Nothing Special   »   [go: up one dir, main page]

JP6692010B2 - ラジカル吸着輸送を援用した加工方法及びその装置 - Google Patents

ラジカル吸着輸送を援用した加工方法及びその装置 Download PDF

Info

Publication number
JP6692010B2
JP6692010B2 JP2018503072A JP2018503072A JP6692010B2 JP 6692010 B2 JP6692010 B2 JP 6692010B2 JP 2018503072 A JP2018503072 A JP 2018503072A JP 2018503072 A JP2018503072 A JP 2018503072A JP 6692010 B2 JP6692010 B2 JP 6692010B2
Authority
JP
Japan
Prior art keywords
tool
radical
processing
workpiece
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018503072A
Other languages
English (en)
Other versions
JPWO2017150308A1 (ja
Inventor
泰久 佐野
泰久 佐野
和人 山内
和人 山内
俊亘 宮崎
俊亘 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEC Corp
Toho Engineering Co Ltd
Original Assignee
JTEC Corp
Toho Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEC Corp, Toho Engineering Co Ltd filed Critical JTEC Corp
Publication of JPWO2017150308A1 publication Critical patent/JPWO2017150308A1/ja
Application granted granted Critical
Publication of JP6692010B2 publication Critical patent/JP6692010B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、ラジカル吸着輸送を援用した加工方法及びその装置に係わり、更に詳しくはSiを始めSiCやGaN、ダイヤモンド等のワイドバンドギャップ半導体基板等を平坦化加工若しくは任意形状加工することが可能なラジカル吸着輸送を援用した加工方法及びその装置に関するものである。
現在、半導体デバイスには主にSiが使用されているが、その性能はSiの物性値による限界に近づきつつある。そのため、炭化珪素(SiC)、窒化ガリウム(GaN)、ダイヤモンドに代表されるワイドバンドギャップ半導体が注目されている。これらのパワー半導体デバイス材料はバンドギャップ、絶縁破壊電界値、熱伝導率、電子移動度といった物性値がSiと比較して数倍〜数十倍大きいため、これらの材料を用いてパワーデバイスを作製した場合、高耐圧で消費電力の低減,高速動作等の実現が可能になる。これらの利点から、ワイドバンドギャップ半導体は次世代パワー半導体デバイス分野を牽引する材料として期待されている。
しかし、半導体パワーデバイスを作製する上で表面の結晶性が重要となる半導体基板の平坦化は必須であり、SiCやGaN、ダイヤモンド等のワイドバンドギャップ半導体基板は硬く脆いことから、従来の機械的加工ではダメージを与えることなく高効率な平坦化は困難である。P−CVM(Plasma Chemical Vaporization Machining)は、大気圧雰囲気下でのプラズマを用いた化学的な加工方法であり、その高いラジカル密度から高効率で且つ結晶にダメージを与えることない加工が可能である(特許文献1、2)。しかし、プラズマによる加工は本質的に等方性エッチングであり、面方向全体を加工してしまうため、凹凸のある被加工物表面を高能率に平坦化には向かない。
そこで我々は、化学的研磨法の表面粗さの悪化という欠点を研磨定盤に基準面となる触媒を用いることで改善させた触媒表面基準エッチング(Catalyst-Referred Etching; CARE)法を提案している(特許文献3)。CARE法では基準面となる研磨定盤にNiやPtを用いることで触媒作用を付加し、研磨定盤近傍でのみ発生したハロゲンラジカルの助けを借りてエッチング反応が誘起されるため、凸部のみを選択的に加工することができる。さらに、エッチング反応のみによって加工が進行するため原理的にダメージは入り得ず、化学的に基準面形状の転写が可能である。現在までに、CARE加工によってSiCやGaNのステップテラス構造が実現されており、基板表面を原子レベルに平坦化可能であることが確認されている。しかし、特許文献3に記載のCARE法は、ハロゲンを含む分子が溶けた加工液、例えばフッ化水素酸を用いていたため、その取り扱いには細心の注意が必要であり、廃液や排気ガスの処理が必要になって装置構成も複雑になるといった課題があった。
