Nothing Special   »   [go: up one dir, main page]

JP6678539B2 - Phase loss detection system, phase loss detection device, and phase loss detection method - Google Patents

Phase loss detection system, phase loss detection device, and phase loss detection method Download PDF

Info

Publication number
JP6678539B2
JP6678539B2 JP2016161074A JP2016161074A JP6678539B2 JP 6678539 B2 JP6678539 B2 JP 6678539B2 JP 2016161074 A JP2016161074 A JP 2016161074A JP 2016161074 A JP2016161074 A JP 2016161074A JP 6678539 B2 JP6678539 B2 JP 6678539B2
Authority
JP
Japan
Prior art keywords
harmonic
phase
current
wiring
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016161074A
Other languages
Japanese (ja)
Other versions
JP2018028501A (en
Inventor
高橋 正雄
正雄 高橋
雄大 田中
雄大 田中
祥吾 三浦
祥吾 三浦
前嶋 宏行
宏行 前嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2016161074A priority Critical patent/JP6678539B2/en
Priority to PCT/JP2017/029258 priority patent/WO2018034260A1/en
Publication of JP2018028501A publication Critical patent/JP2018028501A/en
Application granted granted Critical
Publication of JP6678539B2 publication Critical patent/JP6678539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/18Indicating phase sequence; Indicating synchronism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/34Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors of a three-phase system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

本発明の実施形態は、欠相検知システム、欠相検知装置および欠相検知方法に関する。   An embodiment of the present invention relates to a phase loss detection system, a phase loss detection device, and a phase loss detection method.

発電所などの発電施設では、3相交流の高電圧を変圧する変圧器に保護継電器が接続されており、地落や短絡の事象発生時の対応が図られている。   In a power generation facility such as a power plant, a protective relay is connected to a transformer that transforms a high voltage of three-phase alternating current, and measures are taken in the event of a ground failure or a short circuit.

ところで、変圧器の1次側に接続されている碍子などが破損して3相のうちの例えば1相が欠相すること(以下これを「1相開放故障」と称す)がまれにある。   By the way, it is rare that an insulator or the like connected to the primary side of the transformer is damaged and one of three phases, for example, loses phase (hereinafter, this is referred to as "one-phase open fault").

3相変圧器における1相開放故障は、開放した相にも電圧が誘起されるため、発見が難しく、例えば変圧器の1次側に1相開放故障が発生し、異常電流の値が保護継電器の設定値まで到達するような場合は、検知可能である。   A one-phase open fault in a three-phase transformer is difficult to find because a voltage is also induced in the open phase. For example, a one-phase open fault occurs on the primary side of the transformer, and the value of the abnormal current is a protection relay. If the set value is reached, it can be detected.

しかしながら、地落や短絡を伴わない1相開放故障が発生すると、設備構成や負荷状況によっては保護継電器の設定値まで値が変動しない場合があり、このような場合は1相開放故障を検知できないことがある。   However, when a one-phase open fault that does not involve a ground drop or short circuit occurs, the value may not fluctuate up to the set value of the protective relay depending on the equipment configuration and load conditions. In such a case, the one-phase open fault cannot be detected. Sometimes.

このため、従来は機械的な検知のほか、人為的な検知を組み合わせて地落や短絡を伴わない1相開放故障を検知するよう対応を図っている。   For this reason, conventionally, in addition to mechanical detection, an attempt is made to detect a one-phase open failure that does not involve a ground drop or a short circuit by combining artificial detection.

特開2015−006076号公報JP-A-2005-006076

従来、地落や短絡を伴わない1相開放故障が発生した場合に、設備構成や負荷状況によっては保護継電器の設定値まで値が変動しないことがあり、この場合は1相開放故障を検知できず、人為的な検知を組み合わせて対応していた。   Conventionally, when a one-phase open fault that does not involve a ground drop or short circuit occurs, the value may not fluctuate up to the set value of the protective relay depending on the equipment configuration and load conditions. In this case, the one-phase open fault can be detected Instead, they combined artificial detection.

本発明が解決しようとする課題は、設備構成や負荷状況によらずに地落や短絡を伴わない1相開放故障を機械的に検知することができる欠相検知システム、欠相検知装置および欠相検知方法を提供することにある。   An object of the present invention is to provide an open-phase detection system, an open-phase detection device, and an open-phase detection device that can mechanically detect a single-phase open failure that does not involve a ground drop or a short circuit irrespective of the equipment configuration and load conditions. It is to provide a phase detection method.

実施形態の欠相検知システムは、相毎の配線に励磁電流が流される1次側回路を有する3相静止誘導電気機器と、前記1次側回路の各相の前記励磁電流を検知する電流検知器と、前記電流検知器により検知された前記励磁電流から高調波を抽出する抽出部と、前記抽出部により前記高調波が抽出されたか否かに応じて前記励磁電流の検知元の前記1次側回路の前記配線が開放状態か接続状態かを判定する判定部と、を具備し、前記判定部は、基本波の振幅値が予め当該基本波用に設定された第1閾値を超え、前記高調波の前記振幅値が予め当該高調波用に設定した第2閾値を超えない場合、前記高調波が抽出されなかったものとして、当該配線が開放状態であるものと判定する。
また、実施形態の欠相検知装置は、3相静止誘導電気機器の1次側回路の相毎の配線に流される励磁電流から高調波を抽出する抽出部と、前記高調波が抽出されたか否かに応じて前記励磁電流の検知元の前記1次側回路の前記配線が接続状態か開放状態かを判定する判定部と、を具備し、前記判定部は、基本波の振幅値が予め前記基本波用に設定された第1閾値を超え、前記高調波の前記振幅値が予め当該高調波用に設定した第2閾値を超えない場合、前記高調波が抽出されなかったものとして、当該配線が開放状態であるものと判定する。
また、実施形態の欠相判定方法は、抽出部が、3相静止誘導電気機器の1次側回路の相毎の配線に流される励磁電流から高調波を抽出し、判定部が、前記高調波が抽出されたか否かに応じて前記励磁電流の検知元の前記1次側回路の前記配線が接続状態か開放状態かを判定する、欠相検知方法であって、前記判定部は、基本波の振幅値が予め当該基本波用に設定された第1閾値を超え、前記高調波の前記振幅値が予め前記高調波用に設定した第2閾値を超えない場合、前記高調波が抽出されなかったものとして、当該配線が開放状態であるものと判定する。

