Nothing Special   »   [go: up one dir, main page]

JP6696568B2 - アイテム推奨方法、アイテム推奨プログラムおよびアイテム推奨装置 - Google Patents

アイテム推奨方法、アイテム推奨プログラムおよびアイテム推奨装置 Download PDF

Info

Publication number
JP6696568B2
JP6696568B2 JP2018518898A JP2018518898A JP6696568B2 JP 6696568 B2 JP6696568 B2 JP 6696568B2 JP 2018518898 A JP2018518898 A JP 2018518898A JP 2018518898 A JP2018518898 A JP 2018518898A JP 6696568 B2 JP6696568 B2 JP 6696568B2
Authority
JP
Japan
Prior art keywords
item
items
user
category
adopted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018518898A
Other languages
English (en)
Other versions
JPWO2017203672A1 (ja
Inventor
英俊 松岡
英俊 松岡
山本 達也
達也 山本
池田 弘
弘 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2017203672A1 publication Critical patent/JPWO2017203672A1/ja
Application granted granted Critical
Publication of JP6696568B2 publication Critical patent/JP6696568B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Description

本発明の実施形態は、アイテム推奨方法、アイテム推奨プログラムおよびアイテム推奨装置に関する。
従来、ユーザより選択されたアイテム(情報)に対して、データベース(DB)等に蓄積された多数のアイテムの中から選択されたアイテムに類似するアイテムを検索し、検索されたアイテムをユーザへ推奨するアイテム推奨装置がある。このアイテム推奨装置では、ユーザが行う所定の操作に基づいて過去にユーザが同時に採用したアイテムの履歴を用い、ユーザより選択されたアイテムに対して同時に採用され得る類似アイテムを推奨する。
特開2014−10715号公報
しかしながら、上記の従来技術では、ユーザが同時に採用するアイテムの履歴が少ない場合には、精度よくアイテムを推奨することが困難であるという問題がある。
例えば、新しいアイテムや採用数の少ない不人気のアイテムについては、ユーザが同時に採用するアイテムの履歴が少なくなる。また、アイテムの細分化が進むと、各アイテムの採用実績が分散してしまうことから、履歴の蓄積が遅くなる。このように、ユーザが同時に採用するアイテムの履歴が少ない場合には、数あるアイテムの中からユーザより選択されたアイテムに対して同時に採用され得る類似アイテムを抽出することが困難なものとなる。
1つの側面では、精度よくアイテムを推奨することを可能とするアイテム推奨方法、アイテム推奨プログラムおよびアイテム推奨装置を提供することを目的とする。
第1の案では、アイテム推奨方法は、複数のアイテムの中から比較が行われたアイテム同士を同じカテゴリとする処理をコンピュータが実行する。また、アイテム推奨方法は、ユーザが過去に採用したアイテムの組み合わせを示す採用履歴情報に基づいて所定のカテゴリに属するアイテムと組み合わされるアイテムの共起確率を算出する処理をコンピュータが実行する。また、アイテム推奨方法は、算出された共起確率に基づいてユーザが選択したアイテムが属するカテゴリに対して推奨するアイテムを出力する処理をコンピュータが実行する。
本発明の1実施態様によれば、精度よくアイテムを推奨することができる。
