JP6694611B2 - Alcohol production apparatus, alcohol production method and program - Google Patents
Alcohol production apparatus, alcohol production method and program Download PDFInfo
- Publication number
- JP6694611B2 JP6694611B2 JP2016143198A JP2016143198A JP6694611B2 JP 6694611 B2 JP6694611 B2 JP 6694611B2 JP 2016143198 A JP2016143198 A JP 2016143198A JP 2016143198 A JP2016143198 A JP 2016143198A JP 6694611 B2 JP6694611 B2 JP 6694611B2
- Authority
- JP
- Japan
- Prior art keywords
- yeast
- magnetic field
- shochu
- temperature
- applying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 title claims description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 33
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 229
- 230000004907 flux Effects 0.000 claims description 22
- 230000035945 sensitivity Effects 0.000 claims description 13
- 230000005764 inhibitory process Effects 0.000 claims description 7
- 230000006870 function Effects 0.000 claims description 3
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 219
- 235000020083 shōchū Nutrition 0.000 description 128
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 28
- 238000000855 fermentation Methods 0.000 description 20
- 230000004151 fermentation Effects 0.000 description 20
- 239000000796 flavoring agent Substances 0.000 description 20
- 235000019634 flavors Nutrition 0.000 description 20
- 235000019640 taste Nutrition 0.000 description 11
- 230000035755 proliferation Effects 0.000 description 10
- 238000012544 monitoring process Methods 0.000 description 9
- 230000002528 anti-freeze Effects 0.000 description 7
- 230000001476 alcoholic effect Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 244000061456 Solanum tuberosum Species 0.000 description 4
- 235000002595 Solanum tuberosum Nutrition 0.000 description 4
- 235000013405 beer Nutrition 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 239000002075 main ingredient Substances 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 239000007222 ypd medium Substances 0.000 description 3
- 240000005979 Hordeum vulgare Species 0.000 description 2
- 235000007340 Hordeum vulgare Nutrition 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 241000209140 Triticum Species 0.000 description 2
- 235000021307 Triticum Nutrition 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 235000019985 fermented beverage Nutrition 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 235000019992 sake Nutrition 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 235000015041 whisky Nutrition 0.000 description 2
- 240000008620 Fagopyrum esculentum Species 0.000 description 1
- 235000009419 Fagopyrum esculentum Nutrition 0.000 description 1
- 206010053759 Growth retardation Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000017066 negative regulation of growth Effects 0.000 description 1
- PXXKQOPKNFECSZ-UHFFFAOYSA-N platinum rhodium Chemical compound [Rh].[Pt] PXXKQOPKNFECSZ-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 235000014102 seafood Nutrition 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 235000013616 tea Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 235000014101 wine Nutrition 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Alcoholic Beverages (AREA)
Description
本発明は、アルコール製造装置、アルコール製造方法及びプログラムに関する。 The present invention relates to an alcohol manufacturing device, an alcohol manufacturing method and a program.
発酵は、酒、茶、魚介類及び穀物等の多様な食品の製造において古くから用いられている。発酵を利用する食品の1つに焼酎がある。通常の焼酎の製造では、まず主原料に含まれるでんぷんが分解されて得られたブドウ糖から焼酎酵母によるアルコール発酵によってアルコールが生成される。さらに、アルコールが蒸留によって抽出され、焼酎が製造される。 Fermentation has long been used in the manufacture of a variety of food products such as sake, tea, seafood and grains. Shochu is one of the foods that utilize fermentation. In the usual production of shochu, alcohol is first produced by alcoholic fermentation with shochu yeast from glucose obtained by decomposing starch contained in the main raw material. Further, alcohol is extracted by distillation to produce shochu.
焼酎の香味、風味及び味わいは、芋、麦及びそば等の主原料に加え、焼酎酵母の種類によって異なる。焼酎はもちろん、酵母によって醸造される日本酒、ビール及び発泡酒等の製造でも多くの種類の酵母が使用され、多様な銘柄が流通している。 The flavor, flavor and taste of shochu differ depending on the type of shochu yeast in addition to the main ingredients such as potato, wheat and buckwheat. Many types of yeast are used in the production of sake, beer, and low-malt beer, which are brewed by yeast, as well as shochu, and various brands are in circulation.
焼酎の香味、風味及び味わいを向上させる方法として、主原料が異なる焼酎同士、又は異なる単一の焼酎酵母で製造された焼酎同士をブレンドする方法が挙げられる。例えば、麦を主原料とする麦焼酎と芋を主原料とする芋焼酎とをブレンドすることで、麦焼酎の香ばしく軽やかな味わいと、芋焼酎の甘くふくよかな味わいとをバランス良く焼酎に付与することができる。 As a method for improving the flavor, flavor and taste of shochu, there is a method of blending shochus having different main raw materials or shochus produced by different single shochu yeasts. For example, by blending barley shochu containing wheat as the main ingredient and potato shochu containing potato as the main ingredient, the fragrance and light taste of barley shochu and the sweet and plump taste of potato shochu are imparted to the shochu in a well-balanced manner. be able to.
また、単一の焼酎酵母ではなく、複数種の酵母を用いてビール等の香味、風味及び味わいを改良することも提案されている。例えば、特許文献1には、ビール酵母と、該ビール酵母以外の醸造用酵母による複数種の酵母によってアルコール発酵させる工程を含む、発酵飲料の製造方法が開示されている。当該製造方法によれば、ビール酵母由来の香味を保持した上で、ビール酵母以外の醸造用酵母由来の香味を発酵飲料に付与することができる。 It has also been proposed to improve the flavor, flavor and taste of beer and the like by using a plurality of types of yeast instead of a single shochu yeast. For example, Patent Document 1 discloses a method for producing a fermented beverage, which includes a step of alcohol-fermenting brewer's yeast and a plurality of yeasts for brewing yeast other than the brewer's yeast. According to the manufacturing method, the flavor derived from brewing yeast other than brewer's yeast can be added to the fermented beverage while retaining the flavor derived from brewer's yeast.
上記特許文献1のように、ビール酵母由来の香味と醸造用酵母由来の香味とのバランスを調整するには、ビール酵母と該ビール酵母以外の醸造用酵母との使用比率を調整する必要がある。さらに、ビール酵母と該ビール酵母以外の醸造用酵母との使用比率を決定したとしても、酵母の成長及び増殖は、温度等の環境の影響を受ける。このため、香味、風味及び味わいのバランスを調整するために、複数種の酵母によるアルコール発酵を柔軟に制御し、しかも安定させるのは困難である。消費者の多様な嗜好に対応すべく、複数種の酵母によるアルコール発酵を柔軟に制御することが求められている。 As in Patent Document 1, in order to adjust the balance between the flavor derived from brewer's yeast and the flavor derived from brewing yeast, it is necessary to adjust the use ratio of brewer's yeast and brewing yeast other than the brewer's yeast. . Further, even if the use ratio of brewer's yeast and brewing yeast other than the brewer's yeast is determined, the growth and proliferation of yeast are affected by the environment such as temperature. For this reason, it is difficult to flexibly control and stabilize alcohol fermentation by a plurality of yeasts in order to adjust the balance of flavor, flavor and taste. In order to respond to various tastes of consumers, it is required to flexibly control alcohol fermentation by plural kinds of yeasts.