An open-phase detection system according to an embodiment includes a three-phase stationary induction electric device having a primary-side circuit in which an excitation current flows through wiring for each phase, and a current detection for detecting the excitation current of each phase of the primary-side circuit. Detector, an extraction unit for extracting a harmonic from the excitation current detected by the current detector, and the primary source of the excitation current detected according to whether or not the harmonic is extracted by the extraction unit. A determination unit that determines whether the wiring of the side circuit is in an open state or a connection state, wherein the determination unit has an amplitude value of a fundamental wave exceeding a first threshold value previously set for the fundamental wave, If the amplitude value of the harmonic does not exceed the second threshold value previously set for the harmonic, it is determined that the harmonic has not been extracted, and the wiring is determined to be open.
In addition, the open-phase detecting device according to the embodiment includes an extraction unit configured to extract a harmonic from an excitation current flowing through a wiring for each phase of a primary circuit of the three-phase static induction electric device, and whether the harmonic is extracted. or the wiring of the primary side circuit of the detection source of the excitation current anda determination section for determining the connected state or the open state in accordance with, the determining unit, the amplitude value of the fundamental wave advance When the amplitude exceeds the first threshold set for the fundamental wave and the amplitude value of the harmonic does not exceed the second threshold set in advance for the harmonic, the harmonic is not extracted, and It is determined that the wiring is open.
Further, in the phase loss determination method according to the embodiment, the extraction unit extracts a harmonic from an excitation current flowing through a wiring for each phase of a primary circuit of the three-phase static induction electric device, and the determination unit determines the harmonic. A phase loss detection method for determining whether the wiring of the primary circuit from which the excitation current is detected is in a connected state or an open state according to whether or not the excitation current is extracted. If the amplitude value of the harmonic does not exceed the first threshold value set for the fundamental wave in advance and the amplitude value of the harmonic does not exceed the second threshold value set for the harmonic wave in advance, the harmonic is not extracted. It is determined that the wiring is open.

第1実施形態の欠相検知システムの構成を示す図である。It is a figure showing composition of an open phase detection system of a 1st embodiment. 発電所などで用いられる変圧器の結線図である。FIG. 3 is a connection diagram of a transformer used in a power plant or the like. 変圧器を含めた等価回路を示す図である。It is a figure showing an equivalent circuit including a transformer. 図3の回路において、ある配線が断線した場合の電理由の流れを示す図である。FIG. 4 is a diagram showing a flow of a power supply reason when a certain wiring is disconnected in the circuit of FIG. 3. 励磁電流の有無だけでは一部の欠相を検知できない例を示す図である。FIG. 7 is a diagram showing an example in which some open phases cannot be detected only by the presence or absence of an excitation current. 変圧器の励磁電流の波形を示す図である。It is a figure showing a waveform of an exciting current of a transformer. 図6の波形の励磁電流から基本波、3倍高調波、5倍高調波を分解した図である。FIG. 7 is a diagram in which a fundamental wave, a third harmonic, and a fifth harmonic are decomposed from the exciting current having the waveform of FIG. 6. 変圧器の励磁電流の基本波の振幅を1としたときの高調波成分の歪み率を示す図である。It is a figure which shows the distortion rate of the harmonic component when the amplitude of the fundamental wave of the exciting current of a transformer is set to one. 印加電圧に対する励磁電流の基本波、高調波の変化を示す図である。FIG. 6 is a diagram illustrating changes in a fundamental wave and a harmonic of an exciting current with respect to an applied voltage. 第2実施形態の回路構成を示す図である。It is a figure showing the circuit composition of a 2nd embodiment. 他の実施形態(変形例)の回路構成を示す図である。FIG. 14 is a diagram illustrating a circuit configuration of another embodiment (modification).

以下、図面を参照して、実施形態を詳細に説明する。
図1は第1実施形態の欠相検知システムを示す図である。
Hereinafter, embodiments will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a phase loss detection system according to the first embodiment.

図1に示すように、第1実施形態の欠相検知システムは、3相静止誘導電気機器としての変圧器1と、この変圧器1の1次側回路2の各相の配線4a、4b、4cに配置された電流検出器5と、各相の電流検出器5が接続される欠相検知装置6とを有する。   As shown in FIG. 1, the open-phase detection system according to the first embodiment includes a transformer 1 as a three-phase static induction electric device, and wirings 4 a and 4 b of each phase of a primary circuit 2 of the transformer 1. 4c, and a phase loss detecting device 6 to which the current detector 5 of each phase is connected.

変圧器1は、外部へ続く各相の配線4a、4b、4cおよびコイルを含む1次側回路2と、この1次側回路2のコイルにより電圧が誘起されるコイルを有する2次側回路3とを有する。この変圧器1では1次側回路2の各配線4a、4b、4cに励磁電流が流されることで、1次側回路2と2次側回路3のコイルの巻線比に応じた電力が2次側回路3に誘起される。すなわち変圧器1は相毎の配線4a、4b、4cに励磁電流が流される1次側回路2とこの1次側回路2に電磁的に結合された2次側回路3とを有する。   The transformer 1 includes a primary circuit 2 including wirings 4a, 4b, 4c and coils of each phase continuing to the outside, and a secondary circuit 3 having a coil whose voltage is induced by the coils of the primary circuit 2. And In this transformer 1, an exciting current is applied to each of the wirings 4a, 4b, and 4c of the primary circuit 2 so that electric power corresponding to the winding ratio of the coils of the primary circuit 2 and the secondary circuit 3 is 2. It is induced in the secondary circuit 3. That is, the transformer 1 has a primary circuit 2 in which an exciting current flows through the wirings 4a, 4b, 4c for each phase, and a secondary circuit 3 electromagnetically coupled to the primary circuit 2.

電流検出器5は、各相の配線4a、4b、4cに流れる電流を検知する。電流検出器5には、例えば通常CTと呼ばれる電磁誘導を用いた変流器、ファラデー効果を利用する光CTなどを用いる。CTはカレントトランスフォーマー(電流変換器)の略称である。   The current detector 5 detects a current flowing through each phase wiring 4a, 4b, 4c. As the current detector 5, for example, a current transformer using electromagnetic induction usually called CT, an optical CT using the Faraday effect, or the like is used. CT is an abbreviation for a current transformer (current converter).

欠相検知装置6は各相の電流検知器5により検出される励磁電流を基に、励磁電流の検知元の1次側回路2の該当する相の配線4a、4b、4cが開放状態か否かを判定し、開放状態の配線が存在した場合、その旨を警報出力する。   Based on the exciting currents detected by the current detectors 5 of the respective phases, the phase loss detecting device 6 determines whether or not the wires 4a, 4b, 4c of the corresponding phase of the primary circuit 2 from which the exciting current is detected are open. If there is an open wiring, an alarm is output to that effect.

欠相検知装置6は、入力変換器61、フィルタ部62、判定部67、警報出力部68を有する。   The phase loss detection device 6 includes an input converter 61, a filter unit 62, a determination unit 67, and an alarm output unit 68.

