある。
図9は、機差抑制方法を示すフローチャートである。図9は、具体的には、たとえば、半導体デバイスの量産前における半導体処理装置201のメンテナンス処理手順例を示す装置差の補正を行うために、探索装置300は、メンテナンス後放電データ取得を開始する。
まず、探索装置300は、基本的な放電処理を行うためのレシピを用いて基準レシピ放電を行い、その際の入出力データを取得する。また、量産で用いられるレシピによる放電を行い、その際の出力データ(出力パラメータの値)を取得する(ステップS901)。ステップS901は、ステップS501〜S504に対応する処理である。
つぎに、探索装置300は、装置差補正レシピを探索する(ステップS902)。ステップS902は、ステップS505〜S507に対応する処理である。そして、探索装置300は、ステップS902の探索した装置差補正レシピを用いた装置差補正を実行する(ステップS903)。ステップS903は、ステップS508〜S513、図6〜図8の処理に対応する処理である。補正目標を達成していない場合(ステップS904:No)、ステップS902に戻り、補正目標を達成した場合(ステップS904:Yes)、処理を終了する。ステップS904は、ステップS514に対応する処理である。
なお、同一のエッチング装置を複数用いて探索を並列に進めることで探索速度を向上させてもよい。その際には、図9の手順によって装置差が補正された複数のエッチング装置を使用することで、目標を満たす解が探索できる可能性を高めることができる。更に、探索された解をそれらの複数の装置に展開し補正を行うことが可能となる。
このように、半導体処理装置201のメンテナンス後に探索装置300による探索方法を実行することにより、半導体処理装置201の出力パラメータの値を基準となる出力パラメータの値へ近付けることができる(自動機差補正機能)。
<半導体処理装置201の制御処理の適用例2>
つぎに、半導体デバイスの量産処理において、経時変化を補正するための制御処理の適用例を示す。
図10は、経時変化補正方法を示すフローチャートである。図10では、図9と同様に、経時変化を補正する手順を説明する例として、半導体処理装置201を、処理に放電を使用するエッチング装置とした。量産前放電データ取得では、量産中の経時変化の補正を行うために、探索装置300は、まず基本的な放電処理を行うための基準レシピをエッチング装置に与えて基準レシピ放電を行い、その際の出力データ(出力パラメータの値)を取得する(ステップS1011)。ステップS1011は、ステップS501〜S504に対応する処理である。
つぎに、探索装置300は、装置差補正候補レシピを探索する(ステップS1012)。ステップS1012では、過去の量産時の入出力データの解析結果より、補正対象の経時変化を予測できる出力データまたはセンサデータおよびモニタデータが用いられる。そして、探索装置300は、量産開始前のエッチング装置において、これらの経時変化を予想できるデータを経時変化後の値にまで変動させるための装置差補正候補レシピの探索を実行する。ステップS1012は、ステップS505〜S507に対応する処理である。
つぎに、探索装置300は、装置差補正を実行する(ステップS1013)。ステップS1013では、探索装置300は、経時変化が発生していない状態にて用いる基本の量産用レシピとステップS1012で探索された装置差補正候補レシピとを比較して、装置差補正候補レシピで変更された入力パラメータを明らかにする。これにより、量産前の段階で、補正対象の入力パラメータと出力パラメータとの関係を説明する関数を生成することが可能となり、またその関係より補正候補となるレシピを生成することができる。ステップS1013は、ステップS508〜S513、図6〜図8の処理に対応する処理である。このあと、量産処理が開始される。
ステップS1013のあと、半導体デバイスの量産処理が開始されると、ウェハが処理室に導入され(ステップS1021)、エッチング装置が、ウェハをエッチングする(ステップS1022)。エッチング(ステップS1022)は、1ステップまたは複数ステップから構成される。エッチング(ステップS1022)が複数ステップの場合、各ステップのエッチングは、放電条件を変更して実行される。エッチング(ステップS1022)の完了後に、ウェハは、処理室外へ搬出される(ステップS1023)。そして、エッチング中に発生し処理室表面に堆積した反応性生物を除去するため、プラズマクリーニングが実施される(ステップS1024)。次のウェハがあれば(ステップS1025:Yes)、ステップS1021に戻り、次のウェハがなければ(ステップS1025:No)、量産後放電データ取得に移行する。
量産中のエッチング装置の入出力データは、データベース205に保存され、探索装置300は、並列して入出力データをリアルタイムで解析し続ける。これにより、補正対象の経時変化を予測できる出力データまたはセンサデータおよびモニタデータの推定を量産中に継続することが可能である。また、探索装置300は、同一の量産処理を実行する複数のエッチング装置の入出力データを集約することで、データ数を増加させることができる。