図1は、実施形態にかかるアイテム推奨装置の機能構成の一例を示すブロック図である。 図2は、アイテムの採用履歴、比較グループを記録する処理の一例を示すフローチャートである。 図3は、アイテムの選択、比較を行う画面を説明する説明図である。 図4は、採用履歴テーブルを説明する説明図である。 図5は、比較グループ情報を説明する説明図である。 図6は、カテゴリ情報を生成する処理の一例を示すフローチャートである。 図7は、アイテムを推奨する処理の一例を示すフローチャートである。 図8は、推奨するアイテムの取得を説明する説明図である。 図9は、アイテム推奨を説明する説明図である。 図10は、採用履歴テーブルを説明する説明図である。 図11は、類似ユーザグループ情報を説明する説明図である。 図12は、実施形態にかかるアイテム推奨装置のハードウエア構成の一例を示すブロック図である。
以下、図面を参照して、実施形態にかかるアイテム推奨方法、アイテム推奨プログラムおよびアイテム推奨装置を説明する。実施形態において同一の機能を有する構成には同一の符号を付し、重複する説明は省略する。なお、以下の実施形態で説明するアイテム推奨方法、アイテム推奨プログラムおよびアイテム推奨装置は、一例を示すに過ぎず、実施形態を限定するものではない。また、以下の各実施形態は、矛盾しない範囲内で適宜組みあわせてもよい。
図1は、実施形態にかかるアイテム推奨装置の機能構成の一例を示すブロック図である。図1に示すように、アイテム推奨装置1は、記憶部10、入力部20、表示部30、カテゴリ情報生成部40および推奨部50を有する。アイテム推奨装置1は、入力部20によりユーザより選択されたアイテム(情報)に対して、記憶部10のアイテム属性情報11に蓄積された多数のアイテムの中から選択されたアイテムと組み合わせられると推定されるアイテムを求めてユーザへ推奨する装置である。
記憶部10は、メモリやHDD(Hard Disk Drive)などの記憶装置であり、アイテム属性情報11、採用履歴テーブル12、比較グループ情報13およびカテゴリ情報14を記憶する。
アイテム属性情報11は、アイテムごとの、アイテムの持つ各属性を示す情報である。アイテムの属性は、例えば価格、サイズ、色、アイテムが有する機能などの、アイテムが有する特徴を示すものである。カテゴリ情報14には、推奨するアイテムとして対象(検索対象)となるアイテムを識別する識別情報(例えばアイテムIDなど)が格納される。または、アイテム属性情報11の属性の一つとして、カテゴリIDを保持してカテゴリ情報としても良い。この時、同一のアイテムが複数のカテゴリIDを保持しても良い。
採用履歴テーブル12は、ユーザごとに、アイテム属性情報11に示された複数のアイテム(アイテム群)の中からユーザが過去に採用したアイテムの組み合わせを示す履歴情報である。採用履歴テーブル12は、例えば、ユーザが採用したアイテムと、そのアイテムに組み合わせて採用したアイテムとの行列であり、その組み合わせを採用した回数を行列の要素とする2次元のテーブルデータである。ユーザ毎に全アイテムの採用回数を記録した2次元の行列からでも算出できる。記憶部10には、ユーザIDなどの識別情報が付与された採用履歴テーブル12がユーザごとに格納されている。
比較グループ情報13は、アイテム属性情報11に示された複数のアイテム(アイテム群)の中からユーザにより過去に比較が行われたアイテム同士を同じカテゴリ(グループ)として示す情報である。例えば、比較グループ情報13には、グループを示すグループIDごとに、ユーザにより過去に比較が行われたアイテムを示す識別情報(例えばアイテムID)が格納される。
カテゴリ情報14は、アイテムの持つ各属性を示すアイテム属性情報11からクラスタリング手法により属性が類似する類似アイテムでカテゴリ分けし、カテゴリごとのアイテムを示す情報である。例えば、カテゴリ情報14には、クラスタリングでカテゴリ分けされたアイテムの識別情報(例えばアイテムID)がカテゴリごとに格納される。アイテム属性情報11の属性の一つとして、カテゴリID(複数可)を保持することで、カテゴリ情報14を代替することもできる。
入力部20は、入力装置102(図12参照)などからのユーザの操作入力を受け付けるUI(ユーザ・インタフェース)である。例えば、入力部20は、アイテム属性情報11に示された複数のアイテムを表示した画面などにおける操作入力により、比較または採用するアイテムの選択をユーザより受け付ける。
表示部30は、モニタ103(図12参照)への画面表示を行う。例えば、表示部30は、入力部20により選択されたアイテムのアイテム属性情報11を読み出し、比較または採用するアイテムとして選択されたアイテムの一覧を画面表示する。また、表示部30は、比較または採用するアイテムとして選択され、一覧の画面表示が行われたアイテムの履歴を採用履歴テーブル12および比較グループ情報13として記憶部10に記録する。