入力変換器61は入力される励磁電流(電流の信号)を電圧の信号へ変換する。フィルタ部62はアナログフィルタ63、AD変換器64、デジタルフィルタ65を有する。   The input converter 61 converts the input excitation current (current signal) into a voltage signal. The filter unit 62 has an analog filter 63, an AD converter 64, and a digital filter 65.

アナログフィルタ63は入力される励磁電流を変換した電圧の信号)に含まれる高周波ノイズ成分(例えば10アンペア程度の電流を電圧に変換した成分)を減衰させる。   The analog filter 63 attenuates a high-frequency noise component (for example, a component obtained by converting a current of about 10 amps into a voltage) included in an input excitation current converted voltage signal.

AD変換器64はアナログフィルタ63によりノイズ成分(高周波成分)が減衰される励磁電流(アナログの信号)をデジタルの信号に変換する。   The AD converter 64 converts an exciting current (analog signal) in which a noise component (high-frequency component) is attenuated by the analog filter 63 into a digital signal.

デジタルフィルタ65はAD変換器64により変換されたデジタルの信号に含まれる商用周波数(50Hzまたは60Hzの基本波fm)と3倍高調波3fmおよび5倍高調波5fmなどの高調波成分を分離する。   The digital filter 65 separates a commercial frequency (a fundamental wave fm of 50 Hz or 60 Hz) contained in the digital signal converted by the AD converter 64 and a harmonic component such as a third harmonic 3fm and a fifth harmonic 5fm.

この例では、フィルタ部62は励磁電流の基本波fmに対する整数倍の高調波を一つ以上抽出する。つまりフィルタ部62はバンドパスフィルタであり、入力変換器61により変換された電圧信号から、基本波fmと、その3倍の周波数の3倍高調波3fm、およびその5倍の周波数の5倍高調波5fmなどを抽出する抽出部として機能する。   In this example, the filter unit 62 extracts one or more harmonics that are integral multiples of the exciting current to the fundamental wave fm. In other words, the filter unit 62 is a band-pass filter. The filter unit 62 converts the voltage signal converted by the input converter 61 into a fundamental wave fm, a triple harmonic 3fm of three times the frequency, and a five times harmonic of the five times the frequency. It functions as an extraction unit that extracts the waves 5fm and the like.

判定部67には基準電圧Vrefが入力される。判定部67は基準電圧Vrefの周期に合わせて各信号を所定期間(動作期間)毎にサンプリングする。基準電圧Vrefは同期タイミングをとるための信号であり、1次側回路2のいずれかの配線(この例では配線4c)に印加される交流電圧または通常の商用交流電圧(100V、50Hzの正弦波の信号)などを用いるものとする。   The determination unit 67 receives the reference voltage Vref. The determination unit 67 samples each signal at a predetermined period (operation period) in accordance with the cycle of the reference voltage Vref. The reference voltage Vref is a signal for obtaining synchronization timing, and is an AC voltage applied to any of the wires (the wire 4c in this example) of the primary circuit 2 or a normal commercial AC voltage (100 V, 50 Hz sine wave). Signal).

判定部67は基本波fmおよび高調波3fm、5fmそれぞれに判定用の閾値を持っている。基本波fmの振幅値に対する閾値を第1閾値とし、高調波3fm、5fmの振幅値に対する閾値を第2閾値とする。高調波の第2閾値については3倍高調波3fm、5倍高調波5fmそれぞれに対応する閾値が設定されている。   The determination unit 67 has a threshold for determination for each of the fundamental wave fm and the harmonics 3fm and 5fm. The threshold value for the amplitude value of the fundamental wave fm is defined as a first threshold value, and the threshold value for the amplitude values of the harmonics 3fm and 5fm is defined as a second threshold value. As the second threshold value of the harmonic, a threshold value corresponding to each of the third harmonic 3fm and the fifth harmonic 5fm is set.

判定部67は検知された基本波の振幅値が予め設定された第1閾値を超え、かつ高調波の振幅値が予め設定された第2閾値を超えない場合、その電流は充電電流のため当該配線が開放状態であるものと判定する。   When the amplitude value of the detected fundamental wave exceeds the first threshold set in advance and the amplitude value of the harmonic does not exceed the second threshold set in advance, the determination unit 67 determines that the current is a charging current. It is determined that the wiring is open.

また判定部67は検知された基本波の振幅値が予め設定された第1閾値を超え、かつ高調波の振幅値が予め設定された第2閾値を超えた場合、その電流は励磁電流のため当該配線が接続状態であるものと判定する。   When the amplitude value of the detected fundamental wave exceeds a preset first threshold value and the amplitude value of a harmonic exceeds a preset second threshold value, the determination unit 67 determines that the current is an exciting current. It is determined that the wiring is in a connected state.

判定部67はフィルタ部62により抽出された所定閾値(振幅値の第1閾値および第2閾値)を超える基本波fmおよび高調波3fm、5fmの有無に応じて励磁電流の検知元の1次側回路2の配線4a、4b、4cが開放状態か接続状態かを判定する。   The determining unit 67 determines the primary side of the excitation current detection source according to the presence or absence of the fundamental wave fm and the harmonics 3fm and 5fm exceeding the predetermined thresholds (the first threshold and the second threshold of the amplitude value) extracted by the filter 62. It is determined whether the wirings 4a, 4b, 4c of the circuit 2 are open or connected.

具体的には、判定部67はフィルタ部62により抽出された励磁電流および高調波が流れていると判定される閾値との大小関係(閾値よりも大きいか小さいか)に応じて、励磁電流の検知元の1次側回路2の配線4a、4b、4cが開放状態(少なくとも1相が開放故障)か否かを判定する。判定部67は抽出された一つ以上の高調波3fm、5fmの振幅値が第2閾値を超えない場合、高調波が抽出されなかったものとして、当該配線4a、4b、4cが開放状態であるものと判定する。   Specifically, the determination unit 67 determines the magnitude of the excitation current in accordance with the magnitude relationship between the excitation current extracted by the filter unit 62 and the threshold value at which it is determined that the harmonic is flowing (whether it is larger or smaller than the threshold value). It is determined whether or not the wires 4a, 4b, and 4c of the primary circuit 2 as the detection source are in an open state (at least one phase has an open failure). When the amplitude value of the extracted one or more harmonics 3fm, 5fm does not exceed the second threshold, the determination unit 67 determines that no harmonic has been extracted and the wirings 4a, 4b, 4c are open. Is determined.