量産後または量産開始から指定した時間が経過した際に放電データを取得した場合、探索装置300は、経時変化を補正するレシピの探索を実行する(ステップS1031)。具体的には、たとえば、探索装置300は、ステップS1011、S1012で取得したデータ、解析された入出力データの関係、および補正候補レシピをステップS502の入力として使用し、経時変化補正レシピを探索する。ステップS1031は、ステップS505〜S507に対応する処理である。
そして、探索装置300は、探索結果である経時変化補正レシピを用いて、補正結果の検証を行う(ステップS1032)。ステップS1032は、ステップS508〜S513、図6〜図8の処理に対応する処理である。
また、ステップS1031、S1032の実行前に、探索装置300は、半導体デバイスの量産中に取得した出力データを解析し、補正対象の経時変化を予測できる出力データまたはセンサデータおよびモニタデータを推定し、ステップS1012を実行してもよい。これにより、補正対象の入力パラメータと出力パラメータとの関係を説明する関数を生成し、またその関係より補正候補となるレシピを生成することができる。これらの結果を、ステップS502で用いることで、探索装置300は、ステップS1031、S1032を実行することができる。
さらに、上記探索におけるステップS502の入力としては、エンジニアの知識を用いて、補正に頻繁に用いられる入力パラメータを変更したレシピ、およびそのレシピを用いて放電した際の入出力データとその解析結果を用いてもよい。
そして、補正目標を達成していない場合(ステップS1033:No)、ステップS1031に戻り、補正目標を達成した場合(ステップS1033:Yes)、処理を終了する。ステップS1033は、ステップS514に対応する処理である。図10に示した探索を実行する際には、同一の量産処理を実施した量産後のエッチング装置を複数用いて探索を並列に進めることで探索速度を向上させることができる。更に、探索された解(入力パラメータ)は、同一の量産処理を実行する複数のエッチング装置に展開し補正を実行することが可能である。
このように、半導体の量産後において探索装置300による探索方法を実行することにより、量産中の半導体処理装置201の出力パラメータの値の経時変化を補正することができる(自動経時変化補正機能)。
このように、探索装置300は、半導体処理装置201の入力パラメータの値および出力パラメータの値を自動解析し、その解析結果を考慮した上で、入力パラメータの値を探索するための実験条件を自動で決定する。そして、探索装置300は、当該実験結果の検証を自動で行い、これらの自動動作を繰り返すことで、目標とする装置状態および処理結果(出力パラメータの値)が得られる入力パラメータの値を自動的に探索することができる。これにより、半導体処理装置201自らが自動的に装置性能を引き出すことができ、加えて装置性能を引き出すための制御モデル開発や装置パラメータ(入力パラメータと出力パラメータとの組み合わせ)の選定を行うエンジニアを支援することができる。
以上説明したように、本実施例にかかる探索装置300は、半導体を処理する半導体処理装置201に設定される条件または半導体処理装置201により半導体が処理された結果を示す目標値と、条件と結果との範囲により規定される探索領域内における条件または結果のうち目標値が示す方の基準値と、の入力を受け付ける入力部401と、探索領域内の条件の設定値と、当該設定値を半導体処理装置201に与えた場合の結果の実測値と、に基づいて、条件と結果との関係を示す予測モデルを生成する生成部402と、生成部402によって生成された予測モデルに、入力部401によって入力された目標値を与えることにより、予測モデルから予測値を取得し、予測値の存在領域を探索領域から特定する特定部403と、予測値に対応する前記結果の実測値が入力部401によって入力された基準値よりも目標値に近いか否かを判断する判断部404と、判断部404によって予測値に対応する前記結果の実測値の方が目標値に近いと判断された場合、予測値を基準値に設定し、特定部によって特定された予測値の存在領域を探索領域に設定する設定部405と、予測値に対応する前記結果の実測値が目標値の達成条件を充足した場合に達成条件を充足した予測値を出力する出力部406と、を有する。
これにより、半導体処理装置201の入出力に関する最良解への到達精度の向上を図ることができる。したがって、半導体処理装置201における運用の効率化および処理の最適化を図ることができる。
また、探索装置300は、判断部404によって予測モデルから得られた予測値に対応する前記結果の実測値の方が目標値に近くないと判断された場合、決定部407により予測値の存在領域内の予測値および予測値に対応する前記結果の実測値を除外データに決定し、設定部405により探索領域から除外データと当該除外データが得られた場合に半導体処理装置201に与えられた目標値とにより特定される除外領域を除いた残存領域を探索領域に設定する。これにより、目標値に近くない予測値と目標値との組み合わせが存在する除外領域を最新の探索領域から除外することができ、最良解への到達精度の向上を図ることができる。
また、探索装置300は、分割部408により探索領域を複数の領域に分割し、判断部404によって予測値に対応する前記結果の実測値の方が目標値に近いと判断された場合、特定部403により、予測値を基準値に設定し、予測値の存在領域を複数の分割領域の中から特定する。これにより、予測値の存在領域を容易に特定することができ、探索速度の向上を図ることができる。