本発明は、上記実情に鑑みてなされたものであり、複数種の酵母によるアルコール発酵を柔軟に制御できるアルコール製造装置、アルコール製造方法及びプログラムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an alcohol production apparatus, an alcohol production method, and a program capable of flexibly controlling alcohol fermentation by a plurality of types of yeast.
発明者は、酵母の磁場感受特性について鋭意研究を重ねたところ、酵母に磁場を印加すると酵母の増殖が抑制され、さらには酵母の種類によって特定の磁束密度の磁場における増殖抑制の度合いに差があることを見出し、本発明を完成させた。すなわち、
本発明の第1の観点に係るアルコール製造装置は、
磁場感受性が相互に異なる複数種の酵母を保持する保持部と、
前記保持部に保持された前記酵母に、異なる時間各々において異なる磁束密度の直流磁場を印加する磁場印加部と、
を備える。
The inventor has conducted extensive studies on the magnetic field susceptibility of yeast, and suppresses the growth of yeast when a magnetic field is applied to yeast, and further, there is a difference in the degree of growth suppression in a magnetic field of a specific magnetic flux density depending on the type of yeast. The present invention has been completed and the present invention has been completed. That is,
The alcohol production apparatus according to the first aspect of the present invention,
A holding unit that holds a plurality of types of yeasts having different magnetic field sensitivities,
The yeast held in the holding unit, a magnetic field applying unit for applying a DC magnetic field of different magnetic flux density at different times, respectively,
Equipped with.
この場合、前記磁場感受性は、
直流磁場が印加された場合の前記酵母の増殖の抑制度である、
こととしてもよい。
In this case, the magnetic field sensitivity is
The degree of inhibition of the yeast growth when a direct current magnetic field is applied,
It may be that.
また、前記酵母は、
鹿児島5号酵母及び鹿児島2号酵母の少なくとも一方、並びに鹿児島4号酵母であって、
前記磁場印加部は、
第1の時間に4〜6テスラの直流磁場を印加し、
前記第1の時間と異なる第2の時間に7〜9テスラの直流磁場を印加する、
こととしてもよい。
In addition, the yeast,
At least one of Kagoshima No. 5 yeast and Kagoshima No. 2 yeast, and Kagoshima No. 4 yeast,
The magnetic field applying unit,
Applying a DC magnetic field of 4-6 Tesla in the first time,
Applying a DC magnetic field of 7 to 9 Tesla at a second time different from the first time;
It may be that.
本発明の第2の観点に係るアルコール製造方法は、
磁場感受性が相互に異なる複数種の酵母に、異なる時間各々において異なる磁束密度の直流磁場を印加する磁場印加工程、
を含む。
The method for producing alcohol according to the second aspect of the present invention,
A magnetic field applying step of applying a DC magnetic field having different magnetic flux densities at different times to a plurality of yeasts having different magnetic field sensitivities,
including.
本発明の第3の観点に係るプログラムは、
磁場感受性が相互に異なる複数種の酵母を保持する保持部を備えるアルコール製造装置を制御するコンピュータを、
前記保持部に保持された前記酵母に、異なる時間各々において異なる磁束密度の直流磁場を印加する磁場印加部、
として機能させる。
A program according to a third aspect of the present invention is
A computer for controlling an alcohol production apparatus having a holding unit for holding a plurality of types of yeasts having different magnetic field sensitivities,
The yeast held in the holding unit, a magnetic field applying unit for applying a DC magnetic field of different magnetic flux density at different times,
To function as.
本発明によれば、複数種の酵母によるアルコール発酵を柔軟に制御できる。 According to the present invention, alcohol fermentation by a plurality of types of yeast can be flexibly controlled.
本発明に係る実施の形態について図面を参照して説明する。なお、本発明は下記の実施の形態及び図面によって限定されるものではない。 Embodiments according to the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments and drawings.
(実施の形態)
実施の形態について詳細に説明する。本実施の形態では、複数種の酵母として焼酎酵母Y1及び焼酎酵母Y2を使用する。図1は、本実施の形態に係るアルコール製造装置100を示す。アルコール製造装置100は、保持部1と、磁場印加部2と、温度制御部3と、温度監視部4と、を備える。
(Embodiment)
Embodiments will be described in detail. In the present embodiment, shochu yeast Y 1 and shochu yeast Y 2 are used as a plurality of types of yeast. FIG. 1 shows an alcohol manufacturing apparatus 100 according to this embodiment. The alcohol manufacturing apparatus 100 includes a holding unit 1, a magnetic field applying unit 2, a temperature control unit 3, and a temperature monitoring unit 4.
保持部1は、焼酎酵母Y1及び焼酎酵母Y2を保持する。焼酎酵母Y1及び焼酎酵母Y2は、磁場感受性が相互に異なる。磁場感受性とは、磁場による成長、分裂又は増殖の影響の受けやすさである。より具体的には、磁場感受性は、直流磁場が印加された場合の焼酎酵母Y1及び焼酎酵母Y2の増殖の抑制度(増殖抑制の度合い)である。ここでの増殖の抑制度とは、磁場を印加していない場合(以下、単に「ゼロ磁場」ともいう)と比較して、直流磁場が所定時間印加された場合の焼酎酵母Y1及び焼酎酵母Y2の増殖が抑制された程度である。焼酎酵母Y1及び焼酎酵母Y2は増殖によって個体数が増えるため、例えば、同じ酵母数でアルコール発酵を開始し、所定時間後におけるゼロ磁場での焼酎酵母Y1の増加数と磁場を印加した場合の焼酎酵母Y1の増加数とを比較することで増殖の抑制度を評価できる。 The holding unit 1 holds shochu yeast Y 1 and shochu yeast Y 2 . Shochu yeast Y 1 and shochu yeast Y 2 differ from each other in magnetic field sensitivity. Magnetic field sensitivity is the susceptibility to growth, division or proliferation by magnetic fields. More specifically, the magnetic field sensitivity is the degree of inhibition of proliferation (degree of inhibition of proliferation) of shochu yeast Y 1 and shochu yeast Y 2 when a DC magnetic field is applied. The degree of inhibition of proliferation herein is compared with the case where no magnetic field is applied (hereinafter, also simply referred to as “zero magnetic field”), the shochu yeast Y 1 and the shochu yeast when a direct magnetic field is applied for a predetermined time. This is the extent to which Y 2 proliferation is suppressed. Since the number of individuals of Shochu yeast Y 1 and Shochu yeast Y 2 increases due to proliferation, for example, alcohol fermentation was started with the same number of yeasts, and the increased number of Shochu yeast Y 1 and a magnetic field were applied at a zero magnetic field after a predetermined time. In this case, the degree of inhibition of growth can be evaluated by comparing with the increased number of shochu yeast Y 1 .