また、本質的に加工液として水のみを用い、加工液に対する被加工物の電位を制御し、触媒の作用で水分子が解離して生成したOHラジカルが被加工物表面に吸着し、加水分解による分解生成物を被加工物表面から除去して加工を進行させる加工原理により、固体酸化物やSiCやGaN等のワイドバンドギャップ半導体基板等の難加工物を加工が可能なWater−CARE法が提案されている(特許文献4,5)。しかし、これらWater−CARE法は、研磨剤や砥粒を一切使用せず、廃液の処理も容易であるという優れた加工法であるが、加工速度が遅く、とりわけダイヤモンドに対する加工速度が遅く、殆ど加工できなかった。しかも基本的にウェット状態での処理であるので、ドライ状態での処理に比べて特有の問題も存在する。
特許第2521127号公報 特許第2962583号公報 特開2006−114632号公報 国際公開第2013/084934号 特開2015−173216号公報
そこで、本発明が前述の状況に鑑み、解決しようとするところは、化学反応性に富んだラジカルを利用し、Siを始めSiCやGaN、ダイヤモンド等のワイドバンドギャップ半導体基板等の難加工物を高能率に加工することができるにも係わらず、ドライ状態での処理であるので装置構成が簡単であり、その取り扱いも容易且つ安全であるラジカル吸着輸送を援用した加工方法及びその装置を提供する点にある。
本発明は、前述の課題解決のために、以下のラジカル吸着輸送を援用した加工方法及び加工装置を構成した。
(1)
化学反応性に富んだラジカルに対して耐食性と吸着能を備えた表面を有する可動工具の該表面を、少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを用いて発生させたプラズマの発生領域を通過させ、該プラズマ発生領域で生成したラジカルを前記工具表面に吸着させて反応活性種を付与し、該工具の移動によって該工具表面の前記反応活性種を前記プラズマ発生領域とは異なる位置に配置した被加工物表面まで輸送し、該工具と接触した被加工物表面の原子と反応活性種との化学反応によって生成した反応生成物を除去することにより、該工具表面を加工基準面として被加工物表面の該工具表面と接触した部分のみを選択的に加工することを特徴とするラジカル吸着輸送を援用した加工方法。
(2)
前記ラジカルを生成する元素がF又はClのハロゲン元素であり、前記ラジカルがFラジカル又はClラジカルである(1)記載のラジカル吸着輸送を援用した加工方法。
(3)
前記ラジカルを生成する置換基がOH基であり、前記ラジカルがOHラジカルである(1)記載のラジカル吸着輸送を援用した加工方法。
(4)
前記工具の少なくとも表面がNiで形成されている(1)〜(3)何れか1に記載のラジカル吸着輸送を援用した加工方法。
(5)
前記工具の表面がアルミナ又はイットリアのコーティング層となっている(1)〜(3)何れか1に記載のラジカル吸着輸送を援用した加工方法。
(6)
前記工具が回転定盤工具であり、該回転定盤工具表面を加工基準面として被加工物表面を平坦化加工する(1)記載のラジカル吸着輸送を援用した加工方法。
(7)
前記工具が回転軸を備えた球状回転工具であり、該球状回転工具の外周部の近傍においてプラズマを発生させて、該球状回転工具の外周部にラジカルを吸着させ、該球状回転工具のプラズマ発生領域とは異なる外周部を被加工物表面に所定圧力で接触させながら回転させるとともに、該接触部を被加工物表面上で数値制御走査して任意形状に加工する(1)記載のラジカル吸着輸送を援用した加工方法。
(8)
化学反応性に富んだラジカルに対して耐食性と吸着能を備えた表面を有する回転定盤工具と、
前記回転定盤工具の表面に対して所定ギャップを設けて配置した電極ヘッドと、
前記電極ヘッドに少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給するガス供給手段と、
前記電極ヘッドに高周波電界を印加して前記ギャップでプラズマを発生させる高周波電源と、
プラズマ発生領域で生成したラジカルを吸着して反応活性種が付与された前記回転定盤工具表面の回転方向前方に被加工物を保持し、該被加工物を所定圧力で回転定盤工具表面に接触させるワークホルダーと、
を備え、前記回転定盤工具表面を加工基準面として被加工物表面を平坦化加工することを特徴とするラジカル吸着輸送を援用した加工装置。
(9)
回転軸を備えるとともに、少なくとも外周部表面に化学反応性に富んだラジカルに対して耐食性と吸着能を備えている球状回転工具と、
前記球状回転工具の外周部に対して所定ギャップを設けて配置した電極と、
前記電極に少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給するガス供給手段と、
前記電極に高周波電界を印加して前記ギャップでプラズマを発生させる高周波電源と、
プラズマ発生領域で生成したラジカルを吸着して反応活性種が付与された前記球状回転工具のプラズマ発生領域とは異なる外周部を、被加工物表面に所定圧力で接触させた状態で、前記球状回転工具と被加工物とを相対的に数値制御走査する走査手段と、
を備え、前記球状回転工具と被加工物の接触部を被加工物表面上で数値制御走査して該球状回転工具表面を加工基準面として任意形状に加工することを特徴とするラジカル吸着輸送を援用した加工装置。
(10)
前記ラジカルを生成する元素がF又はClのハロゲン元素であり、前記ラジカルがFラジカル又はClラジカルである(8)又は(9)記載のラジカル吸着輸送を援用した加工装置。
(11)
前記ラジカルを生成する置換基がOH基であり、前記ラジカルがOHラジカルである(8)又は(9)記載のラジカル吸着輸送を援用した加工装置。
(12)