なお基本波を用いずに高調波の有無だけ、つまり高調波の振幅値予め設定された第2閾値を超えた場合、その電流は励磁電流のため当該配線が接続状態であり、高調波の振幅値第2閾値以下の場合、その電流は充電電流のため当該配線が開放状態であるものと簡易的に判定してもよい。   When only the presence or absence of a harmonic is used without using the fundamental wave, that is, when the amplitude value of the harmonic exceeds a second threshold value set in advance, the current is an exciting current, and the wiring is in a connected state. When the value is equal to or less than the second threshold value, the current may be simply determined to be an open state because the current is a charging current.

すなわち判定部67はフィルタ部62により高調波3fm、5fmが抽出されたか否かに応じて励磁電流の検知元の1次側回路2の配線4a、4b、4cが開放状態か接続状態かを判定する。   That is, the determination unit 67 determines whether the wires 4a, 4b, and 4c of the primary circuit 2 from which the excitation current is detected are open or connected according to whether or not the harmonics 3fm and 5fm are extracted by the filter unit 62. I do.

そして、判定の結果、開放状態の配線が存在する場合(この例では配線4b)、判定部67は当該配線4bが開放状態であることを示す警報信号を警報出力部68へ出力する。   Then, as a result of the determination, when there is a wire in the open state (the wiring 4b in this example), the determining unit 67 outputs an alarm signal indicating that the wiring 4b is in the open state to the alarm output unit 68.

警報出力部68は例えばスピーカやブザー、あるいは表示装置などであり、判定部67から受信された警報信号により、配線4bが開放状態であることを警報出力する報知部または発報部である。   The alarm output unit 68 is, for example, a speaker, a buzzer, or a display device, and is a notification unit or an alarm unit that outputs an alarm indicating that the wiring 4b is in an open state based on an alarm signal received from the determination unit 67.

図1の例のように配線4bに断線箇所Pがある場合、配線4bが開放状態であることが警報音や警報表示などで報知される。   When there is a broken portion P in the wiring 4b as in the example of FIG. 1, the opening of the wiring 4b is notified by an alarm sound or an alarm display.

つまり判定部67は励磁電流に含まれる高調波を基に該当配線の欠相の有無を判定するが、基本波だけなく高調波を用いることで、欠相の有無を高感度に判別することが可能となる。この原理を以下に示す。   That is, the determination unit 67 determines the presence / absence of a phase loss in the corresponding wiring based on the harmonics included in the excitation current. It becomes possible. This principle is described below.

励磁電流を測定する上での問題点は、励磁電流が流れていなくても、線路に充電電流が流れることである。この様子を図1、図2を用いて説明する。   A problem in measuring the exciting current is that the charging current flows through the line even when the exciting current is not flowing. This will be described with reference to FIGS.

図2は一般に原子力発電所で用いられている変圧器1の結線図である。
図2に示すように、1次側、2次側ともにY結線の変圧器1が用いる。電圧の安定化のため、内部にはΔ結線の巻き線を含むように作られるのが、一般的である。
FIG. 2 is a connection diagram of a transformer 1 generally used in a nuclear power plant.
As shown in FIG. 2, a transformer 1 having a Y-connection on both the primary side and the secondary side is used. In order to stabilize the voltage, it is general that the winding is generally formed to include a Δ-connection winding.

このため、入力側のY結線に接続される配線のうちいずれか1つの配線に断線故障を生じても、無負荷あるいは軽い負荷の場合には、断線相においても、ほぼ正常時に近い電圧が誘起され、従来用いられてきた電圧低下を検出することによる欠相検出の方法では欠相が検知できない事象が発生していた。   For this reason, even if a disconnection failure occurs in any one of the wires connected to the Y connection on the input side, in the case of no load or light load, a voltage almost normal is induced even in the disconnection phase. However, the conventional method of detecting a phase loss by detecting a voltage drop has caused an event in which a phase loss cannot be detected.

この問題を解消するために、変圧器1の励磁電流の有無を測定して、欠相の有無を判定する。このときの、変圧器1を含めた回路の等価回路を図3に示す。実際には3相交流であるが、欠相検知装置6は各相毎に励磁電流の有無を判別しているので、1相分のみを図示する。   In order to solve this problem, the presence or absence of the exciting current of the transformer 1 is measured to determine the presence or absence of the phase loss. FIG. 3 shows an equivalent circuit of the circuit including the transformer 1 at this time. Actually, three-phase alternating current is used. However, since the missing-phase detecting device 6 determines the presence or absence of the exciting current for each phase, only one phase is illustrated.

図3に示すように、線路の浮遊容量Cs8による充電電流ICS9、変圧器1の励磁電流IL10が線路には流れている。ここで、励磁電流IL10を測定するCTを変圧器1近傍に設置した場合、CTは励磁電流ILのみを観測して出力することになる。 As shown in FIG. 3, the charging current I CS 9 due to the stray capacitance Cs8 of the line and the exciting current I L 10 of the transformer 1 are flowing through the line. Here, the case of installing a CT for measuring the excitation current I L 10 transformer 1 near, CT will output by observing only the excitation current I L.

次に、図4を参照して変圧器1の1次側回路の配線4a、4b、4cのいずれかで断線故障が生じた場合について考える。
図4に示すように、変圧器1(図3参照)から比較的離れた点×で断線が発生した場合、その断線した配線の相(断線相)には変圧器1の励磁電流は流れず0アンペアとなる。
一方、線路の充電電流はどうかというと、断線が発生している状況のため、電源7からは供給されない。
Next, with reference to FIG. 4, a case where a disconnection failure occurs in any of the wirings 4a, 4b, and 4c of the primary circuit of the transformer 1 will be considered.
As shown in FIG. 4, when a disconnection occurs at a point X relatively far from the transformer 1 (see FIG. 3), the exciting current of the transformer 1 does not flow in the phase of the disconnected wiring (disconnection phase). It will be 0 amps.
On the other hand, the charging current of the line is not supplied from the power supply 7 because of the disconnection.

しかし、変圧器1には前述の通り、安定化巻線が備えられており、断線相においても、変圧器1の1次側回路2にほぼ健全時と同じ電圧E30が誘起される。このため、電圧E30から線路への充電電流ICS240が流れることとなる。 However, as described above, the transformer 1 is provided with the stabilizing winding, and even in the disconnection phase, the voltage EL 30 that is substantially the same as in the normal state is induced in the primary circuit 2 of the transformer 1. Therefore, so that the charging current flows I CS2 40 from the voltage E L 30 to the line.

