Nothing Special   »   [go: up one dir, main page]

JP6686410B2 - Crystallized glass substrate with glass powder, composite powder and painting layer - Google Patents

Crystallized glass substrate with glass powder, composite powder and painting layer Download PDF

Info

Publication number
JP6686410B2
JP6686410B2 JP2015242847A JP2015242847A JP6686410B2 JP 6686410 B2 JP6686410 B2 JP 6686410B2 JP 2015242847 A JP2015242847 A JP 2015242847A JP 2015242847 A JP2015242847 A JP 2015242847A JP 6686410 B2 JP6686410 B2 JP 6686410B2
Authority
JP
Japan
Prior art keywords
powder
glass
glass substrate
glass powder
painting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015242847A
Other languages
Japanese (ja)
Other versions
JP2017109875A (en
Inventor
石原 健太郎
健太郎 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2015242847A priority Critical patent/JP6686410B2/en
Publication of JP2017109875A publication Critical patent/JP2017109875A/en
Application granted granted Critical
Publication of JP6686410B2 publication Critical patent/JP6686410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • C03C17/04Surface treatment of glass, not in the form of fibres or filaments, by coating with glass by fritting glass powder
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/008Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in molecular form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/17Nature of the non-vitreous component in molecular form (for molecular composites)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
  • Induction Heating Cooking Devices (AREA)

Description

本発明は、ガラス粉末、複合粉末及び絵付層付き結晶化ガラス基板に関し、具体的には、絵付層を有する調理器用トッププレート等に好適なガラス粉末、複合粉末及び絵付層付き結晶化ガラス基板に関する。   The present invention relates to a glass powder, a composite powder, and a crystallized glass substrate with a paint layer, and more specifically, to a glass powder suitable for a cooker top plate having a paint layer, a composite powder, and a crystallized glass substrate with a paint layer. .

低膨張の結晶化ガラス基板は、加熱耐久性や耐熱衝撃性が高いため、調理器用トッププレートとして広く使用されている。   The low-expansion crystallized glass substrate is widely used as a top plate for a cooker because it has high heating durability and high thermal shock resistance.

また、調理器用トッププレートの表面は、美感を高めるために、絵付層で装飾されることがある。絵付層は、一般的に、ガラス粉末の焼結体、或いはガラス粉末と無機顔料粉末等を含む複合粉末の焼結体である。例えば、特許文献1には、質量%で、SiO 55〜70%、B 15〜25%、Al 3〜10%、BaO 0.1〜4.9%、ZnO 0.1〜5%、CaO 0〜3%、MgO 0〜3%、LiO 0.1〜5%、NaO 0〜10%、KO 0.3〜15%、F 0〜2%を含有し、軟化点が600〜700℃未満であることを特徴とする絵付層形成用無鉛ガラス粉末が開示されている。 Further, the surface of the cooker top plate may be decorated with a painting layer in order to enhance the aesthetic appearance. The painting layer is generally a sintered body of glass powder or a composite powder of glass powder and inorganic pigment powder. For example, Patent Document 1, by mass%, SiO 2 55~70%, B 2 O 3 15~25%, Al 2 O 3 3~10%, BaO 0.1~4.9%, ZnO 0. 1~5%, CaO 0~3%, 0~3 % MgO, Li 2 O 0.1~5%, Na 2 O 0~10%, K 2 O 0.3~15%, F 2 0~2 %, The softening point is 600 to less than 700 ° C., and a lead-free glass powder for forming a painted layer is disclosed.

結晶化ガラス基板の表面に絵付層を形成する方法は、例えば、以下の通りである。まずガラス粉末を有機バインダー、溶剤等を含むビークル中に分散させて、ペースト化する。続いて、得られたガラス粉末ペーストをスクリーン印刷法等により結晶化ガラス基板上に転写、乾燥した後、適正な焼成条件により焼成する。ガラス粉末を焼成すると、ガラス粉末が軟化流動した後、焼結する。これにより、ガラス粉末が結晶化ガラス基板上で強く固着されて、絵付層になる。なお、絵付層として、ガラス粉末と無機顔料粉末等を含む複合粉末の焼結体を用いる場合も、上記と同様の方法で作製可能である。   The method of forming the painting layer on the surface of the crystallized glass substrate is as follows, for example. First, glass powder is dispersed in a vehicle containing an organic binder, a solvent and the like to form a paste. Subsequently, the obtained glass powder paste is transferred onto a crystallized glass substrate by a screen printing method or the like, dried, and then fired under appropriate firing conditions. When the glass powder is fired, the glass powder is softened and fluidized and then sintered. Thereby, the glass powder is strongly fixed on the crystallized glass substrate to form a painting layer. It should be noted that even when a sintered body of a composite powder containing glass powder and inorganic pigment powder or the like is used as the painting layer, it can be produced by the same method as described above.

特開2007−39294号公報JP, 2007-39294, A

ところで、特許文献1に記載のガラス粉末は、低温で軟化流動するため、低温で絵付層を形成することが可能であり、焼成コストを低廉化することができる。しかし、特許文献1に記載のガラス粉末は、熱膨張係数が高いため、絵付層の熱膨張係数を低下させることが困難である。絵付層の熱膨張係数が高いと、絵付層付き結晶化ガラス基板にクラックが発生し易くなる。この傾向は、結晶化ガラス基板の熱膨張係数が低い程、顕在化し易くなる。なお、このクラックは、耐水性、耐酸性等の特性を劣化させるだけでなく、その内部に汚れが滞留して、美観を損ねるという問題も発生させる。更に、絵付層の熱膨張係数が高いと、絵付層に過大な引張応力が入り、外力により絵付層の機械的強度が劣化し易くなる。   By the way, since the glass powder described in Patent Document 1 softens and flows at a low temperature, it is possible to form the painting layer at a low temperature and reduce the firing cost. However, since the glass powder described in Patent Document 1 has a high coefficient of thermal expansion, it is difficult to reduce the coefficient of thermal expansion of the painting layer. If the thermal expansion coefficient of the painting layer is high, cracks are likely to occur in the crystallized glass substrate with the painting layer. This tendency becomes more apparent as the coefficient of thermal expansion of the crystallized glass substrate is lower. The cracks not only deteriorate the properties such as water resistance and acid resistance, but also cause a problem that stains are accumulated inside the cracks and spoil the appearance. Furthermore, if the thermal expansion coefficient of the painting layer is high, excessive tensile stress is applied to the painting layer, and the mechanical strength of the painting layer is likely to deteriorate due to external force.

更に、調理器用トッププレートは、使用時に熱湯、果汁、調味料に曝される。このため、絵付層には、高い耐水性、耐酸性が求められることがある。具体的には、絵付層が調理器用トッププレートの調理面側に配置される場合だけでなく、絵付層が調理面とは反対側に配置される場合であっても、ガス器具等を通すために穴開け加工がなされると、高い耐水性、耐酸性が求められる。これに伴い、ガラス粉末にも高い耐水性、耐酸性が求められる。   Further, the cooker top plate is exposed to hot water, fruit juice, and seasonings during use. Therefore, the painted layer may be required to have high water resistance and acid resistance. Specifically, not only when the painting layer is arranged on the cooking surface side of the cooker top plate, but also when the painting layer is arranged on the opposite side of the cooking surface, in order to pass the gas appliance etc. When a hole is drilled in, high water resistance and acid resistance are required. Along with this, the glass powder is also required to have high water resistance and acid resistance.

本発明は、上記事情に鑑みなされたものであり、その技術的課題は、低温で軟化流動すると共に、熱膨張係数が低く、しかも耐水性、耐酸性が高いガラス粉末及び複合粉末を創案することである。   The present invention has been made in view of the above circumstances, and its technical problem is to create a glass powder and a composite powder having a low thermal expansion coefficient, softening and flowing at low temperature, and having high water resistance and acid resistance. Is.