前記回転定盤工具又は球状回転工具の少なくとも表面がNiで形成されている(8)又は(9)記載のラジカル吸着輸送を援用した加工装置。
(13)
前記回転定盤工具又は球状回転工具の表面がアルミナ又はイットリアのコーティング層となっている(8)又は(9)記載のラジカル吸着輸送を援用した加工装置。
以上にしてなる本発明のラジカル吸着輸送を援用した加工方法及びその装置によれば、ラジカルを吸着させる工具表面を加工基準面としたドライエッチングが実現する。ドライエッチング技術において、このような加工基準面を有する技術は他に存在しない。本発明によって高能率に単結晶材料の無歪平坦化が期待でき、例えばSiCやGaN、ダイヤモンド等のワイドバンドギャップ半導体基板等の次世代半導体基板の高品質化、低価格化が期待できる。更に、従来技術では均一な加工が困難であった、結晶成長に起因する結晶性の不均一性を有するような基板や多結晶基板等も、本発明では加工基準面の効果によって均一な加工が実現できる可能性がある。また、本発明ではプラズマは直接被加工物表面に接触しないため、耐熱温度の低い材料に対しても加工が可能と考えられる。
本発明のラジカル吸着輸送を援用した加工装置の概念図である。 同じく本発明のラジカル吸着輸送を援用した加工装置の簡略斜視図である。 本発明の第1実施形態の平坦化加工装置の簡略斜視図である。 同じく第1実施形態の平坦化加工装置の一部を示し、(a)は電極ヘッドの斜視図、(b)は電極ヘッドと被加工物の関係を示す部分断面図である。 本発明の第2実施形態の数値制御加工装置の概念を示し、(a)は正面図、(b)は側面図である。 加工実験1として、Si基板の平坦化加工実験の結果を示し、プラズマを発生させない条件での表面状態を場所と時間毎に示した白色干渉計像である。 加工実験1として、Si基板のFラジカルによる平坦化加工実験の結果を示し、プラズマを発生させた条件での表面状態を場所と時間毎に示した白色干渉計像である。 加工実験2として、SiC基板の平坦化加工実験の結果を示し、加工前と加工後の表面状態を示した白色干渉計像である。 反応ガスとしてHeと水蒸気の混合ガスを用いる場合の加工装置の概念図である。 加工実験3として、Si基板の平坦化加工実験の結果を示し、プラズマを発生させない条件での表面状態を場所と時間毎に示した白色干渉計像である。 加工実験3として、Si基板のOHラジカルによる平坦化加工実験の結果を示し、プラズマを発生させた条件での表面状態を場所と時間毎に示した白色干渉計像である。 加工実験4として、アルミナコーティング層を形成した回転定盤工具を用いたSi基板の平坦化加工実験の結果を示し、プラズマを発生させない条件での表面状態の白色干渉計像である。 加工実験4として、アルミナコーティング層を形成した回転定盤工具を用いたSi基板のFラジカルによる平坦化加工実験の結果を示し、プラズマを発生させた条件での表面状態を場所と時間毎に示した白色干渉計像である。
次に、添付図面に示した実施形態に基づき、本発明を更に詳細に説明する。図1及び図2は、本発明のラジカル吸着輸送を援用した加工装置の概念図を示し、Wは被加工物、1は回転定盤工具、2は電極ヘッド、3はガス供給手段、4は高周波電源、5はワークホルダーをそれぞれ示している。
本発明の加工原理は、以下に示す通りである。先ず、化学反応性に富んだフリーラジカル(以下、単に「ラジカル」と表わす)に対して耐食性と吸着能を備えた表面を有する可動工具(回転定盤工具1)の近傍で、少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスからなるプラズマを発生させて、該プラズマ発生領域PでラジカルRを生成する。このプラズマ発生領域Pを前記可動工具表面が通過する際に、前記ラジカルRが、該工具表面の原子に高配位し、あるいは過剰に吸着して反応活性種となり、該工具の移動によって被加工物Wの表面まで輸送される。前記工具と接触した被加工物Wの表面まで輸送された反応活性種は、該被加工物Wの表面原子側に移動し、該表面原子のバックボンドを弱めて結合して、反応生成物となる。この反応生成物が、被加工物Wの表面から除去されることにより、被加工物Wの表面原子が除去され、つまりエッチングされるというものである。
ここで、前記ラジカルを生成する元素として、F又はClのハロゲン元素が挙げられ、具体的にはハロゲン元素含有ガスは、F元素を含有するものとしてSF、CF、NF等があり、Cl元素を含有するものとしてCl、CCl、PCl等がある。ここで、前記ラジカルを生成するガスとして、Oガスを用いることも可能である。また、前記ラジカルを生成する置換基として、OH基が挙げられ、OH基を含むガスとして代表的にはHOがある。尚、前記置換基は、分子の部分構造を示し、前記フリーラジカルに対応している。そして、希ガスとしては、ヘリウムガスやアルゴンガスが挙げられる。反応ガスには、これらラジカル生成ガスと希ガスの他に、第3のガスを微量添加することもある。ここで、反応ガスの圧力Pは、大気圧を基本とするが、減圧状態若しくは真空状態であっても良いが、この場合、ラジカルRが吸着して工具表面に形成された反応活性種が工具表面から速やかに離脱することは避けなければならない。
前記回転定盤工具1の表面は、加工基準面となっている。前記回転定盤工具1の表面に用いることが可能な材料は、ラジカルに対して耐食性と吸着能を備えていることが要求され、Ni等の各種金属材料を用いることができ、また基体の表面にアルミナやイットリア等を溶射してコーティング層を形成したものでも良い。本実施形態では、前記回転定盤工具1の表面に、無電解Niめっきによって厚さ20μmのNi層6を形成したものや、溶射によってアルミナのコーティング層を形成したものを用いている。ここで、Ni層6は、無電解めっきの他に、電解めっきや真空蒸着により形成してもよい。また、前記工具1自体をバルクのNiで作製しても良い。