このとき、充電電流ICS240は、電圧E30より供給された進み位相の電流となるが、健全時の励磁電流IL10、つまり電源7より供給された遅れ位相の励磁電流IL10と丁度同位相の電流となる。かつ充電電流ICS240は、例えばCVケーブルの場合、無視できない程大きく、事故点までの線路長によっては、励磁電流IL10と同一になることもあり得る。 At this time, the charging current I CS2 40 is a phase of current advances supplied from the voltage E L 30, excitation of sound when the excitation current I L 10, i.e. delayed phase supplied from the power source 7 current I L 10 And the current is exactly in phase. And the charging current I CS2 40, for example, in the case of CV cable, significantly large, the line length up to the fault point may also be the same as the exciting current I L 10.

つまり、励磁電流の単純な検出だけで断線を判別するだけでは不十分であり、充電電流と励磁電流との識別を行うことが重要となる。   In other words, it is not sufficient to determine the disconnection by simply detecting the exciting current, and it is important to distinguish between the charging current and the exciting current.

図5に、励磁電流の有無を判別できない第2の例として、変圧器1の2次側回路3にCVケーブルが用いられている例を示す。   FIG. 5 shows an example in which a CV cable is used in the secondary circuit 3 of the transformer 1 as a second example in which the presence or absence of the excitation current cannot be determined.

変圧器1の2次側回路3にCVケーブルが用いられている場合、図5に示すように、比較的大きな充電電流ICS330が流れることとなる。この充電電流ICS330は、変圧器1の巻き数比分の1の電流となって変圧器1の1次側に進み成分の電流ICS3131を流すこととなるが、この進み成分の電流ICS3131は、変圧器1の励磁電流I10と丁度逆位相であり、両者は打ち消し合うこととなる。 When a CV cable is used for the secondary circuit 3 of the transformer 1, a relatively large charging current ICS330 flows as shown in FIG. The charging current I CS3 30 becomes a current of 1 / turn ratio of the transformer 1 and flows the leading component current I CS31 31 to the primary side of the transformer 1. CS 31 31 are exactly opposite phase as the exciting current I L 10 of the transformer 1, both so that the cancel.

ここで、CVケーブルの長さによっては、進み成分の電流ICS3131と励磁電流I10が丁度同じ大きさ、つまり電流が0となる場合が生じ得ることとなる。これは、変圧器1の1次側の変圧器1直近で断線が生じた場合と同じ電流値を示すこととなり、やはり、励磁電流検知による断線検出は成り立たなくなる。 Here, depending on the length of the CV cable, it advances component of the current I CS 31 31 and the exciting current I L 10 is exactly the same size, that is, that when the current becomes zero may occur. This indicates the same current value as in the case where the disconnection has occurred near the transformer 1 on the primary side of the transformer 1, so that the detection of the disconnection by the detection of the excitation current is no longer possible.

そこで、励磁電流I10と充電電流ICS330の性質の違いに着目して、充電電流の影響がある場合についても、励磁電流I10の有無を正確に判別する手法を考案した。 Therefore, by paying attention to the difference in nature of the excitation current I L 10 and the charging current I CS3 30, for the case where there is influence of the charging current is also devised a technique to accurately determine the presence or absence of excitation current I L 10.

励磁電流I10と充電電流ICS330の性質の差として、高調波電流の発生がある。充電電流ICS330は、電源周波数に対する高調波成分を殆ど含まないのに対し、励磁電流I10については、変圧器1の励磁特性に非線形性をもっており、比較的大きな高調波成分を有する。 As the difference nature of the excitation current I L 10 charging current I CS3 30, there is the generation of harmonic current. The charging current I CS3 30 is Whereas contains little harmonic component with respect to the power supply frequency, the excitation current I L 10 is has a nonlinearity to the excitation characteristics of the transformer 1 has a relatively large harmonic component.

図6に変圧器1の励磁電流の波形の一例を示す。図6に示す励磁電流の波形70は、正弦波の基本波に高調波が重畳された状態のため、もはや正弦波とは言い難い大きく歪んだ波形となっていることが分かる。   FIG. 6 shows an example of the waveform of the exciting current of the transformer 1. It can be seen that the waveform 70 of the exciting current shown in FIG. 6 is a waveform that is greatly distorted, which can no longer be called a sine wave, because a harmonic is superimposed on the fundamental wave of the sine wave.

この波形70を、基本波および高調波の各成分に分解(分離)する。この結果を図7に示す。なお図示していない印加電圧の位相0の点を時間原点としてプロットしている。印加電圧について90°遅れ位相で基本波71、3倍高調波72および5倍高調波73の各高調波電流が流れている。   The waveform 70 is decomposed (separated) into components of a fundamental wave and a harmonic. The result is shown in FIG. It should be noted that the point of the phase 0 of the applied voltage, not shown, is plotted as the time origin. Each harmonic current of the fundamental wave 71, the third harmonic 72, and the fifth harmonic 73 flows with a phase delay of 90 ° with respect to the applied voltage.

変圧器1の励磁電流に含まれる基本波成分の振幅を1としたときの高調波成分を図8に示す。図8では、基本波71の電流とほぼ同等の歪み率の3倍高調波72と、約50%の歪み率の5倍高調波73が流れていることが分かる。   FIG. 8 shows harmonic components when the amplitude of the fundamental wave component included in the exciting current of the transformer 1 is set to 1. In FIG. 8, it can be seen that a third harmonic 72 having a distortion rate substantially equal to the current of the fundamental wave 71 and a fifth harmonic 73 having a distortion rate of about 50% flow.

変圧器1が無負荷の状態では、このような高調波の流れる原因は励磁電流のみであり、高調波電流を測定することによって、線路の充電電流など、他の電流と明確に区別して変圧器1の励磁電流を測定することができる。   When the transformer 1 is in a no-load state, the only cause of such a harmonic flow is the exciting current. By measuring the harmonic current, the transformer 1 can be clearly distinguished from other currents such as the line charging current. 1 can be measured.

変圧器1に負荷電流が流れた場合についても考えると、負荷電流は、モーターなど鉄心を含んだものも多く、また、整流回路など電圧に対して非線形に電流が応答する負荷は多数ある。   Considering the case where a load current flows through the transformer 1, many load currents include an iron core such as a motor, and there are many loads such as a rectifier circuit in which a current non-linearly responds to a voltage.

よって、負荷電流が大きい場合には、もはや高調波電流を用いた欠相検知は難しく、この欠相検知装置6の出力をロックした上で、電圧低下の検出など、他の欠相検知の手法を組み合わせることが望ましい。   Therefore, when the load current is large, it is difficult to detect the phase loss using the harmonic current anymore. After locking the output of the phase loss detection device 6, other methods of detecting the phase loss such as the detection of the voltage drop are performed. It is desirable to combine

この負荷電流の高調波成分と、励磁電流の高調波成分を判別する方法として、先に示した励磁電流の位相を用いることができる。つまり、負荷電流は一般に抵抗性であり、印加電圧と同位相なのに対し、励磁電流は90°遅れ位相となることから、印加電圧に対して90°遅れ位相の電流を検出することによって、負荷電流とある程度分けて計測することが可能である。   As a method of determining the harmonic component of the load current and the harmonic component of the exciting current, the phase of the exciting current described above can be used. In other words, the load current is generally resistive and has the same phase as the applied voltage, whereas the exciting current has a 90 ° delayed phase. Therefore, the load current is detected by detecting a current having a 90 ° delayed phase with respect to the applied voltage. It is possible to measure by dividing it to some extent.