また、探索装置300は、分割部408により探索領域を複数の領域に分割し、生成部402により、分割領域内における条件の設定値を半導体処理装置201に与えた場合の結果の実測値を、分割領域ごとに取得し、生成部402により、各分割領域での条件の設定値と結果の実測値とに基づいて、予測モデルを生成する。これにより、複数の半導体処理装置201を用いることで、実測値を分割領域ごとに実測値を分割領域ごとに並列に取得することができ、予測モデルの生成速度の高速化を図ることができる。
また、探索装置300は、判断部404によって予測値に対応する前記結果の実測値の方が目標値に近くないと判断された場合、決定部407により予測値の存在領域内で取得したデータを除外データに決定し、生成部402により、実測値から除外データを除いた特定の実測値と、設定値から除外データが得られた場合に半導体処理装置201に与えられた設定値を除いた特定の設定値と、に基づいて、予測モデルを生成する。また、目標値に近くない予測値と設定値との組み合わせが存在する除外領域を予測値の候補から除外することができ、予測モデルの精度向上を図ることができる。したがって、生成された予測モデルにより、より良い予測値を得ることができる。
また、探索装置300は、検出部409により、結果の実測値と、所定の出力しきい値と、に基づいて、半導体処理装置201の不安定動作を検出し、出力部406により、検出部409による検出結果を出力する。これにより、探索の継続可否をユーザに促すことができる。
なお、本発明は前述した実施例に限定されるものではなく、添付した特許請求の範囲の趣旨内における様々な変形例及び同等の構成が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに本発明は限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えてもよい。また、各実施例の構成の一部について、他の構成の追加、削除、または置換をしてもよい。
また、前述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等により、ハードウェアで実現してもよく、プロセッサがそれぞれの機能を実現するプログラムを解釈し実行することにより、ソフトウェアで実現してもよい。
各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記憶装置、又は、IC(Integrated Circuit)カード、SDカード、DVD(Digital Versatile Disc)の記録媒体に格納することができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、実装上必要な全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてよい。
200 半導体製造システム
201 半導体処理装置
202 装置制御システム
203 モニタシステム
204 センサシステム
205 データベース
206 自動制御システム
221 レシピ設定コントローラ
222 装置基本設定コントローラ
223 設定エラー検出システム
261 目標設定コントローラ
262 自律探索システム
263 不安定動作検出システム
300 探索装置
401 入力部
402 生成部
403 特定部
404 判断部
405 設定部
406 出力部
407 決定部
408 分割部
409 検出部

Claims (14)

  1. 半導体を処理する半導体処理装置に設定される条件または前記半導体処理装置により前記半導体が処理された結果を示す目標値と、前記条件と前記結果との範囲により規定される探索領域内における前記条件または前記結果のうち前記目標値が示す方の基準値と、の入力を受け付ける入力部と、
    前記探索領域内の前記条件の設定値と、当該設定値を前記半導体処理装置に与えた場合の前記結果の実測値と、に基づいて、前記条件と前記結果との関係を示す予測モデルを生成する生成部と、
    前記生成部によって生成された予測モデルに、前記入力部に入力された目標値を与えることにより、前記予測モデルから予測値を取得し、前記予測値の存在領域を前記探索領域から特定する特定部と、
    前記予測値に対応する前記結果の実測値が前記入力部に入力された基準値よりも前記目標値に近いか否かを判断する判断部と、
    前記判断部によって前記予測値に対応する前記結果の実測値の方が前記目標値に近いと判断された場合、前記予測値を前記基準値に設定し、前記特定部によって特定された前記予測値の存在領域を前記探索領域に設定する設定部と、
    前記予測値に対応する前記結果の実測値が前記目標値の達成条件を充足した場合に前記達成条件を充足した予測値を出力する出力部と、
    を有することを特徴とする探索装置。
  2. 請求項1に記載の探索装置であって、
    前記判断部によって前記予測値に対応する前記結果の実測値の方が前記目標値に近くないと判断された場合、前記予測値の存在領域内の予測値および予測値に対応する前記結果の実測値を除外データに決定する決定部を有し、