前記回転定盤工具1の表面に対して所定ギャップGを設けて電極ヘッド2を配置し、該電極ヘッド2と回転定盤工具1の表面とのギャップにガス供給手段3から、少なくともラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給する。前記電極ヘッド2は、中心にガス供給手段3を構成するガス流路を形成し、図示しないガスボンベにガス供給管で接続され、反応ガスを先端に向けて噴射するようになっている。
そして、前記電極ヘッド2に高周波電源4から高周波電界を印加して前記ギャップGで、前記反応ガスからなる大気圧プラズマを発生させる。尚、これら回転定盤工具1と電極ヘッド2等をチャンバー内に収容し、減圧雰囲気でプラズマを発生させても良い。通常、前記高周波電源4は、周波数が13.56MHzのRF電源を用いるが、周波数は200MHz程度までのものを用いることができる。
ここで、前記プラズマ発生領域P中で生成されたラジカルRは、前記回転定盤工具1の表面がプラズマ発生領域Pを通過する際に、表面のNi層6のNi原子に高配位し、あるいは過剰に吸着して反応活性種となり、その回転に伴って回転方向前方へ輸送される。前記回転定盤工具1のプラズマ発生領域の回転方向前方の表面には、ワークホルダー5で保持された被加工物Wを所定圧力で接触させている。これを接触圧力Pとし、加工雰囲気の圧力Pと区別する。それにより、プラズマ発生領域でNi層6に吸着し、前記回転定盤工具1の回転によって輸送されてきたラジカルRに由来する反応活性種が、前記被加工物Wと回転定盤工具1の表面との接触部で該被加工物Wの構成原子のバックボンドを弱めて結合して、反応生成物を生成し、この反応生成物が揮発し若しくは適宜な方法で除去されることにより、被加工物Wの表面が加工される。被加工物Wは、回転定盤工具1の表面に接触した凸部から選択的に加工されるので、Ni層6を加工基準面として平坦化加工される。この場合、前記ワークホルダー5を前記回転定盤工具1の回転軸と同方向の軸で回転させれば、加工が平均化されるのでより平坦度が高まる。
このように、本発明の主要構成は、ラジカル生成のためのプラズマ発生手段(電極ヘッド2、ガス供給手段3、高周波電源4)と、ラジカルを表面に吸着させて輸送する工具(回転定盤工具1)、そして被加工物Wを保持し当該工具との接触を保つワークホルダー5からなる。本発明によれば、ラジカル吸着工具と接触した部分のみを選択的にドライエッチングすることが可能となり、極めて革新的である。大気圧プラズマエッチングにおいて主となる反応種であるFラジカル、Clラジカル、Oラジカル、OHラジカル等をプラズマ発生領域で生成させ、工具(回転定盤工具)表面に吸着させる。これらラジカルが吸着した表面は反応性に富んだ高配位状態となっている。そして、工具の運動によって吸着したラジカルに由来する反応活性種を被加工物Wの表面まで輸送し、工具と接触した被加工物Wの表面原子と工具表面の反応活性種とが化学反応によって反応生成物となり、除去されることにより、被加工物表面をエッチングする。
本発明の第1実施形態の平坦化加工装置を図3及び図4に示す。本実施形態の平坦化加工装置は、中心部に開口7を設けるとともに、ラジカルに対して耐食性と吸着能を備えた表面を有する水平な回転定盤工具1と、前記回転定盤工具1の表面に対して所定ギャップを設けて配置した電極ヘッド2と、前記電極ヘッド2に少なくともラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給するガス供給手段3と、前記電極ヘッド2に高周波電界を印加して前記ギャップでプラズマを発生させる高周波電源4と、プラズマ発生領域Pで生成したラジカルを吸着して反応活性種が付与された前記回転定盤工具1の表面の回転方向前方に被加工物Wを保持し、該被加工物Wを所定圧力(接触圧力P)で回転定盤工具1の表面に接触させるワークホルダー5と、を備え、被加工物Wの表面を平坦化加工するものである。ここで、加工雰囲気の圧力Pは、大気圧を基本とするが、減圧雰囲気であっても良い。
前記回転定盤工具1の表面には、無電解NiめっきによってNi層6を形成している。ここで、前記回転定盤工具1は接地され、加工基準面となるNi層6はアース電位となっている。前記回転定盤工具1の開口7の中心部に、前記電極ヘッド2の基部が垂直軸により支持され、ヘッド部が水平首振り可能になっている。前記電極ヘッド2は、図4(a)、(b)に示すように、水平なアーム部8の基部をロータリージョイント9で保持し、ヘッド部10が前記回転定盤工具1の表面に所定のギャップで配置されている。更に、前記電極ヘッド2は、ロータリージョイント9からアーム部8及びヘッド部10に連続してガス流路11が形成され、前記ガス供給手段3の一部を構成している。前記電極ヘッド2のヘッド部10は、プラズマに曝されて損耗するので、交換可能な構造にすることが好ましい。前記電極ヘッド2は、ロータリージョイント9を中心に回転角度を変えることにより、前記ワークホルダー5に保持された被加工物Wとの間隔を調節できるようになっている。