本発明者は、種々の検討を行った結果、SiO−B−ZnO−RO(ここで、ROは、LiO、NaO、KO等のアルカリ金属酸化物を指す)系ガラス粉末において、SiOとBの含有量を低減しつつ、ZnOとROの成分比率を適正化することにより、上記技術的課題を解決し得ることを見出し、本発明として、提案するものである。すなわち、本発明のガラス粉末は、ガラス組成として、モル%で、SiO 45〜60%、B 1〜15%未満、ZnO 10〜35%、LiO+NaO+KO 3〜15%、Al 0〜10%、BaO 0〜10%を含有し、モル比ZnO/(LiO+NaO+KO)が0.5〜4であることを特徴とする。ここで、「LiO+NaO+KO」は、LiO、NaO及びKOの合量を指す。「ZnO/(LiO+NaO+KO)」は、ZnOの含有量をLiO、NaO及びKOの合量で割った値を指す。 As a result of various studies, the inventor of the present invention has found that SiO 2 —B 2 O 3 —ZnO—R 2 O (where R 2 O is an alkali metal such as Li 2 O, Na 2 O, and K 2 O). It is possible to solve the above technical problem by reducing the content of SiO 2 and B 2 O 3 and optimizing the component ratio of ZnO and R 2 O in a glass powder (referring to oxide). The heading is proposed as the present invention. That is, the glass powder of the present invention has a glass composition of, in mol%, SiO 2 45 to 60%, B 2 O 3 to less than 1 to 15%, ZnO 10 to 35%, Li 2 O + Na 2 O + K 2 O 3 to 15. %, Al 2 O 3 0 to 10%, BaO 0 to 10%, and the molar ratio ZnO / (Li 2 O + Na 2 O + K 2 O) is 0.5 to 4. Here, "Li 2 O + Na 2 O + K 2 O " means, Li 2 O, refers to the total amount of Na 2 O and K 2 O. “ZnO / (Li 2 O + Na 2 O + K 2 O)” refers to a value obtained by dividing the content of ZnO by the total amount of Li 2 O, Na 2 O and K 2 O.

本発明のガラス粉末は、Bの含有量を15モル%未満、且つモル比ZnO/(LiO+NaO+KO)を0.5以上に規制している。これにより、耐水性、耐酸性を高めることが可能になる。 The glass powder of the present invention regulates the content of B 2 O 3 to less than 15 mol% and the molar ratio ZnO / (Li 2 O + Na 2 O + K 2 O) to 0.5 or more. This makes it possible to enhance water resistance and acid resistance.

更に、本発明のガラス粉末は、SiO2の含有量を60モル%以下、ZnOの含有量を10モル%以上、且つモル比ZnO/(LiO+NaO+KO)を4以下に規制している。これにより、低軟化点と低熱膨張係数を両立し易くなる。 Further, the glass powder of the present invention, 60 mol% of the content of SiO2 below, the content of ZnO 10 mol% or more, and the molar ratio ZnO / a (Li 2 O + Na 2 O + K 2 O) 4 was regulated to less There is. This makes it easier to achieve both a low softening point and a low thermal expansion coefficient.

第二に、本発明のガラス粉末は、モル比ZnO/Bが1〜4であることが好ましい。「ZnO/B」は、ZnOの含有量をBの含有量で割った値を指す。 Secondly, the glass powder of the present invention preferably has a molar ratio ZnO / B 2 O 3 of 1 to 4. “ZnO / B 2 O 3 ” refers to a value obtained by dividing the content of ZnO by the content of B 2 O 3 .

第三に、本発明のガラス粉末は、ガラス組成中のZnOの含有量が18〜28モル%であることが好ましい。   Thirdly, in the glass powder of the present invention, the content of ZnO in the glass composition is preferably 18 to 28 mol%.

第四に、本発明のガラス粉末は、ガラス組成中に実質的にPbOとBiを含まないことが好ましい。ここで、「実質的に〜を含まない」とは、明示の成分が不純物レベルで混入する場合を許容する趣旨であり、具体的には、明示の成分の含有量が0.1質量%未満の場合を指す。 Fourthly, the glass powder of the present invention preferably contains substantially no PbO and Bi 2 O 3 in the glass composition. Here, “substantially does not include” means that the explicit component is mixed at an impurity level, and specifically, the content of the explicit component is less than 0.1% by mass. Refers to the case.

第五に、本発明のガラス粉末は、30〜350℃における平均熱膨張係数が70×10−7/℃以下であることが好ましい。ここで、「30〜350℃における平均熱膨張係数」は、TMA装置で測定した値である。なお、測定試料として、ガラス粉末の圧粉体を750℃10分間の焼成条件で緻密に焼結させた後、所定形状に加工したものを用いることが好ましい。 Fifth, the glass powder of the present invention preferably has an average coefficient of thermal expansion at 30 to 350 ° C. of 70 × 10 −7 / ° C. or less. Here, the “average thermal expansion coefficient at 30 to 350 ° C.” is a value measured by a TMA device. As the measurement sample, it is preferable to use a powder compact of glass powder that is densely sintered under a firing condition of 750 ° C. for 10 minutes and then processed into a predetermined shape.

第六に、本発明のガラス粉末は、マクロ型DTA装置で測定した軟化点が550〜740℃であることが好ましい。ここで、マクロ型DTA装置で測定した軟化点は、第四屈曲点の温度を指す。なお、マクロ型DTA装置による測定は、空気中で行い、昇温速度を10℃/分とする。   Sixth, the glass powder of the present invention preferably has a softening point of 550 to 740 ° C. measured by a macro type DTA device. Here, the softening point measured by the macro type DTA device indicates the temperature of the fourth bending point. The measurement with the macro type DTA device is performed in air, and the temperature rising rate is 10 ° C./min.

第七に、本発明の複合粉末は、ガラス粉末 25〜99質量%、無機顔料粉末 1〜75質量%、耐火性フィラー粉末 0〜40質量%を含有する複合粉末であって、ガラス粉末が、上記のガラス粉末であることが好ましい。   Seventh, the composite powder of the present invention is a composite powder containing 25 to 99 mass% of glass powder, 1 to 75 mass% of inorganic pigment powder, and 0 to 40 mass% of refractory filler powder, and the glass powder is It is preferably the above glass powder.

第八に、本発明の複合粉末は、無機顔料粉末がCr−Cu系複合酸化物であることが好ましい。ここで、「〜系複合酸化物」とは、明示の成分を必須成分として含む複合酸化物を指す。   Eighth, in the composite powder of the present invention, the inorganic pigment powder is preferably a Cr-Cu-based composite oxide. Here, the term "-based complex oxide" refers to a complex oxide containing an explicit component as an essential component.

第九に、本発明の絵付層付き結晶化ガラス基板は、結晶化ガラス基板の表面に絵付層を有する絵付層付き結晶化ガラス基板であって、絵付層がガラス粉末の焼結体であり、且つガラス粉末が上記のガラス粉末であることが好ましい。   Ninth, the crystallized glass substrate with a paint layer of the present invention is a crystallized glass substrate with a paint layer having a paint layer on the surface of the crystallized glass substrate, the paint layer is a sintered body of glass powder, Moreover, it is preferable that the glass powder is the above-mentioned glass powder.