保持部1は、例えば、焼酎酵母Y1及び焼酎酵母Y2が入れられた容器5を挿入可能な中空の筒状に形成される。容器5は、焼酎酵母Y1及び焼酎酵母Y2に加え、アルコール発酵に使用する糖及び水等の原料が入れられる容器である。容器5は、合成樹脂などで形成される。 The holding part 1 is formed, for example, in a hollow cylindrical shape into which a container 5 containing the shochu yeast Y 1 and the shochu yeast Y 2 can be inserted. The container 5 is a container in which, in addition to the shochu yeast Y 1 and the shochu yeast Y 2 , raw materials such as sugar and water used for alcohol fermentation are put. The container 5 is made of synthetic resin or the like.
焼酎酵母Y1及び焼酎酵母Y2は、特に限定されず、日本醸造協会が頒布している焼酎酵母である焼酎用2号酵母及び焼酎用3号酵母及び焼酎用4号酵母に加え、鹿児島2号酵母(K2酵母)及び鹿児島4号酵母(C4酵母)及び鹿児島5号酵母(H5酵母)等である。焼酎酵母Y1が鹿児島5号酵母及び鹿児島2号酵母の少なくとも一方の場合、焼酎酵母Y2として鹿児島4号酵母を用いるのが好ましい。 Shochu yeast Y 1 and shochu yeast Y 2 are not particularly limited, and in addition to Shochu No. 2 yeast for Shochu, No. 3 yeast for Shochu, and No. 4 yeast for Shochu which are distributed by the Japan Brewing Association, Kagoshima 2 No. Yeast (K2 yeast), Kagoshima No. 4 yeast (C4 yeast), Kagoshima No. 5 yeast (H5 yeast), and the like. When the shochu yeast Y 1 is at least one of Kagoshima No. 5 yeast and Kagoshima No. 2 yeast, it is preferable to use Kagoshima No. 4 yeast as the shochu yeast Y 2 .
保持部1は、焼酎酵母Y1及び焼酎酵母Y2が入れられた容器5を支持することで、焼酎酵母Y1及び焼酎酵母Y2を保持する。好ましくは、保持部1を発泡プラスチックなどの断熱材で形成する、あるいは少なくとも保持部1の外周面を断熱材で覆うことで、容器5が挿入される保持部1の内部の温度は一定に保たれる。なお、容器5を介さずとも、保持部1を容器とすることで、保持部1が焼酎酵母Y1及び焼酎酵母Y2を保持できるようにしてもよい。 The holding unit 1 holds the shochu yeast Y 1 and the shochu yeast Y 2 by supporting the container 5 containing the shochu yeast Y 1 and the shochu yeast Y 2 . Preferably, the temperature of the inside of the holding part 1 in which the container 5 is inserted is kept constant by forming the holding part 1 with a heat insulating material such as foamed plastic or by covering at least the outer peripheral surface of the holding part 1. Be drunk The holding unit 1 may be configured to hold the shochu shochu Y 1 and the shochu yeast Y 2 without using the container 5 by using the holding unit 1 as a container.
なお、アルコール製造装置100は、CPU(Central Processing Unit)と、外部記憶装置と、RAM(Random Access Memory)と、時間を計測するタイマーと、を備え、CPUが外部記憶装置に記憶されたソフトウェアプログラムをRAMに読み出して、ソフトウェアプログラムを実行制御することにより、以下で説明する磁場印加部2、温度制御部3及び温度監視部4の機能を実現する。 The alcohol manufacturing device 100 includes a CPU (Central Processing Unit), an external storage device, a RAM (Random Access Memory), and a timer for measuring time, and the CPU is a software program stored in the external storage device. Is read into the RAM and the software program is executed and controlled to realize the functions of the magnetic field application unit 2, the temperature control unit 3, and the temperature monitoring unit 4 described below.
磁場印加部2は、保持部1の配置に合わせて設置される超伝導マグネット6を介して所定の磁束密度の直流磁場を保持部1に印加する。磁場印加部2が印加する直流磁場の磁束密度は、超伝導マグネット6が印加可能な磁束密度であれば任意であるが、2〜15テスラ、好ましくは、4〜10テスラである。 The magnetic field applying unit 2 applies a DC magnetic field having a predetermined magnetic flux density to the holding unit 1 via the superconducting magnet 6 installed according to the arrangement of the holding unit 1. The magnetic flux density of the DC magnetic field applied by the magnetic field applying unit 2 is arbitrary as long as the magnetic flux density can be applied by the superconducting magnet 6, but is 2 to 15 Tesla, preferably 4 to 10 Tesla.
磁場印加部2は、保持部1に保持された焼酎酵母A及び焼酎酵母Bに異なる時間各々において異なる磁束密度の直流磁場を印加する。例えば、図2に示すように、磁場印加部2は、時刻t0からt1までの時間TAに磁束密度B1テスラの直流磁場を焼酎酵母Y1及び焼酎酵母Y2に印加する。続いて、磁場印加部2は、時間TAと異なる時刻t2からt3までの時間TBに、磁束密度B2テスラの直流磁場を焼酎酵母Y1及び焼酎酵母Y2に印加する。 The magnetic field application unit 2 applies a DC magnetic field having different magnetic flux densities to the shochu shochu A and the shochu yeast B held by the holding unit 1 at different times. For example, as shown in FIG. 2, the magnetic field application unit 2 applies a DC magnetic field with a magnetic flux density B 1 Tesla to the shochu yeast Y 1 and the shochu yeast Y 2 during a time T A from time t 0 to t 1 . Subsequently, the magnetic field applying unit 2, the time T B from the time t 2 that is different from the time T A to t 3, applying a DC magnetic field of flux density B 2 Tesla shochu yeast Y 1 and shochu yeast Y 2.
TA及びTBの長さは、特に限定されず、使用する焼酎酵母によるアルコール発酵に要する時間に応じて決定される。TA及びTBの長さは、同じであっても相違してもよい。磁場印加部2は、タイマーを参照することにより、直流磁場を印加してからの経過時間等を取得できる。これにより、磁場印加部2は、TAの間、焼酎酵母Y1及び焼酎酵母Y2にB1テスラの直流磁場を印加後、TBの間、B2テスラの直流磁場を焼酎酵母Y1及び焼酎酵母Y2に印加する。 The lengths of T A and T B are not particularly limited and are determined according to the time required for alcoholic fermentation by the shochu yeast used. The lengths of T A and T B may be the same or different. By referring to the timer, the magnetic field application unit 2 can acquire the elapsed time after applying the DC magnetic field. As a result, the magnetic field application unit 2 applies a DC magnetic field of B 1 Tesla to the shochu yeast Y 1 and the shochu yeast Y 2 during T A , and then applies a DC magnetic field of B 2 Tesla to the shochu yeast Y 1 during T B. And shochu yeast Y 2 .