    前記設定部は、前記探索領域から前記決定部によって決定された除外データと当該除外データが得られた場合に前記半導体処理装置に与えられた目標値とにより特定される除外領域を除いた残存領域を前記探索領域に設定することを特徴とする探索装置。
  3. 請求項1に記載の探索装置であって、
    前記探索領域を複数の領域に分割する分割部を有し、
    前記特定部は、前記判断部によって前記予測値に対応する前記結果の実測値の方が前記目標値に近いと判断された場合、前記予測値を前記基準値に設定し、前記特定部によって特定された前記予測値の存在領域を、前記分割部によって得られた複数の分割領域の中から特定することを特徴とする探索装置。
  4. 請求項1に記載の探索装置であって、
    前記探索領域を複数の領域に分割する分割部を有し、
    前記生成部は、前記分割部によって得られた分割領域内における前記条件の設定値を前記半導体処理装置に与えた場合の前記結果の実測値を、前記分割領域ごとに取得し、前記各分割領域での前記条件の設定値と前記結果の実測値とに基づいて、前記予測モデルを生成することを特徴とする探索装置。
  5. 請求項1に記載の探索装置であって、
    前記設定部は、前記判断部によって前記予測値に対応する前記結果の実測値の方が前記目標値に近くないと判断された場合、前記予測値を前記基準値に設定せずに、前記予測値の存在領域を前記探索領域に設定することを特徴とする探索装置。
  6. 請求項1に記載の探索装置であって、
    前記判断部によって前記予測値に対応する前記結果の実測値の方が前記目標値に近くないと判断された場合、前記予測値の存在領域内の予測値を除外データに決定する決定部を有し、
    前記生成部は、前記実測値から前記除外データを除いた特定の実測値と、前記設定値から前記除外データが得られた場合に前記半導体処理装置に与えられた設定値を除いた特定の設定値と、に基づいて、前記予測モデルを生成することを特徴とする探索装置。
  7. 請求項1に記載の探索装置であって、
    前記結果の実測値と、所定の出力しきい値と、に基づいて、前記半導体処理装置の不安定動作を検出する検出部を有し、
    前記出力部は、前記検出部による検出結果を出力することを特徴とする探索装置。
  8. 探索装置が実行する探索方法であって、
    前記探索装置は、
    半導体を処理する半導体処理装置に設定される条件または前記半導体処理装置により前記半導体が処理された結果を示す目標値と、前記条件と前記結果との範囲により規定される探索領域内における前記条件または前記結果のうち前記目標値が示す方の基準値と、の入力を受け付ける入力処理と、
    前記探索領域内の前記条件の設定値と、当該設定値を前記半導体処理装置に与えた場合の前記結果の実測値と、に基づいて、前記条件と前記結果との関係を示す予測モデルを生成する生成処理と、
    前記生成処理によって生成された予測モデルに、前記入力処理によって入力された目標値を与えることにより、前記予測モデルから予測値を取得し、前記予測値の存在領域を前記探索領域から特定する特定処理と、
    前記予測値に対応する前記結果の実測値が前記入力処理によって入力された基準値よりも前記目標値に近いか否かを判断する判断処理と、
    前記判断処理によって前記予測値の方が前記目標値に近いと判断された場合、前記予測値を前記基準値に設定し、前記特定処理によって特定された前記予測値の存在領域を前記探索領域に設定する設定処理と、
    前記予測値が前記目標値の達成条件を充足した場合に前記達成条件を充足した予測値を出力する出力処理と、
    を実行することを特徴とする探索方法。
  9. 請求項8に記載の探索方法であって、
    前記探索装置は、
    前記判断処理によって前記予測値に対応する前記結果の実測値の方が前記目標値に近くないと判断された場合、前記存在領域内の予測値および予測値に対応する前記結果の実測値を除外データに決定する決定処理を実行し、
    前記設定処理では、前記探索装置は、前記探索領域から前記決定処理によって決定された除外データと当該除外データが得られた場合に前記半導体処理装置に与えられた目標値とにより特定される除外領域を除いた残存領域を前記探索領域に設定することを特徴とする探索方法。
  10. 請求項8に記載の探索方法であって、
    前記探索装置は、
    前記探索領域を複数の領域に分割する分割処理を実行し、
    前記特定処理では、前記探索装置は、前記判断処理によって前記予測値に対応する前記結果の実測値の方が前記目標値に近いと判断された場合、前記予測値を前記基準値に設定し、前記特定処理によって特定された前記予測値の存在領域を、前記分割処理によって得られた複数の分割領域の中から特定することを特徴とする探索方法。
  11. 請求項8に記載の探索方法であって、
    前記探索装置は、
    前記探索領域を複数の領域に分割する分割処理を実行し、
    前記生成処理では、前記探索装置は、前記分割処理によって得られた分割領域内における前記条件の設定値を前記半導体処理装置に与えた場合の前記結果の実測値を、前記分割領域ごとに取得し、前記各分割領域での前記条件の設定値と前記結果の実測値とに基づいて、前記予測モデルを生成することを特徴とする探索方法。
  12. 請求項8に記載の探索方法であって、
    前記探索装置は、