第十に、本発明の絵付層付き結晶化ガラス基板は、結晶化ガラス基板の表面に絵付層を有する絵付層付き結晶化ガラス基板であって、絵付層が複合粉末の焼結体であり、且つ複合粉末が上記の複合粉末であることが好ましい。   Tenth, the crystallized glass substrate with a paint layer of the present invention is a crystallized glass substrate with a paint layer having a paint layer on the surface of the crystallized glass substrate, the paint layer is a sintered body of a composite powder, Moreover, it is preferable that the composite powder is the above-mentioned composite powder.

第十一に、本発明の絵付層付き結晶化ガラス基板は、調理器用トッププレートに用いることが好ましい。   Eleventh, the crystallized glass substrate with a paint layer of the present invention is preferably used for a top plate for a cooker.

本発明のガラス粉末は、本発明のガラス粉末は、ガラス組成として、モル%で、SiO 45〜60%、B 1〜15%未満、ZnO 10〜35%、LiO+NaO+KO 3〜15%、Al 0〜10%、BaO 0〜10%を含有し、モル比ZnO/(LiO+NaO+KO)が0.5〜4であることを特徴とする。上記のように各成分の含有範囲を限定した理由を下記に示す。なお、各成分の含有範囲の説明において、%表示はモル%を指す。 The glass powder of the present invention is, as a glass composition, the glass powder of the present invention in mol%, SiO 2 45 to 60%, B 2 O 3 to less than 1 to 15%, ZnO 10 to 35%, Li 2 O + Na 2 O + K. 2 O 3 to 15%, Al 2 O 3 0 to 10%, BaO 0 to 10% are contained, and the molar ratio ZnO / (Li 2 O + Na 2 O + K 2 O) is 0.5 to 4. To do. The reason why the content range of each component is limited as described above is shown below. In the description of the content range of each component,% indication means mol%.

SiOは、ガラス骨格を形成する成分であり、耐水性、耐酸性を高める成分である。SiOの含有量は45〜60%であり、好ましくは47〜58%、48〜57%、49〜56%、特に50〜55%である。SiOの含有量が少な過ぎると、耐水性、耐酸性が低下し易くなり、また熱的安定性が不当に低くなり、ガラス粉末が十分に焼結する前に結晶が析出し易くなる。一方、SiOの含有量が多過ぎると、軟化点が上昇して、ガラス粉末の軟化流動性が低下し易くなる。 SiO 2 is a component that forms a glass skeleton, and is a component that enhances water resistance and acid resistance. The content of SiO 2 is 45 to 60%, preferably 47 to 58%, 48 to 57%, 49 to 56%, and particularly 50 to 55%. If the content of SiO 2 is too small, water resistance and acid resistance are likely to be lowered, thermal stability is unduly lowered, and crystals are likely to precipitate before the glass powder is sufficiently sintered. On the other hand, if the content of SiO 2 is too large, the softening point rises, and the softening fluidity of the glass powder tends to decrease.

は、ガラス骨格を形成する成分であり、また熱膨張係数を上昇させずに、軟化点を低下させる成分である。Bの含有量は1〜15%未満であり、好ましくは3〜14%、5〜13%、6〜12%、特に7〜11%である。Bの含有量が少な過ぎると、熱的安定性が不当に低くなり、ガラス粉末が十分に焼結する前に結晶が析出し易くなる。更に軟化点が上昇して、ガラス粉末の軟化流動性が低下し易くなる。一方、Bの含有量が多過ぎると、耐水性、耐酸性が低下し易くなる。 B 2 O 3 is a component that forms a glass skeleton and is a component that lowers the softening point without increasing the thermal expansion coefficient. The content of B 2 O 3 is 1 to less than 15%, preferably 3 to 14%, 5 to 13%, 6 to 12%, and particularly 7 to 11%. If the content of B 2 O 3 is too small, the thermal stability becomes unduly low, and crystals tend to precipitate before the glass powder is sufficiently sintered. Furthermore, the softening point rises, and the softening fluidity of the glass powder tends to decrease. On the other hand, when the content of B 2 O 3 is too large, the water resistance and the acid resistance tend to decrease.

ZnOは、熱膨張係数をあまり上昇させずに、軟化点を低下させる成分である。ZnOの含有量は10〜35%であり、好ましくは12〜32%、14〜30%、16〜28%、18〜27%、19〜26%、特に20〜25%である。ZnOの含有量が少な過ぎると、熱膨張係数が不当に低下したり、軟化点が上昇し易くなる。一方、ZnOの含有量が多過ぎると、耐水性、耐酸性が低下し易くなり、更にZn系結晶が析出し易くなる。   ZnO is a component that lowers the softening point without significantly increasing the thermal expansion coefficient. The content of ZnO is 10 to 35%, preferably 12 to 32%, 14 to 30%, 16 to 28%, 18 to 27%, 19 to 26%, and particularly 20 to 25%. If the content of ZnO is too small, the coefficient of thermal expansion will be unduly lowered and the softening point will be likely to rise. On the other hand, if the content of ZnO is too large, water resistance and acid resistance are likely to be lowered, and further Zn-based crystals are likely to be precipitated.

LiO、NaO及びKOは、軟化点を低下させる成分であるが、その含有量が多過ぎると、熱膨張係数が不当に上昇し、更に耐水性、耐酸性が低下し易くなる。よって、LiO、NaO及びKOの合量は3〜15%であり、好ましくは4〜13%未満、5〜12%、6〜11%、特に7〜10%である。LiOの含有量は、好ましくは0〜10%、0.1〜7%、0.5〜6%、1〜5%、特に2〜4%である。NaOの含有量は、好ましくは0〜10%、0.1〜7%、0.5〜6%、1〜5%、特に2〜4%である。KOの含有量は、好ましくは0〜10%、0.1〜7%、0.3〜5%、0.5〜4%、特に1〜3%である。 Li 2 O, Na 2 O and K 2 O are components that lower the softening point, but if the content is too large, the coefficient of thermal expansion undesirably increases, and the water resistance and acid resistance are likely to decrease. Become. Therefore, the total amount of Li 2 O, Na 2 O and K 2 O is 3 to 15%, preferably 4 to less than 13%, 5 to 12%, 6 to 11%, and particularly 7 to 10%. The content of Li 2 O is preferably 0 to 10%, 0.1 to 7%, 0.5 to 6%, 1 to 5%, and particularly 2 to 4%. The content of Na 2 O is preferably 0 to 10%, 0.1 to 7%, 0.5 to 6%, 1 to 5%, and particularly 2 to 4%. The content of K 2 O is preferably 0 to 10%, 0.1 to 7%, 0.3 to 5%, 0.5 to 4%, and particularly 1 to 3%.

モル比ZnO/(LiO+NaO+KO)は0.5〜4であり、好ましくは1.5〜3.8、2〜3.6、2.4〜3.4、2.6〜3.2、特に2.8〜3である。モル比ZnO/(LiO+NaO+KO)が小さ過ぎると、耐水性、耐酸性が低下し易くなる。一方、モル比ZnO/(LiO+NaO+KO)が大き過ぎると、軟化点が上昇し易くなる。 The molar ratio ZnO / (Li 2 O + Na 2 O + K 2 O) is 0.5 to 4, preferably 1.5 to 3.8, 2 to 3.6, 2.4 to 3.4, 2.6 to. 3.2, especially 2.8-3. If the molar ratio ZnO / (Li 2 O + Na 2 O + K 2 O) is too small, the water resistance and acid resistance are likely to decrease. On the other hand, if the molar ratio ZnO / (Li 2 O + Na 2 O + K 2 O) is too large, the softening point tends to increase.