温度制御部3は、保持部1に保持された焼酎酵母Y1及び焼酎酵母Y2の環境の温度を制御する。温度制御部3は、焼酎酵母Y1及び焼酎酵母Y2はもちろん、容器5に入れられた糖等の原料及び水等の温度を制御する。温度制御部3は、焼酎酵母Y1及び焼酎酵母Y2の環境の温度を、15〜39℃、好ましくは25〜35℃に制御する。 The temperature controller 3 controls the temperature of the environment of the shochu yeast Y 1 and the shochu yeast Y 2 held by the holder 1. The temperature control unit 3 controls the temperatures of the raw materials such as sugar and the water and the like placed in the container 5, as well as the temperature of the shochu yeast Y 1 and the shochu yeast Y 2 . The temperature control unit 3 controls the temperature of the environment of the shochu yeast Y 1 and the shochu yeast Y 2 to 15 to 39 ° C, preferably 25 to 35 ° C.
温度制御部3は、例えば、低温恒温水循環装置で焼酎酵母Y1及び焼酎酵母Y2の環境の温度を制御する。低温恒温水循環装置は、0.1〜0.5℃の温度調節精度で、循環水の温度をあらかじめ設定された所定の温度に維持する。本実施の形態では、循環水として0℃でも凍結しない塩水などの不凍液を使用する。低温恒温水循環装置は、循環水ホース7と接続され、不凍液を循環水ホース7内に循環させる。 The temperature control unit 3 controls the temperature of the environment of the shochu yeast Y 1 and the shochu yeast Y 2 with a low temperature constant temperature water circulating device, for example. The low temperature constant temperature water circulation device maintains the temperature of the circulating water at a predetermined temperature set in advance with a temperature control accuracy of 0.1 to 0.5 ° C. In this embodiment, an antifreeze solution such as salt water that does not freeze even at 0 ° C. is used as the circulating water. The low temperature constant temperature water circulating device is connected to the circulating water hose 7 and circulates the antifreeze liquid in the circulating water hose 7.
循環水ホース7は、保持部1の内部を通るように配置される。低温恒温水循環装置から送り出された不凍液は、循環水ホース7を介して、保持部1の内部を通過し、低温恒温水循環装置に流入する。循環水ホース7の外周面は、保温性を有するシートで被覆されており、内部を通る不凍液の温度が維持される。ただし、保持部1の内部にある循環水ホース7の外周面は、当該シートで被覆されていない。このため、保持部1の内部の温度は、循環水ホース7内を通る不凍液との間の熱伝導によって、低温恒温水循環装置から供給された不凍液の温度とほぼ等しくなる。このように温度制御部3によって、焼酎酵母Y1及び焼酎酵母Y2の環境の温度が制御される。 The circulating water hose 7 is arranged so as to pass through the inside of the holding unit 1. The antifreeze solution sent from the low temperature constant temperature water circulating device passes through the inside of the holding portion 1 via the circulating water hose 7 and flows into the low temperature constant temperature water circulating device. The outer peripheral surface of the circulating water hose 7 is covered with a sheet having a heat retaining property, and the temperature of the antifreezing liquid passing through the inside is maintained. However, the outer peripheral surface of the circulating water hose 7 inside the holding portion 1 is not covered with the sheet. Therefore, the temperature inside the holding portion 1 becomes substantially equal to the temperature of the antifreeze liquid supplied from the low temperature constant temperature water circulating device by heat conduction with the antifreeze liquid passing through the circulating water hose 7. In this way, the temperature control unit 3 controls the temperature of the environment of the shochu yeast Y 1 and the shochu yeast Y 2 .
温度監視部4は、焼酎酵母Y1及び焼酎酵母Y2の環境の温度を監視する。例えば、温度監視部4は、温度センサ8を備える。温度センサ8は、保持部1の内部、好ましくは容器5の中に設置される。温度センサ8としては、磁場印加部2によって印加される直流磁場の影響をほとんど受けない白金ロジウム製の熱電対を用いたものが好ましい。温度監視部4は、温度センサ8で検出した温度を、例えばデータロガーなどに記録するようにしてもよい。温度監視部4が焼酎酵母Y1及び焼酎酵母Y2の環境の温度を監視することで、使用者は、保持部1に保持された焼酎酵母Y1及び焼酎酵母Y2の環境の温度を確認することができる。 The temperature monitoring unit 4 monitors the temperature of the environment of the shochu yeast Y 1 and the shochu yeast Y 2 . For example, the temperature monitoring unit 4 includes a temperature sensor 8. The temperature sensor 8 is installed inside the holding unit 1, preferably in the container 5. As the temperature sensor 8, it is preferable to use a platinum-rhodium thermocouple that is hardly affected by the DC magnetic field applied by the magnetic field applying unit 2. The temperature monitoring unit 4 may record the temperature detected by the temperature sensor 8 in, for example, a data logger. The temperature monitoring unit 4 monitors the temperature of the environment of the shochu yeast Y 1 and the shochu yeast Y 2 , so that the user confirms the temperature of the environment of the shochu yeast Y 1 and the shochu yeast Y 2 held in the holding unit 1. can do.
本実施の形態に係るアルコール製造装置100によれば、使用する焼酎酵母Y1及び焼酎酵母Y2の磁場感受特性に応じて、磁場印加部2が焼酎酵母Y1及び焼酎酵母Y2に印加する直流磁場の磁束密度及び直流磁場を印加する時間と、温度制御部3が制御する焼酎酵母の環境の温度とを適宜設定することができる。 According to alcohol production apparatus 100 according to the present embodiment, magnetic field application unit 2 applies to shochu yeast Y 1 and shochu yeast Y 2 in accordance with the magnetic field sensing characteristics of shochu yeast Y 1 and shochu yeast Y 2 to be used. The magnetic flux density of the DC magnetic field, the time for applying the DC magnetic field, and the temperature of the environment of the shochu yeast controlled by the temperature control unit 3 can be appropriately set.
下記実施例に示すように、鹿児島5号酵母(H5酵母)及び鹿児島2号酵母(K2酵母)は、ゼロ磁場の場合と比較して、6〜10テスラ、特には7〜9テスラ、さらに特定すると8テスラの直流磁場において増殖が10〜20%抑制される。一方、鹿児島4号酵母(C4酵母)は、ゼロ磁場の場合と比較して、4〜6テスラ、特には5テスラの直流磁場において増殖が10〜12%抑制される。そこで、例えば、焼酎酵母Y1が鹿児島5号酵母又は鹿児島2号酵母であって、焼酎酵母Y2が鹿児島4号酵母の場合、磁場印加部2は、TAにおいて8テスラの直流磁場を印加し、TBにおいて5テスラの直流磁場を印加する。こうすることで、TAでは、鹿児島4号酵母によるアルコール発酵を維持しつつ、鹿児島5号酵母のアルコール発酵を抑制できる。その後、TBでは、鹿児島5号酵母によるアルコール発酵を維持しつつ、鹿児島4号酵母のアルコール発酵を抑制できる。 As shown in the examples below, Kagoshima No. 5 yeast (H5 yeast) and Kagoshima No. 2 yeast (K2 yeast) are 6 to 10 Tesla, particularly 7 to 9 Tesla, more specifically compared to the case of zero magnetic field. Then, the proliferation is suppressed by 10 to 20% in the DC magnetic field of 8 Tesla. On the other hand, the growth of Kagoshima No. 4 yeast (C4 yeast) is suppressed by 10 to 12% in a DC magnetic field of 4 to 6 Tesla, particularly 5 Tesla, as compared with the case of zero magnetic field. Therefore, for example, when the shochu yeast Y 1 is Kagoshima No. 5 yeast or Kagoshima No. 2 yeast and the shochu yeast Y 2 is Kagoshima No. 4 yeast, the magnetic field applying unit 2 applies a DC magnetic field of 8 Tesla at T A. Then, at T B , a DC magnetic field of 5 Tesla is applied. In this way, the T A, while maintaining the alcohol fermentation by Kagoshima 4 No. yeast, can be suppressed alcoholic fermentation of Kagoshima No.5 yeast. Thereafter, the T B, while maintaining the alcohol fermentation by Kagoshima No.5 yeast, can be suppressed alcoholic fermentation Kagoshima No.4 yeast.