前記回転定盤工具1の回転駆動機構や前記ワークホルダー5の駆動機構は、従来の研磨装置と同様な構造であり、従来の研磨装置に前記電極ヘッド2とガス供給手段3及び高周波電源4を追加するだけで、本発明の平坦化加工装置を構成できる。しかも、本発明は、ドライエッチングであるので、水周りの構造は不要であり、装置構成を簡単にできる。
本発明の第2実施形態の数値制御加工装置を図5に示す。本実施形態の数値制御加工装置は、回転軸20を備えるとともに、少なくとも外周部表面にラジカルに対して耐食性と吸着能を備えている球状回転工具21と、前記球状回転工具21の外周部22に対して所定ギャップGを設けて配置した電極23と、前記電極23に少なくともラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給するガス供給手段(図示せず)と、前記電極23に高周波電界を印加して前記ギャップGでプラズマを発生させる高周波電源24と、プラズマ発生領域Pで生成したラジカルを吸着して反応活性種が付与された前記球状回転工具21のプラズマ発生領域Pとは異なる外周部22を、被加工物Wの表面に所定圧力(接触圧力P)で接触させた状態で、前記球状回転工具21と被加工物Wとを相対的に数値制御走査する走査手段(図示せず)と、を備え、前記球状回転工具21と被加工物Wの接触部Cを被加工物Wの表面上で数値制御走査して任意形状に加工するものである。この場合、球状回転工具21の外周部22に吸着したラジカルに由来する反応活性種が、該球状回転工具21の回転に伴って前記被加工物Wとの接触部Cに輸送されるのである。本実施形態でも加工雰囲気の圧力Pは、大気圧を基本とするが、減圧雰囲気であっても良い。
前記球状回転工具21は、文字通りの球状に限定されず、円板状若しくはタイヤ状の外周部22が円弧面を有する形状であれば良い。そして、被加工物Wの表面を任意形状に加工するには、前記球状回転工具21によって接触部Cで形成される単位加工痕のプロファイルを取得し、被加工物Wの表面における局所的な加工量のデータに基づき、前記接触部Cの滞在時間を規定するのである。実際には、繰り返し走査するので、走査速度を変えることによって、滞在時間を制御する。尚、数値制御走査は、前記球状回転工具21と被加工物Wの何れか一方を駆動することによって行う。
<加工原理を実証するための加工実験1>
次に、前記平坦化加工装置を用いて、本発明の加工原理を実証する実験を行った。つまり、プラズマで発生したラジカルが回転定盤に吸着して、回転定盤の表面に付与された反応活性種が被加工物との接触部に供給されているかを確認するために行った基礎実験の結果を示す。
ラジカル吸着工具として無電解Niめっきを20μm厚で施した回転定盤工具を用い、試料(シリコン基板)の上流約15mmの位置でHe:SF=99:1の反応ガス(圧力P:大気圧)のプラズマを発生させたときと発生させなかったときの試料表面の変化を比較した。試料はSiの10mm四方の基板の表面粗さの悪い面を用いた。試料は回転させずに回転定盤工具のみを回転させ、その回転速度は10rpmで、試料を回転定盤工具に押し付ける接触圧力Pは3kPaである。プラズマを発生させる際の実験条件を表1に示す。1時間毎に試料表面の表面粗さを評価した。表面粗さの評価方法としては、白色干渉計(Zygo社製 NewView 200)によって64×48(μm)の範囲で4つの観測点を計測した。
Figure 0006692010
先ず、プラズマを発生させない状態(電圧印加無し、反応ガスの供給無し)で加工した結果を図6に示す。試料を回転速度10rpm、圧力3kPa下で加工を行い、1時間毎に表面粗さを計測した。図6中の左欄に○で表示した基板中央部・上部・右部・左部の4点の加工前から3時間加工後までの白色干渉計(Zygo社製 NewView 200)像を図6に示す。尚、Si基板の上部とは、前記電極ヘッド2に近い部分であり、以下同様とする。いずれの観測点においても表面粗さの改善が見られないことから、回転速度10rpm、接触圧力3kPaの加工条件では機械加工の作用がないことを確認できた。
次に、プラズマを発生させた状態(電圧印加有り、反応ガスの供給有り)で加工した結果を図7に示す。プラズマを表1の条件で発生させた状態で、試料を回転速度10rpm、接触圧力3kPa下で加工を行い、1時間毎に表面粗さを計測した。図7中の左欄に○で表示した基板中央部・上部・右部・左部の4点の加工前から3時間加工後までの白色干渉計(Zygo社製 NewView 200)像を図7に示す。Fラジカルに由来する反応活性種の作用により、いずれの観測点においても、表面粗さ(rms)が、加工前の400nm超から、3時間の加工後に10nm以下になり、大幅な改善が見られた。
プラズマを発生させない場合の加工では表面粗さが改善されなかったことから、機械加工の作用は働いてないと考えられるため、プラズマ発生領域で生成したラジカルが研磨定盤の表面に吸着し、それが研磨定盤の回転に伴って試料表面に供給されていることが確認できた。試料表面をプラズマに直接曝すプラズマエッチングでは、除去レートが等方的であるため平坦化はできないが、回転定盤工具と電極間でプラズマを発生させることで、回転定盤工具にFラジカルを吸着させ、そのFラジカルに由来する反応活性種を回転定盤工具の回転に伴って試料表面に供給することで、試料表面の平坦化加工を実現した。今回の実験で、Fラジカルに由来する反応活性種が試料表面に供給されており、それによってSi基板の平坦化が行われていることが明らかとなった。
<加工原理を実証するための加工実験2>