図2は、アイテムの採用履歴、比較グループを記録する処理の一例を示すフローチャートである。図2に示すように、処理が開始されると、表示部30は、アイテム属性情報11を読み出してアイテム属性情報11に示された複数のアイテム(アイテム群)の画面表示を行う(S1)。ここで、入力部20から、数ある属性の中から表示として残す属性の選択を受け付けてもよい。同時に並び替えのキーとなる属性の選択を受け付けても良い。この場合、表示として残すよう指定された属性のみ表示され、また並び替えのキーと指定された属性の値の順に並び替えが行われる。これらの指定された物は、ユーザの興味のある属性と見なすことができ、本発明の変形例ではこの情報を使用している。
次いで、入力部20は、画面表示されたアイテム群の中からのアイテムの選択をユーザより受け付ける(S2)。次いで、表示部30は、選択されたアイテムの属性(特徴)をアイテム属性情報11より読み出して並べて画面表示する比較表示を行う(S3)。
図3は、アイテムの選択、比較を行う画面を説明する説明図である。図3に示すように、選択画面G1にはアイテム属性情報11に示された複数のアイテム(アイテム群)が表示されており、ユーザは、入力部20より比較表示するアイテムの選択を行う。図示例では、「Item(c)」、「Item(f)」および「Item(g)」が比較表示するアイテムとして選択されている。
表示部30は、選択画面G1において選択されたアイテム(「Item(c)」、「Item(f)」および「Item(g)」)の属性(機能1、機能2、機能3、価格)をアイテム属性情報11より読み出す。次いで、表示部30は、選択されたアイテムの属性の一覧を比較画面G2に表示する。これにより、ユーザは、各アイテムの属性についての比較を行うことができる。
ユーザは、表示された多くのアイテムの中から通常は一部のアイテムだけ採用する。この採用とは、例えば電子商取引などでは購入などの行為をさす。なお、S2において、S1と同様に入力部20は、数ある属性の中から比較画面G2において表示する属性や並び替えのキーとなる属性の選択を受け付けてもよい。すなわち、ユーザは、比較表示の際に確認する属性や並び替えのキーとなる属性を選んでもよい。そして、表示部30では、S2において選択された属性を比較画面G2に表示してもよい。
次いで、表示部30は、入力部20より選択されたアイテムをもとに、採用履歴テーブル12および比較グループ情報13を記憶部10に記録する(S4)。
図4は、採用履歴テーブル12を説明する説明図である。図4に示すように、採用履歴テーブル12は、いずれかのユーザが採用したアイテム(図示例ではa〜g)の組み合わせについて、組み合わせを採用した回数を行列の要素として示す行列である。例えば、採用履歴テーブル12では、軸アイテムと採用アイテムとで示される値によりアイテムが組み合わされた履歴(採用回数)を示している。
S4では、採用したユーザの採用履歴テーブル12について、入力部20より採用されたアイテムの組み合わせに該当する回数をインクリメントすることで、採用されたアイテムの組み合わせを履歴として記録する。例えば、比較画面G2より「Item(c)」とともに「Item(f)」が採用された場合には、cを軸としてfの組み合わせに対応する回数と、fを軸としてcの組み合わせに対応する回数とをインクリメントして履歴の記録が行われる。
図5は、比較グループ情報13を説明する説明図である。図5に示すように、比較グループ情報13は、グループを示すグループID(GI0、GI1…)ごとに、ユーザにより過去に比較が行われたアイテムを識別する名称が格納されている。S4では、入力部20より選択されたアイテムの組みを1つのグループとしてグループIDを発行し、選択されたアイテムの名称やIDを比較グループ情報13に記録する。例えば、図3の例では、「Item(c)」、「Item(f)」および「Item(g)」をグループとする比較グループ情報13が記録される。
図1に戻り、カテゴリ情報生成部40は、アイテムの持つ各属性を示すアイテム属性情報11からクラスタリング手法により属性が類似する類似アイテムでカテゴリ分けしてカテゴリ情報14を生成する。この、カテゴリ情報生成部40におけるカテゴリ情報14を生成する処理は、アイテム属性情報11や比較グループ情報13が更新されたタイミングで行われてもよいし、所定の期間(例えば1ヶ月)ごとに行われてもよい。
図6は、カテゴリ情報14を生成する処理の一例を示すフローチャートである。図6に示すように、処理が開始されると、カテゴリ情報生成部40は、アイテム属性情報11に基づいて、アイテムの持つ各属性(特徴)を軸とする特徴空間における各アイテム間の距離を計算する(S10)。