次に、焼酎酵母Y1が鹿児島5号酵母であって、焼酎酵母Y2が鹿児島4号酵母の場合を例に、図3に示す磁場印加処理のフローチャートを参照しながらアルコール製造装置100の動作について説明する。 Next, taking the case where the shochu yeast Y 1 is Kagoshima No. 5 yeast and the shochu yeast Y 2 is Kagoshima No. 4 yeast as an example, the operation of the alcohol production apparatus 100 with reference to the flowchart of the magnetic field application process shown in FIG. 3. Will be described.
磁場印加部2は、時刻(t)がt0になるのを待つ(ステップS1;No)。時刻がt0になると(ステップS1;Yes)、磁場印加部2は、鹿児島5号酵母及び鹿児島4号酵母を含む原料を収容した容器5が挿入された保持部1に、8テスラの直流磁場を印加する(ステップS2)。次に、磁場印加部2は、時刻がt1になるまで(ステップS3;No)、直流磁場の印加を継続する。時刻がt1になると(ステップS3;Yes)、磁場印加部2は、保持部1への直流磁場の印加を停止する(ステップS4)。 The magnetic field application unit 2 waits until the time (t) reaches t 0 (step S1; No). When the time reaches t 0 (step S1; Yes), the magnetic field applying unit 2 causes the holding unit 1 in which the container 5 containing the raw material containing the Kagoshima No. 5 yeast and the Kagoshima No. 4 yeast is inserted into the holding unit 1 to generate a direct magnetic field of 8 Tesla. Is applied (step S2). Next, the magnetic field application unit 2 continues to apply the DC magnetic field until the time reaches t 1 (step S3; No). When the time reaches t 1 (step S3; Yes), the magnetic field applying unit 2 stops the application of the DC magnetic field to the holding unit 1 (step S4).
続いて、磁場印加部2は、時刻がt2になるのを待つ(ステップS5;No)。時刻がt2になると(ステップS5;Yes)、磁場印加部2は、保持部1に5テスラの直流磁場を印加する(ステップS6)。磁場印加部2は、時刻がt3になるまで(ステップS7;No)、直流磁場の印加を継続する。時刻がt3になると(ステップS7;Yes)、磁場印加部2は、磁場印加処理を終了する。 Then, the magnetic field application unit 2 waits until the time becomes t 2 (step S5; No). When the time reaches t 2 (step S5; Yes), the magnetic field applying unit 2 applies a DC magnetic field of 5 Tesla to the holding unit 1 (step S6). The magnetic field application unit 2 continues to apply the DC magnetic field until the time reaches t 3 (step S7; No). When the time reaches t 3 (step S7; Yes), the magnetic field applying unit 2 ends the magnetic field applying process.
以上詳細に説明したように、本実施の形態に係るアルコール製造装置100は、磁場感受性が相互に異なる焼酎酵母Y1及び焼酎酵母Y2に、異なる時間各々において異なる磁束密度の直流磁場を印加するため、焼酎酵母Y1及び焼酎酵母Y2の増殖を選択的に制御できる。これにより、複数種の焼酎酵母によるアルコール発酵を柔軟に制御できる。 As described in detail above, the alcohol production device 100 according to the present embodiment applies a DC magnetic field having different magnetic flux densities at different times to the shochu yeast Y 1 and the shochu yeast Y 2 having different magnetic field sensitivities. Therefore, it is possible to selectively control the growth of the shochu yeast Y 1 and the shochu yeast Y 2 . This makes it possible to flexibly control alcohol fermentation by a plurality of types of shochu yeast.
例えば、焼酎酵母Y1のアルコール発酵で得られる焼酎と焼酎酵母Y2のアルコール発酵で得られる焼酎との間で香味、風味、口当たり及び味わいが異なる場合、上述のTA及びTBの長さを適宜調整することで、香味、風味、口当たり及び味わいのバランスを容易に調整することができる。 For example, flavor between shochu obtained by alcoholic fermentation of shochu shochu yeast Y 2 obtained by alcoholic fermentation of shochu yeast Y 1, flavor, if mouthfeel and taste are different, the length of the above T A and T B By appropriately adjusting, the balance of flavor, flavor, mouthfeel and taste can be easily adjusted.
なお、本実施の形態では酵母として焼酎酵母Y1、Y2を使用したが、糖を分解してアルコールを生成する酵母であれば限定されない。アルコール製造装置100に用いる酵母としては、例えば、清酒酵母、ビール酵母、ウイスキー酵母及びワイン酵母等が挙げられる。清酒、ビール、ウイスキー及びワイン等でも、直流磁場が印加された場合の、使用する酵母の増殖の抑制度を評価し、TA及びTBの長さを適宜決定することで、香味、風味、口当たり及び味わいを調整できる。 In the present embodiment, shochu yeasts Y 1 and Y 2 are used as yeasts, but the yeasts are not limited as long as they decompose sugars to produce alcohol. Examples of yeasts used in the alcohol production apparatus 100 include sake yeast, brewer's yeast, whiskey yeast, and wine yeast. Even in sake, beer, whiskey, wine, etc., when the direct-current magnetic field is applied, the degree of inhibition of the growth of the yeast used is evaluated, and the length of T A and T B is appropriately determined to determine the flavor, flavor, The texture and taste can be adjusted.
TAはTBの一部と重なってもよいし、TBはTAの一部と重なってもよい。また、t1とt2とが同時刻であって、TAとTBとが連続してもよい。また、使用する酵母は、2種類に限らず、3種類以上であってもよい。 T A is may be overlapped with a portion of the T B, T B may overlap with a portion of T A. Further, t 1 and t 2 may be the same time, and T A and T B may be continuous. In addition, the yeast used is not limited to two types and may be three or more types.