    前記設定処理では、前記探索装置は、前記判断処理によって前記予測値に対応する前記結果の実測値の方が前記目標値に近くないと判断された場合、前記予測値を前記基準値に設定せずに、前記予測値の存在領域を前記探索領域に設定することを特徴とする探索方法。
  13. 請求項8に記載の探索方法であって、
    前記探索装置は、
    前記判断処理によって前記予測値に対応する前記結果の実測値の方が前記目標値に近くないと判断された場合、前記予測値の存在領域内の予測値を除外データに決定する決定処理を実行し、
    前記生成処理では、前記探索装置は、前記実測値から前記除外データを除いた特定の実測値と、前記設定値から前記除外データが得られた場合に前記半導体処理装置に与えられた設定値を除いた特定の設定値と、に基づいて、前記予測モデルを生成することを特徴とする探索方法。
  14. 請求項8に記載の探索方法であって、
    前記探索装置は、
    前記結果の実測値と、所定の出力しきい値と、に基づいて、前記半導体処理装置の不安定動作を検出する検出処理を実行し、
    前記出力処理では、前記探索装置は、前記検出処理による検出結果を出力することを特徴とする探索方法。
JP2016184386A 2016-09-21 2016-09-21 探索装置および探索方法 Active JP6608344B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2016184386A JP6608344B2 (ja) 2016-09-21 2016-09-21 探索装置および探索方法
US15/658,844 US10734261B2 (en) 2016-09-21 2017-07-25 Search apparatus and search method
KR1020170106393A KR102017604B1 (ko) 2016-09-21 2017-08-23 탐색 장치 및 탐색 방법
TW108126247A TWI745723B (zh) 2016-09-21 2017-08-28 探索裝置
TW106129091A TWI672599B (zh) 2016-09-21 2017-08-28 探索裝置及探索方法
KR1020190105617A KR102039394B1 (ko) 2016-09-21 2019-08-28 탐색 장치 및 탐색 방법
US16/911,669 US20200328101A1 (en) 2016-09-21 2020-06-25 Search apparatus and search method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016184386A JP6608344B2 (ja) 2016-09-21 2016-09-21 探索装置および探索方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019192852A Division JP6754878B2 (ja) 2019-10-23 2019-10-23 探索装置および探索方法

Publications (2)

Publication Number Publication Date
JP2018049936A JP2018049936A (ja) 2018-03-29
JP6608344B2 true JP6608344B2 (ja) 2019-11-20

Family

ID=61620586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016184386A Active JP6608344B2 (ja) 2016-09-21 2016-09-21 探索装置および探索方法

Country Status (4)

Country Link
US (2) US10734261B2 (ja)
JP (1) JP6608344B2 (ja)
KR (2) KR102017604B1 (ja)
TW (2) TWI672599B (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036991A (ja) * 2016-09-02 2018-03-08 株式会社日立製作所 センサデータ検索システム、センサデータ検索方法及び管理計算機
US10909965B2 (en) 2017-07-21 2021-02-02 Comcast Cable Communications, Llc Sound wave dead spot generation
JP6778666B2 (ja) * 2017-08-24 2020-11-04 株式会社日立製作所 探索装置及び探索方法
JP7017985B2 (ja) * 2018-06-05 2022-02-09 株式会社日立製作所 システム及び処理条件の決定方法
JP7190495B2 (ja) * 2018-09-03 2022-12-15 株式会社Preferred Networks 推論方法、推論装置、モデルの生成方法及び学習装置
CN112640037A (zh) * 2018-09-03 2021-04-09 首选网络株式会社 学习装置、推理装置、学习模型的生成方法及推理方法