Alは、耐水性、耐酸性を高める成分であるが、その含有量が多過ぎると、軟化点が上昇して、ガラス粉末の軟化流動性が低下し易くなる。よって、Alの含有量は0〜10%であり、好ましくは0.1〜8%、2〜7%、2〜6%、特に3〜5%である。 Al 2 O 3 is a component that enhances water resistance and acid resistance, but if the content thereof is too large, the softening point increases, and the softening fluidity of the glass powder tends to decrease. Therefore, the content of Al 2 O 3 is 0 to 10%, preferably 0.1 to 8%, 2 to 7%, 2 to 6%, and particularly 3 to 5%.

BaOは、熱的安定性を高める成分であるが、その含有量が多過ぎると、熱膨張係数が不当に上昇し易くなる。よって、BaOの含有量は0〜10%であり、好ましくは0.1〜7%、1〜5%、特に2〜4%である。   BaO is a component that enhances thermal stability, but if its content is too large, the thermal expansion coefficient tends to unduly increase. Therefore, the content of BaO is 0 to 10%, preferably 0.1 to 7%, 1 to 5%, and particularly 2 to 4%.

モル比ZnO/Bは、好ましくは1〜4、1.5〜3.7、1.7〜3.5、1.9〜3.3、特に2〜3である。モル比ZnO/Bが上記範囲外になると、低軟化点と低熱膨張係数を両立し難くなる。 The molar ratio ZnO / B 2 O 3 is preferably 1 to 4, 1.5 to 3.7, 1.7 to 3.5, 1.9 to 3.3, especially 2 to 3. When the molar ratio ZnO / B 2 O 3 is out of the above range, it becomes difficult to achieve both the low softening point and the low thermal expansion coefficient.

上記成分以外にも、例えば、以下の成分を導入してもよい。   In addition to the above components, for example, the following components may be introduced.

MgO、CaO及びSrOは、熱的安定性を高める成分である。MgOの含有量は、好ましくは0〜7%、0〜5%、0〜3%、特に0〜1%である。CaOの含有量は、好ましくは0〜7%、0〜5%、0〜3%、特に0〜1%である。SrOの含有量は、好ましくは0〜7%、0〜5%、0〜3%、特に0〜1%である。MgO、CaO及びSrOの含有量が多過ぎると、軟化点が上昇して、ガラス粉末の軟化流動性が低下し易くなる。   MgO, CaO and SrO are components that enhance thermal stability. The content of MgO is preferably 0 to 7%, 0 to 5%, 0 to 3%, and particularly 0 to 1%. The content of CaO is preferably 0 to 7%, 0 to 5%, 0 to 3%, and particularly 0 to 1%. The content of SrO is preferably 0 to 7%, 0 to 5%, 0 to 3%, and particularly 0 to 1%. If the content of MgO, CaO and SrO is too large, the softening point rises, and the softening fluidity of the glass powder tends to decrease.

TiOとZrOは、耐水性、耐酸性を高める成分であるが、その含有量が多過ぎると、軟化点が上昇して、ガラス粉末の軟化流動性が低下し易くなる。更に熱的安定性が不当に低くなり、ガラス粉末が十分に焼結する前に結晶が析出し易くなる。TiOの含有量は、好ましくは0〜15%、0〜10%、0〜5%、0〜1%、特に0〜0.1%である。ZrOの含有量は、好ましくは0〜15%、0〜10%、0〜5%、0〜1%、特に0〜0.1%である。 TiO 2 and ZrO 2 are components that enhance water resistance and acid resistance, but if the content is too large, the softening point increases, and the softening fluidity of the glass powder tends to decrease. Furthermore, the thermal stability becomes unduly low, and crystals tend to precipitate before the glass powder is sufficiently sintered. The content of TiO 2 is preferably 0 to 15%, 0 to 10%, 0 to 5%, 0 to 1%, and particularly 0 to 0.1%. The content of ZrO 2 is preferably 0 to 15%, 0 to 10%, 0 to 5%, 0 to 1%, and particularly 0 to 0.1%.

CuOは、ガラスを黒色に着色させるための成分である。CuOの含有量は、好ましくは0〜7%、0〜5%、0〜3%、特に0〜1%である。CuOの含有量が多過ぎると、熱的安定性が不当に低くなり、ガラス粉末が十分に焼結する前に結晶が析出し易くなる。   CuO is a component for coloring the glass black. The content of CuO is preferably 0 to 7%, 0 to 5%, 0 to 3%, and particularly 0 to 1%. If the content of CuO is too large, the thermal stability becomes unduly low, and crystals tend to precipitate before the glass powder is sufficiently sintered.

上記成分以外にも、必要に応じて、他の成分を例えば15%、10%、5%、特に1%まで導入することができる。具体的には、Cr、MnO、SnO、CeO、P、La、Nd、Co、F、Cl等を合量又は個別に、例えば15%、10%、5%、特に1%まで導入することができる。 In addition to the above components, other components may be incorporated, if desired, for example up to 15%, 10%, 5%, especially 1%. Specifically, Cr 2 O 3, MnO, SnO 2, CeO 2, P 2 O 5, La 2 O 3, Nd 2 O 3, Co 2 O 3, F, Cl, etc. total amount or separately, for example It is possible to introduce up to 15%, 10%, 5%, especially 1%.

なお、環境的観点から、実質的にPbOを含有させないことが好ましく、実質的にBiも含有させないことが好ましい。 From an environmental point of view, it is preferable that PbO is not substantially contained, and that Bi 2 O 3 is not substantially contained.

ガラス粉末の平均粒子径D50は15μm以下、0.5〜10μm、特に0.7〜5μmが好ましい。ガラス粉末の粒度が大き過ぎると、スクリーン印刷性が低下し易くなり、また絵付層の色調が不均一になり易い。ここで、「平均粒子径D50」とは、レーザー回折装置で測定した値を指し、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径を表す。 The average particle diameter D 50 of the glass powder is 15 μm or less, preferably 0.5 to 10 μm, and particularly preferably 0.7 to 5 μm. If the particle size of the glass powder is too large, the screen printability tends to deteriorate, and the color tone of the painting layer tends to become uneven. Here, the “average particle diameter D 50 ” refers to a value measured by a laser diffractometer, and in a volume-based cumulative particle size distribution curve when measured by a laser diffraction method, the cumulative amount is accumulated from the smaller particles. And the particle size is 50%.

マクロ型DTA装置で測定したガラス粉末の軟化点は、好ましくは550〜740℃、600〜720℃、630〜700℃、特に650〜690℃である。軟化点が高過ぎると、焼成温度を低下させることが困難になる。焼成温度が高いと、焼成コストが上昇し、また無機顔料粉末の発色性が低下する。一方、軟化点が低過ぎると、他の特性、特に耐水性、耐酸性が低下し易くなる。   The softening point of the glass powder measured by a macro type DTA apparatus is preferably 550 to 740 ° C, 600 to 720 ° C, 630 to 700 ° C, and particularly 650 to 690 ° C. If the softening point is too high, it becomes difficult to lower the firing temperature. When the firing temperature is high, the firing cost is increased and the color developability of the inorganic pigment powder is reduced. On the other hand, when the softening point is too low, other properties, particularly water resistance and acid resistance, are likely to be lowered.

本発明の複合粉末は、少なくともガラス粉末と無機顔料粉末を含み、必要に応じて、耐火性フィラー粉末等を含む。ガラス粉末は、無機顔料粉末を分散させた状態で、結晶化ガラス基板に固着させるための成分である。無機顔料粉末は、黒色等に着色させて、装飾性を高めるための成分である。耐火性フィラー粉末は、任意成分であり、機械的強度を高める成分であり、また熱膨張係数を調整するための成分である。なお、上記以外にも、発色性を高めるために、Cu粉末等の金属粉末を添加してもよい。   The composite powder of the present invention contains at least glass powder and inorganic pigment powder, and optionally contains refractory filler powder and the like. The glass powder is a component for fixing the inorganic pigment powder in a dispersed state on the crystallized glass substrate. The inorganic pigment powder is a component for coloring in black or the like to enhance decorativeness. The refractory filler powder is an optional component, a component that enhances mechanical strength, and a component that adjusts the thermal expansion coefficient. In addition to the above, metal powder such as Cu powder may be added in order to enhance the color developability.