また、本実施の形態に係るアルコール製造装置100は、磁場の磁束密度、磁場を印加する時間及び焼酎酵母Y1及び焼酎酵母Y2の環境の温度を制御できるため、焼酎酵母Y1及び焼酎酵母Y2と雑菌との磁場感受性の違いを利用して、雑菌の増殖を抑制することができる。すなわち、焼酎酵母Y1及び焼酎酵母Y2の増殖が促進されるが、雑菌の増殖が抑制される磁場の磁束密度、磁場を印加する時間及び焼酎酵母の環境の温度に調整することで、抗菌作用を得ながらアルコール発酵を効率化できる。 Further, since the alcohol production device 100 according to the present embodiment can control the magnetic flux density of the magnetic field, the time for applying the magnetic field, and the temperature of the environment of the shochu yeast Y 1 and the shochu yeast Y 2 , the shochu yeast Y 1 and the shochu yeast. By utilizing the difference in magnetic field sensitivity between Y 2 and miscellaneous bacteria, the growth of miscellaneous bacteria can be suppressed. That is, the growth of the shochu yeast Y 1 and the shochu yeast Y 2 is promoted, but the magnetic flux density of the magnetic field in which the growth of miscellaneous bacteria is suppressed, the time for applying the magnetic field, and the temperature of the environment of the shochu yeast are adjusted to prevent The alcohol fermentation can be made efficient while obtaining the action.
なお、容器5は、上述の合成樹脂の他に、磁場印加部2によって印加される直流磁場に影響しない任意の物質で形成されてもよい。また、保持部1は、焼酎酵母Y1及び焼酎酵母Y2を含むアルコール発酵の原料が循環する流路を備えてもよい。該流路を、磁場印加部2による磁場の空間の大きさに応じて形成することで、焼酎酵母Y1及び焼酎酵母Y2に直流磁場を効率よく印加することができる。 The container 5 may be made of any material other than the synthetic resin described above, which does not affect the DC magnetic field applied by the magnetic field applying unit 2. In addition, the holding unit 1 may include a flow path in which a raw material for alcohol fermentation containing the shochu yeast Y 1 and the shochu yeast Y 2 circulates. By forming the flow path in accordance with the size of the space of the magnetic field by the magnetic field applying unit 2 , the DC magnetic field can be efficiently applied to the shochu yeast Y 1 and the shochu yeast Y 2 .
また、磁場印加部2は、直流磁場を印加できるものであれば、超伝導マグネット6に限らず、電磁石及び永久磁石磁気回路等を使用して、焼酎酵母Y1及び焼酎酵母Y2に直流磁場を印加してもよい。なお、上記の低温恒温水循環装置では、不凍液を使用したが、これに限らず、水、エタノールなどを用いてもよい。 In addition, the magnetic field application unit 2 is not limited to the superconducting magnet 6 as long as it can apply a DC magnetic field, and uses an electromagnet and a permanent magnet magnetic circuit or the like to apply a DC magnetic field to the shochu yeast Y 1 and the shochu yeast Y 2. May be applied. Although the antifreeze liquid is used in the low temperature constant temperature water circulating device, the invention is not limited to this, and water, ethanol or the like may be used.
なお、下記実施例に示すように、磁場の印加による焼酎酵母Y1及び焼酎酵母Y2の増殖の抑制は、磁場によって焼酎酵母Y1及び焼酎酵母Y2が死滅するためではなく、焼酎酵母Y1及び焼酎酵母Y2の増殖の速度を遅らせるためであると考えられる。したがって、例えば、焼酎酵母Y1が増殖しすぎたら、磁場印加部2が焼酎酵母Y1に磁場を印加することで焼酎酵母Y1の増殖を抑制し、焼酎酵母Y1を再び成長及び増殖させたい場合は、磁場印加部2が焼酎酵母Y1への磁場の印加を停止したり、磁束密度を小さくしたりして焼酎酵母Y1の成長及び増殖を促進してもよい。 In addition, as shown in the following examples, the suppression of the growth of shochu yeast Y 1 and shochu yeast Y 2 by the application of a magnetic field is not due to the fact that the shochu yeast Y 1 and shochu yeast Y 2 are killed by the magnetic field, but the shochu yeast Y 2. It is believed that this is because the growth rate of 1 and shochu yeast Y 2 is delayed. Thus, for example, when shochu yeast Y 1 is too proliferate, the magnetic field application unit 2 suppresses the growth of shochu yeast Y 1 by applying a magnetic field to the shochu yeast Y 1, shochu yeast Y 1 is again growth and proliferation If you prefer, the magnetic field applying unit 2 and stop the application of a magnetic field to the shochu yeast Y 1, may be or reduce the magnetic flux density promotes the growth and proliferation of shochu yeast Y 1.
なお、温度監視部4は、タイマーを参照し、温度センサ8で検出した温度を示すデータを、一定の時間間隔で温度制御部3に出力してもよい。温度制御部3は、温度監視部4から出力されたデータに基づいて、保持部1に保持された焼酎酵母の環境の温度を制御してもよい。これにより、焼酎酵母の環境の温度変化に応じて焼酎酵母の環境の温度を制御できる。 The temperature monitoring unit 4 may refer to the timer and output data indicating the temperature detected by the temperature sensor 8 to the temperature control unit 3 at regular time intervals. The temperature control section 3 may control the temperature of the environment of the shochu yeast held in the holding section 1 based on the data output from the temperature monitoring section 4. Thereby, the temperature of the environment of the shochu yeast can be controlled according to the temperature change of the environment of the shochu yeast.
なお、上記各実施の形態において、実行されるソフトウェアプログラムは、フレキシブルディスク、CD−ROM(Compact Disc Read−Only Memory)、DVD(Digital Versatile Disc)、MO(Magneto−Optical disc)などのコンピュータで読み取り可能な記録媒体に格納して配布し、そのプログラムをインストールすることにより、上述の動作を実行するシステムを構成することとしてもよい。 In each of the above-described embodiments, the software program executed is read by a computer such as a flexible disk, a CD-ROM (Compact Disc Read-Only Memory), a DVD (Digital Versatile Disc), or an MO (Magneto-Optical disc). A system that executes the above-described operation may be configured by storing the program in a possible recording medium, distributing the program, and installing the program.
以下の実施例により、本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the examples.
(アルコール製造装置の作製)
通気性のある培養栓で栓をした試験管(以下、「試料用容器」とする)を挿入可能に形成した内径約45mmの中空の発泡プラスチックの内部に、循環水ホースを試料用容器と同一空間内に配置されるように挿入し、恒温試料室を作製した。恒温試料室は、直径50mm以内とした。なお、同様の構成で、磁場を印加しない恒温試料室を独立して作製した。上記発泡プラスチック内部の部分を除く循環水ホースの外周面を、保温シートで被覆した。循環水ホースを温度コントローラ付恒温水循環装置(NCB−1200、東京理化器械社製)に接続し、温度コントローラ付恒温水循環装置で温度が制御された不凍液が循環水ホース内を循環できるようにした。
(Production of alcohol production equipment)
A circulating water hose is the same as the sample container inside a hollow foamed plastic with an inner diameter of about 45 mm that is formed so that a test tube (hereinafter referred to as “sample container”) capped with a breathable culture stopper can be inserted. It was inserted so as to be placed in the space, and a constant temperature sample chamber was prepared. The constant temperature sample chamber had a diameter of 50 mm or less. In addition, a constant temperature sample chamber to which a magnetic field was not applied was independently prepared with the same configuration. The outer peripheral surface of the circulating water hose excluding the inside of the foamed plastic was covered with a heat insulating sheet. The circulating water hose was connected to a constant temperature water circulating device with a temperature controller (NCB-1200, manufactured by Tokyo Rikakikai Co., Ltd.) so that the antifreeze liquid whose temperature was controlled by the constant temperature water circulating device with a temperature controller could circulate in the circulating water hose.