JP2020070470A (ja) * 2018-10-31 2020-05-07 旭化成株式会社 学習処理装置、学習処理方法、化合物半導体の製造方法およびプログラム
JP7229018B2 (ja) * 2018-12-28 2023-02-27 Pacraft株式会社 不健全性予見装置、不健全性予見方法、プログラム、及びコンピュータ読み取り可能な記録媒体
JP7218624B2 (ja) * 2019-03-08 2023-02-07 富士通株式会社 データ処理プログラム及びデータ処理方法
JP6890632B2 (ja) * 2019-06-27 2021-06-18 東京エレクトロン株式会社 データ処理装置、データ処理方法及びプログラム
CN112449722B (zh) * 2019-07-04 2024-04-09 株式会社日立高新技术 尺寸测量装置、尺寸测量程序及半导体制造系统
JP7288870B2 (ja) 2020-02-05 2023-06-08 株式会社日立製作所 画像を生成するシステム
WO2022185380A1 (ja) * 2021-03-01 2022-09-09 株式会社日立ハイテク 実験ポイント推薦装置、実験ポイント推薦方法及び半導体装置製造システム
US20230012173A1 (en) * 2021-07-08 2023-01-12 Hitachi High-Tech Corporation Process recipe search apparatus, etching recipe search method and semiconductor device manufacturing system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646870A (en) * 1995-02-13 1997-07-08 Advanced Micro Devices, Inc. Method for setting and adjusting process parameters to maintain acceptable critical dimensions across each die of mass-produced semiconductor wafers
US6381564B1 (en) * 1998-05-28 2002-04-30 Texas Instruments Incorporated Method and system for using response-surface methodologies to determine optimal tuning parameters for complex simulators
JP3262092B2 (ja) * 1999-01-07 2002-03-04 日本電気株式会社 不良分布解析システム、方法及び記録媒体
JP2000252179A (ja) * 1999-03-04 2000-09-14 Hitachi Ltd 半導体製造プロセス安定化支援システム
TW511128B (en) 2001-09-04 2002-11-21 Hitachi Ltd Method of monitoring and/or controlling a semiconductor manufacturing apparatus and a system therefor
JP2006074067A (ja) * 2005-11-08 2006-03-16 Hitachi Ltd プラズマ処理装置および処理方法
JP2007165721A (ja) * 2005-12-15 2007-06-28 Omron Corp プロセス異常分析装置及びプログラム
US7919234B2 (en) * 2007-04-05 2011-04-05 Sequella, Inc. Methods and compositions for determining the pathogenic status of infectious agents
US8924904B2 (en) * 2007-05-24 2014-12-30 Applied Materials, Inc. Method and apparatus for determining factors for design consideration in yield analysis
US7873585B2 (en) * 2007-08-31 2011-01-18 Kla-Tencor Technologies Corporation Apparatus and methods for predicting a semiconductor parameter across an area of a wafer
US8396582B2 (en) * 2008-03-08 2013-03-12 Tokyo Electron Limited Method and apparatus for self-learning and self-improving a semiconductor manufacturing tool
US8494798B2 (en) * 2008-09-02 2013-07-23 Mks Instruments, Inc. Automated model building and batch model building for a manufacturing process, process monitoring, and fault detection