次に、前記平坦化加工装置を用いて、被加工物としてSiC基板を用いて同様の実験を行った結果を図8に示す。プラズマ発生条件は表1に示したものと同じであるが、この場合のSiC基板の接触圧力Pは5kPaである。3時間の平坦化加工により、SiC基板の表面粗さ(rms)は、加工前の100nm超から10nm以下に平坦化された。Fラジカルの作用により、SiC基板もSi基板と同様に平坦化加工されることが確認された。
<加工原理を実証するための加工実験3>
次に、反応ガスとして、HeとHO(水蒸気)の反応ガス(圧力P:大気圧)を用い、前記平坦化加工装置を用いて、被加工物としてSi基板(面積:0.59cm)の表面を加工した。プラズマ発生条件と加工条件は、表2に示している。この場合も、無電解Niめっきを20μm厚で施した回転定盤工具を用いた。Si基板の接触圧力Pは3.4kPaである。水蒸気を含む反応ガスは、図9に示すように、密閉容器に水を入れ、水中でHeガスを噴出し、気相中でHeと水蒸気の反応ガスを回収して使用した。回転定盤工具1と電極ヘッド2とのギャップGは200μm、該電極ヘッド2から下流側のSi基板までの距離Lを15mmとした。
Figure 0006692010
先ず、プラズマを発生させない状態(電圧印加無し、反応ガスの供給無し)で加工した結果を図10に示す。図10中、上段はSi基板の上部、下段はSi基板の中央部の白色干渉計(Zygo社製 NewView 200)像であり、それぞれ左から順に、加工前、30分間の加工後、1時間の加工後を示している。この場合も、1時間経過してもSi基板の表面に殆ど変化がないことが分かる。
次に、プラズマを発生させた状態(電圧印加有り、反応ガスの供給有り)で加工した結果を図11に示す。図11中、上段はSi基板の上部、下段はSi基板の中央部の白色干渉計(Zygo社製 NewView 200)像であり、それぞれ左から順に、加工前、30分間の加工後、1時間の加工後、1.5時間の加工後、2時間の加工後、3時間の加工後を示している。Si基板の上部では、加工前の表面粗さ(rms)が、加工前の167nmであったのが、1時間の加工後には22nm、3時間の加工後には16nmに改善していることが分かる。一方、Si基板の中央部では、加工前の表面粗さ(rms)が、加工前の184nmであったのが、1時間の加工後には48nm、3時間の加工後には16nmに改善していることが分かる。水蒸気プラズマを発生させたことにより、OHラジカルが生成し、このOHラジカルがSi基板表面の加工に寄与したものと考えられる。
<加工原理を実証するための加工実験4>
最後に、前記平坦化加工装置を用いて、導電性の基体表面にアルミナ(Al)をコーティングした回転定盤工具を用い、被加工物としてSi基板(面積:0.78cm)の表面を加工した。プラズマ発生条件と加工条件は、表3に示している。この場合、表1の条件と略同じであるが、回転定盤工具に対するSi基板の接触圧力Pを5.1kPaと大きくしている。また、回転定盤工具と電極ヘッドとのギャップGは600μm、該電極ヘッドから下流側のSi基板までの距離Lを15mmとした。
Figure 0006692010
先ず、先ず、プラズマを発生させない状態(電圧印加無し、反応ガスの供給無し)で加工した結果を図12に示す。この場合、接触圧力Pが1kPaでも機械的な加工ラインが発生し、全く平坦化加工ができないことが分かった。加工ラインが発生した原因は、Si基板のエッジが欠けて発生した微細なSi屑が、前記回転定盤工具とSi基板の間に挟まってSi基板の表面を傷付けているからと推測できる。
次に、プラズマを発生させた状態(電圧印加有り、反応ガスの供給有り)で加工した結果を図13に示す。図13中、上段はSi基板の上部、下段はSi基板の下部の白色干渉計(Zygo社製 NewView 200)像であり、それぞれ左から順に、加工前、30分間の加工後、1時間の加工後、1.5時間の加工後を示している。Si基板の上部では、加工前の表面粗さ(rms)が、加工前の547nmであったのが、30分の加工後には72nmと大幅に改善し、1時間の加工後には21nm、1.5時間の加工後には24nmに改善していることが分かる。一方、Si基板の下部では、加工前の表面粗さ(rms)が、加工前の592nmであったのが、30分の加工後では470nmとあまり改善していないが、1時間の加工後には80nm、1.5時間の加工後には40nmに改善していることが分かる。
この加工実験によって、アルミナ工具を用いてもSi基板が平坦化加工できたことを示している。アルミナ工具は、表面の安定性に優れており、経時劣化が少ないので、実用化において有利である。尚、回転定盤工具に対するSi基板の接触圧力Pを5.1kPaとしても、機械的な加工ラインが発生しないのは、回転定盤工具に付着していた微細なSi屑がプラズマ発生領域を通過する際に、プラズマエッチングにより除去されたものと推測できる。
以上の実施例では平坦化加工と、球状回転工具による数値制御加工への適用例を示したが、他にもワイヤー走行工具による溝加工等、ラジカル吸着工具の形状によって種々の応用が可能と考えられる。また、ダイヤモンド工具や宝石も平面加工あるいは鋭角形状に加工することも可能になる。
1 回転定盤工具、
2 電極ヘッド、
3 ガス供給手段、
4 高周波電源、
5 ワークホルダー、
6 Ni層、
7 開口、
8 アーム部、
9 ロータリージョイント、
10 ヘッド部、
11 ガス流路、
20 回転軸、
21 球状回転工具、
22 外周部、
23 電極、
24 高周波電源、
W 被加工物、
G ギャップ、
P プラズマ発生領域、
R ラジカル、
C 接触部、