このようにこの第1実施形態によれば、各相の配線4a、4b、4cに設けた電流検知器5により検知された励磁電流に含まれる所定閾値を超える基本波と高調波の有無に応じて励磁電流の検知元の1次側回路2の配線4a、4b、4cのいずれかが接続状態か開放状態かを判定するので、設備構成や負荷状況によらずに地落や短絡を伴わない1相開放故障を機械的に検知することができる。   As described above, according to the first embodiment, according to the presence / absence of a fundamental wave and a harmonic exceeding a predetermined threshold value included in the excitation current detected by the current detector 5 provided in the wirings 4a, 4b, and 4c of each phase. To determine whether any of the wires 4a, 4b, and 4c of the primary circuit 2 that is the source of the excitation current is in the connected state or the open state, so that no ground drop or short circuit occurs irrespective of the equipment configuration or load condition. A one-phase open fault can be detected mechanically.

次に、図9、図10を参照して第2実施形態を説明する。
変圧器1の励磁電流は、印加電圧によって大きく変動することに対しても、注意を払う必要がある。図9に印加電圧に対する励磁電流の基本波71、および高調波72、73の電流の変化の一例を示す。
Next, a second embodiment will be described with reference to FIGS.
It is necessary to pay attention to the fact that the exciting current of the transformer 1 greatly varies depending on the applied voltage. FIG. 9 shows an example of a change in the current of the fundamental wave 71 and the harmonics 72 and 73 of the excitation current with respect to the applied voltage.

図9に示すように、励磁電流は変圧器1の印加電圧によって大きく変化し、この変化は特に高調波電流に顕著に現れる。   As shown in FIG. 9, the exciting current greatly changes depending on the voltage applied to the transformer 1, and this change is particularly noticeable in the harmonic current.

そこで、第2実施形態は、図10に示すように、変圧器1の一次側回路2の配線4a、4b、4cのいずれかに電圧検知器としての計器用変圧器PTを設け、この計器用変圧器PTにより検知された電圧を電圧調整器69、アナログフィルタ63、AD変換器64、デジタルフィルタ65を介して、欠相検知装置6の判定部67に入力するように回路を構成する。   Therefore, in the second embodiment, as shown in FIG. 10, an instrument transformer PT as a voltage detector is provided on one of the wires 4a, 4b, and 4c of the primary circuit 2 of the transformer 1, and A circuit is configured to input the voltage detected by the transformer PT to the determination unit 67 of the phase loss detection device 6 via the voltage regulator 69, the analog filter 63, the AD converter 64, and the digital filter 65.

計器用変圧器PTは、基準電圧Vrefを取得するための測定用の機器であり、ここでは1次側回路2のいずれかの配線(例えば配線4cなど)に印加される交流電圧を検出するものとする。   The instrument transformer PT is a measuring device for acquiring the reference voltage Vref, and here, detects an AC voltage applied to any wiring (for example, the wiring 4c) of the primary side circuit 2. And

計器用変圧器PTが検出した基準電圧Vrefを欠相検知装置6に入力する際に、電圧を補正する必要があるため電圧調整器69を設ける。また電圧調整器69により補正された電圧にはノイズ成分がのっているため、アナログフィルタ63、AD変換器64、デジタルフィルタ65などを通すことにより、電圧調整器69により補正された電圧からノイズ成分をフィルタリングする。   When the reference voltage Vref detected by the instrument transformer PT is input to the open-phase detecting device 6, the voltage must be corrected, so that a voltage regulator 69 is provided. Also, since the voltage corrected by the voltage regulator 69 has a noise component, the noise corrected from the voltage corrected by the voltage regulator 69 is passed through the analog filter 63, the AD converter 64, the digital filter 65, and the like. Filter components.

この第2実施形態の場合、計器用変圧器PTにより、励磁電流と同時に変圧器1の印加電圧を検知(計測)し判定部67に入力する。判定部67は、検知(計測)された印加電圧により励磁電流の有無を判定するための閾値を変化させるものとする。   In the case of the second embodiment, the applied voltage of the transformer 1 is detected (measured) at the same time as the exciting current by the instrument transformer PT, and is input to the determination unit 67. The determination unit 67 changes a threshold value for determining the presence or absence of the excitation current based on the detected (measured) applied voltage.

このようにこの第2実施形態によれば、第1実施形態の効果に加えて、励磁電流と同時に変圧器1の印加電圧を計測して判定部67に入力し、判定部67は、計測された印加電圧により励磁電流の有無を判定するための閾値を変化させるので、印加電圧の変動に対応して励磁電流を検知できるようになる。   As described above, according to the second embodiment, in addition to the effect of the first embodiment, the applied voltage of the transformer 1 is measured at the same time as the exciting current and input to the determination unit 67. Since the threshold value for determining the presence or absence of the exciting current is changed according to the applied voltage, the exciting current can be detected in accordance with the fluctuation of the applied voltage.

本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although an embodiment of the present invention has been described, this embodiment is provided by way of example and is not intended to limit the scope of the invention. This new embodiment can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and their equivalents.

上記第1実施形態では、配線4a、4b、4cにそれぞれ電流検知器5を1つずつ設けたが、図11に示すように、各配線4a、4b、4cに、検知すべき信号波形の数だけ電流検知器5a、5b、5cを設ける。   In the first embodiment, one current detector 5 is provided for each of the wires 4a, 4b, and 4c. However, as shown in FIG. 11, the number of signal waveforms to be detected is provided for each of the wires 4a, 4b, and 4c. Only the current detectors 5a, 5b and 5c are provided.

例えば電流検知器5aは基本波検知用とし、電流検知器5bは3倍高調波検知用とし、電流検知器5cは5倍高調波検知用とする。そして、それぞれ検知された電流を欠相検知装置6に入力するように回路を構成する。   For example, the current detector 5a is for detecting a fundamental wave, the current detector 5b is for detecting a third harmonic, and the current detector 5c is for detecting a fifth harmonic. Then, a circuit is configured to input the detected current to the open-phase detecting device 6.