次いで、カテゴリ情報生成部40は、比較グループ情報13に基づいて、複数のアイテムの特徴情報に基づいた特徴空間のスケールについて、同じカテゴリ(グループ)に属するアイテム同士、すなわち比較表示されたアイテム同士の距離を近づけるように、各アイテム間の距離の補正を行う(S11)。
具体的な実施例としては、アイテムの特徴量を多次元ベクトルで表現すると、2つのアイテム(j、k)間の距離の二乗は次の式(1)で表される。この式(1)によりカテゴリ情報生成部40は、各アイテム間の距離を計算する。
Figure 0006696568
次いで、同時に比較対象にされたアイテム群、すなわち比較グループ情報13に示されたアイテム群を比較グループとし、q番目の比較グループ内の距離指標Sgqを次の式(2)とする。
Figure 0006696568
なお、式(2)において、距離指標Sgqは、グループ内の全ての2つのアイテム組の距離の総和であるが、別例として和を組数で割った距離平均であってもよい。
また、距離指標値Sについては、次の式(3)のとおりに定義する。
Figure 0006696568
カテゴリ情報生成部40は、式(3)の距離指標値Sが最小になるような、C(i=1〜M)の値を以下の式(4)の制約条件の元で求める。すなわち、複数のアイテムの特徴情報に基づいた特徴空間のスケールについて、同じグループに属するアイテム同士の距離を近づけるように変換するCを求める。
Figure 0006696568
なお、殆どのCが0になることを防ぐため、SにCのべき乗を加えてもよい。例えば次の式(5)に示す自乗和としてもよい。
Figure 0006696568
カテゴリ情報生成部40は、求めたCを用いて式(1)で距離を定義することで、各アイテム間の距離について、同じグループに属するアイテム同士(比較表示が行われたアイテム同士)の距離を近づけるように補正される。
次いで、カテゴリ情報生成部40は、補正後の各アイテム間の距離をもとにアイテムのクラスタリングを行い(S12)、各アイテム間の距離が近く互いの特徴が類似する類似アイテムでカテゴリ分けする。次いで、カテゴリ情報生成部40は、S12のクラスタリング結果をもとに、カテゴリごとの類似アイテムを示すカテゴリ情報14を生成する(S13)。カテゴリ情報生成部40は、生成したカテゴリ情報14を記憶部10に格納する。
図1に戻り、推奨部50は、入力部20によりユーザが選択したアイテムを受け付け、ユーザが選択したアイテムとともに組み合わせが行われると推定されるアイテムを取得する。次いで、推奨部50は、取得したアイテムをユーザに対して推奨するアイテムとして、例えばモニタ103(図12参照)への画面表示などにより出力する。
具体的には、推奨部50は、ユーザが過去に採用したアイテムの組み合わせを示す採用履歴テーブル12と、カテゴリ情報14とに基づいて、カテゴリ情報14の所定のカテゴリに属するアイテムと組み合わせられるアイテムの共起確率を算出する。共起確率は、複数のアイテムが同時に採用される割合を示すものである。推奨部50は、あるカテゴリのアイテムが選択された場合に、そのカテゴリに対して同時に採用されるアイテムの確率(共起確率)を、カテゴリに属するアイテムと組み合わせて採用されたアイテムの履歴をもとに求める。推奨部50は、このカテゴリに対して同時に採用されるアイテムの共起確率(カテゴリ間の共起確率)を、カテゴリ情報14の各カテゴリについて計算する。
次いで、推奨部50は、計算されたカテゴリ間の共起確率より、ユーザが選択したアイテムが属するカテゴリに対して同時に採用されるアイテムの共起確率をもとに、共起確率の高いアイテムを推奨するアイテムとして出力する。すなわち、推奨部50は、アイテムベース協調フィルタリングにおけるアイテム間共起確率の代わりに、カテゴリ間の共起確率を用いてアイテムの推奨を行う。
図7は、アイテムを推奨する処理の一例を示すフローチャートである。図7に示すように、処理が開始されると、推奨部50は、入力部20によりユーザが選択した選択アイテムを取得する(S20)。
次いで、推奨部50は、採用履歴テーブル12と、カテゴリ情報14とに基づいて、カテゴリ間の共起確率を算出する(S21)。例えば、推奨部50は、採用履歴テーブル12をもとに、カテゴリ情報14にカテゴリ分けされたアイテムの採用実績(履歴)を総数とする。次いで、推奨部50は、カテゴリ情報14にカテゴリ分けされたアイテムごとに、そのアイテムを軸アイテムとし、軸アイテムと組み合わされた採用アイテムの履歴(採用回数)を採用履歴テーブル12より取得する。次いで、推奨部50は、総数に対する採用回数より、カテゴリに対して同時に採用されるアイテムの共起確率を求める。