本発明の複合粉末は、ガラス粉末 45〜99質量%、無機顔料粉末 1〜55質量%、耐火性フィラー粉末 0〜40質量%を含有することが好ましい。   The composite powder of the present invention preferably contains 45 to 99% by mass of glass powder, 1 to 55% by mass of inorganic pigment powder, and 0 to 40% by mass of refractory filler powder.

ガラス粉末の含有量は、好ましくは25〜99質量%、30〜99質量%、35〜90質量%、40〜85質量%、45〜80質量%、特に50〜75質量%である。ガラス粉末の含有量が少な過ぎると、絵付層と結晶化ガラス基板の固着性が低下し易くなる。なお、ガラス粉末の含有量が多過ぎると、無機顔料粉末が相対的に少なくなり、絵付層の装飾性が低下し易くなる。   The content of the glass powder is preferably 25 to 99% by mass, 30 to 99% by mass, 35 to 90% by mass, 40 to 85% by mass, 45 to 80% by mass, and particularly 50 to 75% by mass. If the content of the glass powder is too small, the adherence between the painting layer and the crystallized glass substrate tends to deteriorate. In addition, when the content of the glass powder is too large, the amount of the inorganic pigment powder becomes relatively small, and the decorative property of the painting layer is likely to deteriorate.

無機顔料粉末の含有量は、好ましくは1〜75質量%、1〜70質量%、10〜65質量%、15〜60質量%、20〜55質量%、特に25〜50質量%である。無機顔料粉末の含有量が少な過ぎると、装飾性が低下し易くなる。一方、無機顔料粉末の含有量が多過ぎると、ガラス粉末が相対的に少なくなり、絵付層と結晶化ガラス基板の固着性が低下し易くなる。更に無機顔料粉末の含有量が多過ぎると、絵付層の表面平滑性が低下して、絵付層の耐水性、耐酸性が低下し易くなる。   The content of the inorganic pigment powder is preferably 1 to 75% by mass, 1 to 70% by mass, 10 to 65% by mass, 15 to 60% by mass, 20 to 55% by mass, and particularly 25 to 50% by mass. If the content of the inorganic pigment powder is too small, the decorative property is likely to deteriorate. On the other hand, when the content of the inorganic pigment powder is too large, the amount of the glass powder becomes relatively small, and the adhesiveness between the painting layer and the crystallized glass substrate is likely to deteriorate. Further, if the content of the inorganic pigment powder is too large, the surface smoothness of the painting layer is lowered, and the water resistance and acid resistance of the painting layer are likely to be lowered.

無機顔料粉末は、種々の材料が使用可能であり、例えばNiO(緑色)、MnO(黒色)、CoO(黒色)、Fe(茶褐色)、Cr(緑色)、TiO(白色)等の着色酸化物、Cr−Al系スピネル(ピンク色)、Sn−Sb−V系ルチル(グレー色)、Ti−Sb−Ni系ルチル(黄色)、Zr−V系バデライト(黄色)等の酸化物、Co−Zn−Al系スピネル(青色)、Zn−Fe−Cr系スピネル(茶色)、Cr−Cu−Mn系スピネル等の複合酸化物、Ca−Cr−Si系ガーネット(ビクトリアグリーン色)、Ca−Sn−Si−Cr系スフェイン(ピンク色)、Zr−Si−Fe系ジルコン(サーモンピンク色)、Co−Zn−Si系ウイレマイト(紺青色)、Co−Si系カンラン石(紺青色)等のケイ酸塩があり、これらは所望の色を得るように、上記の割合で混合することができる。また、上記無機顔料粉末の他に、例えば、絵付層の隠蔽性及び耐磨耗性を向上させるために、ZrSiO4やタルク等を適量混合させてもよい。 Various materials can be used for the inorganic pigment powder, for example, NiO (green), MnO 2 (black), CoO (black), Fe 2 O 3 (brown), Cr 2 O 3 (green), TiO 2 ( (White) colored oxides, Cr-Al spinel (pink), Sn-Sb-V rutile (gray), Ti-Sb-Ni rutile (yellow), Zr-V baderite (yellow), etc. Oxides, complex oxides such as Co-Zn-Al spinel (blue), Zn-Fe-Cr spinel (brown), Cr-Cu-Mn spinel, Ca-Cr-Si garnet (Victorian green color) ), Ca-Sn-Si-Cr-based sphene (pink), Zr-Si-Fe-based zircon (salmon pink), Co-Zn-Si-based willemite (dark blue), Co-Si-based olivine (dark blue) )etc There are silicates, which are to obtain the desired color can be mixed in the above ratio. In addition to the above-mentioned inorganic pigment powder, for example, ZrSiO 4 or talc may be mixed in an appropriate amount in order to improve the hiding property and abrasion resistance of the painting layer.

無機顔料粉末の平均粒子径D50は9μm以下、特に0.5〜4μmが好ましい。無機顔料粉末の最大粒子径Dmaxは10μm以下、特に2〜8μmが好ましい。無機顔料粉末の粒度が大き過ぎると、スクリーン印刷性が低下し易くなり、また絵付層の発色性が低下し易くなる。なお、「最大粒子径Dmax」とは、レーザー回折装置で測定した値を指し、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒子径を表す。 The average particle diameter D 50 of the inorganic pigment powder is 9 μm or less, and preferably 0.5 to 4 μm. The maximum particle diameter D max of the inorganic pigment powder is preferably 10 μm or less, and particularly preferably 2 to 8 μm. If the particle size of the inorganic pigment powder is too large, the screen printability tends to deteriorate, and the coloring property of the painting layer tends to deteriorate. The “maximum particle diameter D max ” refers to a value measured by a laser diffractometer, and in a volume-based cumulative particle size distribution curve when measured by a laser diffraction method, the cumulative amount is accumulated from the smaller particles. Represents a particle size of 99%.

耐火性フィラー粉末の含有量は、好ましくは0〜40質量%、0〜20質量%、0〜15質量%、0〜10質量%、0〜5質量%、0〜1質量%、特に0〜0.1質量%未満である。耐火性フィラー粉末の含有量が多過ぎると、絵付層と結晶化ガラス基板の固着性が低下し易くなる。   The content of the refractory filler powder is preferably 0 to 40% by mass, 0 to 20% by mass, 0 to 15% by mass, 0 to 10% by mass, 0 to 5% by mass, 0 to 1% by mass, and particularly 0 to It is less than 0.1% by mass. If the content of the refractory filler powder is too large, the adherence between the painting layer and the crystallized glass substrate tends to decrease.

耐火性フィラー粉末として、コーディエライト、ウイレマイト、アルミナ、リン酸ジルコニウム、ジルコン、ジルコニア、酸化スズ、ムライト、シリカ、β−ユークリプタイト、β−スポジュメン、β−石英固溶体、リン酸タングステン酸ジルコニウム等が使用可能である。   As a refractory filler powder, cordierite, willemite, alumina, zirconium phosphate, zircon, zirconia, tin oxide, mullite, silica, β-eucryptite, β-spodumene, β-quartz solid solution, zirconium phosphate tungstate, etc. Can be used.