この場合、フィルタ部62では、それぞれ検知された電流から該当する波形の信号(基本波fm、3倍高調波3fm、5倍高調波5fmなど)を抽出し、判定部67へ入力する。
このように回路を構成することで、フィルタ部62での基準波と高調波の分解(分離)が不要になり、個々の信号(波形)を抽出するだけで済む。
In this case, the filter unit 62 extracts a signal of a corresponding waveform (a fundamental wave fm, a third harmonic 3fm, a fifth harmonic 5fm, etc.) from each detected current, and inputs the extracted signal to the determination unit 67.
By configuring the circuit in this manner, it is not necessary to decompose (separate) the reference wave and the harmonic in the filter unit 62, and it is only necessary to extract individual signals (waveforms).

さらに、上記実施形態では、電流検知器として一般的な鉄心CTを用いた例について説明したが、通常の励磁電流の検知には使用しないような、例えば0.2A程度の極微少な電流を検出する欠相検知専用の光CTを各配線4a、4b、4cに配置することで、雑音成分はサチレーションしてしまい検出できないものの、微弱な励磁電流のみを検出することができる。   Furthermore, in the above-described embodiment, an example in which a general iron core CT is used as the current detector has been described. However, a very small current of, for example, about 0.2 A, which is not used for detecting a normal excitation current, is detected. By arranging the optical CT dedicated to phase loss detection on each of the wirings 4a, 4b, and 4c, the noise component is saturated and cannot be detected, but only a weak excitation current can be detected.

電流検知器を光CTとすることで、欠相検知装置6へのケーブルを細くすることができる。また、光ファイバーの巻数に応じて低電圧領域での検出が可能になるので、例えばガス絶縁開閉装置(GIS機器)として使用する際に、軽重量にすることができる。   By using the optical CT as the current detector, the cable to the open-phase detecting device 6 can be made thin. In addition, since detection in a low voltage region becomes possible in accordance with the number of turns of the optical fiber, the weight can be reduced, for example, when used as a gas insulated switchgear (GIS device).

また上記実施形態に示した欠相検知装置6の各構成要素を、コンピュータのハードディスク装置などのストレージにインストールしたプログラムで実現してもよく、また上記プログラムを、コンピュータ読取可能な電子媒体:electronic mediaに記憶しておき、プログラムを電子媒体からコンピュータに読み取らせることで本発明の機能をコンピュータが実現するようにしてもよい。   Further, each component of the open-phase detecting device 6 shown in the above-described embodiment may be realized by a program installed in a storage such as a hard disk device of a computer, and the above-mentioned program may be realized by a computer-readable electronic medium. And the functions of the present invention may be realized by causing a computer to read the program from an electronic medium.

電子媒体としては、例えばCD−ROM等の記録媒体やフラッシュメモリ、リムーバブルメディア:Removable media等が含まれる。さらに、ネットワークを介して接続した異なるコンピュータに構成要素を分散して記憶し、各構成要素を機能させたコンピュータ間で通信することで実現してもよい。   Examples of the electronic medium include a recording medium such as a CD-ROM, a flash memory, and a removable medium. Furthermore, the present invention may be realized by distributing and storing components in different computers connected via a network, and communicating between the computers in which the respective components function.

1…変圧器、11…1次巻き線、12…2次巻き線、13…安定化巻き線、2…1次側回路、3…2次側回路、4a,4b,4c…配線、5…電流検出器、6…欠相検知装置、7…電源、8…浮遊容量Cs、9…充電電流ICS、10…励磁電流IL、20…CT、30…2次側充電電流ICS3、31…1次換算2次側充電電流ICS31、61…入力変換器、62…フィルタ部、63…アナログフィルタ、64…AD変換器、65…デジタルフィルタ、67…判定部、68…警報出力部。 DESCRIPTION OF SYMBOLS 1 ... Transformer, 11 ... Primary winding, 12 ... Secondary winding, 13 ... Stabilization winding, 2 ... Primary circuit, 3 ... Secondary circuit, 4a, 4b, 4c ... Wiring, 5 ... Current detector, 6: phase loss detecting device, 7: power supply, 8: floating capacitance Cs, 9: charging current I CS , 10: exciting current I L , 20: CT, 30: secondary charging current I CS3 , 31 ... Primary conversion secondary-side charging current I CS31 , 61... Input converter, 62... Filter unit, 63... Analog filter, 64.

Claims (5)