次いで、推奨部50は、算出されたカテゴリ間の共起確率をもとに、ユーザが選択したアイテムが属するカテゴリに対して共起確率の高い推奨アイテムを取得する(S22)。次いで、推奨部50は、取得した推奨アイテムを画面表示などにより出力する(S23)。
図8は、推奨するアイテムの取得を説明する説明図である。図8において、テーブルT1、T2は、カテゴリ情報14にカテゴリ分けされた各カテゴリを軸カテゴリ(ka〜kf)とし、カテゴリに対して同時に採用されるアイテム(a〜g)の共起確率(採用割合)を示すテーブルである。S21では採用履歴テーブル12をもとにテーブルT1が求められる。次いで、S22では、テーブルT1をもとに、ユーザが選択したアイテムが属するカテゴリに対して共起確率の高い推奨アイテムが取得される。例えば、ユーザが選択したアイテムが属するカテゴリが「ka」である場合には、割合(共起確率)の高い順に「c」、「g」、「e」、「f」が推奨アイテムとして得られることとなる。
図9は、アイテム推奨を説明する説明図である。図9において、「D」のユーザがアイテム「a」を選択しているものとする。また、ケースC1は、アイテムベース協調フィルタリングにおけるアイテム間共起確率を用いたアイテム推奨を行うケースである。ケースC2は、アイテムベース協調フィルタリングにおけるアイテム間共起確率の代わりに、カテゴリ間の共起確率を用いてアイテム推奨を行うケースである。
図9に示すように、アイテムの細分化が進むと、各アイテムの採用実績が分散してしまうことから、履歴の蓄積が遅くなる。このため、アイテム間共起確率を用いたアイテム推奨を行うケースC1では、アイテム「a」と組み合わせた履歴(採用実績)がなく、アイテム「a」を選択した「D」のユーザに対し、推奨アイテムの候補が得られないこととなる。これに対し、カテゴリ間の共起確率を用いてアイテム推奨を行うケースC2では、同一カテゴリにおけるアイテム「b」とともに、カテゴリに対する採用実績のあるアイテム「d」を推奨することができる。したがって、ユーザが同時に採用するアイテムの履歴が少ない場合であっても、精度よくアイテムを推奨することが可能となる。
(変形例)
ここで、上述した実施形態の変形例を説明する。変形例では、アイテムの特徴(属性)についての興味が類似するユーザを類似ユーザとしてグループ化する。そして、グループ化した類似ユーザの採用履歴テーブル12をもとにアイテム推奨を行う。
具体的には、アイテム推奨装置1の入力部20は、各ユーザについて、数ある属性の中からアイテム群表示(S1)や比較表示(S3)の際に表示する属性として選択された属性の履歴を記憶部10に記録する。
図10は、採用履歴テーブルを説明する説明図である。図10に示すように、入力部20は、ユーザ(A、B、C…)ごとに、選択された属性(機能1、機能2、…)についての選択回数を記憶部10の採用履歴テーブル12aに記録する。
推奨部50では、記録された採用履歴テーブル12aをもとに、選択された属性についての興味が類似するユーザを類似ユーザとしてグループ化する。具体的には、推奨部50は、採用履歴テーブル12aの各ユーザにおける選択された属性(機能1、機能2、…)についての選択回数をもとに、あるユーザに対する他のユーザの類似度を求める。そして、推奨部50は、類似度が所定の閾値以上のユーザを類似ユーザとしてグループ化し、グループ化された類似ユーザを示す類似ユーザグループ情報を生成する。例えば、図10の例では、「機能1」、「機能3」、「機能5」についての選択が類似するユーザ「A」、「C」が、類似ユーザとしてグループ化される。
図11は、類似ユーザグループ情報を説明する説明図である。図11に示すように、類似ユーザグループ情報13aは、グループを示すグループID(GU0、GU1…)ごとに、類似ユーザとしてグループ化されたユーザの名称などが格納されている。
推奨部50は、S21において、アイテムを選択したユーザと類似する類似ユーザを類似ユーザグループ情報13aより求める。そして、推奨部50は、求めた類似ユーザの採用履歴テーブル12をもとに、カテゴリ間の共起確率を算出する。これにより、アイテム推奨装置1では、アイテムの特徴(属性)についての興味が類似する類似ユーザの採用履歴テーブル12をもとに、よりユーザの興味にマッチするアイテムを推奨することが可能となる。