本発明のガラス粉末は、ビークルと混合して、ガラス粉末ペーストとして使用に供される。また、本発明の複合粉末は、ビークルと混合して、複合粉末ペーストとして使用に供される。ビークルは、主に溶媒と樹脂で構成される。溶媒は、樹脂を溶解させつつ、複合粉末を均一に分散させる目的で添加される。樹脂は、ペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。   The glass powder of the present invention is mixed with a vehicle and used as a glass powder paste. The composite powder of the present invention is mixed with a vehicle and used as a composite powder paste. The vehicle is mainly composed of a solvent and a resin. The solvent is added for the purpose of uniformly dispersing the composite powder while dissolving the resin. The resin is added for the purpose of adjusting the viscosity of the paste. Moreover, a surfactant, a thickener, etc. can be added as needed.

樹脂として、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。特に、アクリル酸エステル、エチルセルロースは、熱分解性が良好であるため、好ましい。   As the resin, acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used. Particularly, acrylic acid ester and ethyl cellulose are preferable because they have good thermal decomposability.

溶媒として、パインオイル、N、N’−ジメチルホルムアミド(DMF)、α−ターピネオール、高級アルコール、γ−ブチルラクトン(γ−BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3−メトキシ−3−メチルブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、N−メチル−2−ピロリドン等が使用可能である。特に、α−ターピネオールは、高粘性であり、樹脂等の溶解性も良好であるため、好ましい。   As a solvent, pine oil, N, N′-dimethylformamide (DMF), α-terpineol, higher alcohol, γ-butyl lactone (γ-BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl. Ether, diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether , Tripropylene glycol monobutyl ether, propylene carbonate, N-methyl-2-pyrrolidone, etc. It is possible to use. In particular, α-terpineol is preferable because it has high viscosity and good solubility of resin and the like.

粉末ペーストは、例えば、複合粉末とビークルとを混合した後、3本ロールミルで均一に混練することにより作製される。   The powder paste is prepared, for example, by mixing the composite powder and the vehicle and then uniformly kneading them with a three-roll mill.

粉末ペーストは、スクリーン印刷機等の塗布機を用いて結晶化ガラス基板上に塗布された後、乾燥工程、焼成工程に供される。これにより、結晶化ガラス基板の表面に絵付層を形成することができる。乾燥工程の条件は、70〜150℃で10〜60分間が一般的である。焼成工程は、樹脂を分解揮発させると共に、ガラス粉末を焼結させて、結晶化ガラス基板の表面に絵付層を固着させる工程である。焼成工程の条件は、650〜850℃で5〜30分間が一般的である。焼成工程で焼成温度が低い程、生産効率が向上するが、その一方で焼成温度が低過ぎると、絵付層と結晶化ガラス基板の固着性が低下する。   The powder paste is applied to the crystallized glass substrate using an applicator such as a screen printer, and then subjected to a drying step and a firing step. Thereby, the painting layer can be formed on the surface of the crystallized glass substrate. The conditions for the drying step are generally at 70 to 150 ° C. for 10 to 60 minutes. The firing step is a step of decomposing and volatilizing the resin, sintering the glass powder, and fixing the painting layer on the surface of the crystallized glass substrate. The conditions for the firing step are generally at 650 to 850 ° C. for 5 to 30 minutes. When the firing temperature is lower in the firing step, the production efficiency is improved. On the other hand, when the firing temperature is too low, the adhesion between the painting layer and the crystallized glass substrate is lowered.

本発明の絵付層付き結晶化ガラス基板は、結晶化ガラス基板の表面に絵付層を有する絵付層付き結晶化ガラス基板であって、絵付層がガラス粉末の焼結体であり、且つガラス粉末が上記のガラス粉末であることが好ましい。また本発明の絵付層付き結晶化ガラス基板は、結晶化ガラス基板の表面に絵付層を有する絵付層付き結晶化ガラス基板であって、絵付層が複合粉末の焼結体であり、且つ複合粉末が上記の複合粉末であることが好ましい。本発明の絵付層付き結晶化ガラス基板は、本発明のガラス粉末の技術的特徴と本発明の複合粉末の技術的特徴とを含むが、その内容は記載済みであるため、便宜上、その説明を省略する。   The crystallized glass substrate with a paint layer of the present invention is a crystallized glass substrate with a paint layer having a paint layer on the surface of the crystallized glass substrate, wherein the paint layer is a sintered body of glass powder, and the glass powder is It is preferably the above glass powder. Further, the crystallized glass substrate with a paint layer of the present invention is a crystallized glass substrate with a paint layer having a paint layer on the surface of the crystallized glass substrate, wherein the paint layer is a sintered body of a composite powder, and the composite powder Is preferably the above composite powder. The crystallized glass substrate with a painted layer of the present invention includes the technical features of the glass powder of the present invention and the technical features of the composite powder of the present invention, but since the contents have already been described, the description thereof will be made for convenience. Omit it.

結晶化ガラス基板は、主結晶としてβ−石英固溶体が析出していることが好ましい。このようにすれば、加熱耐久性、耐熱衝撃性を高めることができる。   The crystallized glass substrate preferably has a β-quartz solid solution as a main crystal deposited therein. With this, heating durability and thermal shock resistance can be improved.

結晶化ガラス基板の熱膨張係数は、−10×10−7〜30×10−7/℃、特に−5×10−7〜10×10−7/℃が好ましい。結晶化ガラス基板の熱膨張係数を0×10−7に近づけると、結晶化ガラス基板の加熱耐久性、耐熱衝撃性が向上する。その結果、使用時に急加熱、急冷却による熱衝撃が加わる調理器用トッププレートに好適となる。なお、調理器としては、電磁調理器、電気調理器、ガス調理器等がある。 The coefficient of thermal expansion of the crystallized glass substrate is preferably −10 × 10 −7 to 30 × 10 −7 / ° C., and particularly preferably −5 × 10 −7 to 10 × 10 −7 / ° C. When the thermal expansion coefficient of the crystallized glass substrate is brought close to 0 × 10 −7 , the heating durability and thermal shock resistance of the crystallized glass substrate are improved. As a result, it is suitable for a cooker top plate to which thermal shock due to rapid heating and rapid cooling is applied during use. Note that the cooker includes an electromagnetic cooker, an electric cooker, a gas cooker, and the like.

絵付層の厚みは1〜30μm、2〜15μm、特に5〜12μmが好ましい。絵付層の厚みが小さ過ぎると、絵付の模様が不明確になる虞がある。一方、絵付層の厚みが厚過ぎると、絵付の模様にクラックが発生する虞がある。   The thickness of the painting layer is preferably 1 to 30 μm, 2 to 15 μm, and particularly preferably 5 to 12 μm. If the thickness of the painting layer is too small, the pattern of the painting may become unclear. On the other hand, if the thickness of the painting layer is too thick, cracks may occur in the painting pattern.

調理器用トッププレートの調理面側に絵付層を配置する場合、絵付層は、規則的なドット状の模様であることが好ましい。   When the painting layer is arranged on the cooking surface side of the cooker top plate, the painting layer preferably has a regular dot pattern.

調理器用トッププレートの調理面側とは反対側に絵付層を配置する場合、絵付層は、模様ではなく、必要な部分の全面に形成されることが好ましい。   When the painting layer is arranged on the side opposite to the cooking surface side of the cooker top plate, it is preferable that the painting layer is formed not on the pattern but on the entire surface of the necessary portion.

以下、実施例に基づいて、本発明を説明する。なお、以下の実施例は、単なる例示である。本発明は、以下の実施例に何ら限定されない。   Hereinafter, the present invention will be described based on Examples. The following embodiments are merely examples. The present invention is not limited to the following examples.