相毎の配線に励磁電流が流される1次側回路を有する3相静止誘導電気機器と、
前記1次側回路の各相の前記励磁電流を検知する電流検知器と、
前記電流検知器により検知された前記励磁電流から高調波を抽出する抽出部と、
前記抽出部により前記高調波が抽出されたか否かに応じて前記励磁電流の検知元の前記1次側回路の前記配線が開放状態か接続状態かを判定する判定部と、
を具備し、
前記判定部は、
基本波の振幅値が予め当該基本波用に設定された第1閾値を超え、前記高調波の前記振幅値が予め当該高調波用に設定した第2閾値を超えない場合、前記高調波が抽出されなかったものとして、当該配線が開放状態であるものと判定する、
欠相検知システム。
A three-phase stationary induction electric device having a primary-side circuit in which an exciting current flows through wiring for each phase;
A current detector for detecting the exciting current of each phase of the primary side circuit;
An extraction unit configured to extract a harmonic from the excitation current detected by the current detector,
A determining unit that determines whether the wiring of the primary circuit, which is the source of the excitation current, is in an open state or a connected state according to whether or not the harmonic is extracted by the extracting unit;
With
The determination unit includes:
If the amplitude value of the fundamental wave exceeds a first threshold value set in advance for the fundamental wave and the amplitude value of the harmonic does not exceed a second threshold value set in advance for the harmonic wave, the harmonic is extracted. It is determined that the wiring is in an open state,
Open phase detection system.
前記抽出部は、
前記励磁電流の前記基本波に対する整数倍の前記高調波を一つ以上抽出し、
前記判定部は、
抽出された一つ以上の前記高調波の前記振幅値が前記第2閾値を超えない場合、当該配線が開放状態であるものと判定する請求項1に記載の欠相検知システム。
The extraction unit includes:
Extracting one or more harmonics that are integral multiples of the excitation current with respect to the fundamental wave,
The determination unit includes:
2. The open-phase detection system according to claim 1, wherein when the amplitude value of the extracted one or more harmonics does not exceed the second threshold, it is determined that the wiring is in an open state.
前記判定部により前記配線が開放状態と判定された場合、警報を出力する警報出力部をさらに具備する請求項1または請求項2に記載の欠相検知システム。   3. The phase loss detection system according to claim 1, further comprising an alarm output unit that outputs an alarm when the determination unit determines that the wiring is in an open state. 4. 3相静止誘導電気機器の1次側回路の相毎の配線に流される励磁電流から高調波を抽出する抽出部と、
前記高調波が抽出されたか否かに応じて前記励磁電流の検知元の前記1次側回路の前記配線が接続状態か開放状態かを判定する判定部と、
を具備し、
前記判定部は、
基本波の振幅値が予め前記基本波用に設定された第1閾値を超え、前記高調波の前記振幅値が予め当該高調波用に設定した第2閾値を超えない場合、前記高調波が抽出されなかったものとして、当該配線が開放状態であるものと判定する、
欠相検知装置。
An extraction unit configured to extract a harmonic from an excitation current flowing through a wiring for each phase of a primary circuit of the three-phase static induction electric device;
A determination unit configured to determine whether the wiring of the primary circuit that is the source of the excitation current is connected or disconnected according to whether or not the harmonic is extracted;
With
The determination unit includes:
If the amplitude value of the fundamental wave exceeds the first threshold value set in advance for the fundamental wave, the amplitude of the harmonic does not exceed a second preset threshold value for the harmonics, the harmonics It is determined that the wiring is in an open state as not being extracted,
Open phase detection device.
抽出部が、3相静止誘導電気機器の1次側回路の相毎の配線に流される励磁電流から高調波を抽出し、
判定部が、前記高調波が抽出されたか否かに応じて前記励磁電流の検知元の前記1次側回路の前記配線が接続状態か開放状態かを判定する、
欠相検知方法であって、
前記判定部は、
基本波の振幅値が予め当該基本波用に設定された第1閾値を超え、前記高調波の前記振幅値が予め前記高調波用に設定した第2閾値を超えない場合、前記高調波が抽出されなかったものとして、当該配線が開放状態であるものと判定する、
欠相判定方法。
An extracting unit that extracts a harmonic from an exciting current flowing through a wiring for each phase of a primary circuit of the three-phase static induction electric device;
A determining unit that determines whether the wiring of the primary circuit, which is a source of the excitation current, is connected or disconnected according to whether or not the harmonic is extracted;
An open phase detection method,
The determination unit includes:
If the amplitude value of the fundamental wave exceeds a first threshold value set in advance for the fundamental wave and the amplitude value of the harmonic does not exceed a second threshold value set in advance for the harmonic wave, the harmonic is extracted. It is determined that the wiring is in an open state,
Open phase determination method.
JP2016161074A 2016-08-19 2016-08-19 Phase loss detection system, phase loss detection device, and phase loss detection method Active JP6678539B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016161074A JP6678539B2 (en) 2016-08-19 2016-08-19 Phase loss detection system, phase loss detection device, and phase loss detection method
PCT/JP2017/029258 WO2018034260A1 (en) 2016-08-19 2017-08-14 Open phase detecting system, open phase detecting device and open phase detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016161074A JP6678539B2 (en) 2016-08-19 2016-08-19 Phase loss detection system, phase loss detection device, and phase loss detection method

Publications (2)

Publication Number Publication Date
JP2018028501A JP2018028501A (en) 2018-02-22
JP6678539B2 true JP6678539B2 (en) 2020-04-08

Family

ID=61196559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016161074A Active JP6678539B2 (en) 2016-08-19 2016-08-19 Phase loss detection system, phase loss detection device, and phase loss detection method

Country Status (2)

Country Link
JP (1) JP6678539B2 (en)
WO (1) WO2018034260A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108279381B (en) * 2018-04-08 2020-04-10 沈阳工业大学 Fault diagnosis method for double three-phase permanent magnet synchronous motor driving system
CN111913137A (en) * 2020-09-03 2020-11-10 中国大唐集团科学技术研究院有限公司华东电力试验研究院 Excitation system PT slow-melting discrimination performance evaluation device and method
KR20240140980A (en) * 2022-03-29 2024-09-24 닛폰세이테츠 가부시키가이샤 Processing device, electric vehicle, processing method, and program

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230420A (en) * 1983-06-08 1984-12-25 関西電力株式会社 Arc disconnection detecting method and device of aerial power distribution line
JPS60190136U (en) * 1984-05-25 1985-12-17 オムロン株式会社 Open phase detection circuit
JPH08331750A (en) * 1995-05-31 1996-12-13 Mitsubishi Electric Corp Power conversion equipment
CN106463944B (en) * 2014-02-21 2019-06-21 Uab研究基金会 Method for detecting the disconnected phase condition of transformer
JP5926419B1 (en) * 2015-04-27 2016-05-25 株式会社近計システム Phase loss detector
EP3311180A4 (en) * 2015-06-16 2019-02-20 General Electric Technology GmbH Methods and systems for open-phase detection in power transformers

Also Published As

Publication number Publication date
WO2018034260A1 (en) 2018-02-22
JP2018028501A (en) 2018-02-22

Similar Documents

Publication Publication Date Title
EP2426802B1 (en) Apparatus and method for quickly determining fault in electric power system
AU2013252914B2 (en) Method and apparatus for protecting power transformers from large electro-magnetic disturbances
US7638999B2 (en) Protective relay device, system and methods for Rogowski coil sensors
Bo et al. A new technique for transformer protection based on transient detection
US10126348B2 (en) Combined on-line bushing monitoring and geo-magnetic induced current monitoring system
WO2015187636A2 (en) Power transformer inrush current detector
JP6678539B2 (en) Phase loss detection system, phase loss detection device, and phase loss detection method
EP3560054B1 (en) A method for detecting inrush and ct saturation and an intelligent electronic device therefor
JP2018526617A (en) Method and system for phase loss detection in power transformers
JP6896592B2 (en) Open phase detection device and open phase detection system
KR102173348B1 (en) Earth leakage circuit breaker(elcb) and method for detecting leakage current
US20120229144A1 (en) Electric rotating machine
JP5711478B2 (en) Double fault synchronous machine ground fault detection device
JP2014196920A (en) Leak detection device
CN201681115U (en) Current sensor used for grounding current detection of transmission poles and towers
JP6989232B2 (en) Partial discharge measuring device
JP6929724B2 (en) Open phase detection device, open phase detection system, and open phase detection method
JP2017204973A (en) Phase interruption detection system, phase interruption detection apparatus and phase interruption detection method
JP6369775B2 (en) Earth leakage detector
JP5272678B2 (en) Overexcitation detection device
RU2521616C1 (en) Relay protection of csr power winding
JP2013113632A (en) Ground fault detecting method
JP2001242205A (en) Insulation monitoring device
KR20230151599A (en) Current ratio differential relay and operating method thereof
JP2012135088A (en) Saturation detector of instrument current transformer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171201

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200317

R150 Certificate of patent or registration of utility model

Ref document number: 6678539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150