以上のように、アイテム推奨装置1は、比較グループ情報13をもとに複数のアイテムの中から比較が行われたアイテム同士を同じカテゴリとする。また、アイテム推奨装置1は、ユーザが過去に採用したアイテムの組み合わせを示す採用履歴テーブル12に基づいて所定のカテゴリに属するアイテムと組み合わされるアイテムの共起確率を算出する。また、アイテム推奨装置1は、算出された共起確率に基づいてユーザが選択したアイテムが属するカテゴリに対して推奨するアイテムを出力する。または、このアイテムが属するカテゴリの他のアイテムで共起確率の高い物を出力する。また、本発明の変形例では、ユーザが表示のために入力した属性情報を興味のある属性として、類似ユーザを見つけるのに利用し、類似ユーザの購入したアイテムやそれと同一カテゴリのアイテムの中から共起確率の高い物を出力する。したがって、アイテム推奨装置1は、ユーザが同時に採用するアイテムの履歴が少ない場合であっても、精度よくアイテムを推奨することが可能となる。
なお、図示した各装置の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。
また、アイテム推奨装置1で行われる各種処理機能は、CPU(またはMPU、MCU(Micro Controller Unit)等のマイクロ・コンピュータ)上で、その全部または任意の一部を実行するようにしてもよい。また、各種処理機能は、CPU(またはMPU、MCU等のマイクロ・コンピュータ)で解析実行されるプログラム上、またはワイヤードロジックによるハードウエア上で、その全部または任意の一部を実行するようにしてもよいことは言うまでもない。また、アイテム推奨装置1で行われる各種処理機能は、クラウドコンピューティングにより、複数のコンピュータが協働して実行してもよい。
ところで、上記の実施形態で説明した各種の処理は、予め用意されたプログラムをコンピュータで実行することで実現できる。そこで、以下では、上記の実施形態と同様の機能を有するプログラムを実行するコンピュータ(ハードウエア)の一例を説明する。図12は、実施形態にかかるアイテム推奨装置1のハードウエア構成の一例を示すブロック図である。
図12に示すように、アイテム推奨装置1は、各種演算処理を実行するCPU101と、データ入力を受け付ける入力装置102と、モニタ103と、スピーカ104とを有する。また、アイテム推奨装置1は、記憶媒体からプログラム等を読み取る媒体読取装置105と、各種装置と接続するためのインタフェース装置106と、有線または無線により外部機器と通信接続するための通信装置107とを有する。また、アイテム推奨装置1は、各種情報を一時記憶するRAM108と、ハードディスク装置109とを有する。また、アイテム推奨装置1内の各部(101〜109)は、バス110に接続される。
ハードディスク装置109には、上記の実施形態で説明した入力部20、表示部30、カテゴリ情報生成部40および推奨部50における各種の処理を実行するためのプログラム111が記憶される。また、ハードディスク装置109には、プログラム111が参照する各種データ112(アイテム属性情報11、採用履歴テーブル12、比較グループ情報13およびカテゴリ情報14など)が記憶される。入力装置102は、例えば、アイテム推奨装置1の操作者から操作情報の入力を受け付ける。モニタ103は、例えば、操作者が操作する各種画面を表示する。インタフェース装置106は、例えば印刷装置等が接続される。通信装置107は、LAN(Local Area Network)等の通信ネットワークと接続され、通信ネットワークを介した外部機器との間で各種情報をやりとりする。
CPU101は、ハードディスク装置109に記憶されたプログラム111を読み出して、RAM108に展開して実行することで、各種の処理を行う。なお、プログラム111は、ハードディスク装置109に記憶されていなくてもよい。例えば、アイテム推奨装置1が読み取り可能な記憶媒体に記憶されたプログラム111を読み出して実行するようにしてもよい。アイテム推奨装置1が読み取り可能な記憶媒体は、例えば、CD−ROMやDVDディスク、USB(Universal Serial Bus)メモリ等の可搬型記録媒体、フラッシュメモリ等の半導体メモリ、ハードディスクドライブ等が対応する。また、公衆回線、インターネット、LAN等に接続された装置にこのプログラム111を記憶させておき、アイテム推奨装置1がこれらからプログラム111を読み出して実行するようにしてもよい。
1…アイテム推奨装置
10…記憶部
11…アイテム属性情報
12、12a…採用履歴テーブル
13…比較グループ情報
13a…類似ユーザグループ情報
14…カテゴリ情報
20…入力部
30…表示部
40…カテゴリ情報生成部
50…推奨部
101…CPU
102…入力装置
103…モニタ
104…スピーカ
105…媒体読取装置
106…インタフェース装置
107…通信装置
108…RAM
109…ハードディスク装置
110…バス
111…プログラム
112…各種データ
C1、C2…ケース
G1…選択画面
G2…比較画面
T1、T2…テーブル