US8111903B2 (en) * 2008-09-26 2012-02-07 International Business Machines Corporation Inline low-damage automated failure analysis
JP5417358B2 (ja) * 2011-02-28 2014-02-12 株式会社日立ハイテクノロジーズ 画像処理装置、及び画像処理を行うためのコンピュータープログラム
US8843875B2 (en) * 2012-05-08 2014-09-23 Kla-Tencor Corporation Measurement model optimization based on parameter variations across a wafer
JP2012212919A (ja) * 2012-06-22 2012-11-01 Hitachi Kokusai Electric Inc 基板処理管理装置
US8959464B2 (en) 2013-03-14 2015-02-17 Coventor, Inc. Multi-etch process using material-specific behavioral parameters in 3-D virtual fabrication environment
US9543171B2 (en) * 2014-06-17 2017-01-10 Lam Research Corporation Auto-correction of malfunctioning thermal control element in a temperature control plate of a semiconductor substrate support assembly that includes deactivating the malfunctioning thermal control element and modifying a power level of at least one functioning thermal control element

Also Published As

Publication number Publication date
US20180082873A1 (en) 2018-03-22
KR102039394B1 (ko) 2019-11-04
KR102017604B1 (ko) 2019-09-03
US20200328101A1 (en) 2020-10-15
KR20190104115A (ko) 2019-09-06
JP2018049936A (ja) 2018-03-29
US10734261B2 (en) 2020-08-04
TW201814557A (zh) 2018-04-16
TWI672599B (zh) 2019-09-21
TWI745723B (zh) 2021-11-11
TW201939312A (zh) 2019-10-01
KR20180032174A (ko) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6608344B2 (ja) 探索装置および探索方法
JP6778666B2 (ja) 探索装置及び探索方法
US11189470B2 (en) Search device, search method and plasma processing apparatus
US20230049157A1 (en) Performance predictors for semiconductor-manufacturing processes
JP7121506B2 (ja) 探索装置、探索方法及びプラズマ処理装置
JP2024528372A (ja) 特徴モデルを使用するプロセスレシピ作成およびマッチング
US20230138127A1 (en) Information processing method and information processing apparatus including acquiring a time series data group measured duirng a processing cycle for a substrate
JP6754878B2 (ja) 探索装置および探索方法
CN118020083A (zh) 使用缺陷模型估计缺陷风险并优化处理配方
US11585764B1 (en) Multi-level RF pulse monitoring and RF pulsing parameter optimization at a manufacturing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191023

R150 Certificate of patent or registration of utility model

Ref document number: 6608344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150