Claims (13)

  1. 化学反応性に富んだラジカルに対して耐食性と吸着能を備えた表面を有する可動工具の該表面を、少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを用いて発生させたプラズマの発生領域を通過させ、該プラズマ発生領域で生成したラジカルを前記工具表面に吸着させて反応活性種を付与し、該工具の移動によって該工具表面の前記反応活性種を前記プラズマ発生領域とは異なる位置に配置した被加工物表面まで輸送し、該工具と接触した被加工物表面の原子と反応活性種との化学反応によって生成した反応生成物を除去することにより、該工具表面を加工基準面として被加工物表面の該工具表面と接触した部分のみを選択的に加工することを特徴とするラジカル吸着輸送を援用した加工方法。
  2. 前記ラジカルを生成する元素がF又はClのハロゲン元素であり、前記ラジカルがFラジカル又はClラジカルである請求項1記載のラジカル吸着輸送を援用した加工方法。
  3. 前記ラジカルを生成する置換基がOH基であり、前記ラジカルがOHラジカルである請求項1記載のラジカル吸着輸送を援用した加工方法。
  4. 前記工具の少なくとも表面がNiで形成されている請求項1〜3何れか1項に記載のラジカル吸着輸送を援用した加工方法。
  5. 前記工具の表面がアルミナ又はイットリアのコーティング層となっている請求項1〜3何れか1項に記載のラジカル吸着輸送を援用した加工方法。
  6. 前記工具が回転定盤工具であり、該回転定盤工具表面を加工基準面として被加工物表面を平坦化加工する請求項1記載のラジカル吸着輸送を援用した加工方法。
  7. 前記工具が回転軸を備えた球状回転工具であり、該球状回転工具の外周部の近傍においてプラズマを発生させて、該球状回転工具の外周部にラジカルを吸着させ、該球状回転工具のプラズマ発生領域とは異なる外周部を被加工物表面に所定圧力で接触させながら回転させるとともに、該接触部を被加工物表面上で数値制御走査して任意形状に加工する請求項1記載のラジカル吸着輸送を援用した加工方法。
  8. 化学反応性に富んだラジカルに対して耐食性と吸着能を備えた表面を有する回転定盤工具と、
    前記回転定盤工具の表面に対して所定ギャップを設けて配置した電極ヘッドと、
    前記電極ヘッドに少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給するガス供給手段と、
    前記電極ヘッドに高周波電界を印加して前記ギャップでプラズマを発生させる高周波電源と、
    プラズマ発生領域で生成したラジカルを吸着して反応活性種が付与された前記回転定盤工具表面の回転方向前方に被加工物を保持し、該被加工物を所定圧力で回転定盤工具表面に接触させるワークホルダーと、
    を備え、前記回転定盤工具表面を加工基準面として被加工物表面を平坦化加工することを特徴とするラジカル吸着輸送を援用した加工装置。
  9. 回転軸を備えるとともに、少なくとも外周部表面に化学反応性に富んだラジカルに対して耐食性と吸着能を備えている球状回転工具と、
    前記球状回転工具の外周部に対して所定ギャップを設けて配置した電極と、
    前記電極に少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給するガス供給手段と、
    前記電極に高周波電界を印加して前記ギャップでプラズマを発生させる高周波電源と、
    プラズマ発生領域で生成したラジカルを吸着して反応活性種が付与された前記球状回転工具のプラズマ発生領域とは異なる外周部を、被加工物表面に所定圧力で接触させた状態で、前記球状回転工具と被加工物とを相対的に数値制御走査する走査手段と、
    を備え、前記球状回転工具と被加工物の接触部を被加工物表面上で数値制御走査して該球状回転工具表面を加工基準面として任意形状に加工することを特徴とするラジカル吸着輸送を援用した加工装置。
  10. 前記ラジカルを生成する元素がF又はClのハロゲン元素であり、前記ラジカルがFラジカル又はClラジカルである請求項8又は9記載のラジカル吸着輸送を援用した加工装置。
  11. 前記ラジカルを生成する置換基がOH基であり、前記ラジカルがOHラジカルである請求項8又は9記載のラジカル吸着輸送を援用した加工装置。
  12. 前記回転定盤工具又は球状回転工具の少なくとも表面がNiで形成されている請求項8又は9記載のラジカル吸着輸送を援用した加工装置。
  13. 前記回転定盤工具又は球状回転工具の表面がアルミナ又はイットリアのコーティング層となっている請求項8又は9記載のラジカル吸着輸送を援用した加工装置。
JP2018503072A 2016-02-29 2017-02-22 ラジカル吸着輸送を援用した加工方法及びその装置 Active JP6692010B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016036513 2016-02-29
JP2016036513 2016-02-29
PCT/JP2017/006628 WO2017150308A1 (ja) 2016-02-29 2017-02-22 ラジカル吸着輸送を援用した加工方法及びその装置