Claims (7)

  1. 複数のアイテムの中からユーザにより過去に比較が行われたアイテム同士を同じカテゴリとし、
    前記ユーザが過去に採用したアイテムの組み合わせを示す採用履歴情報に基づいて所定のカテゴリに属するアイテムと組み合わされるアイテムの共起確率を算出し、
    前記算出された共起確率に基づいて前記ユーザが選択したアイテムが属するカテゴリに対して推奨するアイテムを出力する
    処理をコンピュータが実行することを特徴とするアイテム推奨方法。
  2. 前記複数のアイテムの中から比較を行うアイテムの選択を受け付け、
    前記選択されたアイテムの特徴情報を並べて表示する処理をコンピュータがさらに実行し、
    前記同じカテゴリとする処理は、前記選択されたアイテムを同じカテゴリとする
    ことを特徴とする請求項1に記載のアイテム推奨方法。
  3. 前記複数のアイテムの特徴情報に基づいた特徴空間のスケールについて、前記同じカテゴリに属するアイテム同士の距離を近づける変換を行う処理をコンピュータがさらに実行し、
    前記算出する処理は、変換された前記特徴空間に基づいて前記共起確率を算出する
    ことを特徴とする請求項1または2に記載のアイテム推奨方法。
  4. 前記受け付ける処理は、複数の特徴情報の中から少なくとも1つの特徴情報の選択を受け付け、
    前記表示する処理は、前記選択されたアイテムについて、前記選択された特徴情報を並べて表示する
    ことを特徴とする請求項に記載のアイテム推奨方法。
  5. 前記複数の特徴情報の中から選択された特徴情報が類似するユーザを類似ユーザとする処理をコンピュータがさらに実行し、
    前記算出する処理は、前記類似ユーザが過去に採用したアイテムの組み合わせを示す採用履歴情報に基づいて前記共起確率を算出する
    ことを特徴とする請求項4に記載のアイテム推奨方法。
  6. 複数のアイテムの中からユーザにより過去に比較が行われたアイテム同士を同じカテゴリとし、
    前記ユーザが過去に採用したアイテムの組み合わせを示す採用履歴情報に基づいて所定のカテゴリに属するアイテムと組み合わされるアイテムの共起確率を算出し、
    前記算出された共起確率に基づいて前記ユーザが選択したアイテムが属するカテゴリに対して推奨するアイテムを出力する
    処理をコンピュータに実行させることを特徴とするアイテム推奨プログラム。
  7. プロセッサが、
    複数のアイテムの中からユーザにより過去に比較が行われたアイテム同士を同じカテゴリとし、
    前記ユーザが過去に採用したアイテムの組み合わせを示す採用履歴情報に基づいて所定のカテゴリに属するアイテムと組み合わされるアイテムの共起確率を算出し、
    前記算出された共起確率に基づいて前記ユーザが選択したアイテムが属するカテゴリに対して推奨するアイテムを出力する
    する処理を実行することを特徴とするアイテム推奨装置。
JP2018518898A 2016-05-26 2016-05-26 アイテム推奨方法、アイテム推奨プログラムおよびアイテム推奨装置 Active JP6696568B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065646 WO2017203672A1 (ja) 2016-05-26 2016-05-26 アイテム推奨方法、アイテム推奨プログラムおよびアイテム推奨装置