表1は、本発明の実施例(試料No.1〜9)及び比較例(試料No.10)を示している。   Table 1 has shown the Example (sample No. 1-9) and comparative example (sample No. 10) of this invention.

まず表中に記載のガラス組成になるように、原料を調合し、均一に混合し、ガラスバッチを得た後、ガラスバッチを白金坩堝に入れて、1500℃で3時間溶融した。その後、溶融ガラスをフィルム状に成形した。続いて、得られたガラスフィルムをボールミルにて粉砕した後、空気分級して、平均粒子径D50が2.5μmのガラス粉末を得た。 First, raw materials were prepared so as to have the glass composition shown in the table and uniformly mixed to obtain a glass batch. The glass batch was put into a platinum crucible and melted at 1500 ° C. for 3 hours. Then, the molten glass was formed into a film. Then, the obtained glass film was crushed by a ball mill and then air-classified to obtain a glass powder having an average particle diameter D 50 of 2.5 μm.

各ガラス粉末について、マクロ型DTA装置を用いて、軟化点を測定した。ここで、測定は、空気中で行い、昇温速度を10℃/分とした。   The softening point of each glass powder was measured using a macro type DTA device. Here, the measurement was performed in air, and the temperature rising rate was 10 ° C./min.

ガラス粉末の熱膨張係数は、TMA装置を用いて、30〜350℃の温度範囲で測定した値である。ここで、測定試料として、ガラス粉末の圧粉体を750℃10分間の焼成条件で緻密に焼結させた後、所定形状に加工したものを用いた。   The thermal expansion coefficient of the glass powder is a value measured in a temperature range of 30 to 350 ° C. using a TMA device. Here, as a measurement sample, a powder compact of glass powder was densely sintered under a firing condition of 750 ° C. for 10 minutes and then processed into a predetermined shape.

以下のようにしてガラス粉末の耐水性を評価した。すなわち、ガラス粉末の圧粉体を750℃10分間の焼成条件で緻密に焼結させた後、所定形状に加工したものを測定試料とし、90℃の水に2時間浸漬した時に、外観変化が認められなかったものを「○」、外観変化が認められたものを「×」として評価した。   The water resistance of the glass powder was evaluated as follows. That is, a compacted powder of glass powder was densely sintered under a firing condition of 750 ° C. for 10 minutes, and then processed into a predetermined shape, which was used as a measurement sample, and the appearance change was observed when immersed in water at 90 ° C. for 2 hours. Those that were not recognized were evaluated as “◯”, and those that were observed in appearance change were evaluated as “x”.

次に、ガラス粉末と無機顔料粉末を表中に記載の割合(合計100質量%)で混合し、複合粉末を得た。ここで、無機顔料粉末として、Cr−Cu−Mn系複合酸化物(平均粒径D50が1.5μm、最大粒径Dmaxが4.0μm)を用いた。 Next, the glass powder and the inorganic pigment powder were mixed in the proportions shown in the table (total 100% by mass) to obtain a composite powder. Here, as the inorganic pigment powder, a Cr—Cu—Mn-based composite oxide (average particle diameter D 50 is 1.5 μm, maximum particle diameter D max is 4.0 μm) is used.

更に、得られたガラス粉末又は複合粉末とビークルを混合後、3本ロールミルで均一に混練し、粉末ペーストを得た。なお、ビークルとして、エチルセルロースをα−テルピネオールに溶解させたものを用い、モル比で複合粉末/ビークルを2〜3に調整した。   Further, the obtained glass powder or composite powder was mixed with a vehicle and then uniformly kneaded with a three-roll mill to obtain a powder paste. A vehicle prepared by dissolving ethyl cellulose in α-terpineol was used as a vehicle, and the composite powder / vehicle was adjusted to 2-3 in terms of molar ratio.

続いて、粉末ペーストを10cm角の透明結晶化ガラス基板(日本電気硝子株式会社製N−0、主結晶:β−石英固溶体)の片面全体にスクリーン印刷した後、120℃で20分間乾燥した上で、750℃の電気炉に投入して、10分間焼成し、室温まで自然冷却することにより、厚み10μmの絵付層付き透明結晶化ガラス基板を得た。   Subsequently, the powder paste was screen-printed on one side of a 10 cm square transparent crystallized glass substrate (N-0 manufactured by Nippon Electric Glass Co., Ltd., main crystal: β-quartz solid solution), and then dried at 120 ° C. for 20 minutes. Then, it was placed in an electric furnace at 750 ° C., baked for 10 minutes, and naturally cooled to room temperature to obtain a transparent crystallized glass substrate with a paint layer having a thickness of 10 μm.

クラックの有無は、絵付層付き透明結晶化ガラス基板を観察して、クラックが認められなかったものを「○」、クラックが認められたものを「×」として評価した。   The presence or absence of cracks was evaluated by observing the transparent crystallized glass substrate with a painted layer, and those in which no cracks were observed were evaluated as “◯”, and those in which cracks were observed were evaluated as “x”.

絵付層の耐水性は、90℃の水に24時間浸漬した時に、絵付層に外観変化が認められなかったものを「○」、外観変化が僅かに認められたものを「△」、外観変化が明確に認められたものを「×」として評価した。   The water resistance of the paint layer was "○" when no change was observed in the paint layer when it was immersed in water at 90 ° C for 24 hours, and "△" when the appearance change was slightly observed. What was clearly recognized was evaluated as "x".

絵付層の耐酸性は、40℃の0.1質量%HCl水溶液に1時間浸漬した時に、絵付層に外観変化が認められなかったものを「○」、外観変化が僅かに認められたものを「△」、外観変化が明確に認められたものを「×」として評価した。   The acid resistance of the paint layer is "○" when no change in appearance was observed in the paint layer when immersed in an aqueous 0.1% by mass HCl solution at 40 ° C for 1 hour, and when the appearance change was slightly observed. The evaluation was evaluated as “x” when “Δ” and the appearance change was clearly recognized.

表1から明らかなように、試料No.1〜9は、軟化点と熱膨張係数が低く、耐水性、耐酸性の評価が良好であった。一方、試料No.10は、Bの含有量が過剰であり、且つモル比ZnO/(LiO+NaO+KO)が小さ過ぎるため、耐水性、耐酸性の評価が不良であり、ZnOの含有量が過少であるため、軟化点が高かった。 As is clear from Table 1, the sample No. 1 to 9 had a low softening point and a low coefficient of thermal expansion, and had good evaluations of water resistance and acid resistance. On the other hand, sample No. No. 10 had an excessive content of B 2 O 3 and a molar ratio ZnO / (Li 2 O + Na 2 O + K 2 O) that was too small, so that the evaluation of water resistance and acid resistance was poor, and the content of ZnO was Was low, so the softening point was high.

本発明は、ガラス粉末、複合粉末及び絵付層付き結晶化ガラス基板は、調理器用トッププレート等に好適であるが、石英基板、Si基板等の低膨張基板の被覆、封着等の用途にも応用可能である。 The present invention, glass powder, crystallized glass substrate having the composite powder and the decorative layer is suitable to top plate for a cooking appliance such as a quartz substrate, Si 3 N 4 of the low expansion substrate such as a substrate coating, sealing, etc. It can also be applied to applications.