試料用容器内の温度を検出できるように、温度センサとしてR熱電対(太さ1mmかつ長さ300mmを2本及び太さ1mmかつ長さ400mmを1本、CHINO社製)をデータロガー(midiLOGGER、GL200A、グラフィック社製)と接続した。一方、磁場を印加しない恒温試料室の挿入される試料用容器内の温度は、K熱電対(太さ1mmかつ長さ300mmを3本、CHINO社製)で検出した。また、K熱電対(太さ3mmかつ長さ100mmを1本、CHINO社製)を用いて、室温を測定した。 As a temperature sensor, an R thermocouple (two 1 mm thick and 300 mm long and one 1 mm thick and 400 mm long, manufactured by CHINO) as a temperature sensor is used as a data logger (midilogger) so that the temperature inside the sample container can be detected. , GL200A, manufactured by Graphic Co., Ltd.). On the other hand, the temperature in the sample container inserted into the constant temperature sample chamber to which no magnetic field is applied was detected by a K thermocouple (thickness 1 mm and length 300 mm, three pieces, manufactured by CHINO). In addition, the room temperature was measured using a K thermocouple (one having a thickness of 3 mm and a length of 100 mm, manufactured by CHINO).
室温実験空間を有する超伝導マグネット(MINI−CFM−8T−50、日本オートマチック・コントロール社製及びJMTD−15T52、ジャパンスーパーコンダクターテクノロジー社製)の磁場が適正に及ぶ位置に上記で作製した恒温試料室を設置した。磁場を印加しない恒温試料室は、当該超伝導マグネットの磁場の影響を受けない位置に設置した。 A constant temperature sample chamber prepared above in a position where the magnetic field of a superconducting magnet (MINI-CFM-8T-50, manufactured by Japan Automatic Control Co., Ltd. and JMTD-15T52, manufactured by Japan Superconductor Technology Co., Ltd.) having a room temperature experimental space is appropriately applied. Was installed. The constant temperature sample chamber to which no magnetic field was applied was placed at a position where it was not affected by the magnetic field of the superconducting magnet.
上記の温度コントローラ付恒温水循環装置によって、恒温試料室内の温度は、0.5℃の温度調節精度で0〜40℃に24時間以上制御されることを確認した。 It was confirmed that the temperature inside the constant temperature sample chamber was controlled to 0 to 40 ° C for 24 hours or more with the temperature adjustment accuracy of 0.5 ° C by the constant temperature water circulating device with the temperature controller.
(実験方法)
まず、グルコース、ペプトン及び乾燥酵母を2:2:1の割合で混合撹拌し滅菌処理を行うことでYeast Peptone Dextrose培地(以下、「YPD培地」とする)を調製した。YPD培地3mlに酵母菌を植菌した。前培養として、30℃で48時間培養することで酵母液を調製した。3mlの新たなYPD培地に、調製した酵母液30μlを植菌し、以下、これを試料として使用した。なお、使用した酵母菌は、鹿児島2号酵母(K2酵母)、鹿児島4号酵母(C4酵母)及び鹿児島5号酵母(H5酵母)である。
(experimental method)
First, glucose, peptone, and dry yeast were mixed and stirred at a ratio of 2: 2: 1 and sterilized to prepare a Yeast Peptone Dextrose medium (hereinafter, referred to as “YPD medium”). Yeast was inoculated into 3 ml of YPD medium. As a preculture, a yeast solution was prepared by culturing at 30 ° C. for 48 hours. 3 ml of a fresh YPD medium was inoculated with 30 μl of the prepared yeast solution, which was used as a sample hereinafter. The yeasts used were Kagoshima No. 2 yeast (K2 yeast), Kagoshima No. 4 yeast (C4 yeast) and Kagoshima No. 5 yeast (H5 yeast).
次に、超伝導マグネットによる磁場が目標の磁束密度に達してから、試料を含む試料用容器を恒温試料室に挿入した。これと同時に磁場を印加しない恒温試料室にも試料を含む試料用容器を挿入した。続いて、30分間で試料を30℃に昇温し、酵母菌を24時間培養した。 Next, after the magnetic field generated by the superconducting magnet reached the target magnetic flux density, the sample container containing the sample was inserted into the constant temperature sample chamber. At the same time, the sample container containing the sample was inserted into the constant temperature sample chamber to which no magnetic field was applied. Subsequently, the sample was heated to 30 ° C. for 30 minutes, and the yeast was cultured for 24 hours.
培養後、血球計算盤を用いて、磁場中で培養した酵母菌の個数及び磁場を印加せずに同じ条件で培養した酵母菌の個数を、それぞれ計数した。 After culturing, the number of yeasts cultivated in a magnetic field and the number of yeasts cultivated under the same conditions without applying a magnetic field were counted using a hemocytometer.
(結果)
図4は、磁場を印加せずに30℃で24時間培養した場合の酵母菌の個数に対する磁場中30℃で24時間培養した場合における酵母菌の個数の割合を示す。
(result)
FIG. 4 shows the ratio of the number of yeasts when cultured at 30 ° C. for 24 hours in a magnetic field to the number of yeasts when cultured at 30 ° C. for 24 hours without applying a magnetic field.
H5酵母及びK2酵母において、ゼロ磁場に対する磁場中の全酵母菌の個数の割合は、8テスラで最小となり、H5酵母で81%まで、K2酵母で87%まで減少した。8テスラを超える磁束密度の磁場においては、H5酵母及びK2酵母のゼロ磁場に対する磁場中の全酵母菌の個数の割合は回復し、15テスラでそれぞれ92%及び98%であった。 In H5 yeast and K2 yeast, the ratio of the total number of yeasts in the magnetic field to the zero magnetic field was minimized at 8 tesla, and decreased to 81% for H5 yeast and 87% for K2 yeast. In a magnetic field having a magnetic flux density of more than 8 Tesla, the ratio of the total number of yeasts in the magnetic field to the zero magnetic field of H5 yeast and K2 yeast was recovered to be 92% and 98% at 15 Tesla, respectively.
C4酵母において、ゼロ磁場に対する磁場中の全酵母菌の個数の割合は、4〜5テスラで最小となり、約90%まで減少した。5テスラを超える磁束密度の磁場においては、HC4酵母のゼロ磁場に対する磁場中の全酵母菌の個数の割合は回復し、8テスラ以上で約100%であった。 In C4 yeast, the ratio of the total number of yeasts in the magnetic field to the zero magnetic field was the minimum at 4 to 5 Tesla, and decreased to about 90%. In a magnetic field having a magnetic flux density of more than 5 Tesla, the ratio of the total number of yeasts in the magnetic field to the zero magnetic field of HC4 yeast was recovered to about 100% at 8 Tesla or more.