Publications (2)

Publication Number Publication Date
JPWO2017203672A1 JPWO2017203672A1 (ja) 2019-02-14
JP6696568B2 true JP6696568B2 (ja) 2020-05-20

Family

ID=60412177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018518898A Active JP6696568B2 (ja) 2016-05-26 2016-05-26 アイテム推奨方法、アイテム推奨プログラムおよびアイテム推奨装置

Country Status (2)

Country Link
JP (1) JP6696568B2 (ja)
WO (1) WO2017203672A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6566515B2 (ja) * 2015-07-24 2019-08-28 大学共同利用機関法人情報・システム研究機構 アイテム推薦システム及びアイテム推薦方法
CN108345702A (zh) * 2018-04-10 2018-07-31 北京百度网讯科技有限公司 实体推荐方法和装置
JP6748245B2 (ja) * 2019-02-19 2020-08-26 ヤフー株式会社 情報処理装置、情報処理方法及び情報処理プログラム
JP7003088B2 (ja) * 2019-05-27 2022-01-20 楽天グループ株式会社 レコメンド装置、レコメンド方法、及びレコメンドプログラム
CN113240489B (zh) * 2021-05-18 2024-02-09 广州卓铸网络科技有限公司 一种基于大数据统计分析的物品推荐方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002123547A (ja) * 2000-10-12 2002-04-26 Canon Inc 商品選択支援システム、商品選択支援サーバー、商品選択支援装置および商品選択支援方法
EP3748567A1 (en) * 2009-12-24 2020-12-09 Nikon Corporation Retrieval support system, retrieval support method, and retrieval support program
JP5449466B2 (ja) * 2012-06-29 2014-03-19 楽天株式会社 情報処理システム、類似カテゴリ特定方法、およびプログラム
JP6014515B2 (ja) * 2013-02-22 2016-10-25 株式会社エヌ・ティ・ティ・データ レコメンド情報提供システム、レコメンド情報生成装置、レコメンド情報提供方法、およびプログラム

Also Published As

Publication number Publication date
WO2017203672A1 (ja) 2017-11-30
JPWO2017203672A1 (ja) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6696568B2 (ja) アイテム推奨方法、アイテム推奨プログラムおよびアイテム推奨装置
US10884891B2 (en) Interactive detection of system anomalies
US11921737B2 (en) ETL workflow recommendation device, ETL workflow recommendation method and ETL workflow recommendation system
JP6810745B2 (ja) ターゲットクラスタリング手法を利用して、属性タイプが混合した顧客をセグメント化するためのシステムおよび方法
CN112488863A (zh) 一种在用户冷启动场景下的险种推荐方法及相关设备
KR101823463B1 (ko) 연구자 검색 서비스 제공 장치 및 그 방법
WO2018059298A1 (zh) 模式挖掘方法、高效用项集挖掘方法及相关设备
JP5572255B1 (ja) デジタル情報分析システム、デジタル情報分析方法、及びデジタル情報分析プログラム
JP6694901B2 (ja) データ管理装置およびデータ管理システム
US20120239657A1 (en) Category classification processing device and method
JP6003637B2 (ja) 情報処理装置、ノード抽出プログラムおよびノード抽出方法
JP2017054266A (ja) 検索方法、検索プログラムおよび検索装置
US20180107720A1 (en) Dynamic assignment of search parameters to search phrases
WO2018185899A1 (ja) ライブラリ検索装置、ライブラリ検索システム、及びライブラリ検索方法
JP2006004098A (ja) 評価情報生成装置、評価情報生成方法、及びプログラム
JP6285284B2 (ja) 意見活用支援装置、及び意見活用支援方法
JP6280270B1 (ja) 内部取引判定装置、内部取引判定方法および内部取引判定プログラム
JP2020013413A (ja) 判断支援装置および判断支援方法
WO2014050837A1 (ja) 判定装置、判定方法、及びコンピュータ読み取り可能な記録媒体
JP2022012940A (ja) 計算機システムおよび貢献度計算方法
JP2017079080A (ja) 情報処理装置、情報処理方法、情報処理プログラム
JP7151200B2 (ja) 情報処理装置、部品選定方法および部品選定プログラム
JP5774535B2 (ja) コンテンツ推薦プログラム、コンテンツ推薦装置及びコンテンツ推薦方法
CN113946755A (zh) 基于关联规则的信息推送方法、装置、设备及存储介质
JP6716919B2 (ja) 情報抽出装置、抽出方法、および、抽出プログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R150 Certificate of patent or registration of utility model

Ref document number: 6696568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150