Claims (11)

ガラス組成として、モル%で、SiO 45〜60%、B 1〜15%未満、ZnO 10〜35%、LiO+NaO+KO 3〜15%、Al 0〜10%、BaO 2〜7%を含有し、モル比ZnO/(LiO+NaO+KO)が0.5〜4であることを特徴とするガラス粉末。 As a glass composition, SiO 2 45-60%, B 2 O 3 1-15%, ZnO 10-35%, Li 2 O + Na 2 O + K 2 O 3-15%, Al 2 O 3 0-10 in mol%. %, BaO 2-7 %, and the molar ratio ZnO / (Li 2 O + Na 2 O + K 2 O) is 0.5-4. モル比ZnO/Bが1〜4であることを特徴とする請求項1に記載のガラス粉末。 The glass powder according to claim 1, wherein the molar ratio ZnO / B 2 O 3 is 1 to 4. ガラス組成中のZnOの含有量が18〜28モル%であることを特徴とする請求項1又は2に記載のガラス粉末。   Content of ZnO in a glass composition is 18-28 mol%, The glass powder of Claim 1 or 2 characterized by the above-mentioned. ガラス組成中に実質的にPbOとBiを含まないことを特徴とする請求項1〜3の何れかに記載のガラス粉末。 Glass powder according to claim 1, wherein the substantially contains no PbO and Bi 2 O 3 in the glass composition. 30〜350℃における平均熱膨張係数が70×10−7/℃以下であることを特徴とする請求項1〜4の何れかに記載のガラス粉末。 The average thermal expansion coefficient at 30 to 350 ° C. is 70 × 10 −7 / ° C. or less, and the glass powder according to claim 1. マクロ型DTA装置で測定した軟化点が550〜740℃であることを特徴とする請求項1〜5の何れかに記載のガラス粉末。   The softening point measured by a macro type DTA device is 550 to 740 ° C, and the glass powder according to any one of claims 1 to 5. ガラス粉末 25〜99質量%、無機顔料粉末 1〜75質量%、耐火性フィラー粉末0〜40質量%を含有する複合粉末であって、ガラス粉末が、請求項1〜6の何れかに記載のガラス粉末であることを特徴とする複合粉末。   It is a composite powder containing 25 to 99 mass% of glass powder, 1 to 75 mass% of inorganic pigment powder, and 0 to 40 mass% of refractory filler powder, and the glass powder is according to any one of claims 1 to 6. A composite powder characterized by being a glass powder. 無機顔料粉末がCr-Cu系複合酸化物であることを特徴とする請求項7に記載の複合粉末。   The composite powder according to claim 7, wherein the inorganic pigment powder is a Cr-Cu-based composite oxide. 結晶化ガラス基板の表面に絵付層を有する絵付層付き結晶化ガラス基板であって、絵付層がガラス粉末の焼結体であり、且つガラス粉末が請求項1〜6の何れかに記載のガラス粉末であることを特徴とする絵付層付き結晶化ガラス基板。   A crystallized glass substrate with a painting layer having a painting layer on the surface of the crystallized glass substrate, wherein the painting layer is a sintered body of glass powder, and the glass powder is glass according to any one of claims 1 to 6. A crystallized glass substrate with a paint layer, which is a powder. 結晶化ガラス基板の表面に絵付層を有する絵付層付き結晶化ガラス基板であって、絵付層が複合粉末の焼結体であり、且つ複合粉末が請求項7又は8に記載の複合粉末であることを特徴とする絵付層付き結晶化ガラス基板。   A crystallized glass substrate with a painting layer having a painting layer on the surface of the crystallized glass substrate, wherein the painting layer is a sintered body of composite powder, and the composite powder is the composite powder according to claim 7. A crystallized glass substrate with a paint layer, which is characterized in that 調理器用トッププレートに用いることを特徴とする請求項9又は10に記載の絵付層付き結晶化ガラス基板。   The crystallized glass substrate with a painted layer according to claim 9 or 10, which is used for a top plate for a cooker.
JP2015242847A 2015-12-14 2015-12-14 Crystallized glass substrate with glass powder, composite powder and painting layer Active JP6686410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015242847A JP6686410B2 (en) 2015-12-14 2015-12-14 Crystallized glass substrate with glass powder, composite powder and painting layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015242847A JP6686410B2 (en) 2015-12-14 2015-12-14 Crystallized glass substrate with glass powder, composite powder and painting layer

Publications (2)

Publication Number Publication Date
JP2017109875A JP2017109875A (en) 2017-06-22
JP6686410B2 true JP6686410B2 (en) 2020-04-22

Family

ID=59079194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015242847A Active JP6686410B2 (en) 2015-12-14 2015-12-14 Crystallized glass substrate with glass powder, composite powder and painting layer

Country Status (1)

Country Link
JP (1) JP6686410B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4043414A4 (en) * 2019-10-08 2023-11-29 Nippon Electric Glass Co., Ltd. Cooker top plate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186438A (en) * 1984-03-01 1985-09-21 Okuno Seiyaku Kogyo Kk Lead-free fritt composition for glass coloration
KR950006202B1 (en) * 1986-11-03 1995-06-12 시바-가이기 아게 Lead-free glass frit compositions
JPH0967139A (en) * 1995-08-28 1997-03-11 Nippon Sheet Glass Co Ltd Frit composition for glass coloring
JP4035673B2 (en) * 1997-11-28 2008-01-23 奥野製薬工業株式会社 Ceramic color composition, molded plate glass, and molding method thereof
JP2000154038A (en) * 1998-09-14 2000-06-06 Asahi Glass Co Ltd Ceramic color composition and production of curved glass sheet
JP3069790B1 (en) * 1999-09-08 2000-07-24 日本フエロー株式会社 Method for producing frit for ceramic glaze
JP4556004B2 (en) * 2000-06-29 2010-10-06 奥野製薬工業株式会社 Ceramic color composition and plate glass bending method
JP2005194120A (en) * 2004-01-06 2005-07-21 Sumitomo Metal Mining Co Ltd Glass ceramic powder composition and glass paste
JP4883465B2 (en) * 2005-08-05 2012-02-22 日本電気硝子株式会社 Decorative glass frit, decorative material and decorative crystallized glass substrate
US8772189B2 (en) * 2011-05-04 2014-07-08 Ferro Corporation Glass frit compositions for enamels

Also Published As

Publication number Publication date
JP2017109875A (en) 2017-06-22

Similar Documents

Publication Publication Date Title
US8007930B2 (en) Zinc containing glasses and enamels
JP4586184B2 (en) Glass powder for ceramic color and ceramic color composition
KR20160014580A (en) Composite powder, composite powder paste, and glass plate with colored layer
KR20160106574A (en) Composite powder and paste of composite powder
JP4930897B2 (en) Bi2O3-B2O3 sealing material
JP4899249B2 (en) Lead-free glass, glass ceramic composition and glass paste
JP4075864B2 (en) Decorative ceramic body, manufacturing method thereof and glaze preparation
JP6260770B2 (en) Glass, glass powder, composite powder and glass plate with colored layer
JP6686410B2 (en) Crystallized glass substrate with glass powder, composite powder and painting layer
US10934206B2 (en) Top plate for cooking device
JP5668322B2 (en) Optical glass, glass frit and translucent substrate with glass layer
JP6701541B2 (en) Low expansion substrate with glass powder, composite powder and painting layer
WO2016084627A1 (en) Glass powder, composite powder, and low expansion substrate with decorative layer
JP4619454B1 (en) Glossy glaze for low-temperature fired roof tiles with reduced gas generation
WO2018066295A1 (en) Borosilicate glass, composite powder material, and composite powder material paste
JP2016222473A (en) Glass powder for glaze
JP2015137190A (en) Composite powder and paste of composite powder
JP6587128B2 (en) Glass powder and composite powder using the same
JP2009078955A (en) Lead-free ceramic color composition
WO2016175093A1 (en) Glass powder and composite powder using same
JPH07291659A (en) Colored ceramic composition, glass plate produced therefrom and its production
JP2023028281A (en) Powder material, powder material paste and fired film
JP2017048061A (en) Glass paste composition and method for producing film formation glass member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6686410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150