Publications (2)

Publication Number Publication Date
JPWO2017150308A1 JPWO2017150308A1 (ja) 2018-12-20
JP6692010B2 true JP6692010B2 (ja) 2020-05-13

Family

ID=59742838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018503072A Active JP6692010B2 (ja) 2016-02-29 2017-02-22 ラジカル吸着輸送を援用した加工方法及びその装置

Country Status (2)

Country Link
JP (1) JP6692010B2 (ja)
WO (1) WO2017150308A1 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3069271B2 (ja) * 1995-07-12 2000-07-24 勇藏 森 回転電極を用いた高密度ラジカル反応による高能率加工方法及びその装置
JP3384705B2 (ja) * 1997-03-12 2003-03-10 シャープ株式会社 半導体素子の製造方法およびプラズマ処理装置並びに平坦化工程用プラズマ処理装置
JP2002043298A (ja) * 2000-07-28 2002-02-08 Mitsubishi Heavy Ind Ltd 半導体装置の製造方法及び半導体装置
JP4167542B2 (ja) * 2002-07-17 2008-10-15 積水化学工業株式会社 プラズマエッチング用ガス供給装置並びにプラズマエッチングシステム及び方法
JP4083030B2 (ja) * 2003-02-04 2008-04-30 シャープ株式会社 プラズマ処理装置

Also Published As

Publication number Publication date
WO2017150308A1 (ja) 2017-09-08
JPWO2017150308A1 (ja) 2018-12-20

Similar Documents

Publication Publication Date Title
US10755946B2 (en) Method for producing a wafer from a hexagonal single crystal ingot by applying a laser beam to form a first production history, an exfoliation layer, and a second production history
JP5614677B2 (ja) 難加工材料の精密加工方法及びその装置
CN111630213B (zh) 单晶4H-SiC生长用籽晶及其加工方法
JP6206847B2 (ja) ワイドバンドギャップ半導体基板の加工方法及びその装置
TW200805453A (en) Method for manufacturing epitaxial wafer
JP6598150B2 (ja) 単結晶SiC基板の製造方法
JP6692010B2 (ja) ラジカル吸着輸送を援用した加工方法及びその装置
JP5772635B2 (ja) 炭化珪素単結晶基板の製造方法
JP6145761B2 (ja) 加工方法及び加工装置
JP6547100B2 (ja) 複合加工装置並びに該装置により加工された加工物
JPWO2007063873A1 (ja) 研磨方法及び研磨装置
JP4154253B2 (ja) プラズマ処理用シリコンプレート
CN116141086A (zh) 一种激光诱导石墨化促进金刚石抛光的装置及方法
JP2013026314A (ja) 窒化物半導体基板の製造方法
JP2013094924A (ja) 貫通電極付きセラミック基板の研削方法
JP6515311B2 (ja) 加工方法及び加工装置
JP2013017925A (ja) 光触媒反応型化学的加工方法及び装置
JP3750083B2 (ja) ダイヤモンドコーティング工業用刃物の製造方法
JP2006096588A (ja) 窒化ガリウム独立基板を製造する方法
JP6301157B2 (ja) 加工方法および加工装置並びに該加工方法又は該加工装置により加工された加工物
Oyama et al. Study on a novel CMP/P-CVM fusion processing system (Type B) and its basic characteristics
JP7582924B2 (ja) サセプタの製造方法
JP5145857B2 (ja) ウェハの製造方法
JP2025015224A (ja) 研磨された半導体材料の製造方法および半導体装置
JP2000109989A (ja) プラズマ処理装置の内壁保護部材

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180820

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20181109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200131

R150 Certificate of patent or registration of utility model

Ref document number: 6692010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350