本実施例により、H5酵母、K2酵母及びC4酵母の増殖の抑制度に関する知見が得られた。増殖の抑制度に応じてH5酵母、K2酵母及びC4酵母に印加する磁場及び印加する時間を制御することで、H5酵母、K2酵母及びC4酵母によるアルコール発酵を柔軟にかつ精密に制御することができる。これにより、複数種の焼酎酵母を用いて所望の香味、風味及び味わいを有する焼酎を製造することができる。 This example provided the knowledge regarding the degree of inhibition of the growth of H5 yeast, K2 yeast and C4 yeast. It is possible to flexibly and precisely control alcohol fermentation by H5 yeast, K2 yeast and C4 yeast by controlling the magnetic field and time to be applied to H5 yeast, K2 yeast and C4 yeast according to the degree of growth inhibition. it can. This makes it possible to produce shochu having a desired flavor, flavor, and taste using a plurality of types of shochu.
上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. That is, the scope of the present invention is shown not by the embodiments but by the scope of the claims. Various modifications made within the scope of the claims and the scope of the invention equivalent thereto are considered to be within the scope of the present invention.
本発明は、酵母によるアルコールの製造、特には焼酎の製造に好適である。 INDUSTRIAL APPLICABILITY The present invention is suitable for producing alcohol by yeast, particularly for producing shochu.
1 保持部
2 磁場印加部
3 温度制御部
4 温度監視部
5 容器
6 超伝導マグネット
7 循環水ホース
8 温度センサ
100 アルコール製造装置
1 holding unit 2 magnetic field applying unit 3 temperature control unit 4 temperature monitoring unit 5 container 6 superconducting magnet 7 circulating water hose 8 temperature sensor 100 alcohol production device
Claims (5)
前記保持部に保持された前記酵母に、異なる時間各々において異なる磁束密度の直流磁場を印加する磁場印加部と、
を備える、アルコール製造装置。 A holding unit that holds a plurality of types of yeasts having different magnetic field sensitivities,
The yeast held in the holding unit, a magnetic field applying unit for applying a DC magnetic field of different magnetic flux density at different times, respectively,
An alcohol manufacturing apparatus comprising:
直流磁場が印加された場合の前記酵母の増殖の抑制度である、
請求項1に記載のアルコール製造装置。 The magnetic field sensitivity is
The degree of inhibition of the yeast growth when a direct current magnetic field is applied,
The alcohol production apparatus according to claim 1.
鹿児島5号酵母及び鹿児島2号酵母の少なくとも一方、並びに鹿児島4号酵母であって、
前記磁場印加部は、
第1の時間に4〜6テスラの直流磁場を印加し、
前記第1の時間と異なる第2の時間に7〜9テスラの直流磁場を印加する、
請求項1又は2に記載のアルコール製造装置。 The yeast is
At least one of Kagoshima No. 5 yeast and Kagoshima No. 2 yeast, and Kagoshima No. 4 yeast,
The magnetic field applying unit,
Applying a DC magnetic field of 4-6 Tesla in the first time,
Applying a DC magnetic field of 7 to 9 Tesla at a second time different from the first time;
The alcohol production apparatus according to claim 1 or 2.
を含む、アルコール製造方法。 A magnetic field applying step of applying a DC magnetic field having different magnetic flux densities at different times to a plurality of yeasts having different magnetic field sensitivities,
A method for producing alcohol, comprising:
前記保持部に保持された前記酵母に、異なる時間各々において異なる磁束密度の直流磁場を印加する磁場印加部、
として機能させる、プログラム。 A computer for controlling an alcohol production apparatus having a holding unit for holding a plurality of types of yeasts having different magnetic field sensitivities,
The yeast held in the holding unit, a magnetic field applying unit for applying a DC magnetic field of different magnetic flux density at different times,
A program that functions as a.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016143198A JP6694611B2 (en) | 2016-07-21 | 2016-07-21 | Alcohol production apparatus, alcohol production method and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016143198A JP6694611B2 (en) | 2016-07-21 | 2016-07-21 | Alcohol production apparatus, alcohol production method and program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018011551A JP2018011551A (en) | 2018-01-25 |
JP6694611B2 true JP6694611B2 (en) | 2020-05-20 |
Family
ID=61018872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016143198A Active JP6694611B2 (en) | 2016-07-21 | 2016-07-21 | Alcohol production apparatus, alcohol production method and program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6694611B2 (en) |
-
2016
- 2016-07-21 JP JP2016143198A patent/JP6694611B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018011551A (en) | 2018-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Manivannan et al. | Optimization of process parameters for the osmotic dehydration of beetroot in sugar solution | |
Zareba et al. | Volatile profile of non-fermented milk and milk fermented by Bifidobacterium animalis subsp. lactis | |
Yang et al. | Textural properties of stinky mandarin fish (Siniperca chuatsi) during fermentation: effects of the state of moisture | |
Muyanja et al. | Organic acids and volatile organic compounds produced during traditional and starter culture fermentation of Bushera, a Ugandan fermented cereal beverage | |
Pietrzak et al. | Effects of high pressure treatment on the quality of cooked pork ham prepared with different levels of curing ingredients | |
JP6694611B2 (en) | Alcohol production apparatus, alcohol production method and program | |
Sarica et al. | Effect of frozen storage on some characteristics of kefir samples made from cow’s and goat’s milk | |
Cruciata et al. | Ecology of Vastedda della valle del Belìce cheeses: A review and recent findings to stabilize the traditional production | |
Alwazeer et al. | Behavior of Lactobacillus plantarum and Saccharomyces cerevisiae in fresh and thermally processed orange juice | |
De OCA‐FLORES et al. | Oaxaca cheese: Manufacture process and physicochemical characteristics | |
Corrieu et al. | Positive effects of sequential air ventilation on cooked hard Graviera cheese ripening in an industrial ripening room | |
Michel et al. | Optimisation of yeast vitality measurement to better predict fermentation performance | |
JP6632021B2 (en) | Shochu manufacturing method | |
Chen et al. | Process optimization for a novel kefir candy with high probiotic viability | |
Zajšek et al. | Effect of natural starter culture activity on ethanol content in fermented dairy products | |
Liu et al. | Comparison of volatile and non-volatile metabolites in sufu produced with bacillus licheniformis by rapid fermentation | |
El-Deeb et al. | Preparation and properties of flavored fermented beverage based on partial or complete replacement of milk with Quinoa Seeds Water Extract (QSWE). | |
CN108450769A (en) | A kind of production method of ambient temperature instant rice | |
KR101699538B1 (en) | Fabrication of cold brew coffee | |
Yang et al. | Preparation of high-quality fermented fish product | |
Li et al. | Biogenic amines content changes during storage and establishment of shelf life prediction model of red bean curd | |
CN110973243A (en) | Method for brewing tea, coffee and plant-flavored old yoghourt at present | |
Possas et al. | From Cheese-Making to Consumption: Exploring the Microbial Safety of Cheeses through Predictive Microbiology Models. Foods 2021, 10, 355 | |
Nomura et al. | High hydrostatic pressure pasteurization of a draft sake brewed using a Niigata-sake yeast | |
Vijayalakshmi et al. | EXTENSION OF THE SHELF‐LIFE OF BURFI BY PACKAGING |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20160804 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190624 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200319 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200406 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6694611 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |