Nothing Special   »   [go: up one dir, main page]

JP6673706B2 - Polypropylene resin foam sheet and method for producing the same - Google Patents

Polypropylene resin foam sheet and method for producing the same Download PDF

Info

Publication number
JP6673706B2
JP6673706B2 JP2016017310A JP2016017310A JP6673706B2 JP 6673706 B2 JP6673706 B2 JP 6673706B2 JP 2016017310 A JP2016017310 A JP 2016017310A JP 2016017310 A JP2016017310 A JP 2016017310A JP 6673706 B2 JP6673706 B2 JP 6673706B2
Authority
JP
Japan
Prior art keywords
polypropylene resin
foamed
intermediate layer
polypropylene
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016017310A
Other languages
Japanese (ja)
Other versions
JP2017136702A (en
Inventor
稔 栗山
稔 栗山
隆幸 別府
隆幸 別府
中島 武
武 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SunAllomer Ltd
Original Assignee
SunAllomer Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SunAllomer Ltd filed Critical SunAllomer Ltd
Priority to JP2016017310A priority Critical patent/JP6673706B2/en
Publication of JP2017136702A publication Critical patent/JP2017136702A/en
Application granted granted Critical
Publication of JP6673706B2 publication Critical patent/JP6673706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、ポリプロピレン系樹脂を主成分とする発泡シート及びその製造方法に関する。   The present invention relates to a foamed sheet containing a polypropylene-based resin as a main component and a method for producing the same.

ポリプロピレン樹脂は物性バランスやリサイクル性に優れ、しかも安価であることから、日用品、食品用容器、電気製品の部品や筐体、自動車用の内装材や外装材、建築部材等、幅広い産業分野で使用されている。軽量性、断熱性又は衝撃吸収性が求められる用途においては、ポリプロピレン樹脂の発泡シートが用いられることがある。
ポリプロピレン系樹脂発泡シートとしては、発泡中間層と該発泡中間層の両側に設けられた非発泡表面層とを備える多層発泡シートが知られている(特許文献1および特許文献2)。特許文献1に記載の多層発泡シートおいては、溶融状態での強度が高い成分として長鎖分岐を有するポリプロピレンを非発泡層の表面に設けることにより、発泡中間層において形成された気泡あるいは気泡破壊に起因する凹凸発生を防止する効果が発現される。そのため、高発泡倍率(軽量)でありながら表面平滑性の高い良好な外観を得ることができる。また、特許文献2に記載の多層発泡シートにおいては、表面層を、メルトテンション及びメルトフローレートが特定の条件を満たす直鎖状ポリプロピレン系樹脂を含む層として、発泡倍率を高くし且つ外観を良好にしている。
Polypropylene resin has excellent physical balance and recyclability, and is inexpensive, so it is used in a wide range of industrial fields such as daily necessities, food containers, parts and housings for electric products, interior and exterior materials for automobiles, and building materials. Have been. In applications requiring lightness, heat insulation or shock absorption, a foamed sheet of a polypropylene resin may be used.
As a polypropylene-based resin foamed sheet, a multilayer foamed sheet including a foamed intermediate layer and non-foamed surface layers provided on both sides of the foamed intermediate layer is known (Patent Documents 1 and 2). In the multilayer foamed sheet described in Patent Document 1, by providing polypropylene having a long chain branch as a component having high strength in a molten state on the surface of the non-foamed layer, bubbles formed in the foamed intermediate layer or destruction of bubbles are formed. The effect of preventing the occurrence of unevenness due to the above is exhibited. Therefore, a good appearance with high surface smoothness can be obtained while having a high expansion ratio (light weight). Further, in the multilayer foam sheet described in Patent Document 2, the surface layer is a layer containing a linear polypropylene-based resin having a melt tension and a melt flow rate satisfying specific conditions, thereby increasing the expansion ratio and improving the appearance. I have to.

特開2001−113653号公報JP 2001-113653 A 特開2004−291626号公報JP 2004-291626 A

しかし、従来のポリプロピレン系樹脂発泡シートにおいては、高発泡倍率と良表面外観とを充分に両立できているとはいえなかった。特に、ポリプロピレン樹脂をシート状に押出成形した後、そのシートを空気の吹き付けによって金属ロールに密着させて冷却する場合には、空気を吹き付けた面の外観が悪くなりやすかった。
そこで、本発明は、発泡倍率が高く且つ表面外観に優れるポリプロピレン系樹脂発泡シートを提供することを目的とする。また、本発明は、空気の吹き付けによって金属ロールに密着させたにもかかわらず、発泡倍率が高く且つ表面外観に優れたポリプロピレン系樹脂発泡シートを容易に製造できるポリプロピレン系樹脂発泡シートの製造方法を提供することを目的とする。
However, in the conventional polypropylene resin foam sheet, it cannot be said that the high expansion ratio and the good surface appearance can both be sufficiently achieved. In particular, when the polypropylene resin is extruded into a sheet and then cooled by bringing the sheet into close contact with a metal roll by blowing the air, the appearance of the surface on which the air is blown tends to deteriorate.
Accordingly, an object of the present invention is to provide a foamed polypropylene resin sheet having a high expansion ratio and excellent surface appearance. Further, the present invention provides a method for producing a polypropylene resin foam sheet which can easily produce a polypropylene resin foam sheet having a high expansion ratio and excellent surface appearance despite being in close contact with a metal roll by blowing air. The purpose is to provide.

[1]発泡中間層と、該発泡中間層の両側に設けられた非発泡の表面層とを備え、前記発泡中間層及び前記表面層は共にポリプロピレン系樹脂を含み、
前記発泡中間層の厚さ(T)と前記表面層の厚さ(T)との比率(T/T)が3/1〜10/1であり、
前記発泡中間層を構成するポリプロピレン系樹脂は、下記式(1)で求められる溶融張力指数が1.2以上であり、前記表面層を構成するポリプロピレン系樹脂は、下記式(1)で求められる溶融張力指数が1.8以上であり、且つ、前記表面層を構成するポリプロピレン系樹脂の溶融張力指数が、前記発泡中間層を構成するポリプロピレン系樹脂の溶融張力指数以上である、ポリプロピレン系樹脂発泡シート。
log(溶融張力指数)=log(MT)+0.85log(MFR)−0.82(1)
MTは、長さ8.0mm且つ直径2.095mmの上面が平面の円筒状のオリフィスを取り付けた溶融張力測定装置を用い、測定温度200℃、樹脂押出速度15mm/分、引取速度6.5m/分の条件で測定したポリプロピレン系樹脂の溶融張力(g重)である。
MFRは、JIS K7210に従い、温度230℃、荷重21.18Nの条件で測定したポリプロピレン系樹脂のメルトフローレートである。
[2]前記表面層に含まれるポリプロピレン系樹脂は、プロピレン重合体とエチレン・αオレフィン共重合体とを含有し、JIS K7210に従い、温度230℃、荷重21.18Nの条件で測定したメルトフローレートが2〜15g/10分であり、キシレン可溶分の、135℃のテトラヒドロナフタレン中での極限粘度が6〜10dl/g、キシレン不溶分の質量平均分子量Mと数平均分子量Mとの比率(M/M)が7以上、前記エチレン・αオレフィン共重合体の含有割合が20〜40質量%であり、
前記プロピレン重合体は、エチレン単位とαオレフィン単位の合計の含有割合が5.0質量%以下及びプロピレン単位の含有割合が95質量%以上であり、
前記エチレン・αオレフィン共重合体は、エチレン単位20〜40質量%及びαオレフィン単位60〜80質量%を含む、[1]に記載のポリプロピレン系樹脂発泡シート。
[3]前記表面層に含まれるポリプロピレン系樹脂は、プロピレン重合体の存在下、エチレン単量体及びαオレフィン単量体を重合して得た重合混合物である、[2]に記載のポリプロピレン系樹脂発泡シート。
[4]前記発泡中間層に含まれるポリプロピレン系樹脂は、JIS K7210に従い、温度230℃、荷重21.18Nの条件で測定したメルトフローレートが2〜15g/10分、キシレン不溶分の質量平均分子量Mと数平均分子量Mとの比率(M/M)が6以上である、[1]〜[3]のいずれか一に記載のポリプロピレン系樹脂発泡シート。
[5]前記発泡中間層に含まれるポリプロピレン系樹脂は、プロピレン単独重合体、及び、エチレン単位とαオレフィン単位の少なくとも一方を5.0質量%以上含むプロピレンランダム共重合体の少なくとも一方である、[1]〜[4]のいずれか一に記載のポリプロピレン系樹脂発泡シート。
[6]前記発泡中間層におけるポリプロピレン系樹脂の含有割合が60質量%以上である、[1]〜[5]のいずれか一に記載のポリプロピレン系樹脂発泡シート。
[7]発泡倍率が1.30倍以上である、[1]〜[6]のいずれか一に記載のポリプロピレン系樹脂発泡シート。
[1] A foamed intermediate layer, and a non-foamed surface layer provided on both sides of the foamed intermediate layer, wherein both the foamed intermediate layer and the surface layer include a polypropylene resin,
The foaming ratio of the thickness of the intermediate layer (T 1) and the thickness of the surface layer and (T 2) (T 1 / T 2) is 3 / 1-10 / 1,
The polypropylene resin constituting the foamed intermediate layer has a melt tension index determined by the following formula (1) of 1.2 or more, and the polypropylene resin forming the surface layer is determined by the following formula (1). A polypropylene resin foam having a melt tension index of 1.8 or more, and a melt tension index of a polypropylene resin constituting the surface layer being equal to or greater than a melt tension index of a polypropylene resin constituting the foamed intermediate layer. Sheet.
log (melt tension index) = log (MT) + 0.85 log (MFR)-0.82 (1)
MT was measured using a melt tension measuring device having a cylindrical orifice having a length of 8.0 mm and a diameter of 2.095 mm and having a flat upper surface, a measurement temperature of 200 ° C., a resin extrusion speed of 15 mm / min, and a take-up speed of 6.5 m /. It is the melt tension (g weight) of the polypropylene resin measured under the conditions of minutes.
MFR is a melt flow rate of a polypropylene resin measured at a temperature of 230 ° C. and a load of 21.18 N according to JIS K7210.
[2] The polypropylene resin contained in the surface layer contains a propylene polymer and an ethylene / α-olefin copolymer, and has a melt flow rate measured at 230 ° C. under a load of 21.18 N according to JIS K7210. Is 2 to 15 g / 10 min, the intrinsic viscosity of the xylene-soluble component in tetrahydronaphthalene at 135 ° C. is 6 to 10 dl / g, and the xylene-insoluble component has a mass average molecular weight Mw and a number average molecular weight Mn . The ratio ( Mw / Mn ) is 7 or more, and the content ratio of the ethylene / α-olefin copolymer is 20 to 40% by mass;
In the propylene polymer, the total content of ethylene units and α-olefin units is 5.0% by mass or less, and the content ratio of propylene units is 95% by mass or more,
The foamed polypropylene resin sheet according to [1], wherein the ethylene / α-olefin copolymer contains 20 to 40% by mass of ethylene units and 60 to 80% by mass of α-olefin units.
[3] The polypropylene resin according to [2], wherein the polypropylene resin contained in the surface layer is a polymerization mixture obtained by polymerizing an ethylene monomer and an α-olefin monomer in the presence of a propylene polymer. Resin foam sheet.
[4] The polypropylene resin contained in the foamed intermediate layer has a melt flow rate of 2 to 15 g / 10 minutes measured at 230 ° C. under a load of 21.18 N according to JIS K7210, and a mass average molecular weight of a xylene-insoluble component. The foamed polypropylene resin sheet according to any one of [1] to [3], wherein the ratio ( Mw / Mn ) of Mw to the number average molecular weight Mn is 6 or more.
[5] The polypropylene resin contained in the foamed intermediate layer is at least one of a propylene homopolymer and a propylene random copolymer containing at least one of an ethylene unit and an α-olefin unit at 5.0% by mass or more. The polypropylene resin foam sheet according to any one of [1] to [4].
[6] The foamed polypropylene resin sheet according to any one of [1] to [5], wherein the content ratio of the polypropylene resin in the foamed intermediate layer is 60% by mass or more.
[7] The foamed polypropylene resin sheet according to any one of [1] to [6], which has an expansion ratio of 1.30 or more.

[8]発泡中間層用ポリプロピレン系樹脂及び発泡剤を含有する発泡中間層形成用樹脂組成物をシート状に押出成形して発泡中間層を形成すると共に、表面層用ポリプロピレン系樹脂を含有する表面層形成用樹脂組成物をシート状に押出成形して表面層を形成し、前記発泡中間層の両面側に前記表面層を積層してポリプロピレン系樹脂発泡シートを作製する押出成形工程と、
前記ポリプロピレン系樹脂発泡シートの一方の面に空気を吹き付けることによって、前記ポリプロピレン系樹脂発泡シートの他方の面を金属ロールの周面に密着させることにより、前記ポリプロピレン系樹脂発泡シートを冷却する冷却工程とを有し、
前記発泡中間層用ポリプロピレン系樹脂は、下記式(1)で求められる溶融張力指数が1.2以上であり、前記表面層用ポリプロピレン系樹脂は、下記式(1)で求められる溶融張力指数が1.8以上であり、且つ、前記表面層用ポリプロピレン系樹脂の溶融張力指数が、前記発泡中間層用ポリプロピレン系樹脂の溶融張力指数以上である、ポリプロピレン系樹脂発泡シートの製造方法。
log(溶融張力指数)=log(MT)+0.85log(MFR)−0.82(1)
MTは、長さ8.0mm且つ直径2.095mmの上面が平面の円筒状のオリフィスを取り付けた溶融張力測定装置を用い、測定温度200℃、樹脂押出速度15mm/分、引取速度6.5m/分の条件で測定したポリプロピレン系樹脂の溶融張力(g重)である。
MFRは、JIS K7210に従い、温度230℃、荷重21.18Nの条件で測定したポリプロピレン系樹脂のメルトフローレートである。
[9]前記押出成形工程における発泡中間層形成の際に、発泡倍率1.30倍以上に発泡させる、[8]に記載のポリプロピレン系樹脂発泡シートの製造方法。
[10]前記表面層用ポリプロピレン系樹脂は、プロピレン重合体とエチレン・αオレフィン共重合体とを含有し、JIS K7210に従い、温度230℃、荷重21.18Nの条件で測定したメルトフローレートが2〜15g/10分であり、キシレン可溶分の、135℃のテトラヒドロナフタレン中での極限粘度が6〜10dl/g、キシレン不溶分の質量平均分子量Mと数平均分子量Mとの比率(M/M)が7以上、前記エチレン・αオレフィン共重合体の含有割合が20〜40質量%であり、
前記プロピレン重合体は、エチレン単位とαオレフィン単位の合計の含有割合が5.0質量%以下及びプロピレン単位の含有割合が95質量%以上であり、
前記エチレン・αオレフィン共重合体は、エチレン単位20〜40質量%及びαオレフィン単位60〜80質量%を含む、[8]又は[9]に記載のポリプロピレン系樹脂発泡シートの製造方法。
[11]前記表面層用ポリプロピレン系樹脂を、プロピレン重合体の存在下、エチレン単量体及びαオレフィン単量体を重合して得る、[10]に記載のポリプロピレン系樹脂発泡シートの製造方法。
[12]前記発泡中間層用ポリプロピレン系樹脂及び前記表面層用ポリプロピレン系樹脂の少なくとも一方を得るための重合の際に、(A)マグネシウム、チタン、ハロゲン、およびスクシネート系化合物から選択される電子供与体化合物を必須成分として含有する固体触媒;(B)有機アルミニウム化合物;ならびに(C)ケイ素化合物から選択される外部電子供与体化合物を含む触媒を用いる、[8]〜[11]のいずれか一に記載のポリプロピレン系樹脂発泡シートの製造方法。
[8] A foamed intermediate layer-forming resin composition containing a polypropylene resin for a foamed intermediate layer and a foaming agent is extruded into a sheet to form a foamed intermediate layer, and a surface containing a polypropylene resin for a surface layer. An extrusion molding step of forming a surface layer by extruding the layer-forming resin composition into a sheet shape, and laminating the surface layer on both sides of the foamed intermediate layer to produce a polypropylene-based resin foam sheet,
A cooling step of cooling the polypropylene-based resin foam sheet by blowing air onto one surface of the polypropylene-based resin foam sheet to bring the other surface of the polypropylene-based resin foam sheet into close contact with a peripheral surface of a metal roll; And
The polypropylene resin for the foamed intermediate layer has a melt tension index determined by the following formula (1) of 1.2 or more, and the polypropylene resin for the surface layer has a melt tension index determined by the following formula (1). A method for producing a foamed polypropylene resin sheet, wherein the melt tension index of the polypropylene resin for the surface layer is 1.8 or more and the melt tension index of the polypropylene resin for the foamed intermediate layer is not less than 1.8.
log (melt tension index) = log (MT) + 0.85 log (MFR)-0.82 (1)
MT was measured using a melt tension measuring device having a cylindrical orifice having a length of 8.0 mm and a diameter of 2.095 mm and having a flat upper surface, a measurement temperature of 200 ° C., a resin extrusion speed of 15 mm / min, and a take-up speed of 6.5 m /. It is the melt tension (g weight) of the polypropylene resin measured under the conditions of minutes.
MFR is a melt flow rate of a polypropylene resin measured at a temperature of 230 ° C. and a load of 21.18 N according to JIS K7210.
[9] The method for producing a foamed polypropylene resin sheet according to [8], wherein foaming is performed at a foaming ratio of 1.30 or more at the time of forming the foamed intermediate layer in the extrusion molding step.
[10] The polypropylene resin for a surface layer contains a propylene polymer and an ethylene / α-olefin copolymer, and has a melt flow rate of 2 measured at 230 ° C. under a load of 21.18 N according to JIS K7210. -15 g / 10 min, the intrinsic viscosity of the xylene-soluble component in tetrahydronaphthalene at 135 ° C. is 6 to 10 dl / g, and the ratio of the mass-average molecular weight Mw to the number-average molecular weight Mn of the xylene-insoluble component ( Mw / Mn ) is 7 or more, and the content ratio of the ethylene / α-olefin copolymer is 20 to 40% by mass,
In the propylene polymer, the total content of ethylene units and α-olefin units is 5.0% by mass or less, and the content ratio of propylene units is 95% by mass or more,
The method for producing a foamed polypropylene resin sheet according to [8] or [9], wherein the ethylene / α-olefin copolymer contains 20 to 40% by mass of ethylene units and 60 to 80% by mass of α-olefin units.
[11] The method for producing a foamed polypropylene resin sheet according to [10], wherein the polypropylene resin for a surface layer is obtained by polymerizing an ethylene monomer and an α-olefin monomer in the presence of a propylene polymer.
[12] An electron donor selected from (A) magnesium, titanium, halogen, and a succinate compound in the polymerization for obtaining at least one of the polypropylene resin for the foamed intermediate layer and the polypropylene resin for the surface layer. Any one of [8] to [11], using a catalyst containing an external electron donor compound selected from (B) an organoaluminum compound; and (C) a silicon compound; The method for producing a foamed polypropylene-based resin sheet according to item 1.

本発明のポリプロピレン系樹脂発泡シートは、発泡倍率が高く且つ表面外観に優れる。
本発明のポリプロピレン系樹脂発泡シートの製造方法によれば、空気の吹き付けによって金属ロールに密着させたにもかかわらず、発泡倍率が高く且つ表面外観に優れたポリプロピレン系樹脂発泡シートを容易に製造できる。
The polypropylene-based resin foam sheet of the present invention has a high expansion ratio and excellent surface appearance.
According to the method for producing a foamed polypropylene resin sheet of the present invention, a foamed polypropylene resin sheet having a high expansion ratio and an excellent surface appearance can be easily produced despite being adhered to a metal roll by blowing air. .

本発明のポリプロピレン系樹脂発泡シートの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the polypropylene resin foam sheet of this invention. 溶融張力のメルトフローレート依存性を示すグラフである。4 is a graph showing melt flow rate dependency of melt tension. 表面外観の評価基準における各段階の一例を示す写真である。It is a photograph which shows an example of each stage in evaluation criteria of a surface appearance.

本発明のポリプロピレン系樹脂発泡シート(以下、「発泡シート」と略す。)の一実施形態について説明する。
図1の実施形態に示すように、本実施形態の発泡シート10は、発泡中間層11と、該発泡中間層の両面に設けられた表面層12,13とからなる構成を含む。すなわち、本実施形態の発泡シートとして、2種3層あるいは3種3層の積層シートが挙げられる。
One embodiment of the polypropylene-based resin foam sheet (hereinafter abbreviated as “foam sheet”) of the present invention will be described.
As shown in the embodiment of FIG. 1, the foam sheet 10 of the present embodiment includes a configuration including a foam intermediate layer 11 and surface layers 12 and 13 provided on both surfaces of the foam intermediate layer. That is, as the foamed sheet of the present embodiment, a laminated sheet of two or three layers or three or three layers is exemplified.

発泡中間層11及び表面層12,13はいずれもポリプロピレン系樹脂を含有する。ただし、表面層12,13を構成するポリプロピレン系樹脂(表面層用ポリプロピレン系樹脂)は、発泡中間層11を構成するポリプロピレン系樹脂(発泡中間層用ポリプロピレン系樹脂)に対し、下記式(1)で求められる溶融張力指数が等しい若しくは大きい。式(1)で求められる溶融張力指数が大きい程、樹脂の溶融張力が高いことを意味する。
log(溶融張力指数)=log(MT)+0.85log(MFR)−0.82(1)
式(1)において、MTは、長さ8.0mm且つ直径2.095mmの上面が平面の円筒状のオリフィスを取り付けた溶融張力測定装置を用い、測定温度200℃、樹脂押出速度15mm/分、引取速度6.5m/分の条件で測定したポリプロピレン系樹脂の溶融張力(メルトテンション、単位はg重)である。具体的には、長さ8.0mm且つ直径2.095mmの上面が平面の円筒状のオリフィスを取り付けたキャピラリーレオメーターを用い、温度200℃でポリプロピレン系樹脂を溶融させる。その溶融させたポリプロピレン系樹脂を樹脂押出速度15mm/分でオリフィスより吐出させてストランドを形成する。そのストランドを、回転する引き取り手段を用いて、引き取り速度6.5m/分で引き取ると共に張力を測定する。
MFRは、JIS K7210に従い、温度230℃、荷重21.18Nの条件で測定したポリプロピレン系樹脂のメルトフローレートである。
式(1)の技術的な意味を補足説明する。図2は、汎用的な線形ホモポリプロピレンにおいて、230℃で測定したMT(g重)のMFR依存性を示したものである。MTはMFRが低いと高くなり、log(MT)はlog(MFR)の増加に対してほぼ直線的に減少する。より溶融張力の高いポリプロピレンおいても、同じタイプであれば、ほぼ同様の直線関係が成り立ち、直線の傾きもほぼ一定((1)式の0.85に−の符号が付いたもの)になるので、直線のY切片の値(MFR=1(log(MFR)=0)での値)によりMFRに依存しない溶融張力の相対評価が可能である。更に式(1)においては、汎用的な線形ホモポリプロピレンにおいて溶融張力指数が1(log(溶融張力指数)=0)となるように、定数項を定めて規格化を行っている。
多層発泡シートの成形においては、カーテニングと呼ばれる現象が発生してシート表面が波打ったようになり、表面外観が悪化しやすい傾向にある。表面層用ポリプロピレン系樹脂が発泡中間層用ポリプロピレン系樹脂よりも前記溶融張力指数が小さいと、カーテニングの防止効果が十分でなく、発泡シート10の表面外観が損なわれやすくなる。
表面層用ポリプロピレン系樹脂の前記溶融張力指数は1.8以上であり、2.0以上であることが好ましい。また、発泡中間層用ポリプロピレン系樹脂の前記溶融張力指数は1.2以上である。表面層用ポリプロピレン系樹脂及び発泡中間層用ポリプロピレン系樹脂の溶融張力指数が前記下限値未満であると、発泡シート10の表面外観が損なわれることや発泡倍率が上がらないことがある。
実用性の点から、表面層用ポリプロピレン系樹脂の溶融張力指数及び発泡中間層用ポリプロピレン系樹脂の溶融張力指数は共に10以下であることが好ましく、5以下であることがより好ましい。表面層用ポリプロピレン系樹脂の溶融張力指数が大きすぎると、中間層での発泡に悪影響を及ぼし、良好な発泡シートが得られないことがある。
Both the foamed intermediate layer 11 and the surface layers 12, 13 contain a polypropylene-based resin. However, the polypropylene resin constituting the surface layers 12 and 13 (polypropylene resin for the surface layer) is different from the polypropylene resin constituting the foamed intermediate layer 11 (the polypropylene resin for the foamed intermediate layer) by the following formula (1). Are equal or large. The larger the melt tension index determined by the formula (1), the higher the melt tension of the resin.
log (melt tension index) = log (MT) + 0.85 log (MFR)-0.82 (1)
In the formula (1), MT is measured using a melt tension measuring device having a cylindrical orifice having a length of 8.0 mm and a diameter of 2.095 mm with a flat upper surface, a measurement temperature of 200 ° C., a resin extrusion speed of 15 mm / min, It is the melt tension (melt tension, unit is g weight) of the polypropylene resin measured under the condition of a take-up speed of 6.5 m / min. Specifically, a polypropylene-based resin is melted at a temperature of 200 ° C. using a capillary rheometer having a cylindrical orifice having a length of 8.0 mm and a diameter of 2.095 mm and having a flat upper surface. The melted polypropylene resin is discharged from the orifice at a resin extrusion speed of 15 mm / min to form a strand. The strand is taken up at a take-up speed of 6.5 m / min using a rotating take-up means, and the tension is measured.
MFR is a melt flow rate of a polypropylene resin measured at a temperature of 230 ° C. and a load of 21.18 N according to JIS K7210.
The technical meaning of Expression (1) will be supplementarily described. FIG. 2 shows the MFR dependence of MT (g weight) measured at 230 ° C. in general-purpose linear homopolypropylene. MT increases with lower MFR, and log (MT) decreases almost linearly with increasing log (MFR). Even for polypropylene having a higher melt tension, if the same type, the same linear relationship is established, and the slope of the straight line is almost constant (0.85 in the equation (1) has a minus sign). Therefore, the relative evaluation of the melt tension independent of the MFR can be made by the value of the Y intercept of the straight line (the value at MFR = 1 (log (MFR) = 0)). Further, in the equation (1), a constant term is defined and standardized so that the melt tension index becomes 1 (log (melt tension index) = 0) in general-purpose linear homopolypropylene.
In the formation of a multilayer foam sheet, a phenomenon called "curning" occurs, and the sheet surface tends to be wavy, and the surface appearance tends to deteriorate. When the polypropylene resin for the surface layer has a smaller melt tension index than the polypropylene resin for the foamed intermediate layer, the effect of preventing the curtain is insufficient, and the surface appearance of the foamed sheet 10 is easily damaged.
The melt tension index of the polypropylene resin for the surface layer is 1.8 or more, and preferably 2.0 or more. Further, the melt tension index of the polypropylene resin for the foamed intermediate layer is 1.2 or more. If the melt tension index of the polypropylene resin for the surface layer and the polypropylene resin for the foamed intermediate layer is less than the lower limit, the surface appearance of the foamed sheet 10 may be impaired or the expansion ratio may not be increased.
From the viewpoint of practicality, the melt tension index of the polypropylene resin for the surface layer and the melt tension index of the polypropylene resin for the foamed intermediate layer are both preferably 10 or less, more preferably 5 or less. If the melt tension index of the polypropylene resin for the surface layer is too large, foaming in the intermediate layer is adversely affected, and a good foamed sheet may not be obtained.

発泡中間層11の厚さ(T)と表面層12,13の厚さ(T)との比率(T/T)が3/1〜10/1であり、5/1〜8/1であることが好ましい。表面層12,13の厚さの比率が小さくなりすぎると、表面外観が損なわれる傾向にあり、表面層12,13の厚さの比率が大きくなりすぎると、前記発泡中間層が薄くなり、発泡体としての利点特性(軽量性、断熱性、衝撃吸収性)を発揮できないことがある。
2つの表面層12,13は同じ厚さである必要はない。しかし、発泡シート10の製造のしやすさの点から、一方の表面層12の厚さに対して他方の表面層13の厚さが0.8〜1.2倍の範囲内であることが好ましい。
The ratio of the thickness of the foamed intermediate layer 11 and (T 1) thickness of surface layer 12 and 13 (T 2) (T 1 / T 2) is 3 / 1-10 / 1, 5 / 1-8 / 1 is preferred. If the thickness ratio of the surface layers 12 and 13 is too small, the surface appearance tends to be impaired. If the thickness ratio of the surface layers 12 and 13 is too large, the foamed intermediate layer becomes thin, and In some cases, the body cannot exhibit its advantageous properties (light weight, heat insulation, shock absorption).
The two surface layers 12, 13 need not be of the same thickness. However, from the viewpoint of ease of manufacturing the foam sheet 10, the thickness of the one surface layer 12 may be 0.8 to 1.2 times the thickness of the other surface layer 13. preferable.

発泡シート10の発泡倍率は1.30倍以上であることが好ましく、1.35倍以上であることがより好ましく、1.40倍以上であることがさらに好ましい。発泡シート10の発泡倍率が前記下限値以上であれば、発泡体としての特性を充分に発揮できる。
一方、発泡シート10の製造のしやすさの点から、発泡シート10の発泡倍率は5倍以下であることが好ましく、3倍以下であることがより好ましい。
発泡シート10の発泡倍率は、以下の方法により求められる。
すなわち、JIS K7112に従って発泡シート10の密度Dを測定する。発泡シート10が発泡していないときの樹脂の密度Dに対する前記密度Dの比(D/D)を求め、その値を発泡倍率とする。
なお、発泡シート10は、非発泡の表面層12,13を含むが、上記発泡倍率は、非発泡の表面層を含めて求めた値である。表面層や発泡中間層以外の層を含む場合は、それを含めて求めた値である。
The expansion ratio of the foam sheet 10 is preferably 1.30 times or more, more preferably 1.35 times or more, and even more preferably 1.40 times or more. When the expansion ratio of the foam sheet 10 is equal to or more than the lower limit, the properties as a foam can be sufficiently exhibited.
On the other hand, from the viewpoint of easy production of the foamed sheet 10, the expansion ratio of the foamed sheet 10 is preferably 5 times or less, more preferably 3 times or less.
The expansion ratio of the foam sheet 10 is determined by the following method.
That is, measuring the density D 1 of the foamed sheet 10 in accordance with JIS K7112. The calculated ratio of the density D 1 (D 1 / D 0 ) for the density D 0 of the resin when the foam sheet 10 is not expanded, and its value as expansion ratio.
Although the foam sheet 10 includes the non-foamed surface layers 12 and 13, the foaming ratio is a value obtained including the non-foamed surface layer. In the case where a layer other than the surface layer and the foamed intermediate layer is included, the value is a value including the layer.

発泡中間層11は、発泡シート10の主体となる層である。
発泡中間層用ポリプロピレン系樹脂としては、プロピレン単独重合体、エチレン単位とαオレフィン単位の少なくとも一方を5.0質量%以下含むプロピレンランダム共重合体、ブロックポリプロピレン(プロピレン重合体の存在下、エチレン単量体及びαオレフィン単量体を重合して得た重合混合物)のいずれであってもよい。これらポリプロピレン系樹脂のなかでも、剛性と耐熱性が高くなることから、プロピレン単独重合体、又は、エチレン単位とαオレフィン単位の少なくとも一方を5.0質量%以下含むプロピレンランダム共重合体が好ましく、プロピレン単独重合体がより好ましい。前記αオレフィンとしては、例えば、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン、1−ドデセン等が挙げられる。
また、発泡中間層11には、ポリプロピレン系樹脂以外に他のポリオレフィン系樹脂が含まれてもよい。他のポリオレフィン系樹脂としては、例えば、分岐状低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン・αオレフィン共重合体、高密度ポリエチレン、分岐状ポリプロピレン等が挙げられる。これら他のポリオレフィン系樹脂のなかでも、発泡性が高くなることから、分岐状低密度ポリエチレンが好ましい。
発泡中間層11におけるポリプロピレン系樹脂の含有割合は、発泡シート10の耐熱性が高くなることから、60質量%以上であることが好ましく、75質量%以上であることがより好ましい。発泡中間層11の樹脂成分はポリプロピレン系樹脂のみからなってもよい。
The foamed intermediate layer 11 is a layer that is a main component of the foamed sheet 10.
Examples of the polypropylene resin for the foamed intermediate layer include a propylene homopolymer, a propylene random copolymer containing at least one of ethylene units and α-olefin units in an amount of 5.0% by mass or less, and block polypropylene (ethylene copolymer in the presence of a propylene polymer. A polymerization mixture obtained by polymerizing a monomer and an α-olefin monomer). Among these polypropylene resins, a propylene homopolymer or a propylene random copolymer containing at least one of an ethylene unit and an α-olefin unit at 5.0% by mass or less is preferable because rigidity and heat resistance are increased, Propylene homopolymer is more preferred. Examples of the α-olefin include propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-dodecene, and the like.
In addition, the foamed intermediate layer 11 may contain other polyolefin-based resin in addition to the polypropylene-based resin. Examples of other polyolefin-based resins include branched low-density polyethylene, linear low-density polyethylene, ethylene / α-olefin copolymer, high-density polyethylene, and branched polypropylene. Among these other polyolefin-based resins, a branched low-density polyethylene is preferable because foamability is high.
The content ratio of the polypropylene resin in the foamed intermediate layer 11 is preferably 60% by mass or more, and more preferably 75% by mass or more, since the heat resistance of the foamed sheet 10 increases. The resin component of the foamed intermediate layer 11 may be composed of only a polypropylene resin.

発泡中間層用ポリプロピレン系樹脂は、MFRが2〜15g/10gであることが好ましく、5〜12g/10分であることがより好ましく、3〜10g/10分であることがさらに好ましい。ここで、MFRは、JIS K7210に従い、温度230℃、荷重21.18Nの条件で測定した値である。
発泡中間層用ポリプロピレン系樹脂のMFRが前記下限値以上であれば、発泡シート10を製造する際の押出成形性が高くなり、前記上限値以下であれば、発泡倍率を高くしやすい。
The polypropylene resin for the foamed intermediate layer preferably has an MFR of 2 to 15 g / 10 g, more preferably 5 to 12 g / 10 min, and even more preferably 3 to 10 g / 10 min. Here, the MFR is a value measured under the conditions of a temperature of 230 ° C. and a load of 21.18 N according to JIS K7210.
If the MFR of the polypropylene resin for the foamed intermediate layer is equal to or higher than the lower limit, the extrusion moldability when producing the foam sheet 10 is increased.

発泡中間層用ポリプロピレン系樹脂は、キシレン不溶分の質量平均分子量Mと数平均分子量Mとの比率(M/M)が6以上であることが好ましく、8以上であることがより好ましい。ここで、ポリプロピレン系樹脂のキシレン不溶分の質量平均分子量Mと数平均分子量Mは、ゲルパーミエーションクロマトグラフィーを用いて測定した値である。キシレン不溶分の採取方法としては、ポリプロピレン系樹脂の試料をo−キシレン中、135℃で溶解させた後、25℃に冷却し、その冷却した溶液を、濾紙を用いて濾過し、濾紙上に残ったキシレン不溶分を採取する方法が挙げられる。
発泡中間層用ポリプロピレン系樹脂の前記M/Mが前記下限値以上であれば、発泡シート10の発泡倍率を高くできる。
The polypropylene resin for the foamed intermediate layer preferably has a ratio ( Mw / Mn ) of the mass average molecular weight Mw to the number average molecular weight Mn of the xylene-insoluble component of 6 or more, more preferably 8 or more. preferable. Here, the mass average molecular weight Mw and the number average molecular weight Mn of the xylene-insoluble portion of the polypropylene-based resin are values measured using gel permeation chromatography. As a method for collecting xylene-insoluble components, a sample of a polypropylene-based resin is dissolved in o-xylene at 135 ° C., then cooled to 25 ° C., and the cooled solution is filtered using a filter paper, and placed on a filter paper. There is a method of collecting the remaining xylene-insoluble matter.
When the Mw / Mn of the polypropylene resin for the foamed intermediate layer is at least the lower limit, the foaming ratio of the foamed sheet 10 can be increased.

発泡中間層11には、任意成分として、例えば、塩素吸収剤、耐熱安定剤、酸化防止剤、光安定剤、紫外線吸収剤、内部滑剤、外部滑剤、アンチブロッキング剤、帯電防止剤、防曇剤、結晶造核剤、難燃剤、分散剤、銅害防止剤、中和剤、可塑剤、発泡剤、気泡防止剤、架橋剤、過酸化物、油展および顔料(有機または無機)等の添加剤が含まれてもよい。   In the foamed intermediate layer 11, optional components include, for example, chlorine absorber, heat stabilizer, antioxidant, light stabilizer, ultraviolet absorber, internal lubricant, external lubricant, antiblocking agent, antistatic agent, antifogging agent , Crystal nucleating agents, flame retardants, dispersants, copper damage inhibitors, neutralizers, plasticizers, foaming agents, foam inhibitors, crosslinking agents, peroxides, oil extensions and pigments (organic or inorganic) An agent may be included.

表面層12は、最外に配置される非発泡層である。
表面層用ポリプロピレン系樹脂は、発泡性及び表面外観をより良くする点では、プロピレン重合体とゴム成分を主体としたエチレン・αオレフィン共重合体とを含有するものが好ましい。さらに、プロピレン重合体とエチレン・αオレフィン共重合体とを含有するポリプロピレン系樹脂は、ブロックポリプロピレン(プロピレン重合体の存在下、エチレン単量体及びαオレフィン単量体を重合して得た重合混合物)がより好ましい。なお、前記重合混合物は、別々に得たプロピレン重合体とエチレン・αオレフィン共重合体と機械混合した混合物(機械混合物)とは、異なる物性を示す。これは、前記重合混合物と前記機械混合物とは、プロピレン重合体中のエチレン・αオレフィン共重合体の分散状態が異なっているためと推測されるが、エチレン・αオレフィン共重合体の分子レベルでの分散状態を分析する現実的手段は現状知られていない。
The surface layer 12 is an outermost non-foamed layer.
The polypropylene resin for the surface layer preferably contains a propylene polymer and an ethylene / α-olefin copolymer mainly composed of a rubber component from the viewpoint of improving foamability and surface appearance. Further, a polypropylene-based resin containing a propylene polymer and an ethylene / α-olefin copolymer is a block polypropylene (a polymerization mixture obtained by polymerizing an ethylene monomer and an α-olefin monomer in the presence of a propylene polymer). Is more preferred. The polymerization mixture has different physical properties from a mixture obtained by mechanically mixing a separately obtained propylene polymer and an ethylene / α-olefin copolymer (mechanical mixture). This is presumed to be because the polymerization mixture and the mechanical mixture are different in the dispersion state of the ethylene / α-olefin copolymer in the propylene polymer, but at the molecular level of the ethylene / α-olefin copolymer. At present, there is no known practical means for analyzing the state of dispersion.

具体的に、前記重合混合物からなるポリプロピレン系樹脂は、多段重合により製造することができる。例えば、1段目の重合反応器にて、触媒存在下、プロピレン単量体のみ又はプロピレン単量体と少量のαオレフィン単量体との混合物を重合し、得られたプロピレン重合体を2段目の重合反応器に供給すると共に2段目の重合反応器にてエチレン単量体とαオレフィン単量体とを共重合することでポリプロピレン系樹脂を得ることができる。この方法では、2段目の重合反応器にて、プロピレン重合体存在下、エチレン・αオレフィン共重合体を生成させながら、その生成するエチレン・αオレフィン共重合体とプロピレン重合体とを混合する。
プロピレン重合体の存在下でエチレン・αオレフィン共重合体を生成させることにより、生産性が高くなる上に、プロピレン重合体中のエチレン・αオレフィン共重合体の分散性が高くなるため、剛性と耐衝撃性のバランス等が向上する。
また、多段重合は上記の方法に限らず、プロピレン重合体を複数の重合反応器にて重合してもよいし、エチレン・αオレフィン共重合体を複数の重合反応器にて重合してもよい。
また、ポリプロピレン系樹脂を得る方法として、単量体濃度や重合条件の勾配を有する重合器を用いて行う方法が挙げられる。このような重合器では、例えば、少なくとも2つの重合領域が接合されたものを使用し、気相重合で単量体を重合することができる。
具体的には、触媒の存在下、上昇管からなる重合領域にて単量体を供給して重合し、上昇管に接続された下降管にて単量体を供給して重合し、上昇管と下降管とを循環しながら、ポリマー生成物を回収する。この方法では、上昇管中に存在する気体混合物が下降管に入るのを全面的または部分的に防止する手段を備える。また、上昇管中に存在する気体混合物とは異なる組成を有する気体および/または液体混合物を下降管中に導入する。
この重合方法は、例えば、特表2002−520426号公報に記載された方法を適用することができる。
重合の際には、水素を添加することによって、得られる重合体の分子量を調節することができる。水素添加量が多くなる程、分子量が小さくなる。
Specifically, the polypropylene-based resin comprising the above-mentioned polymerization mixture can be produced by multi-stage polymerization. For example, in a first-stage polymerization reactor, a propylene monomer alone or a mixture of a propylene monomer and a small amount of an α-olefin monomer is polymerized in the presence of a catalyst, and the obtained propylene polymer is subjected to two-stage polymerization. The polypropylene-based resin can be obtained by supplying to the second polymerization reactor and copolymerizing the ethylene monomer and the α-olefin monomer in the second-stage polymerization reactor. In this method, in a second-stage polymerization reactor, an ethylene / α-olefin copolymer is produced in the presence of a propylene polymer, and the produced ethylene / α-olefin copolymer is mixed with the propylene polymer. .
By producing the ethylene / α-olefin copolymer in the presence of the propylene polymer, the productivity is increased, and the dispersibility of the ethylene / α-olefin copolymer in the propylene polymer is increased. The balance of impact resistance is improved.
Further, the multi-stage polymerization is not limited to the above method, the propylene polymer may be polymerized in a plurality of polymerization reactors, or the ethylene / α-olefin copolymer may be polymerized in a plurality of polymerization reactors. .
As a method for obtaining a polypropylene-based resin, a method using a polymerization vessel having a gradient of monomer concentration or polymerization conditions may be mentioned. In such a polymerization vessel, for example, one in which at least two polymerization regions are joined can be used, and the monomer can be polymerized by gas phase polymerization.
Specifically, in the presence of a catalyst, a monomer is supplied and polymerized in a polymerization region composed of a riser, and the monomer is supplied and polymerized in a descender connected to the riser, and the riser is formed. The polymer product is recovered while circulating through the downcomer. The method comprises means for completely or partially preventing the gas mixture present in the riser from entering the downcomer. Also, a gas and / or liquid mixture having a different composition than the gas mixture present in the riser is introduced into the downcomer.
As the polymerization method, for example, a method described in JP-T-2002-520426 can be applied.
At the time of polymerization, the molecular weight of the obtained polymer can be adjusted by adding hydrogen. As the amount of hydrogenation increases, the molecular weight decreases.

前記重合混合物を得る際の重合では、立体特異性チグラー・ナッタ触媒を用いることが好ましい。さらに、前記触媒は、(A)マグネシウム、チタン、ハロゲン及び電子供与体化合物を含有する固体触媒成分;(B)有機アルミニウム化合物;(C)外部電子供与体化合物を含むものがより好ましい。   In the polymerization for obtaining the polymerization mixture, it is preferable to use a stereospecific Ziegler-Natta catalyst. More preferably, the catalyst contains (A) a solid catalyst component containing magnesium, titanium, halogen and an electron donor compound; (B) an organoaluminum compound; and (C) an external electron donor compound.

固体触媒成分(A)の調製に用いられるチタン化合物として、一般式:Ti(OR)4−g(Rは炭化水素基、Xはハロゲン、0≦g≦4)で表される4価のチタン化合物が好適である。炭化水素基としては、メチル、エチル、プロピル、ブチル等が挙げられ、ハロゲンとしては、Cl、Br等が挙げられる。
より具体的なチタン化合物としては、TiCl、TiBr、TiIなどのテトラハロゲン化チタン;Ti(OCH)Cl、Ti(OC)Cl、Ti(O−C)Cl、Ti(OC)Br、Ti(O−isoC)Brなどのトリハロゲン化アルコキシチタン;Ti(OCHCl、Ti(OCCl、Ti(O−CCl、Ti(OCBrなどのジハロゲン化アルコキシチタン;Ti(OCHCl、Ti(OCCl、Ti(O−CCl、Ti(OCBrなどのモノハロゲン化トリアルコキシチタン;Ti(OCH、Ti(OC、Ti(O−Cなどのテトラアルコキシチタンなどが挙げられる。これらチタン化合物は1種を単独で使用してもよいし、2種以上を併用してもよい。
上記チタン化合物の中で好ましいものはハロゲン含有チタン化合物、とくにテトラハロゲン化チタンであり、特に好ましいものは、四塩化チタン(TiCl)である。
As the titanium compound used for preparing the solid catalyst component (A), a tetravalent compound represented by the general formula: Ti (OR) g X 4-g (R is a hydrocarbon group, X is a halogen, and 0 ≦ g ≦ 4) Are preferred. Examples of the hydrocarbon group include methyl, ethyl, propyl, and butyl, and examples of the halogen include Cl and Br.
More specific titanium compounds, TiCl 4, TiBr 4, titanium tetrahalides such as TiI 4; Ti (OCH 3) Cl 3, Ti (OC 2 H 5) Cl 3, Ti (O n -C 4 H 9) Cl 3, Ti (OC 2 H 5) Br 3, Ti (O-isoC 4 H 9) trihalide, alkoxy titanium such as Br 3; Ti (OCH 3) 2 Cl 2, Ti (OC 2 H 5) 2 Cl 2, Ti (O n -C 4 H 9) 2 Cl 2, Ti (OC 2 H 5) 2 dihalogenated alkoxy titanium such as Br 2; Ti (OCH 3) 3 Cl, Ti (OC 2 H 5) 3 Cl, Ti (O n -C 4 H 9) 3 Cl, Ti (OC 2 H 5) 3 monohalogenated trialkoxy titanium such as Br; Ti (OCH 3) 4 , Ti (OC 2 H 5 4, Ti (O n -C 4 H 9) 4 and the like tetraalkoxytitanium such. One of these titanium compounds may be used alone, or two or more thereof may be used in combination.
Preferred among the above titanium compounds are halogen-containing titanium compounds, particularly titanium tetrahalides, and particularly preferred is titanium tetrachloride (TiCl 4 ).

固体触媒成分(A)の調製に用いられるマグネシウム化合物として、マグネシウム・炭素結合やマグネシウム・水素結合を有するマグネシウム化合物、例えばジメチルマグネシウム、ジエチルマグネシウム、ジプロピルマグネシウム、ジブチルマグネシウム、ジアミルマグネシウム、ジヘキシルマグネシウム、ジデシルマグネシウム、エチル塩化マグネシウム、プロピル塩化マグネシウム、ブチル塩化マグネシウム、ヘキシル塩化マグネシウム、アミル塩化マグネシウム、ブチルエトキシマグネシウム、エチルブチルマグネシウム、ブチルマグネシウムハイドライドなどが挙げられる。
これらのマグネシウム化合物は、例えば有機アルミニウム等との錯化合物の形で用いることもでき、また、液状状態であっても固体状態であってもよい。
さらに好適なマグネシウム化合物として、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、フッ化マグネシウム等のハロゲン化マグネシウム;メトキシ塩化マグネシウム、エトキシ塩化マグネシウム、イソプロポキシ塩化マグネシウム、ブトキシ塩化マグネシウム、オクトキシ塩化マグネシウム等のアルコキシマグネシウムハライド;フエノキシ塩化マグネシウム、メチルフエノキシ塩化マグネシウム等のアリロキシマグネシウムハライド;エトキシマグネシウム、イソプロポキシマグネシウム、ブトキシマグネシウム、n−オクトキシマグネシウム、2−エチルヘキソキシマグネシウム等のアルコキシマグネシウム;フエノキシマグネシウム、ジメチルフエノキシマグネシウム等のアリロキシマグネシウム;ラウリン酸マグネシウム、ステアリン酸マグネシウム等のマグネシウムのカルボン酸塩などが挙げられる。
これらマグネシウム化合物は1種を単独で使用してもよいし、2種以上を併用してもよい。
As the magnesium compound used for preparing the solid catalyst component (A), a magnesium compound having a magnesium-carbon bond or a magnesium-hydrogen bond, such as dimethylmagnesium, diethylmagnesium, dipropylmagnesium, dibutylmagnesium, diamylmagnesium, dihexylmagnesium, Didecyl magnesium, ethyl magnesium chloride, propyl magnesium chloride, butyl magnesium chloride, hexyl magnesium chloride, amyl magnesium chloride, butyl ethoxy magnesium, ethyl butyl magnesium, butyl magnesium hydride and the like.
These magnesium compounds can be used in the form of a complex compound with, for example, organoaluminum, and may be in a liquid state or a solid state.
Further preferred magnesium compounds include magnesium halides such as magnesium chloride, magnesium bromide, magnesium iodide, and magnesium fluoride; and alkoxy such as methoxy magnesium chloride, ethoxy magnesium chloride, isopropoxy magnesium chloride, butoxy magnesium chloride, and octoxy magnesium chloride. Magnesium halide; allyoxy magnesium halide such as phenoxy magnesium chloride, methylphenoxy magnesium chloride; alkoxy magnesium such as ethoxy magnesium, isopropoxy magnesium, butoxy magnesium, n-octoxy magnesium, 2-ethylhexoxy magnesium; phenoxy magnesium, dimethyl Allyloxymagnesium such as phenoxymagnesium; magnesium laurate , And the like carboxylates of magnesium such as magnesium stearate.
One of these magnesium compounds may be used alone, or two or more thereof may be used in combination.

上述のプロピレン樹脂組成物の製造で使用する固体触媒成分(A)の調製に用いられる電子供与体化合物として、アルコール、フェノール類、ケトン、アルデヒド、カルボン酸、有機酸又は無機酸のエステル、エーテル、酸アミド、酸無水物等の含酸素電子供与体、アンモニア、アミン、ニトリル、イソシアネート等の含窒素電子供与体などが知られているが、本発明における電子供与体化合物はジカルボン酸ジエステルを含むことが好ましい。ジカルボン酸とは2つのカルボキシル基を有する化合物である。ジカルボン酸ジエステルの具体例として、以下のものが挙げられる。
ジエチルスクシネート、ジブチルスクシネート、ジエチルメチルスクシネート、ジエチルジイソプロピルスクシネート、ジアリルエチルスクシネート、α−メチルグルタル酸ジイソブチル、マロン酸ジブチルメチル、マロン酸ジエチル、エチルマロン酸ジエチル、イソプロピルマロン酸ジエチル、ブチルマロン酸ジエチル、フェニルマロン酸ジエチル、ジエチルマロン酸ジエチル、アリルマロン酸ジエチル、ジイソブチルマロン酸ジエチル、ジノルマルブチルマロン酸ジエチル、マレイン酸ジメチル、マレイン酸モノオクチル、マレイン酸ジオクチル、マレイン酸ジブチル、ブチルマレイン酸ジブチル、ブチルマレイン酸ジエチル、β−メチルグルタル酸ジイソプロピル、フマル酸ジ−2−エチルヘキシル、イタコン酸ジエチル、イタコン酸ジブチル、シトラコン酸ジオクチル、シトラコン酸ジメチルなどの脂肪族ポリカルボン酸エステル。
1,2−シクロヘキサンカルボン酸ジエチル、1,2−シクロヘキサンカルボン酸ジイソブチル、テトラヒドロフタル酸ジエチル、ナジツク酸ジエチルのような脂環族ポリカルボン酸エステル。
Examples of the electron donor compound used in the preparation of the solid catalyst component (A) used in the production of the above-described propylene resin composition include alcohols, phenols, ketones, aldehydes, carboxylic acids, esters of organic acids or inorganic acids, ethers, Oxygen-containing electron donors such as acid amides and acid anhydrides, and nitrogen-containing electron donors such as ammonia, amines, nitriles, and isocyanates are known. Is preferred. Dicarboxylic acids are compounds having two carboxyl groups. The following are specific examples of dicarboxylic acid diesters.
Diethyl succinate, dibutyl succinate, diethyl methyl succinate, diethyl diisopropyl succinate, diallyl ethyl succinate, diisobutyl α-methylglutarate, dibutyl methyl malonate, diethyl malonate, diethyl ethyl malonate, isopropyl Diethyl malonate, diethyl butylmalonate, diethyl phenylmalonate, diethyl diethylmalonate, diethyl allylmalonate, diethyldiisobutylmalonate, diethyldinormalbutylmalonate, dimethylmaleate, monooctyl maleate, dioctyl maleate, maleic acid Dibutyl, dibutyl butyl maleate, diethyl butyl maleate, diisopropyl β-methylglutarate, di-2-ethylhexyl fumarate, diethyl itaconate, di itaconate Aliphatic polycarboxylic acid esters such as butyl, dioctyl citraconic acid and dimethyl citraconic acid;
Alicyclic polycarboxylates such as diethyl 1,2-cyclohexanecarboxylate, diisobutyl 1,2-cyclohexanecarboxylate, diethyl tetrahydrophthalate and diethyl nadiclate.

モノエチルフタレート、ジメチルフタレート、メチルエチルフタレート、モノイソブチルフタレート、モノノルマルブチルフタレート、ジエチルフタレート、エチルイソブチルフタレート、エチルノルマルブチルフタレート、ジn−プロピルフタレート、ジイソプロピルフタレート、ジn−ブチルフタレート、ジイソブチルフタレート、ジn−ヘプチルフタレート、ジ−2−エチルヘキシルフタレート、ジn−オクチルフタレート、ジネオペンチルフタレート、ジデシルフタレート、ベンジルブチルフタレート、ジフェニルフタレート、ナフタリンジカルボン酸ジエチル、ナフタリンジカルボン酸ジブチル、トリメリツト酸トリエチル、トリメリツト酸ジブチルなどの芳香族ポリカルボン酸エステル。
3,4−フランジカルボン酸などの異節環ポリカルボン酸エステル。
Monoethyl phthalate, dimethyl phthalate, methyl ethyl phthalate, monoisobutyl phthalate, mononormal butyl phthalate, diethyl phthalate, ethyl isobutyl phthalate, ethyl normal butyl phthalate, di-n-propyl phthalate, diisopropyl phthalate, di-n-butyl phthalate, diisobutyl phthalate, Di-n-heptyl phthalate, di-2-ethylhexyl phthalate, di-n-octyl phthalate, dineopentyl phthalate, didecyl phthalate, benzyl butyl phthalate, diphenyl phthalate, diethyl naphthalene dicarboxylate, dibutyl naphthalene dicarboxylate, triethyl trimellitate, trimellitate Aromatic polycarboxylic acid esters such as dibutyl acid.
Heterocyclic polycarboxylic acid esters such as 3,4-furandicarboxylic acid.

また、多価ヒドロキシ化合物エステルを用いることもでき、その好ましい具体例として、1,2−ジアセトキシベンゼン、1−メチル−2,3−ジアセトキシベンゼン、2,3−ジアセトキシナフタリン、エチレングリコールジピバレート、ブタンジオールピバレートなどを挙げることができる。同様に電子供与体化合物としてヒドロキシ置換カルボン酸のエステルを用いることもでき、その好ましい具体例として、ベンゾイルエチルサリチレート、アセチルイソブチルサリチレート、アセチルメチルサリチレートなどを挙げることができる。   Polyhydric hydroxy compound esters can also be used, and preferred specific examples thereof are 1,2-diacetoxybenzene, 1-methyl-2,3-diacetoxybenzene, 2,3-diacetoxynaphthalene, and ethylene glycol diester. Pivalate, butanediol pivalate and the like can be mentioned. Similarly, an ester of a hydroxy-substituted carboxylic acid can be used as the electron donor compound, and preferred specific examples thereof include benzoylethyl salicylate, acetylisobutyl salicylate, and acetylmethyl salicylate.

固体触媒成分中に担持させることのできる多価カルボン酸ジエステルの他の例としては、アジピン酸ジエチル、アジピン酸ジイソブチル、セバシン酸ジイソプロピル、セバシン酸ジn−ブチル、セバシン酸ジn−オクチル、セバシン酸ジ−2−エチルヘキシルなどの長鎖ジカルボン酸のエステル類を挙げることができる。
コハク酸、コハク酸の1位または2位にアルキル基等の置換基を持つ置換コハク酸もジカルボン酸に含まれる。ジカルボン酸ジエステルの中でコハク酸、置換コハク酸、フタル酸、マレイン酸、置換マロン酸のジエステルがより好ましく、コハク酸エステル(スクシネート)系の電子供与体化合物を好適に用いることができる。
好適なスクシネート系化合物は、下記化学式(I)で表されるスクシネート構造を有する化合物である。
スクシネート系化合物を電子供与体として含む触媒を用いて重合して得た重合混合物を用いると、キシレン不溶分のM/Mを容易に下記範囲にでき、表面外観を容易に良くすることができる。キシレン不溶分のM/Mが大きいことは、ポリプロピレン系樹脂を構成するプロピレン重合体とエチレン・αオレフィン共重合体の分子量分布が広いことを意味する。分子量分布が広いと、それぞれの成分の溶融張力指数が向上する他、両成分間の分散性が向上する結果、ポリプロピレン系樹脂の溶融張力指数がさらに向上すると考えられる。
Other examples of the polyvalent carboxylic acid diester that can be supported in the solid catalyst component include diethyl adipate, diisobutyl adipate, diisopropyl sebacate, di-n-butyl sebacate, di-n-octyl sebacate, and sebacic acid. Esters of long-chain dicarboxylic acids such as di-2-ethylhexyl can be mentioned.
Dicarboxylic acids also include succinic acid and substituted succinic acids having a substituent such as an alkyl group at the 1- or 2-position of succinic acid. Among the dicarboxylic acid diesters, diesters of succinic acid, substituted succinic acid, phthalic acid, maleic acid, and substituted malonic acid are more preferable, and a succinate (succinate) -based electron donor compound can be suitably used.
Suitable succinate-based compounds are compounds having a succinate structure represented by the following chemical formula (I).
When a polymerization mixture obtained by polymerization using a catalyst containing a succinate-based compound as an electron donor is used, the Mw / Mn of the xylene-insoluble component can be easily set in the following range, and the surface appearance can be easily improved. it can. The fact that the xylene-insoluble matter has a large M w / M n means that the molecular weight distribution of the propylene polymer and the ethylene / α-olefin copolymer constituting the polypropylene resin is wide. It is considered that when the molecular weight distribution is wide, the melt tension index of each component is improved, and the dispersibility between both components is improved, so that the melt tension index of the polypropylene resin is further improved.

式(I)中、R及びRは、互いに同一又は異なり、ヘテロ原子を含んでもよい炭素数1〜20の線状又は分岐のアルキル、アルケニル、シクロアルキル、アリール、アリールアルキル、又はアルキルアリール基である。好ましいR及びRは、炭素数1〜8のアルキル、シクロアルキル、アリール、アリールアルキル、及びアルキルアリール基である。R及びRは、第1級アルキル、特に分岐第1級アルキルから選択される化合物が特に好ましい。好適なR及びRの具体例としては、メチル、エチル、n−プロピル、n−ブチル、イソブチル、ネオペンチル、2−エチルヘキシルが挙げられ、エチル、イソブチル、及びネオペンチルが特に好ましい。
〜Rは、互いに同一か又は異なり、水素、或いは、ヘテロ原子を含んでもよい炭素数1〜20の線状又は分岐のアルキル、アルケニル、シクロアルキル、アリール、アリールアルキル、又はアルキルアリール基である。同じ炭素原子に結合しているRとR、RとRは互いに結合して環構造を形成してもよい。異なる炭素原子に結合しているR〜Rのいずれか2つ以上は互いに結合して環構造を形成してもよい。
In the formula (I), R 1 and R 2 are the same or different from each other, and may be a linear or branched alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, or alkylaryl having 1 to 20 carbon atoms which may contain a hetero atom. Group. Desirable R 1 and R 2 are an alkyl, cycloalkyl, aryl, arylalkyl, and alkylaryl group having 1 to 8 carbon atoms. R 1 and R 2 are particularly preferably compounds selected from primary alkyls, especially branched primary alkyls. Specific examples of suitable R 1 and R 2 include methyl, ethyl, n-propyl, n-butyl, isobutyl, neopentyl and 2-ethylhexyl, with ethyl, isobutyl and neopentyl being particularly preferred.
R 3 to R 6 are the same or different from each other, and are hydrogen or a linear or branched alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, or alkylaryl group having 1 to 20 carbon atoms which may contain a hetero atom. It is. R 3 and R 4 , and R 5 and R 6 bonded to the same carbon atom may be bonded to each other to form a ring structure. Any two or more of R 3 to R 6 bonded to different carbon atoms may be bonded to each other to form a ring structure.

式(I)に示される化合物の好ましい群の1つは、R〜Rが水素であり、Rが、3〜10個の炭素原子を有する、分岐アルキル、シクロアルキル、アリール、アリールアルキル、及びアルキルアリール基の単置換スクシネート化合物である。
好適な単置換スクシネート化合物の具体例としては、ジエチル−sec−ブチルスクシネート、ジエチルテキシルスクシネート、ジエチルシクロプロピルスクシネート、ジエチルノルボニルスクシネート、ジエチルペリヒドロスクシネート、ジエチルトリメチルシリルスクシネート、ジエチルメトキシスクシネート、ジエチル−p−メトキシフェニルスクシネート、ジエチル−p−クロロフェニルスクシネート、ジエチルフェニルスクシネート、ジエチルシクロヘキシルスクシネート、ジエチルベンジルスクシネート、ジエチルシクロヘキシルメチルスクシネート、ジエチル−t−ブチルスクシネート、ジエチルイソブチルスクシネート、ジエチルイソプロピルスクシネート、ジエチルネオペンチルスクシネート、ジエチルイソペンチルスクシネート、ジエチル(1−トリフルオロメチルエチル)スクシネート、ジエチルフルオレニルスクシネート、1−(エトキシカルボジイソブチルフェニル)スクシネート、ジイソブチル−sec−ブチルスクシネート、ジイソブチルテキシルスクシネート、ジイソブチルシクロプロピルスクシネート、ジイソブチルノルボニルスクシネート、ジイソブチルペリヒドロスクシネート、ジイソブチルトリメチルシリルスクシネート、ジイソブチルメトキシスクシネート、ジイソブチル−p−メトキシフェニルスクシネート、ジイソブチル−p−クロロフェニルスクシネート、ジイソブチルシクロヘキシルスクシネート、ジイソブチルベンジルスクシネート、ジイソブチルシクロヘキシルメチルスクシネート、ジイソブチル−t−ブチルスクシネート、ジイソブチルイソブチルスクシネート、ジイソブチルイソプロピルスクシネート、ジイソブチルネオペンチルスクシネート、ジイソブチルイソペンチルスクシネート、ジイソブチル(1−トリフルオロメチルエチル)スクシネート、ジイソブチルフルオレニルスクシネート、ジネオペンチル−sec−ブチルスクシネート、ジネオペンチルテキシルスクシネート、ジネオペンチルシクロプロピルスクシネート、ジネオペンチルノルボニルスクシネート、ジネオペンチルペリヒドロスクシネート、ジネオペンチルトリメチルシリルスクシネート、ジネオペンチルメトキシスクシネート、ジネオペンチル−p−メトキシフェニルスクシネート、ジネオペンチル−p−クロロフェニルスクシネート、ジネオペンチルフェニルスクシネート、ジネオペンチルシクロヘキシルスクシネート、ジネオペンチルベンジルスクシネート、ジネオペンチルシクロヘキシルメチルスクシネート、ジネオペンチル−t−ブチルスクシネート、ジネオペンチルイソブチルスクシネート、ジネオペンチルイソプロピルスクシネート、ジネオペンチルネオペンチルスクシネート、ジネオペンチルイソペンチルスクシネート、ジネオペンチル(1−トリフルオロメチルエチル)スクシネート、ジネオペンチルフルオレニルスクシネートが挙げられる。
これら化合物は1種を単独で使用してもよいし、2種以上を併用してもよい。
One preferred group of compounds of formula (I) is that wherein R 3 -R 5 are hydrogen and R 6 has 3-10 carbon atoms, branched alkyl, cycloalkyl, aryl, arylalkyl And a monosubstituted succinate compound of an alkylaryl group.
Specific examples of suitable monosubstituted succinate compounds include diethyl-sec-butylsuccinate, diethyltexylsuccinate, diethylcyclopropylsuccinate, diethylnorbonylsuccinate, diethylperhydrosuccinate, and diethyltrimethylsilyl. Succinate, diethylmethoxysuccinate, diethyl-p-methoxyphenylsuccinate, diethyl-p-chlorophenylsuccinate, diethylphenylsuccinate, diethylcyclohexylsuccinate, diethylbenzylsuccinate, diethylcyclohexylmethyl Succinate, diethyl-t-butyl succinate, diethyl isobutyl succinate, diethyl isopropyl succinate, diethyl neopentyl succinate, diethyl isopentyl succinate Succinate, diethyl (1-trifluoromethylethyl) succinate, diethyl fluorenyl succinate, 1- (ethoxycarbodiisobutylphenyl) succinate, diisobutyl-sec-butyl succinate, diisobutyl texyl succinate, diisobutyl cyclopropyl succinate , Diisobutylnorbonyl succinate, diisobutyl perhydrosuccinate, diisobutyl trimethylsilyl succinate, diisobutyl methoxy succinate, diisobutyl-p-methoxyphenyl succinate, diisobutyl-p-chlorophenyl succinate, diisobutyl cyclohexyls Succinate, diisobutylbenzylsuccinate, diisobutylcyclohexylmethylsuccinate, diisobutyl-t-butylsuccinate Diisobutyl isobutyl succinate, diisobutyl isopropyl succinate, diisobutyl neopentyl succinate, diisobutyl isopentyl succinate, diisobutyl (1-trifluoromethylethyl) succinate, diisobutyl fluorenyl succinate, dineopentyl-sec-butyl Succinate, Dineopentyl Texyl Succinate, Dineopentyl Cyclopropyl Succinate, Dineopentyl Norbonyl Succinate, Dineopentyl Perihydrosuccinate, Dineopentyl Trimethylsilyl Succinate, Dineopentyl Methoxy succinate, Dineopentyl-p-methoxyphenyl succinate, Dineopentyl-p-chlorophenyl succinate, Dineopentylphenyl succinate, Dineo Pentyl cyclohexyl succinate, Dineopentyl benzyl succinate, Dineopentyl cyclohexyl methyl succinate, Dineopentyl-t-butyl succinate, Dineopentyl isobutyl succinate, Dineopentyl isopropyl succinate, Dineo Examples include pentyl neopentyl succinate, dineopentyl isopentyl succinate, dineopentyl (1-trifluoromethylethyl) succinate, and dineopentyl fluorenyl succinate.
One of these compounds may be used alone, or two or more of them may be used in combination.

式(I)に示される化合物の他の好ましいものとして、R〜Rの少なくとも2つの基が、水素ではなく、ヘテロ原子を含んでもよい炭素数1〜20の線状又は分岐のアルキル、アルケニル、シクロアルキル、アリール、アリールアルキル、又はアルキルアリール基から選択される二置換スクシネート化合物が挙げられる。水素ではない2つの基は同じ炭素原子に結合していることが好ましい。
好適な二置換スクシネート化合物の具体例としては、ジエチル−2,2−ジメチルスクシネート、ジエチル−2−エチル−2−メチルスクシネート、ジエチル−2−ベンジル−2−イソプロピルスクシネート、ジエチル−2−シクロヘキシルメチル−2−イソブチルスクシネート、ジエチル−2−シクロペンチル−2−n−プロピルスクシネート、ジエチル−2−シクロペンチル−2−n−ブチルスクシネート、ジエチル−2,2−ジイソブチルスクシネート、ジエチル−2−シクロヘキシル−2−エチルスクシネート、ジエチル−2−イソプロピル−2−メチルスクシネート、ジエチル−2−テトラデシル−2−エチルスクシネート、ジエチル−2−イソブチル−2−エチルスクシネート、ジエチル−2−(1−トリフルオロメチルエチル)−2−メチルスクシネート、ジエチル−2−イソペンチル−2−イソブチルスクシネート、ジエチル−2−フェニル−2−n−ブチルスクシネート、ジイソブチル−2,2−ジメチルスクシネート、ジイソブチル−2−エチル−2−メチルスクシネート、ジイソブチル−2−ベンジル−2−イソプロピルスクシネート、ジイソブチル−2−シクロヘキシルメチル−2−イソブチルスクシネート、ジイソブチル−2−シクロペンチル−2−n−プロピルスクシネート、ジイソブチル−2−シクロペンチル−2−n−ブチルスクシネート、ジイソブチル−2,2−ジイソブチルスクシネート、ジイソブチル−2−シクロヘキシル−2−エチルスクシネート、ジイソブチル−2−イソプロピル−2−メチルスクシネート、ジイソブチル−2−テトラデシル−2−エチルスクシネート、ジイソブチル−2−イソブチル−2−エチルスクシネート、ジイソブチル−2−(1−トリフルオロメチルエチル)−2−メチルスクシネート、ジイソブチル−2−イソペンチル−2−イソブチルスクシネート、ジイソブチル−2−フェニル−2−n−ブチルスクシネート、ジイソブチル−2,2−ジイソプロピルスクシネート、ジイソブチル−2−フェニル−2−n−プロピルスクシネート、ジネオペンチル−2,2−ジメチルスクシネート、ジネオペンチル−2−エチル−2−メチルスクシネート、ジネオペンチル−2−ベンジル−2−イソプロピルスクシネート、ジネオペンチル−2−シクロヘキシルメチル−2−イソブチルスクシネート、ジネオペンチル−2−シクロペンチル−2−n−プロピルスクシネート、ジネオペンチル−2−シクロペンチル−2−n−ブチルスクシネート、ジネオペンチル−2,2−ジイソブチルスクシネート、ジネオペンチル−2−シクロヘキシル−2−エチルスクシネート、ジネオペンチル−2−イソプロピル−2−メチルスクシネート、ジネオペンチル−2−テトラデシル−2−エチルスクシネート、ジネオペンチル−2−イソブチル−2−エチルスクシネート、ジネオペンチル−2−(1−トリフルオロメチルエチル)−2−メチルスクシネート、ジネオペンチル−2,2−ジイソプロピルスクシネート、ジネオペンチル−2−イソペンチル−2−イソブチルスクシネート、ジネオペンチル−2−フェニル−2−n−ブチルスクシネートが挙げられる。
これら化合物は1種を単独で使用してもよいし、2種以上を併用してもよい。
Other preferred compounds of the formula (I) are those in which at least two of R 3 to R 6 are not hydrogen, but are linear or branched alkyl having 1 to 20 carbon atoms which may contain a hetero atom. Examples include disubstituted succinate compounds selected from alkenyl, cycloalkyl, aryl, arylalkyl, or alkylaryl groups. Preferably, the two non-hydrogen groups are attached to the same carbon atom.
Specific examples of suitable disubstituted succinate compounds include diethyl-2,2-dimethylsuccinate, diethyl-2-ethyl-2-methylsuccinate, diethyl-2-benzyl-2-isopropylsuccinate, diethyl -2-cyclohexylmethyl-2-isobutylsuccinate, diethyl-2-cyclopentyl-2-n-propylsuccinate, diethyl-2-cyclopentyl-2-n-butylsuccinate, diethyl-2,2-diisobutyl Succinate, diethyl-2-cyclohexyl-2-ethylsuccinate, diethyl-2-isopropyl-2-methylsuccinate, diethyl-2-tetradecyl-2-ethylsuccinate, diethyl-2-isobutyl-2 -Ethyl succinate, diethyl-2- (1-trifluoromethylethyl -2-methylsuccinate, diethyl-2-isopentyl-2-isobutylsuccinate, diethyl-2-phenyl-2-n-butylsuccinate, diisobutyl-2,2-dimethylsuccinate, diisobutyl-2 -Ethyl-2-methylsuccinate, diisobutyl-2-benzyl-2-isopropylsuccinate, diisobutyl-2-cyclohexylmethyl-2-isobutylsuccinate, diisobutyl-2-cyclopentyl-2-n-propylsuccinate , Diisobutyl-2-cyclopentyl-2-n-butylsuccinate, diisobutyl-2,2-diisobutylsuccinate, diisobutyl-2-cyclohexyl-2-ethylsuccinate, diisobutyl-2-isopropyl-2-methyl Succinate, diisobutyl-2-tet Decyl-2-ethylsuccinate, diisobutyl-2-isobutyl-2-ethylsuccinate, diisobutyl-2- (1-trifluoromethylethyl) -2-methylsuccinate, diisobutyl-2-isopentyl-2- Isobutyl succinate, diisobutyl-2-phenyl-2-n-butyl succinate, diisobutyl-2,2-diisopropyl succinate, diisobutyl-2-phenyl-2-n-propyl succinate, dineopentyl-2, 2-dimethylsuccinate, dineopentyl-2-ethyl-2-methylsuccinate, dineopentyl-2-benzyl-2-isopropylsuccinate, dineopentyl-2-cyclohexylmethyl-2-isobutylsuccinate, dineopentyl-2 -Cyclopentyl-2-n-propyl Succinate, dineopentyl-2-cyclopentyl-2-n-butylsuccinate, dineopentyl-2,2-diisobutylsuccinate, dineopentyl-2-cyclohexyl-2-ethylsuccinate, dineopentyl-2-isopropyl-2-methyl Succinate, dineopentyl-2-tetradecyl-2-ethylsuccinate, dineopentyl-2-isobutyl-2-ethylsuccinate, dineopentyl-2- (1-trifluoromethylethyl) -2-methylsuccinate, Dineopentyl-2,2-diisopropylsuccinate, dineopentyl-2-isopentyl-2-isobutylsuccinate, and dineopentyl-2-phenyl-2-n-butylsuccinate are exemplified.
One of these compounds may be used alone, or two or more of them may be used in combination.

また、式(I)に示される化合物の特に好ましいものとしては、水素とは異なる少なくとも2つの基、則ちR及びR、又はR及びRが異なる炭素原子に結合している化合物も挙げられる。
この化合物の具体例としては、ジエチル−2,3−ビス(トリメチルシリル)スクシネート、ジエチル−2,2−sec−ブチル−3−メチルスクシネート、ジエチル−2−(3,3,3−トリフルオロプロピル)−3−メチルスクシネート、ジエチル−2,3−ビス(2−エチルブチル)スクシネート、ジエチル−2,3−ジエチル−2−イソプロピルスクシネート、ジエチル−2,3−ジイソプロピル−2−メチルスクシネート、ジエチル−2,3−ジシクロヘキシル−2−メチルスクシネート、ジエチル−2,3−ジベンジルスクシネート、ジエチル−2,3−ジイソプロピルスクシネート、ジエチル−2,3−ビス(シクロヘキシルメチル)スクシネート、ジエチル−2,3−ジ−t−ブチルスクシネート、ジエチル−2,3−ジイソブチルスクシネート、ジエチル−2,3−ジネオペンチルスクシネート、ジエチル−2,3−ジイソペンチルスクシネート、ジエチル−2,3−(1−トリフルオロメチルエチル)スクシネート、ジエチル−2,3−テトラデシルスクシネート、ジエチル−2,3−フルオレニルスクシネート、ジエチル−2−イソプロピル−3−イソブチルスクシネート、ジエチル−2−tert−ブチル−3−イソプロピルスクシネート、ジエチル−2−イソプロピル−3−シクロヘキシルスクシネート、ジエチル−2−イソペンチル−3−シクロヘキシルスクシネート、ジエチル−2−テトラデシル−3−シクロヘキシルメチルスクシネート、ジエチル−2−シクロヘキシル−3−シクロペンチルスクシネート、ジエチル−2,2,3,3−テトラメチルスクシネート、ジエチル−2,2,3,3−テトラエチルスクシネート、ジエチル−2,2,3,3−テトラプロピルスクシネート、ジエチル−2,3−ジエチル−2,3−ジイソプロピルスクシネート、ジイソブチル−2,3−ビス(トリメチルシリル)スクシネート、ジイソブチル−2,2−sec−ブチル−3−メチルスクシネート、ジイソブチル−2−(3,3,3−トリフルオロプロピル)−3−メチルスクシネート、ジイソブチル−2,3−ビス(2−エチルブチル)スクシネート、ジイソブチル−2,3−ジエチル−2−イソプロピルスクシネート、ジイソブチル−2,3−ジイソプロピル−2−メチルスクシネート、ジイソブチル−2,3−ジシクロヘキシル−2−メチルスクシネート、ジイソブチル−2,3−ジベンジルスクシネート、ジイソブチル−2,3−ジイソプロピルスクシネート、ジイソブチル−2,3−ビス(シクロヘキシルメチル)スクシネート、ジイソブチル−2,3−ジ−t−ブチルスクシネート、ジイソブチル−2,3−ジイソブチルスクシネート、ジイソブチル−2,3−ジネオペンチルスクシネート、ジイソブチル−2,3−ジイソペンチルスクシネート、ジイソブチル−2,3−(1−トリフルオロメチルエチル)スクシネート、ジイソブチルー2,3−n−プロピルスクシネート、ジイソブチル−2,3−テトラデシルスクシネート、ジイソブチル−2,3−フルオレニルスクシネート、ジイソブチル−2−イソプロピル−3−イソブチルスクシネート、ジイソブチル−2−tert−ブチル−3−イソプロピルスクシネート、ジイソブチル−2−イソプロピル−3−シクロヘキシルスクシネート、ジイソブチル−2−イソペンチル−3−シクロヘキシルスクシネート、ジイソブチル−2−n−プロピル−3−(シクロヘキシルメチル)スクシネート、ジイソブチル−2−テトラデシル−3−シクロヘキシルメチルスクシネート、ジイソブチル−2,2,3,3−テトラメチルスクシネート、ジイソブチル−2,2,3,3−テトラエチルスクシネート、ジイソブチル−2,2,3,3−テトラプロピルスクシネート、ジイソブチル−2,3−ジエチル−2,3−ジイソプロピルスクシネート、ジイソブチル−2−シクロヘキシル−3−シクロペンチルスクシネート、ジネオペンチル−2,3−ビス(トリメチルシリル)スクシネート、ジネオペンチル−2,2−sec−ブチル−3−メチルスクシネート、ジネオペンチル−2−(3,3,3−トリフルオロプロピル)−3−メチルスクシネート、ジネオペンチル−2,3−ビス(2−エチルブチル)スクシネート、ジネオペンチル−2,3−ジエチル−2−イソプロピルスクシネート、ジネオペンチル−2,3−ジイソプロピル−2−メチルスクシネート、ジネオペンチル−2,3−ジシクロヘキシル−2−メチルスクシネート、ジネオペンチル−2,3−ジベンジルスクシネート、ジネオペンチル−2,3−ジイソプロピルスクシネート、ジネオペンチル−2,3−ビス(シクロヘキシルメチル)スクシネート、ジネオペンチル−2,3−ジ−t−ブチルスクシネート、ジネオペンチル−2,3−ジイソブチルスクシネート、ジネオペンチル−2,3−ジネオペンチルスクシネート、ジネオペンチル−2,3−ジイソペンチルスクシネート、ジネオペンチル−2,3−(1−トリフルオロメチルエチル)スクシネート、ジネオペンチル−2,3−ジネオペンチルスクシネート、ジネオペンチル−2,3−ジイソペンチルスクシネート、ジネオペンチル−2,3−テトラデシルスクシネート、ジネオペンチル−2,3−フルオレニルスクシネート、ジネオペンチル−2−イソプロピル−3−イソブチルスクシネート、ジネオペンチル−2−tert−ブチル−3−イソプロピルスクシネート、ジネオペンチル−2−イソプロピル−3−シクロヘキシルスクシネート、ジネオペンチル−2−イソペンチル−3−シクロヘキシルスクシネート、ジネオペンチル−2−テトラデシル−3−シクロヘキシルメチルスクシネート、ジネオペンチル−2−n−プロピル−3−(シクロヘキシルメチル)スクシネート、ジネオペンチル−2−シクロヘキシル−3―シクロペンチルスクシネート、ジネオペンチル−2,2,3,3−テトラエチルスクシネート、ジネオペンチル−2,2,3,3−テトラプロピルスクシネート、ジネオペンチル−2,3−ジエチル−2,3−ジイソプロピルスクシネートが挙げられる。
これら化合物は1種を単独で使用してもよいし、2種以上を併用してもよい。
Particularly preferred as the compound represented by the formula (I) is a compound wherein at least two groups different from hydrogen, that is, R 3 and R 5 , or R 4 and R 6 are bonded to different carbon atoms. Are also mentioned.
Specific examples of this compound include diethyl-2,3-bis (trimethylsilyl) succinate, diethyl-2,2-sec-butyl-3-methylsuccinate, and diethyl-2- (3,3,3-trifluoro) Propyl) -3-methylsuccinate, diethyl-2,3-bis (2-ethylbutyl) succinate, diethyl-2,3-diethyl-2-isopropylsuccinate, diethyl-2,3-diisopropyl-2-methyl Succinate, diethyl-2,3-dicyclohexyl-2-methylsuccinate, diethyl-2,3-dibenzylsuccinate, diethyl-2,3-diisopropylsuccinate, diethyl-2,3-bis ( Cyclohexylmethyl) succinate, diethyl-2,3-di-t-butylsuccinate, diethyl-2,3-diethyl Butyl succinate, diethyl-2,3-dineopentyl succinate, diethyl-2,3-diisopentyl succinate, diethyl-2,3- (1-trifluoromethylethyl) succinate, diethyl-2 , 3-tetradecylsuccinate, diethyl-2,3-fluorenylsuccinate, diethyl-2-isopropyl-3-isobutylsuccinate, diethyl-2-tert-butyl-3-isopropylsuccinate, diethyl -2-isopropyl-3-cyclohexylsuccinate, diethyl-2-isopentyl-3-cyclohexylsuccinate, diethyl-2-tetradecyl-3-cyclohexylmethylsuccinate, diethyl-2-cyclohexyl-3-cyclopentylsuccinate Nate, diethyl-2,2,3,3-tetramethyl Succinate, diethyl-2,2,3,3-tetraethylsuccinate, diethyl-2,2,3,3-tetrapropylsuccinate, diethyl-2,3-diethyl-2,3-diisopropylsuccinate, Diisobutyl-2,3-bis (trimethylsilyl) succinate, diisobutyl-2,2-sec-butyl-3-methylsuccinate, diisobutyl-2- (3,3,3-trifluoropropyl) -3-methylsuccinate , Diisobutyl-2,3-bis (2-ethylbutyl) succinate, diisobutyl-2,3-diethyl-2-isopropylsuccinate, diisobutyl-2,3-diisopropyl-2-methylsuccinate, diisobutyl-2, 3-dicyclohexyl-2-methylsuccinate, diisobutyl-2,3-dibenzylsuccinate, Isobutyl-2,3-diisopropylsuccinate, diisobutyl-2,3-bis (cyclohexylmethyl) succinate, diisobutyl-2,3-di-t-butylsuccinate, diisobutyl-2,3-diisobutylsuccinate, Diisobutyl-2,3-dineopentylsuccinate, diisobutyl-2,3-diisopentylsuccinate, diisobutyl-2,3- (1-trifluoromethylethyl) succinate, diisobutyl-2,3-n-propyl Succinate, diisobutyl-2,3-tetradecylsuccinate, diisobutyl-2,3-fluorenylsuccinate, diisobutyl-2-isopropyl-3-isobutylsuccinate, diisobutyl-2-tert-butyl-3 -Isopropyl succinate, diisobutyl-2- Isopropyl-3-cyclohexylsuccinate, diisobutyl-2-isopentyl-3-cyclohexylsuccinate, diisobutyl-2-n-propyl-3- (cyclohexylmethyl) succinate, diisobutyl-2-tetradecyl-3-cyclohexylmethylsuccinate , Diisobutyl-2,2,3,3-tetramethylsuccinate, diisobutyl-2,2,3,3-tetraethylsuccinate, diisobutyl-2,2,3,3-tetrapropylsuccinate, diisobutyl -2,3-diethyl-2,3-diisopropylsuccinate, diisobutyl-2-cyclohexyl-3-cyclopentylsuccinate, dineopentyl-2,3-bis (trimethylsilyl) succinate, dineopentyl-2,2-sec-butyl -3-me Rusuccinate, Dineopentyl-2- (3,3,3-trifluoropropyl) -3-methylsuccinate, Dineopentyl-2,3-bis (2-ethylbutyl) succinate, Dineopentyl-2,3-diethyl-2-isopropyl Succinate, Dineopentyl-2,3-diisopropyl-2-methylsuccinate, Dineopentyl-2,3-dicyclohexyl-2-methylsuccinate, Dineopentyl-2,3-dibenzylsuccinate, Dineopentyl-2, 3-diisopropylsuccinate, dineopentyl-2,3-bis (cyclohexylmethyl) succinate, dineopentyl-2,3-di-t-butylsuccinate, dineopentyl-2,3-diisobutylsuccinate, dineopentyl-2, 3-dineopentylsk , Dineopentyl-2,3-diisopentylsuccinate, dineopentyl-2,3- (1-trifluoromethylethyl) succinate, dineopentyl-2,3-dineopentylsuccinate, dineopentyl-2,3- Diisopentyl succinate, dineopentyl-2,3-tetradecylsuccinate, dineopentyl-2,3-fluorenylsuccinate, dineopentyl-2-isopropyl-3-isobutylsuccinate, dineopentyl-2-tert- Butyl-3-isopropylsuccinate, dineopentyl-2-isopropyl-3-cyclohexylsuccinate, dineopentyl-2-isopentyl-3-cyclohexylsuccinate, dineopentyl-2-tetradecyl-3-cyclohexylmethylsuccinate , Dineopentyl-2-n-propyl-3- (cyclohexylmethyl) succinate, Dineopentyl-2-cyclohexyl-3-cyclopentylsuccinate, Dineopentyl-2,2,3,3-tetraethylsuccinate, Dineopentyl-2,2 , 3,3-tetrapropyl succinate, and dineopentyl-2,3-diethyl-2,3-diisopropyl succinate.
One of these compounds may be used alone, or two or more of them may be used in combination.

また、式(I)に示される化合物としては、R〜Rのうちの少なくとも2つ以上が結合して環を形成したものも好ましい。
このような化合物として、特表2002−542347号公報に記載されている化合物、例えば、1−(エトキシカルボニル)−1−(エトキシアセチル)−2,6−ジメチルシクロヘキサン、1−(エトキシカルボニル)−1−(エトキシアセチル)−2,5−ジメチルシクロペンタン、1−(エトキシカルボニル)−1−(エトキシアセチルメチル)−2−メチルシクロヘキサン、1−(エトキシカルボニル)−1−(エトキシ(シクロヘキシル)アセチル)シクロヘキサンが挙げられる。また、国際公開第2009/069483号、国際公開第2009/057747号に開示されている3,6−ジメチルシクロヘキサン−1,2−ジカルボン酸ジイソブチル等の環状スクシネート化合物も好適に用いることができる。
Further, as the compound represented by the formula (I), a compound in which at least two or more of R 3 to R 6 are bonded to form a ring is also preferable.
As such compounds, compounds described in JP-T-2002-542347, for example, 1- (ethoxycarbonyl) -1- (ethoxyacetyl) -2,6-dimethylcyclohexane, 1- (ethoxycarbonyl)- 1- (ethoxyacetyl) -2,5-dimethylcyclopentane, 1- (ethoxycarbonyl) -1- (ethoxyacetylmethyl) -2-methylcyclohexane, 1- (ethoxycarbonyl) -1- (ethoxy (cyclohexyl) acetyl ) Cyclohexane. Further, cyclic succinate compounds such as diisobutyl 3,6-dimethylcyclohexane-1,2-dicarboxylate disclosed in WO 2009/069483 and WO 2009/057774 can also be suitably used.

式(I)に示される化合物のうち、R〜Rがヘテロ原子を含む場合、ヘテロ原子は、窒素原子、リン原子等の第15族原子、あるいは、酸素原子、イオウ原子等の第16族原子であることが好ましい。R〜Rが第15族原子を含む化合物としては、特開2005−306910号公報に開示されている化合物が挙げられる。R〜Rが第16族原子を含む化合物としては、特開2004−131537号公報に開示されている化合物が挙げられる。
固体触媒成分(A)を構成するハロゲン原子としては、フッ素、塩素、臭素、ヨウ素またはこれらの混合物が挙げられ、特に塩素が好ましい。
When R 3 to R 6 in the compound represented by the formula (I) include a hetero atom, the hetero atom is a group 15 atom such as a nitrogen atom or a phosphorus atom, or a group 16 atom such as an oxygen atom or a sulfur atom. It is preferably a group atom. Examples of the compound in which R 3 to R 6 contain a Group 15 atom include the compounds disclosed in JP-A-2005-306910. Examples of the compound in which R 3 to R 6 contain a Group 16 atom include the compounds disclosed in JP-A-2004-131537.
Examples of the halogen atom constituting the solid catalyst component (A) include fluorine, chlorine, bromine, iodine and a mixture thereof, and chlorine is particularly preferable.

有機アルミニウム化合物(B)としては、例えば、トリエチルアルミニウム、トリブチルアルミニウム等のトリアルキルアルミニウム、トリイソプレニルアルミニウム等のトリアルケニルアルミニウム、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシド等のジアルキルアルミニウムアルコキシド、エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシド等のアルキルアルミニウムセスキアルコキシドのほかに、R 2.5Al(OR0.5(R,Rは、各々異なってもよいし同じでもよい炭化水素基である。)で表わされる平均組成を有する、部分的にアルコキシ化されたアルキルアルミニウム、ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルアルミニウムブロミド等のジアルキルアルミニウムハロゲニド、エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミド等のアルキルアルミニウムセスキハロゲニド、エチルアルミニウムジクロリド、プロピルアルミニウムジクロリド、ブチルアルミニウムジブロミド等のアルキルアルミニウムジハロゲニドなどの部分的にハロゲン化されたアルキルアルミニウム、ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリドなどのジアルキルアルミニウムヒドリド、エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリド等のアルキルアルミニウムジヒドリドなどの部分的に水素化されたアルキルアルミニウム、エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミド等の部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウム等が挙げられる。
上記有機アルミニウム化合物(B)は1種を単独で使用してもよいし、2種以上を併用してもよい。
Examples of the organoaluminum compound (B) include trialkylaluminums such as triethylaluminum and tributylaluminum, trialkenylaluminums such as triisoprenylaluminum, dialkylaluminum alkoxides such as diethylaluminum ethoxide and dibutylaluminum butoxide, and ethylaluminum sesquiethoxy. In addition to alkyl aluminum sesquialkoxides such as butyl aluminum butyl sesquibutoxide, R 7 2.5 Al (OR 8 ) 0.5 (R 7 and R 8 may be different or the same hydrocarbon groups. Partially alkoxylated alkylaluminum, diethylaluminum chloride, dibutylaluminum chloride, diethylaluminum having an average composition represented by: Alkyl aluminum sesquihalogenides such as dialkylaluminum halogenides such as mubromide, ethylaluminum sesquichloride, butylaluminum sesquichloride, ethylaluminum sesquibromide, alkylaluminum dihalogenides such as ethylaluminum dichloride, propylaluminum dichloride and butylaluminum dibromide Partially halogenated alkyl aluminum such as dialkyl aluminum hydride such as alkyl aluminum, diethyl aluminum hydride and dibutyl aluminum hydride, and partially hydrogenated alkyl aluminum such as alkyl aluminum dihydride such as ethyl aluminum dihydride and propyl aluminum dihydride , Ethyl aluminum ethoxy cyclolide, butyl aluminum butoki Chlorides, alkylaluminum, and the like which are partially alkoxylated and halogenated, such as ethylaluminum ethoxy bromide.
As the organoaluminum compound (B), one type may be used alone, or two or more types may be used in combination.

外部電子供与体化合物(C)は、有機ケイ素化合物を含む。
好ましい有機ケイ素化合物として、例えば、トリメチルメトキシシラン、トリメチルエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジイソプロピルジメトキシシラン、t−ブチルメチルジメトキシシラン、t−ブチルメチルジエトキシシラン、t−アミルメチルジエトキシシラン、ジフェニルジメトキシシラン、フェニルメチルジメトキシシラン、ジフェニルジエトキシシラン、ビスo−トリルジメトキシシラン、ビスm−トリルジメトキシシラン、ビスp−トリルジメトキシシラン、ビスp−トリルジエトキシシラン、ビスエチルフェニルジメトキシシラン、ジシクロペンチルジメトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルメチルジエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、メチルトリメトキシシラン、n−プロピルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、フェニルトリメトキシシラン、γ−クロルプロピルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、ビニルトリエトキシシラン、t−ブチルトリエトキシシラン、テキシルトリメトキシシラン、n−ブチルトリエトキシシラン、iso−ブチルトリエトキシシラン、フェニルトリエトキシシラン、γ−アミノプロピルトリエトキシシラン、クロルトリエトキシシラン、エチルトリイソプロポキシシラン、ビニルトリブトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、2−ノルボルナントリメトキシシラン、2−ノルボルナントリエトキシシラン、2−ノルボルナンメチルジメトキシシラン、ケイ酸エチル、ケイ酸ブチル、トリメチルフエノキシシラン、メチルトリアリルオキシシラン、ビニルトリス(β−メトキシエトキシシラン)、ビニルトリアセトキシシラン、ジメチルテトラエトキシジシロキサンなどが挙げられる。
これらの中でも、エチルトリエトキシシラン、n−プロピルトリエトキシシラン、t−ブチルトリエトキシシラン、テキシルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリエトキシシラン、ビニルトリブトキシシラン、ジフェニルジメトキシシラン、ジイソプロピルジメトキシシラン、ジシクロペンチルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、フェニルメチルジメトキシシラン、ビスp−トリルジメトキシシラン、p−トリルメチルジメトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、2−ノネボルナントリエトキシシラン、2−ノルボルナンメチルジメトキシシラン、ジフェニルジエトキシシラン、ケイ酸エチルが好ましい。
上記外部電子供与体化合物(C)は1種を単独で使用してもよいし、2種以上を併用してもよい。
The external electron donor compound (C) includes an organosilicon compound.
Preferred organic silicon compounds include, for example, trimethylmethoxysilane, trimethylethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diisopropyldimethoxysilane, t-butylmethyldimethoxysilane, t-butylmethyldiethoxysilane, t-amylmethyldiethoxysilane Silane, diphenyldimethoxysilane, phenylmethyldimethoxysilane, diphenyldiethoxysilane, bis-tolyldimethoxysilane, bis-m-tolyldimethoxysilane, bis-p-tolyldimethoxysilane, bis-p-tolyldiethoxysilane, bisethylphenyldimethoxysilane , Dicyclopentyldimethoxysilane, dicyclohexyldimethoxysilane, cyclohexylmethyldimethoxysilane, cyclohexylmethyldiethoxysila , Ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, methyltrimethoxysilane, n-propyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, phenyltrimethoxysilane, γ-chloropropyltrimethoxysilane , Methyltriethoxysilane, ethyltriethoxysilane, vinyltriethoxysilane, t-butyltriethoxysilane, texyltrimethoxysilane, n-butyltriethoxysilane, iso-butyltriethoxysilane, phenyltriethoxysilane, γ- Aminopropyltriethoxysilane, chlorotriethoxysilane, ethyltriisopropoxysilane, vinyltributoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane Orchid, 2-norbornanetrimethoxysilane, 2-norbornanetriethoxysilane, 2-norbornanemethyldimethoxysilane, ethyl silicate, butyl silicate, trimethylphenoxysilane, methyltriallyloxysilane, vinyltris (β-methoxyethoxysilane ), Vinyltriacetoxysilane, dimethyltetraethoxydisiloxane, and the like.
Among them, ethyltriethoxysilane, n-propyltriethoxysilane, t-butyltriethoxysilane, texyltrimethoxysilane, vinyltriethoxysilane, phenyltriethoxysilane, vinyltributoxysilane, diphenyldimethoxysilane, diisopropyldimethoxysilane Silane, dicyclopentyldimethoxysilane, cyclohexylmethyldimethoxysilane, phenylmethyldimethoxysilane, bis p-tolyldimethoxysilane, p-tolylmethyldimethoxysilane, dicyclohexyldimethoxysilane, cyclohexylmethyldimethoxysilane, 2-nonebornanetriethoxysilane, 2 -Norbornanemethyldimethoxysilane, diphenyldiethoxysilane, ethyl silicate are preferred.
One kind of the external electron donor compound (C) may be used alone, or two or more kinds may be used in combination.

上記触媒の中でも、固体触媒成分(A)がマグネシウムとチタンとハロゲンとフタレート系またはスクシネート系化合物を含む電子供与体化合物とを含有する固体触媒、有機アルミニウム化合物(B)が、トリエチルアルミニウム、トリブチルアルミニウム等のトリアルキルアルミニウム、外部電子供与体化合物(C)が、ジシクロペンチルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、ジイソプロピルジメトキシシラン等の有機ケイ素化合物であるものが好ましい。   Among the above catalysts, the solid catalyst component (A) is a solid catalyst containing magnesium, titanium, halogen, and an electron donor compound including a phthalate or succinate compound, and the organoaluminum compound (B) is triethylaluminum, tributylaluminum. Preferably, the trialkylaluminum and the external electron donor compound (C) are organosilicon compounds such as dicyclopentyldimethoxysilane, cyclohexylmethyldimethoxysilane and diisopropyldimethoxysilane.

前記重合混合物に含まれるプロピレン重合体は、エチレン単位とαオレフィン単位の合計の含有割合が5.0質量%以下及びプロピレン単位の含有割合が95質量%以上のものが好ましい。プロピレン重合体のエチレン単位とαオレフィン単位の合計の含有割合が前記上限値を超えると、剛性が低下する傾向にある。
プロピレン重合体は、プロピレン単位が100質量%(エチレン単位とαオレフィン単位の含有割合が0質量%)であってもよい。
The propylene polymer contained in the polymerization mixture preferably has a total content of ethylene units and α-olefin units of 5.0% by mass or less and a content ratio of propylene units of 95% by mass or more. If the total content of ethylene units and α-olefin units in the propylene polymer exceeds the above upper limit, rigidity tends to decrease.
The propylene polymer may have a propylene unit content of 100% by mass (a content ratio of an ethylene unit and an α-olefin unit is 0% by mass).

エチレン・αオレフィン共重合体は、エチレン単位20〜40質量%及びαオレフィン単位60〜80質量%を含むことが好ましく、エチレン単位25〜35質量%及びαオレフィン単位65〜75質量%を含むことが好ましい。エチレン・αオレフィン共重合体のエチレン単位が前記下限値未満であっても前記上限値を超えても、発泡シート10の表面外観が損なわれる傾向にある。
前記エチレン・αオレフィン共重合体におけるαオレフィンとしては、例えば、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン、1−ドデセン等が挙げられる。発泡性及び表面外観をより良くする点では、αオレフィンはプロピレンであることが好ましい。すなわち、エチレン・αオレフィン共重合体が、エチレン単位とプロピレン単位とから構成されるエチレン・プロピレン共重合体であることが好ましい。
The ethylene / α-olefin copolymer preferably contains 20 to 40% by mass of ethylene units and 60 to 80% by mass of α-olefin units, and contains 25 to 35% by mass of ethylene units and 65 to 75% by mass of α-olefin units. Is preferred. If the ethylene unit of the ethylene / α-olefin copolymer is less than the lower limit or exceeds the upper limit, the surface appearance of the foamed sheet 10 tends to be impaired.
Examples of the α-olefin in the ethylene / α-olefin copolymer include propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-dodecene, and the like. The α-olefin is preferably propylene from the viewpoint of improving foamability and surface appearance. That is, the ethylene / α-olefin copolymer is preferably an ethylene / propylene copolymer composed of ethylene units and propylene units.

表面層用ポリプロピレン系樹脂は、発泡シート10の表面外観がより良くなることから、MFRが2〜15g/10分であることが好ましく、7〜12g/10分であることがより好ましい。ここで、MFRは、JIS K7210に従い、温度230℃、荷重21.18Nの条件で測定した値である。
表面層用ポリプロピレン系樹脂のMFRが前記下限値未満であっても前記上限値を超えても、発泡シート10の表面外観が損なわれることがある。
The polypropylene resin for the surface layer has an MFR of preferably 2 to 15 g / 10 min, and more preferably 7 to 12 g / 10 min, since the surface appearance of the foamed sheet 10 becomes better. Here, the MFR is a value measured under the conditions of a temperature of 230 ° C. and a load of 21.18 N according to JIS K7210.
Even if the MFR of the polypropylene resin for the surface layer is less than the lower limit or exceeds the upper limit, the surface appearance of the foamed sheet 10 may be impaired.

表面層用ポリプロピレン系樹脂は、キシレン可溶分の、135℃のテトラヒドロナフタレン中での極限粘度が6〜10dl/gであることが好ましく、6〜8dl/gであることがより好ましい。表面層用ポリプロピレン系樹脂の前記極限粘度が前記下限値以上であれば、発泡シート10の表面外観をより良くでき、前記上限値未満であると、重合によりポリプロピレン系樹脂を容易に製造できる。   The intrinsic viscosity of the xylene-soluble component in tetrahydronaphthalene at 135 ° C. of the polypropylene resin for the surface layer is preferably 6 to 10 dl / g, more preferably 6 to 8 dl / g. If the intrinsic viscosity of the polypropylene resin for the surface layer is not less than the lower limit, the surface appearance of the foamed sheet 10 can be improved, and if it is less than the upper limit, the polypropylene resin can be easily produced by polymerization.

表面層用ポリプロピレン系樹脂は、キシレン不溶分の質量平均分子量Mと数平均分子量Mとの比率(M/M)が7以上であることが好ましく、9以上であることがより好ましい。
表面層用ポリプロピレン系樹脂の前記M/Mが前記下限値以上であれば、発泡シート10の表面外観をより良好にできる。
In the polypropylene resin for the surface layer, the ratio of the mass average molecular weight Mw to the number average molecular weight Mn ( Mw / Mn ) of the xylene-insoluble component is preferably 7 or more, more preferably 9 or more. .
When the Mw / Mn of the polypropylene resin for the surface layer is at least the lower limit, the surface appearance of the foamed sheet 10 can be further improved.

表面層用ポリプロピレン系樹脂は、エチレン・αオレフィン共重合体の含有割合が20〜40質量%であることが好ましく、25〜35質量%であることがより好ましい。表面層用ポリプロピレン系樹脂におけるエチレン・αオレフィン共重合体の含有割合が前記下限値以上であれば、発泡シート10の表面外観をより良くでき、前記上限値以下であれば、剛性を向上させることができる。
表面層用ポリプロピレン系樹脂として、長鎖分岐を有するポリプロピレンを用いることもできる(特許文献1)。しかしながら、長鎖分岐を有するポリプロピレンは、直鎖状ポリプロピレンとの比較において、製造設備・プロセスがより複雑であり維持コストが嵩み高価にならざるを得ない。そのため、現実的には十分に普及しているとは言えず、生産拠点が限られ、結果としてシート成形に必要となる原料の調達面で制約を受けることから、最終的なシート製品として供給不安定のリスクを抱えることとなる。上記直鎖状ポリプロピレン系樹脂は、面外観に優れた発泡シートを提供するのみでなく、幅広い産業分野において、安価・大量に安定供給可能な原料である点で好ましい。
The content ratio of the ethylene / α-olefin copolymer in the polypropylene resin for the surface layer is preferably 20 to 40% by mass, and more preferably 25 to 35% by mass. When the content ratio of the ethylene / α-olefin copolymer in the polypropylene resin for the surface layer is equal to or more than the lower limit, the surface appearance of the foamed sheet 10 can be improved, and when the content is equal to or less than the upper limit, rigidity is improved. Can be.
As the polypropylene resin for the surface layer, a polypropylene having a long chain branch can be used (Patent Document 1). However, polypropylene having long-chain branching has a more complicated production facility and process, has higher maintenance cost and is more expensive than linear polypropylene. As a result, it cannot be said that it is widely used in practice and production bases are limited, resulting in restrictions on the procurement of raw materials required for sheet molding. You will have a risk of stability. The linear polypropylene-based resin is preferable in that it not only provides a foamed sheet having excellent surface appearance, but also is a raw material that can be stably supplied at low cost and in large quantities in a wide range of industrial fields.

表面層12,13にも、任意成分として、例えば、塩素吸収剤、耐熱安定剤、酸化防止剤、光安定剤、紫外線吸収剤、内部滑剤、外部滑剤、アンチブロッキング剤、帯電防止剤、防曇剤、結晶造核剤、難燃剤、分散剤、銅害防止剤、中和剤、可塑剤、気泡防止剤、架橋剤、過酸化物、油展および顔料(有機または無機)等の添加剤が含まれてもよい。   The surface layers 12 and 13 also include optional components such as chlorine absorbers, heat stabilizers, antioxidants, light stabilizers, ultraviolet absorbers, internal lubricants, external lubricants, antiblocking agents, antistatic agents, and antifogging agents. Additives such as chemicals, crystal nucleating agents, flame retardants, dispersants, copper damage inhibitors, neutralizers, plasticizers, foam inhibitors, crosslinking agents, peroxides, oil extensions and pigments (organic or inorganic). May be included.

次に、本実施形態の発泡シートの製造方法について説明する。
本実施形態の発泡シートの製造方法は、押出成形工程と冷却工程とを有する。
Next, a method for manufacturing the foam sheet of the present embodiment will be described.
The method for manufacturing a foam sheet according to the present embodiment includes an extrusion molding step and a cooling step.

押出成形工程は、発泡中間層用樹脂組成物をシート状に押出成形して発泡中間層を形成すると共に、表面層形成用樹脂組成物をシート状に押出成形して表面層を形成し、前記発泡中間層の両面側に前記表面層を積層して発泡シートを作製する工程である。
本実施形態における押出成形工程では、例えば、3台の押出機と3層積層可能なTダイとを備えた3層共押出成形機を用いることができる。具体的には、1台の押出機を用いて、発泡中間層形成用樹脂組成物を溶融させる。また、2台の押出機を用いて、表面層形成用樹脂組成物を溶融させる。Tダイを用いて、溶融させた発泡中間層形成用樹脂組成物をシート状にして発泡中間層を形成する共に、溶融させた表面層形成用樹脂組成物をシート状にして表面層を形成する。さらに、Tダイの内部で、発泡中間層の両面側に表面層を積層する。Tダイから吐出したシートは、発泡中間層の両面側に表面層が設けられた発泡シートとなる。
発泡中間層形成用樹脂組成物及び表面層形成用樹脂組成物を溶融させる際の温度は、160〜350℃であることが好ましく、170〜260℃であることがより好ましい。
In the extrusion molding step, the foamed intermediate layer resin composition is extruded into a sheet to form a foamed intermediate layer, and the surface layer-forming resin composition is extruded into a sheet to form a surface layer. In this step, the surface layer is laminated on both sides of the foamed intermediate layer to produce a foamed sheet.
In the extrusion molding step in the present embodiment, for example, a three-layer co-extrusion machine including three extruders and a T-die capable of three-layer stacking can be used. Specifically, the resin composition for forming a foamed intermediate layer is melted using one extruder. The resin composition for forming a surface layer is melted using two extruders. Using a T-die, the molten foamed intermediate layer forming resin composition is formed into a sheet to form a foamed intermediate layer, and the molten surface layer forming resin composition is formed into a sheet to form a surface layer. . Further, inside the T die, a surface layer is laminated on both sides of the foamed intermediate layer. The sheet discharged from the T-die becomes a foamed sheet in which surface layers are provided on both sides of the foamed intermediate layer.
The temperature at which the resin composition for forming a foamed intermediate layer and the resin composition for forming a surface layer are melted is preferably from 160 to 350C, more preferably from 170 to 260C.

発泡中間層用樹脂組成物は、発泡中間層用ポリプロピレン系樹脂及び発泡剤を含有する。発泡中間層用ポリプロピレン系樹脂は上述したものである。また、発泡中間層用樹脂組成物は、本実施形態の発泡シートのリサイクル材を混合させてもよい。
発泡剤は、揮発型発泡剤であってもよいし、分解型発泡剤であってもよい。
揮発性発泡剤としては、例えば、プロパン、ブタン、ペンタン、イソブタン、ネオペンタン、イソペンタン、ヘキサン、ヘプタンなどの脂肪族炭化水素;シクロブタン、シクロペンタンなどの環式脂肪族炭化水素;メチルクロライド、メチレンクロライド、ジクロロフルオロメタン、クロロトリフルオロメタン、ジクロロジフルオロメタン、クロロジフルオロメタン、ジフルオロメタン、トリクロロフルオロメタン、ジクロロテトラフルオロエタン、モノクロロペンタフルオロエタン、1,1,1,2−テトラフルオロエタン、1−クロロ−1,1−ジフルオロエタン、1,2−ジクロロ−2,2,2−トリフルオロエタン、1,1−ジクロロ−1−フルオロエタンなどのハロゲン化炭化水素が挙げられる。
分解型発泡剤としては、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、アゾビスイソブチロニトリル、炭酸ナトリウム、重炭酸ナトリウム、重炭酸カリウムなどが挙げられる。
さらに他の発泡剤として、二酸化炭素、窒素、水なども使用できる。
上記の発泡剤は2種以上を混合して用いることもできる。
発泡剤の含有量は、発泡中間層用ポリプロピレン系樹脂100質量部に対して、0.1〜6.0質量部であることが好ましく、0.5〜2.0質量部であることがより好ましい。発泡剤の含有量が前記範囲内であれば、気泡径が均一で且つ気泡が均一分散した発泡層を容易に形成できる。
The resin composition for a foamed intermediate layer contains a polypropylene resin for a foamed intermediate layer and a foaming agent. The polypropylene resin for the foamed intermediate layer is as described above. Further, the resin composition for the foamed intermediate layer may be mixed with the recycled material of the foamed sheet of the present embodiment.
The foaming agent may be a volatile foaming agent or a decomposable foaming agent.
Examples of the volatile blowing agent include aliphatic hydrocarbons such as propane, butane, pentane, isobutane, neopentane, isopentane, hexane, and heptane; cycloaliphatic hydrocarbons such as cyclobutane and cyclopentane; methyl chloride, methylene chloride, Dichlorofluoromethane, chlorotrifluoromethane, dichlorodifluoromethane, chlorodifluoromethane, difluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, monochloropentafluoroethane, 1,1,1,2-tetrafluoroethane, 1-chloro-1 And halogenated hydrocarbons such as 1,1-difluoroethane, 1,2-dichloro-2,2,2-trifluoroethane and 1,1-dichloro-1-fluoroethane.
Examples of the decomposition type foaming agent include azodicarbonamide, dinitrosopentamethylenetetramine, azobisisobutyronitrile, sodium carbonate, sodium bicarbonate, potassium bicarbonate and the like.
Carbon dioxide, nitrogen, water and the like can also be used as other foaming agents.
The above foaming agents may be used as a mixture of two or more.
The content of the foaming agent is preferably from 0.1 to 6.0 parts by mass, more preferably from 0.5 to 2.0 parts by mass, per 100 parts by mass of the polypropylene resin for the foamed intermediate layer. preferable. When the content of the foaming agent is within the above range, a foamed layer having a uniform bubble diameter and uniformly dispersed bubbles can be easily formed.

表面層形成用樹脂組成物は、表面層用ポリプロピレン系樹脂を含有し、発泡剤を含まない。表面層用ポリプロピレン系樹脂は上述したものであり、発泡中間層形成用ポリプロピレン系樹脂よりも溶融張力が等しい若しくは大きい。
表面層用ポリプロピレン系樹脂の溶融張力指数及び発泡中間層用ポリプロピレン系樹脂の溶融張力指数を前記特定範囲にし、且つ、表面層用ポリプロピレン系樹脂の溶融張力指数を発泡中間層用ポリプロピレン系樹脂の溶融張力指数よりも等しい若しくは大きくするためには、下記の表面層用ポリプロピレン系樹脂を含有させることが好ましい。
すなわち、好ましい表面層用ポリプロピレン系樹脂は、プロピレン重合体とエチレン・αオレフィン共重合体とを含有し、JIS K7210に従い、温度230℃、荷重21.18Nの条件で測定したメルトフローレートが2〜15g/10分であり、キシレン可溶分の、135℃のテトラヒドロナフタレン中での極限粘度が6〜10dl/g、キシレン不溶分の質量平均分子量Mと数平均分子量Mとの比率(M/M)が7以上、前記エチレン・αオレフィン共重合体の含有割合が20〜40質量%であり、前記プロピレン重合体は、エチレン単位とαオレフィン単位の合計の含有割合が5.0質量%以下及びプロピレン単位の含有割合が95質量%以上であり、前記エチレン・αオレフィン共重合体は、エチレン単位20〜40質量%及びαオレフィン単位60〜80質量%を含むものである。
また、表面層用ポリプロピレン系樹脂の溶融張力指数及び発泡中間層用ポリプロピレン系樹脂の溶融張力指数を前記特定範囲にし、且つ、表面層用ポリプロピレン系樹脂の溶融張力指数を発泡中間層用ポリプロピレン系樹脂の溶融張力指数よりも等しい若しくは大きくするためには、下記の発泡中間層用ポリプロピレン系樹脂を含有させることが好ましい。
すなわち、好ましい発泡中間層用ポリプロピレン系樹脂は、JIS K7210に従い、温度230℃、荷重21.18Nの条件で測定したメルトフローレートが2〜15g/10分、キシレン不溶分の質量平均分子量Mと数平均分子量Mとの比率(M/M)が6以上のものである。
The resin composition for forming a surface layer contains a polypropylene resin for a surface layer and does not contain a foaming agent. The polypropylene resin for the surface layer is as described above, and has the same or greater melt tension than the polypropylene resin for forming the foamed intermediate layer.
The melt tension index of the polypropylene resin for the surface layer and the melt tension index of the polypropylene resin for the foamed intermediate layer are set to the above specific ranges, and the melt tension index of the polypropylene resin for the surface layer is set to the melting point of the polypropylene resin for the foamed intermediate layer. In order to make the tensile index equal to or larger than the tensile index, it is preferable to include the following polypropylene resin for a surface layer.
That is, a preferable polypropylene resin for a surface layer contains a propylene polymer and an ethylene / α-olefin copolymer, and has a melt flow rate of 2 to 30 measured at a temperature of 230 ° C. and a load of 21.18 N according to JIS K7210. The intrinsic viscosity of the xylene-soluble component in tetrahydronaphthalene at 135 ° C. in tetrahydronaphthalene is 6 to 10 dl / g, and the ratio of the mass average molecular weight Mw to the number average molecular weight Mn of the xylene-insoluble component (M w / Mn ) is 7 or more, the content ratio of the ethylene / α-olefin copolymer is 20 to 40% by mass, and the propylene polymer has a total content ratio of the ethylene unit and the α-olefin unit of 5.0. % By mass and the content of propylene units is 95% by mass or more, and the ethylene / α-olefin copolymer has an ethylene unit content of 20 to 40%. It is intended to include 60 to 80 wt% amount% and α-olefin units.
Further, the melt tension index of the polypropylene resin for the surface layer and the melt tension index of the polypropylene resin for the foamed intermediate layer are in the above-mentioned specific ranges, and the melt tension index of the polypropylene resin for the surface layer is set to the polypropylene resin for the foamed intermediate layer. In order to make the melt tension index equal to or larger than the above, it is preferable to include the following polypropylene resin for a foamed intermediate layer.
That is, a preferred polypropylene resin for the foamed intermediate layer has a melt flow rate measured at a temperature of 230 ° C. under a load of 21.18 N according to JIS K7210, a mass average molecular weight Mw of 2 to 15 g / 10 min, and a xylene-insoluble component. The ratio ( Mw / Mn ) to the number average molecular weight Mn is 6 or more.

冷却工程は、発泡シート10の一方の面に空気を吹き付けることによって、発泡シートの他方の面を金属ロールの周面に密着させることにより、発泡シートを冷却する工程である。
発泡シート10を冷却しやすくするために、金属ロールの温度は、50℃以下にすることが好ましい。
The cooling step is a step of cooling the foamed sheet by blowing air on one side of the foamed sheet 10 and bringing the other side of the foamed sheet into close contact with the peripheral surface of the metal roll.
In order to facilitate cooling of the foam sheet 10, the temperature of the metal roll is preferably set to 50 ° C. or less.

本実施形態の発泡シート10では、上述したように、表面層用ポリプロピレン系樹脂の溶融張力指数及び発泡中間層用ポリプロピレン系樹脂の溶融張力指数が前記特定範囲にあり、且つ、表面層用ポリプロピレン系樹脂の溶融張力指数が発泡中間層用ポリプロピレン系樹脂の溶融張力指数以上である。このような発泡シート10では、表面層12,13が表面の凹凸形成を防ぐことができ、表面外観を良くすることができる。また、表面層12,13によって表面外観が損なわれにくくなっているため、発泡倍率を上げても、優れた表面外観を維持できる。
したがって、本実施形態の発泡シート10では、発泡倍率が高く且つ表面外観に優れる。特に、空気の吹き付けによって金属ロールに密着させても、発泡倍率が高く且つ表面外観に優れた発泡シート10を容易に製造できる。
In the foamed sheet 10 of the present embodiment, as described above, the melt tension index of the polypropylene resin for the surface layer and the melt tension index of the polypropylene resin for the foamed intermediate layer are within the above specific ranges, and The melt tension index of the resin is not less than the melt tension index of the polypropylene resin for the foamed intermediate layer. In such a foam sheet 10, the surface layers 12, 13 can prevent the formation of unevenness on the surface, and can improve the surface appearance. Further, since the surface appearance is hardly impaired by the surface layers 12 and 13, even if the expansion ratio is increased, an excellent surface appearance can be maintained.
Therefore, the foam sheet 10 of the present embodiment has a high expansion ratio and excellent surface appearance. In particular, the foam sheet 10 having a high expansion ratio and excellent surface appearance can be easily manufactured even when the sheet is brought into close contact with the metal roll by blowing air.

なお、本発明は、上記実施形態に限定されない。
例えば、本発明の発泡シートは、発泡中間層と表面層との間に他の層が設けられていてもよく、3種5層の積層シート、4種7層の積層シートであってもよい。他の層の一例としては、接着層が挙げられる。
Note that the present invention is not limited to the above embodiment.
For example, the foamed sheet of the present invention may be provided with another layer between the foamed intermediate layer and the surface layer, or may be a laminated sheet of three kinds, five layers, or a laminated sheet of four kinds, seven layers. . An example of another layer includes an adhesive layer.

本発明の発泡多層シートは、公知の真空成形、真空圧空成形、熱板成形などの二次成形方法で、容器やトレーに容易に加工できる。二次成形された成形品は、弁当容器、惣菜トレー、断熱容器などとして使用できる。   The foamed multilayer sheet of the present invention can be easily processed into containers and trays by a known secondary forming method such as vacuum forming, vacuum pressure forming, and hot plate forming. The secondary molded article can be used as a lunch container, a side dish tray, an insulated container, and the like.

以下に、実施例及び比較例を示すが、本発明は以下の実施例に限定されない。
各例における、エチレン・αオレフィン共重合体(エチレン・プロピレン共重合体)におけるエチレン単位の含有割合、ポリプロピレン系樹脂のキシレン可溶分の極限粘度、ポリプロピレン系樹脂のキシレン不溶分のM/M、ポリプロピレン系樹脂のMFR、ポリプロピレン系樹脂の溶融張力指数は以下のように測定した。
Hereinafter, Examples and Comparative Examples are shown, but the present invention is not limited to the following Examples.
In each example, the content ratio of the ethylene unit in the ethylene / α-olefin copolymer (ethylene / propylene copolymer), the intrinsic viscosity of the xylene-soluble portion of the polypropylene resin, and the Mw / M of the xylene-insoluble portion of the polypropylene resin. n , the MFR of the polypropylene resin, and the melt tension index of the polypropylene resin were measured as follows.

1)エチレン・αオレフィン共重合体のエチレン単位の含有割合:
エチレン・αオレフィン共重合体のエチレン単位の含有割合は、1,2,4−トリクロロベンゼン/重水素化ベンゼンの混合溶媒に溶解した試料について、日本電子株式会社製JNM LA−400(13C共鳴周波数100MHz)を用い、13C−NMR法で測定した。
2)ポリプロピレン系樹脂のキシレン可溶分の極限粘度:
ポリプロピレン系樹脂のキシレン可溶分は、以下の方法によって得た。
サンプル2.5gを、o−キシレン(溶媒)を250ml入れたフラスコに入れ、ホットプレートおよび還流装置を用いて、135℃で、窒素パージを行いながら、30分間撹拌し、ポリプロピレン系樹脂を完全溶解させた後、25℃で1時間、冷却した。これにより得られた溶液を、濾紙を用いて濾過した。濾過後の濾液を100ml採取し、アルミニウムカップ等に移し、窒素パージを行いながら、140℃で蒸発乾固を行い、室温で30分間静置して、キシレン可溶分を得た。
得られたキシレン可溶分を試料として用い、テトラヒドロナフタレン中、135℃において毛細管自動粘度測定装置(SS−780−H1、株式会社柴山科学器械製作所製)を用いて、極限粘度を測定した。
3)ポリプロピレン系樹脂のキシレン不溶分のM/M
ポリプロピレン系樹脂のキシレン不溶分の質量平均分子量Mと数平均分子量Mは、ゲルパーミエーションクロマトグラフィー(ポリマーラボラトリーズ株式会社製PL−GPC220)を用いて測定した。
キシレン不溶分の採取方法としては、上述したようにキシレン可溶分を濾過した際に濾紙上に残った残留物(キシレン不溶成分と溶媒の混合物)にアセトンを加えて濾過した後、濾過されなかった成分を、80℃設定の真空乾燥オーブンにて、蒸発乾固させ、キシレン不溶分を得た。
4)MFR:
ポリプロピレン系樹脂のMFRは、JIS K7210に準拠して、温度230℃、荷重:21.18Nの条件で測定した。
5)ポリプロピレン系樹脂の溶融張力指数
長さ8.0mm且つ直径2.095mmの上面が平面の円筒状のオリフィスを取り付けたキャピラリーレオメーター(株式会社東洋精機製作所製キャピログラフ1C)を用い、温度200℃でポリプロピレン系樹脂を溶融させた。その溶融させたポリプロピレン系樹脂を樹脂押出速度15mm/分でオリフィスより吐出させてストランドを形成した。そのストランドを、回転する引き取り手段を用い、引き取り速度6.5m/分で引き取ると共に張力(MT、単位はg重)を測定した。
そして、log(溶融張力指数)=log(MT)+0.85log(MFR)−0.82の式より、溶融張力指数を求めた。
1) Content ratio of ethylene unit in ethylene / α-olefin copolymer:
The content ratio of the ethylene unit of the ethylene / α-olefin copolymer was determined by measuring a sample dissolved in a mixed solvent of 1,2,4-trichlorobenzene / deuterated benzene using JNM LA-400 ( 13 C resonance, manufactured by JEOL Ltd.). The frequency was measured using a 13 C-NMR method.
2) Intrinsic viscosity of xylene-soluble component of polypropylene resin:
The xylene-soluble component of the polypropylene resin was obtained by the following method.
2.5 g of a sample is placed in a flask containing 250 ml of o-xylene (solvent) and stirred at 135 ° C. for 30 minutes using a hot plate and a reflux device while purging with nitrogen to completely dissolve the polypropylene resin. Then, the mixture was cooled at 25 ° C. for 1 hour. The resulting solution was filtered using filter paper. 100 ml of the filtrate after filtration was collected, transferred to an aluminum cup or the like, evaporated to dryness at 140 ° C. while purging with nitrogen, and allowed to stand at room temperature for 30 minutes to obtain a xylene-soluble matter.
Using the obtained xylene-soluble component as a sample, intrinsic viscosity was measured in tetrahydronaphthalene at 135 ° C. using a capillary automatic viscosity measurement device (SS-780-H1, manufactured by Shibayama Scientific Instruments Co., Ltd.).
3) Mw / Mn of xylene-insoluble content of the polypropylene resin:
The mass average molecular weight Mw and the number average molecular weight Mn of the xylene-insoluble portion of the polypropylene resin were measured using gel permeation chromatography (PL-GPC220 manufactured by Polymer Laboratories Co., Ltd.).
As a method for collecting the xylene-insoluble component, acetone is added to the residue (mixture of xylene-insoluble component and solvent) remaining on the filter paper when the xylene-soluble component is filtered as described above, and then filtered. The resulting components were evaporated to dryness in a vacuum drying oven set at 80 ° C. to obtain xylene-insoluble components.
4) MFR:
The MFR of the polypropylene resin was measured under the conditions of a temperature of 230 ° C. and a load of 21.18 N according to JIS K7210.
5) Melt tension index of polypropylene-based resin Using a capillary rheometer (Capillograph 1C manufactured by Toyo Seiki Seisaku-sho, Ltd.) equipped with a cylindrical orifice having a length of 8.0 mm and a diameter of 2.095 mm and having a flat upper surface, and a temperature of 200 ° C. To melt the polypropylene resin. The melted polypropylene resin was discharged from the orifice at a resin extrusion speed of 15 mm / min to form a strand. The strand was pulled using a rotating pulling means at a pulling speed of 6.5 m / min, and the tension (MT, unit: g weight) was measured.
Then, the melt tension index was determined from the equation log (melt tension index) = log (MT) + 0.85 log (MFR)-0.82.

実施例及び比較例では、表1に示すポリプロピレン系樹脂を用いた。
なお、表中、重合触媒における「Suc」はスクシネート系触媒、「Ph」はフタレート系触媒である。
ポリプロピレン系樹脂の種類における「HECO」は、ブロックポリプロピレン(プロピレン重合体とゴム成分を主体とするエチレン・αオレフィン共重合体の重合混合物)であり、「HOMO」はプロピレン単独重合体である。
ポリプロピレン系樹脂中のエチレン・αオレフィン共重合体の種類における「C2C3」はエチレン・プロピレン共重合体である。
以下、各ポリプロピレン系樹脂の製造方法を示す。
In Examples and Comparative Examples, polypropylene resins shown in Table 1 were used.
In the table, “Suc” in the polymerization catalyst is a succinate catalyst, and “Ph” is a phthalate catalyst.
“HECO” in the type of polypropylene-based resin is block polypropylene (a polymerization mixture of a propylene polymer and an ethylene / α-olefin copolymer mainly composed of a rubber component), and “HOMO” is a propylene homopolymer.
“C2C3” in the type of the ethylene / α-olefin copolymer in the polypropylene-based resin is an ethylene / propylene copolymer.
Hereinafter, a method for producing each polypropylene-based resin will be described.

1)表面層用ポリプロピレン系樹脂
[A1]
特開2011−500907号の実施例に記載の調製法に従い、固体触媒成分を調製した。具体的には以下の通りである:
窒素でパージした500mLの4つ口丸底フラスコ中に、250mLのTiClを0℃において導入した。撹拌しながら、10.0gの微細球状MgCl・1.8COH(USP−4,399,054の実施例2に記載の方法にしたがって、しかしながら10000rpmに代えて3000rpmで運転して製造した)、および9.1ミリモルのジエチル−2,3−(ジイソプロピル)スクシネートを加えた。温度を100℃に上昇させ、120分間保持した。次に、撹拌を停止し、固体生成物を沈降させ、上澄み液を吸い出した。次に、以下の操作を2回繰り返した:250mLの新しいTiClを加え、混合物を120℃において60分間反応させ、上澄み液を吸い出した。固体を、60℃において無水ヘキサン(6×100mL)で6回洗浄した。
上記固体触媒と、トリエチルアルミニウム(TEAL)およびジシクロペンチルジメトキシシラン(DCPMS)を、固体触媒に対するTEALの質量比が18であり、TEAL/DCPMSの質量比が10となるような量で、室温において5分間接触させた。得られた触媒系を、液体プロピレン中において懸濁状態で20℃において5分間保持することによって予備重合を行った。
得られた予備重合物を、1段目の重合反応器に導入してプロピレン単独重合体を得た後、得られた重合体を、未反応モノマー類をパージした後、2段目の重合反応器に導入して共重合体(エチレン・プロピレン共重合体)を重合させた。重合中は、温度と圧力を調整し、水素を分子量調整剤として用いた。重合温度と反応物の比率は、一段目の反応器では、重合温度、水素濃度が、それぞれ70℃、0.90モル%、二段目の反応器では、重合温度、水素濃度、C2/(C2+C3)が、それぞれ80℃、0.01モル%、0.25モル比であった。また、共重合体成分の量が30質量%となるように一段目と二段目の滞留時間分布を調整した。得られたポリプロピレン重合体に、酸化防止剤として、BASF社製B255を0.2質量%、中和剤として、淡南化学株式会社製カルシウムステアレートを0.05質量%配合し、ヘンシェルミキサーで1分間攪拌、混合した後、スクリュー直径50mmの単軸押出機(ナカタニ機械株式会社製NVC)で、シリンダ温度230℃で押出し、ストランドを水中で冷却した後、ペレタイザーでカットし、ペレット状のポリプロピレン樹脂組成物を得た。
1) Polypropylene resin for surface layer [A1]
A solid catalyst component was prepared according to the preparation method described in the examples of JP-A-2011-500907. Specifically:
250 mL of TiCl 4 was introduced at 0 ° C. into a 500 mL four-necked round bottom flask purged with nitrogen. While stirring, 10.0 g of fine spherical MgCl 2 .1.8C 2 H 5 OH (prepared according to the method described in Example 2 of USP-4,399,054, but operating at 3000 rpm instead of 10000 rpm) And 9.1 mmol of diethyl-2,3- (diisopropyl) succinate. The temperature was raised to 100 ° C. and held for 120 minutes. Next, the stirring was stopped, the solid product was allowed to settle, and the supernatant was drawn off. The following procedure was then repeated twice: 250 mL of fresh TiCl 4 was added, the mixture was allowed to react at 120 ° C. for 60 minutes, and the supernatant was drawn off. The solid was washed six times at 60 ° C. with anhydrous hexane (6 × 100 mL).
The solid catalyst was mixed with triethylaluminum (TEAL) and dicyclopentyldimethoxysilane (DCPMS) in an amount such that the mass ratio of TEAL to the solid catalyst was 18 and the mass ratio of TEAL / DCPMS was 10, and the temperature was 5 at room temperature. Minutes of contact. Preliminary polymerization was performed by holding the obtained catalyst system in liquid propylene in a suspended state at 20 ° C. for 5 minutes.
The obtained prepolymer was introduced into a first-stage polymerization reactor to obtain a propylene homopolymer, and the obtained polymer was purged with unreacted monomers, and then subjected to a second-stage polymerization reaction. The copolymer (ethylene-propylene copolymer) was introduced into the vessel and polymerized. During the polymerization, the temperature and pressure were adjusted, and hydrogen was used as a molecular weight regulator. In the first-stage reactor, the polymerization temperature and the hydrogen concentration were 70 ° C. and 0.90 mol%, respectively, and in the second-stage reactor, the polymerization temperature and the hydrogen concentration were C2 / ( C2 + C3) at 80 ° C., 0.01 mol%, and 0.25 mol ratio, respectively. The residence time distributions of the first and second stages were adjusted so that the amount of the copolymer component was 30% by mass. The obtained polypropylene polymer was mixed with 0.2% by mass of B255 manufactured by BASF as an antioxidant and 0.05% by mass of calcium stearate manufactured by Tannan Chemical Co., Ltd. as a neutralizing agent, and mixed with a Henschel mixer. After stirring and mixing for 1 minute, the mixture was extruded at a cylinder temperature of 230 ° C. with a single screw extruder having a screw diameter of 50 mm (NVC manufactured by Nakatani Machine Co., Ltd.), the strand was cooled in water, cut with a pelletizer, and pelletized polypropylene. A resin composition was obtained.

[A2]
MgCl上にTiと内部ドナーとしてのジイソブチルフタレートを担持させた固体触媒を、欧州特許第728769号公報の実施例5に記載された方法により調製した。次いで、上記固体触媒と、有機アルミニウム化合物としてトリエチルアルミニウム(TEAL)と、外部電子供与体化合物としてジシクロペンチルジメトキシシラン(DCPMS)を用い、固体触媒に対するTEALの重量比が20、TEAL/DCPMSの重量比が10となるような量で、12℃において24分間接触させた。得られた触媒系を、液体プロピレン中において懸濁状態で20℃にて5分間保持することによって予備重合を行った。得られた予備重合物を、二段の重合反応器を直列に備える重合装置の一段目の重合反応器に導入してプロピレン単独重合体を製造し、二段目の重合反応器でエチレン−プロピレン共重合体を製造した。重合中は、温度と圧力を調整し、水素を分子量調整剤として用いた。
重合温度と反応物の比率は、一段目の反応器では、重合温度、水素濃度が、それぞれ70℃、1.24モル%、二段目の反応器では、重合温度、水素濃度、C2/(C2+C3)が、それぞれ80℃、1.17モル%、0.25モル比であった。また、共重合体成分の量が30質量%となるように一段目と二段目の滞留時間分布を調整した。このポリプロピレン重合体を用いてA1と同様にしてペレット状のポリプロピレン樹脂組成物を得た。
[A2]
A solid catalyst comprising MgCl 2 and Ti and diisobutyl phthalate as an internal donor was prepared by the method described in Example 5 of EP 728,769. Next, using the solid catalyst, triethylaluminum (TEAL) as the organoaluminum compound, and dicyclopentyldimethoxysilane (DCPMS) as the external electron donor compound, the weight ratio of TEAL to the solid catalyst was 20, and the weight ratio of TEAL / DCPMS was 20 Was contacted at 12 ° C. for 24 minutes in such an amount as to give 10. Preliminary polymerization was performed by maintaining the obtained catalyst system in liquid propylene in a suspended state at 20 ° C. for 5 minutes. The obtained prepolymer was introduced into a first-stage polymerization reactor of a polymerization apparatus having a two-stage polymerization reactor in series to produce a propylene homopolymer, and ethylene-propylene was produced in the second-stage polymerization reactor. A copolymer was produced. During the polymerization, the temperature and pressure were adjusted, and hydrogen was used as a molecular weight regulator.
In the first-stage reactor, the polymerization temperature and the hydrogen concentration were 70 ° C. and 1.24 mol%, respectively, and in the second-stage reactor, the polymerization temperature and the hydrogen concentration were C2 / ( C2 + C3) at 80 ° C., 1.17 mol%, and 0.25 mol ratio, respectively. The residence time distributions of the first and second stages were adjusted so that the amount of the copolymer component was 30% by mass. Using this polypropylene polymer, a pellet-shaped polypropylene resin composition was obtained in the same manner as in A1.

[A3]
一段目の反応器の水素濃度を0.32モル%、二段目の反応器の水素濃度、C2/(C2+C3)を、それぞれ3.31モル%、0.39モル比とし、共重合体成分の量が15.5質量%となるように一段目と二段目の滞留時間分布を調整した以外は、A2と同様にしてペレット状のポリプロピレン樹脂組成物を得た。
[A3]
The hydrogen concentration in the first-stage reactor was 0.32 mol%, the hydrogen concentration in the second-stage reactor, C2 / (C2 + C3) was 3.31 mol% and 0.39 mol ratio, respectively. The pellet-like polypropylene resin composition was obtained in the same manner as in A2, except that the residence time distributions of the first and second stages were adjusted so that the amount was 15.5% by mass.

[A4]
A1の製造に用いた予備重合物を、1段目の重合反応器に導入してプロピレン単独重合体を得た後、得られた重合体を2段目の重合反応器に導入して共重合体(エチレン・プロピレン共重合体)を重合させた。重合中は、温度と圧力を調整し、水素を分子量調整剤として用いた。重合温度と反応物の比率は、一段目の反応器では、重合温度、水素濃度が、それぞれ70℃、0.18モル%、二段目の反応器では、重合温度、水素濃度、C2/(C2+C3)が、それぞれ80℃、1.33モル%、0.20モル比であった。また、共重合体成分の量が29質量%となるように一段目と二段目の滞留時間分布を調整した。得られたポリプロピレン重合体を用いてA1と同様にしてペレット状のポリプロピレン樹脂組成物を得た。
[A4]
The prepolymer used in the production of A1 is introduced into a first-stage polymerization reactor to obtain a propylene homopolymer, and the obtained polymer is introduced into a second-stage polymerization reactor to obtain a copolymer. The union (ethylene / propylene copolymer) was polymerized. During the polymerization, the temperature and pressure were adjusted, and hydrogen was used as a molecular weight regulator. In the first-stage reactor, the polymerization temperature and the hydrogen concentration were 70 ° C. and 0.18 mol%, respectively, and in the second-stage reactor, the polymerization temperature and the hydrogen concentration were C2 / ( C2 + C3) at 80 ° C., 1.33 mol%, and 0.20 mol ratio, respectively. The residence time distributions of the first and second stages were adjusted so that the amount of the copolymer component was 29% by mass. A pellet-shaped polypropylene resin composition was obtained in the same manner as in A1, using the obtained polypropylene polymer.

2)発泡中間層用ポリプロピレン系樹脂
[B1]
A1の製造に用いた予備重合物を重合反応器に導入した後、水素とプロピレンをフィードし、重合温度、水素濃度を、それぞれ75℃、0.25モル%とし、圧力を調整することよって、プロピレン単独重合体を製造した。得られたポリプロピレン重合体を用いてA1と同様にしてペレット状のポリプロピレン樹脂組成物を得た。
2) Polypropylene resin for foamed intermediate layer [B1]
After introducing the prepolymer used for the production of A1 into the polymerization reactor, hydrogen and propylene are fed, the polymerization temperature and the hydrogen concentration are respectively set to 75 ° C. and 0.25 mol%, and the pressure is adjusted. A propylene homopolymer was produced. A pellet-shaped polypropylene resin composition was obtained in the same manner as in A1, using the obtained polypropylene polymer.

[B2]
水素濃度を0.13モル%とした以外は、B1と同様にしてペレット状のポリプロピレン樹脂組成物を得た。
[B2]
A pellet-shaped polypropylene resin composition was obtained in the same manner as in B1, except that the hydrogen concentration was changed to 0.13 mol%.

[B3]
MgCl上にTiと内部ドナーとしてのジイソブチルフタレートを担持させた固体触媒を、重合用の固体触媒を、欧州特許第674991号公報の実施例1に記載された方法により調製した。次いで、上記固体触媒と、トリエチルアルミニウム(TEAL)及びシクロヘキシルメチルジエトキシシラン(CHMMS)を、固体触媒に対するTEALの質量比が8、TEAL/CHMMSの質量比が6.5となるような量で、−5℃で5分間接触させた。得られた触媒系を、液体プロピレン中において懸濁状態で20℃において5分間保持することによって予備重合を行った。
得られた予備重合物を重合反応器に導入した後、水素とプロピレンをフィードし、重合温度、水素濃度を、それぞれ75℃、0.04モル%とし、圧力を調整することよって、プロピレン単独重合体を製造した。得られたポリプロピレン重合体を用いてA1と同様にしてペレット状のポリプロピレン樹脂組成物を得た。
[B3]
A solid catalyst in which Ti and diisobutyl phthalate as an internal donor were supported on MgCl 2 , and a solid catalyst for polymerization was prepared by the method described in Example 1 of EP-A-679991. Next, the solid catalyst, triethylaluminum (TEAL) and cyclohexylmethyldiethoxysilane (CHMMS) were added in such an amount that the mass ratio of TEAL to the solid catalyst was 8, and the mass ratio of TEAL / CHMMS was 6.5. Contact was made at -5 ° C for 5 minutes. Preliminary polymerization was performed by holding the obtained catalyst system in liquid propylene in a suspended state at 20 ° C. for 5 minutes.
After introducing the obtained prepolymer into a polymerization reactor, hydrogen and propylene are fed, the polymerization temperature and the hydrogen concentration are set to 75 ° C. and 0.04 mol%, respectively, and the pressure is adjusted to adjust the propylene single weight. A coalescence was produced. A pellet-shaped polypropylene resin composition was obtained in the same manner as in A1, using the obtained polypropylene polymer.

(実施例1)
スクリュー直径25mmの押出機を3台備え、3層積層可能なTダイが設けられた多層シート成形機(サーモ・プラスチック工業株式会社製)を用いて発泡シートを作製した。
より具体的には、1台の押出機を用いて、ポリプロピレン系樹脂B1からなる発泡中間層用ポリプロピレン系樹脂と化学発泡剤組成物(三協化成株式会社製セルマイクMB3064)を含む発泡中間層形成用樹脂組成物を210℃で溶融させた。なお、化学発泡剤組成物の量は、発泡倍率1.5倍程度になるように、ポリプロピレン系樹脂100質量部に対して1〜3質量部の範囲内で調整した。
また、2台の押出機を用いて、ポリプロピレン系樹脂A1からなる表面層用ポリプロピレン系樹脂を210℃で溶融させた。
多層用Tダイを用いて発泡中間層を形成する共に表面層を形成し、発泡中間層の両面側に表面層を積層した後、Tダイから発泡シートを吐出させた。その際、表面層/発泡中間層/表面層の層厚の比率は1/5/1とした。
その発泡シートの一方の面に空気を吹き付けることによって、発泡シートの他方の面を金属ロールの周面に密着させることにより、発泡シートを冷却した。
(Example 1)
A foamed sheet was produced using a multilayer sheet molding machine (manufactured by Thermo Plastics Industry Co., Ltd.) equipped with three extruders having a screw diameter of 25 mm and provided with a T die capable of laminating three layers.
More specifically, using a single extruder, forming a foamed intermediate layer containing a polypropylene-based resin for a foamed intermediate layer composed of a polypropylene-based resin B1 and a chemical foaming agent composition (CellMike MB3064 manufactured by Sankyo Chemical Co., Ltd.) The resin composition for use was melted at 210 ° C. The amount of the chemical foaming agent composition was adjusted within a range of 1 to 3 parts by mass with respect to 100 parts by mass of the polypropylene resin so that the expansion ratio was about 1.5 times.
Further, the polypropylene resin for the surface layer composed of the polypropylene resin A1 was melted at 210 ° C. using two extruders.
A foamed intermediate layer was formed using a multi-layer T-die, a surface layer was formed, a surface layer was laminated on both sides of the foamed intermediate layer, and then the foamed sheet was discharged from the T-die. At that time, the ratio of the layer thickness of the surface layer / foamed intermediate layer / surface layer was 1/5/1.
The foamed sheet was cooled by blowing air on one side of the foamed sheet to bring the other side of the foamed sheet into close contact with the peripheral surface of the metal roll.

(他の実施例及び比較例)
発泡中間層用ポリプロピレン系樹脂、表面層用ポリプロピレン系樹脂及び層厚比を表2,3に示すように変更した以外は実施例1と同様にして発泡シートを得た。
なお、表中、LDPEは、分岐状低密度ポリエチレン(日本ポリエチレン株式会社製ノバテックLD400、JIS K7210に準拠し温度190℃、荷重:21.18Nの条件で測定したMFRが2.0g/10分)である。実施例3と実施例5ではB1とLDPEのドライブレンドがシート成形機の中間層の押出機中で溶融混練される。単層の比較例2ではA1とB1のドライブレンド(A1:B1=2:8の質量比率)がシート成形機の中間層の押出機中で溶融混練される。実施例6ではA1とB1のドライブレンド(A1:B1=6:4の質量比率)がシート成形機の表層の押出機中で溶融混練される。
(Other Examples and Comparative Examples)
A foamed sheet was obtained in the same manner as in Example 1 except that the polypropylene resin for the foamed intermediate layer, the polypropylene resin for the surface layer, and the layer thickness ratio were changed as shown in Tables 2 and 3.
In the table, LDPE is a branched low-density polyethylene (MFR measured under conditions of 190 ° C., load: 21.18 N, 2.0 g / 10 min according to JIS K7210, Novatec LD400 manufactured by Japan Polyethylene Corporation). It is. In Examples 3 and 5, the dry blend of B1 and LDPE is melt-kneaded in an intermediate layer extruder of a sheet forming machine. In Comparative Example 2 having a single layer, a dry blend of A1 and B1 (A1: B1 = 2: 8 mass ratio) is melt-kneaded in an extruder for an intermediate layer of a sheet forming machine. In Example 6, a dry blend of A1 and B1 (mass ratio of A1: B1 = 6: 4) is melt-kneaded in a surface extruder of a sheet forming machine.

<評価>
各例の発泡シートについて、下記方法により、発泡倍率及び密度を測定し、表面外観及び耐熱性を評価した。測定結果及び評価結果を表2,3に示す。
<Evaluation>
With respect to the foam sheet of each example, the expansion ratio and density were measured by the following methods, and the surface appearance and heat resistance were evaluated. Tables 2 and 3 show the measurement results and evaluation results.

[発泡倍率及び密度]
アルファーミラージュ株式会社製電子比重計MD−200Sを用い、JIS K7112に従い、発泡シートの比重を測定し、この比重を密度Dとした。発泡シート10が発泡していないときの樹脂の密度Dに対する前記密度Dの比(D/D)を求め、その値を発泡倍率とした。
[Expansion ratio and density]
Using an electronic densimeter MD-200S manufactured by Alpha Mirage Co., in accordance with JIS K7112, measuring the specific gravity of the foam sheet were the specific gravity and density D 1. The ratio (D 1 / D 0 ) of the density D 1 to the density D 0 of the resin when the foam sheet 10 was not foamed was determined, and the value was defined as the foaming ratio.

[表面外観]
発泡シートの表面を目視観察し、以下の基準で評価した。
5:平滑である。
4:ほぼ平滑である。
3:筋状模様が見られる。
2:やや凹凸が目立つ。
1:凹凸が目立つ。
なお、各段階のシート表面の外観の例を図3に示す。
[Surface appearance]
The surface of the foamed sheet was visually observed and evaluated according to the following criteria.
5: Smooth.
4: Almost smooth.
3: A streak pattern is seen.
2: Some unevenness is conspicuous.
1: Unevenness is conspicuous.
FIG. 3 shows an example of the appearance of the sheet surface at each stage.

[耐熱性]
発泡シートを100℃の熱湯中に浸漬し、変形の程度を目視観察し、以下の基準で評価した。
2:変形しなかった。
1:変形した。
[Heat-resistant]
The foamed sheet was immersed in hot water at 100 ° C., and the degree of deformation was visually observed and evaluated according to the following criteria.
2: No deformation.
1: Deformed.

各実施例では、発泡シートの表面外観に優れ、発泡倍率を高くすることができた。これは、表面層用ポリプロピレン系樹脂の溶融張力指数及び発泡中間層用ポリプロピレン系樹脂の溶融張力指数が特定範囲にあり、且つ、表面層用ポリプロピレン系樹脂の溶融張力指数が発泡中間層用ポリプロピレン系樹脂の溶融張力指数以上であるためである。
また、発泡中間層におけるLDPE含有割合が20質量%以下(すなわちポリプロピレン系樹脂の含有割合が80質量%以上)である実施例1〜4及び実施例6〜7の発泡シートは、耐熱性にも優れていた。
溶融張力指数が大きいポリプロピレン系樹脂と溶融張力指数が小さいポリプロピレン系樹脂とが混合された樹脂からなる比較例2の単層の発泡シートは、表面外観が悪かった。
表面層/発泡中間層/表面層の層厚比が1/15/1である比較例3の発泡シートは、表面外観が悪かった。
表面層用ポリプロピレン系樹脂の溶融張力指数が1.7である比較例4の発泡シートは、表面外観が悪かった。
表面層用ポリプロピレン系樹脂の溶融張力指数が1.4である比較例5の発泡シートは、表面外観が悪く、発泡倍率を上げることが困難であった。
表面層用ポリプロピレン系樹脂の溶融張力指数が発泡中間層用ポリプロピレン系樹脂の溶融張力指数よりも小さい比較例6の発泡シートは、表面外観が悪かった。
発泡中間層用ポリプロピレン系樹脂の溶融張力指数が1.0である比較例7の発泡シートは、表面外観が悪く、発泡倍率を上げることが困難であった。
発泡中間層及び表面層を構成するポリプロピレン系樹脂を全て同種とし、表面層用ポリプロピレン系樹脂の溶融張力指数が1.4である比較例8の発泡シートは、表面外観が悪かった。
In each of the examples, the surface appearance of the foamed sheet was excellent, and the foaming ratio could be increased. This is because the melt tension index of the polypropylene resin for the surface layer and the melt tension index of the polypropylene resin for the foamed intermediate layer are in a specific range, and the melt tension index of the polypropylene resin for the surface layer is the polypropylene type for the foamed intermediate layer. This is because it is not less than the melt tension index of the resin.
Further, the foamed sheets of Examples 1 to 4 and Examples 6 to 7 in which the LDPE content in the foamed intermediate layer is 20% by mass or less (that is, the content of the polypropylene-based resin is 80% by mass or more) also have heat resistance. It was excellent.
The single-layer foamed sheet of Comparative Example 2 composed of a resin in which a polypropylene resin having a large melt tension index and a polypropylene resin having a small melt tension index were mixed had a poor surface appearance.
The foam sheet of Comparative Example 3 in which the layer thickness ratio of the surface layer / foamed intermediate layer / surface layer was 1/15/1, had a poor surface appearance.
The foamed sheet of Comparative Example 4 in which the polypropylene resin for the surface layer had a melt tension index of 1.7 had a poor surface appearance.
The foam sheet of Comparative Example 5, in which the polypropylene resin for the surface layer had a melt tension index of 1.4, had a poor surface appearance, and it was difficult to increase the expansion ratio.
The foam sheet of Comparative Example 6 in which the melt tension index of the polypropylene resin for the surface layer was smaller than the melt tension index of the polypropylene resin for the foamed intermediate layer had poor surface appearance.
The foamed sheet of Comparative Example 7 in which the polypropylene-based resin for a foamed intermediate layer had a melt tension index of 1.0 had a poor surface appearance, and it was difficult to increase the foaming ratio.
The foamed sheet of Comparative Example 8 in which the polypropylene resin constituting the foamed intermediate layer and the surface layer were all of the same kind and the polypropylene resin for the surface layer had a melt tension index of 1.4 had a poor surface appearance.

10 発泡シート
11 発泡中間層
12,13 表面層
10 Foamed sheet 11 Foamed intermediate layer 12, 13 Surface layer

Claims (10)

発泡中間層と、該発泡中間層の両側に設けられた非発泡の表面層とを備え、前記発泡中間層及び前記表面層は共にポリプロピレン系樹脂を含み、
前記発泡中間層の厚さ(T)と前記表面層の厚さ(T)との比率(T/T)が3/1〜10/1であり、
前記発泡中間層を構成するポリプロピレン系樹脂は、下記式(1)で求められる溶融張力指数が1.2以上であり、前記表面層を構成するポリプロピレン系樹脂は、下記式(1)で求められる溶融張力指数が1.8以上であり、且つ、前記表面層を構成するポリプロピレン系樹脂の溶融張力指数が、前記発泡中間層を構成するポリプロピレン系樹脂の溶融張力指数以上であり、
前記表面層に含まれるポリプロピレン系樹脂は、プロピレン重合体とエチレン・αオレフィン共重合体とを含有し、JIS K7210に従い、温度230℃、荷重21.18Nの条件で測定したメルトフローレートが2〜15g/10分であり、キシレン可溶分の、135℃のテトラヒドロナフタレン中での極限粘度が6〜10dl/g、キシレン不溶分の質量平均分子量M と数平均分子量M との比率(M /M )が7以上、前記エチレン・αオレフィン共重合体の含有割合が20〜40質量%であり、
前記プロピレン重合体は、エチレン単位とαオレフィン単位の合計の含有割合が5.0質量%以下及びプロピレン単位の含有割合が95質量%以上であり、
前記エチレン・αオレフィン共重合体は、エチレン単位20〜40質量%及びαオレフィン単位60〜80質量%を含む、ポリプロピレン系樹脂発泡シート。
log(溶融張力指数)=log(MT)+0.85log(MFR)−0.82(1)
MTは、長さ8.0mm且つ直径2.095mmの上面が平面の円筒状のオリフィスを取り付けた溶融張力測定装置を用い、測定温度200℃、樹脂押出速度15mm/分、引取速度6.5m/分の条件で測定したポリプロピレン系樹脂の溶融張力(g重)である。
MFRは、JIS K7210に従い、温度230℃、荷重21.18Nの条件で測定したポリプロピレン系樹脂のメルトフローレートである。
A foamed intermediate layer, comprising a non-foamed surface layer provided on both sides of the foamed intermediate layer, the foamed intermediate layer and the surface layer both contain a polypropylene resin,
The foaming ratio of the thickness of the intermediate layer (T 1) and the thickness of the surface layer and (T 2) (T 1 / T 2) is 3 / 1-10 / 1,
The polypropylene resin constituting the foamed intermediate layer has a melt tension index determined by the following formula (1) of 1.2 or more, and the polypropylene resin forming the surface layer is determined by the following formula (1). melt tension index is not less than 1.8, and melt tension index of the polypropylene resin constituting the surface layer state, and are above the melting tension index of the polypropylene resin constituting the foamed intermediate layer,
The polypropylene-based resin contained in the surface layer contains a propylene polymer and an ethylene / α-olefin copolymer, and has a melt flow rate of 2 to 30 measured at a temperature of 230 ° C. and a load of 21.18 N according to JIS K7210. 15 g / 10 min, xylene-soluble content, 135 ° C. with an intrinsic viscosity of 6~10dl / g in tetrahydronaphthalene, the ratio of the weight-average molecular mass M w to number average molecular weight M n of xylene insolubles (M w / Mn ) is 7 or more, and the content ratio of the ethylene / α-olefin copolymer is 20 to 40% by mass,
In the propylene polymer, the total content of ethylene units and α-olefin units is 5.0% by mass or less, and the content ratio of propylene units is 95% by mass or more,
The foamed polypropylene resin sheet, wherein the ethylene / α-olefin copolymer contains 20 to 40% by mass of ethylene units and 60 to 80% by mass of α-olefin units .
log (melt tension index) = log (MT) + 0.85 log (MFR)-0.82 (1)
MT was measured using a melt tension measuring device having a cylindrical orifice having a length of 8.0 mm and a diameter of 2.095 mm and having a flat upper surface, a measurement temperature of 200 ° C., a resin extrusion speed of 15 mm / min, and a take-up speed of 6.5 m /. It is the melt tension (g weight) of the polypropylene resin measured under the conditions of minutes.
MFR is a melt flow rate of a polypropylene resin measured at a temperature of 230 ° C. and a load of 21.18 N according to JIS K7210.
前記表面層に含まれるポリプロピレン系樹脂は、プロピレン重合体の存在下、エチレン単量体及びαオレフィン単量体を重合して得た重合混合物である、請求項に記載のポリプロピレン系樹脂発泡シート。 The polypropylene resin foam sheet according to claim 1 , wherein the polypropylene resin contained in the surface layer is a polymerization mixture obtained by polymerizing an ethylene monomer and an α-olefin monomer in the presence of a propylene polymer. . 前記発泡中間層に含まれるポリプロピレン系樹脂は、JIS K7210に従い、温度230℃、荷重21.18Nの条件で測定したメルトフローレートが2〜15g/10分、キシレン不溶分の質量平均分子量Mと数平均分子量Mとの比率(M/M)が6以上である、請求項1又は2に記載のポリプロピレン系樹脂発泡シート。 According to JIS K7210, the polypropylene resin contained in the foamed intermediate layer has a melt flow rate of 2 to 15 g / 10 minutes measured at a temperature of 230 ° C. and a load of 21.18 N, a mass average molecular weight M w of a xylene-insoluble component, and the ratio of the number average molecular weight M n (M w / M n ) is 6 or more, the polypropylene-based resin foam sheet according to claim 1 or 2. 前記発泡中間層に含まれるポリプロピレン系樹脂は、プロピレン単独重合体、及び、エチレン単位とαオレフィン単位の少なくとも一方を5.0質量%以下含むプロピレンランダム共重合体の少なくとも一方である、請求項1〜のいずれか一項に記載のポリプロピレン系樹脂発泡シート。 The polypropylene-based resin contained in the foamed intermediate layer is at least one of a propylene homopolymer and a propylene random copolymer containing at least one of an ethylene unit and an α-olefin unit at 5.0% by mass or less. The foamed polypropylene resin sheet according to any one of claims 1 to 3 . 前記発泡中間層におけるポリプロピレン系樹脂の含有割合が60質量%以上である、請求項1〜のいずれか一項に記載のポリプロピレン系樹脂発泡シート。 The foamed polypropylene resin sheet according to any one of claims 1 to 4 , wherein the content ratio of the polypropylene resin in the foamed intermediate layer is 60% by mass or more. 発泡倍率が1.30倍以上である、請求項1〜のいずれか一項に記載のポリプロピレン系樹脂発泡シート。 The foamed polypropylene resin sheet according to any one of claims 1 to 5 , wherein an expansion ratio is 1.30 times or more. 発泡中間層用ポリプロピレン系樹脂及び発泡剤を含有する発泡中間層形成用樹脂組成物をシート状に押出成形して発泡中間層を形成すると共に、表面層用ポリプロピレン系樹脂を含有する表面層形成用樹脂組成物をシート状に押出成形して表面層を形成し、前記発泡中間層の両面側に前記表面層を積層してポリプロピレン系樹脂発泡シートを作製する押出成形工程と、
前記ポリプロピレン系樹脂発泡シートの一方の面に空気を吹き付けることによって、前記ポリプロピレン系樹脂発泡シートの他方の面を金属ロールの周面に密着させることにより、前記ポリプロピレン系樹脂発泡シートを冷却する冷却工程とを有し、
前記発泡中間層用ポリプロピレン系樹脂は、下記式(1)で求められる溶融張力指数が1.2以上であり、前記表面層用ポリプロピレン系樹脂は、下記式(1)で求められる溶融張力指数が1.8以上であり、且つ、前記表面層用ポリプロピレン系樹脂の溶融張力指数が、前記発泡中間層用ポリプロピレン系樹脂の溶融張力指数以上であり、
前記表面層用ポリプロピレン系樹脂は、プロピレン重合体とエチレン・αオレフィン共重合体とを含有し、JIS K7210に従い、温度230℃、荷重21.18Nの条件で測定したメルトフローレートが2〜15g/10分であり、キシレン可溶分の、135℃のテトラヒドロナフタレン中での極限粘度が6〜10dl/g、キシレン不溶分の質量平均分子量M と数平均分子量M との比率(M /M )が7以上、前記エチレン・αオレフィン共重合体の含有割合が20〜40質量%であり、
前記プロピレン重合体は、エチレン単位とαオレフィン単位の合計の含有割合が5.0質量%以下及びプロピレン単位の含有割合が95質量%以上であり、
前記エチレン・αオレフィン共重合体は、エチレン単位20〜40質量%及びαオレフィン単位60〜80質量%を含む、ポリプロピレン系樹脂発泡シートの製造方法。
log(溶融張力指数)=log(MT)+0.85log(MFR)−0.82(1)
MTは、長さ8.0mm且つ直径2.095mmの上面が平面の円筒状のオリフィスを取り付けた溶融張力測定装置を用い、測定温度200℃、樹脂押出速度15mm/分、引取速度6.5m/分の条件で測定したポリプロピレン系樹脂の溶融張力(g重)である。
MFRは、JIS K7210に従い、温度230℃、荷重21.18Nの条件で測定したポリプロピレン系樹脂のメルトフローレートである。
A resin composition for forming a foamed intermediate layer containing a polypropylene resin for a foamed intermediate layer and a foaming agent is extruded into a sheet to form a foamed intermediate layer, and a surface layer containing a polypropylene-based resin for a surface layer is formed. An extrusion molding step of extruding a resin composition into a sheet to form a surface layer, laminating the surface layer on both sides of the foamed intermediate layer to produce a polypropylene resin foam sheet,
A cooling step of cooling the polypropylene-based resin foam sheet by blowing air onto one surface of the polypropylene-based resin foam sheet to bring the other surface of the polypropylene-based resin foam sheet into close contact with a peripheral surface of a metal roll; And
The polypropylene resin for the foamed intermediate layer has a melt tension index determined by the following formula (1) of 1.2 or more, and the polypropylene resin for the surface layer has a melt tension index determined by the following formula (1). is 1.8 or more, and melt tension index of the polypropylene resin for the surface layer state, and are above the melting tension index of the polypropylene resin for the foamed intermediate layer,
The polypropylene resin for a surface layer contains a propylene polymer and an ethylene / α-olefin copolymer, and has a melt flow rate of 2 to 15 g / m 2 measured at 230 ° C. under a load of 21.18 N according to JIS K7210. 10 minutes, the xylene-soluble content has an intrinsic viscosity in tetrahydronaphthalene at 135 ° C. of 6 to 10 dl / g, and the ratio of the mass average molecular weight M w to the number average molecular weight M n (M w / M n) is 7 or more, the content ratio of the ethylene · alpha-olefin copolymer is 20 to 40 wt%,
In the propylene polymer, the total content of ethylene units and α-olefin units is 5.0% by mass or less, and the content ratio of propylene units is 95% by mass or more,
The method for producing a foamed polypropylene resin sheet, wherein the ethylene / α-olefin copolymer contains 20 to 40% by mass of ethylene units and 60 to 80% by mass of α-olefin units .
log (melt tension index) = log (MT) + 0.85 log (MFR)-0.82 (1)
MT was measured using a melt tension measuring device having a cylindrical orifice having a length of 8.0 mm and a diameter of 2.095 mm and having a flat upper surface, a measurement temperature of 200 ° C., a resin extrusion speed of 15 mm / min, and a take-up speed of 6.5 m /. It is the melt tension (g weight) of the polypropylene resin measured under the conditions of minutes.
MFR is a melt flow rate of a polypropylene resin measured at a temperature of 230 ° C. and a load of 21.18 N according to JIS K7210.
前記押出成形工程における発泡中間層形成の際に、発泡倍率1.30倍以上に発泡させる、請求項に記載のポリプロピレン系樹脂発泡シートの製造方法。 The method for producing a polypropylene resin foam sheet according to claim 7 , wherein foaming is performed at a foaming ratio of 1.30 times or more when the foaming intermediate layer is formed in the extrusion molding step. 前記表面層用ポリプロピレン系樹脂を、プロピレン重合体の存在下、エチレン単量体及びαオレフィン単量体を重合して得る、請求項7又は8に記載のポリプロピレン系樹脂発泡シートの製造方法。 The method for producing a foamed polypropylene resin sheet according to claim 7 or 8 , wherein the polypropylene resin for the surface layer is obtained by polymerizing an ethylene monomer and an α-olefin monomer in the presence of a propylene polymer. 前記発泡中間層用ポリプロピレン系樹脂及び前記表面層用ポリプロピレン系樹脂の少なくとも一方を得るための重合の際に、
(A)マグネシウム、チタン、ハロゲン、およびスクシネート系化合物から選択される電子供与体化合物を必須成分として含有する固体触媒;
(B)有機アルミニウム化合物;ならびに
(C)ケイ素化合物から選択される外部電子供与体化合物を含む触媒を用いる、請求項のいずれか一項に記載のポリプロピレン系樹脂発泡シートの製造方法。
At the time of polymerization to obtain at least one of the polypropylene resin for the foamed intermediate layer and the polypropylene resin for the surface layer,
(A) a solid catalyst containing, as an essential component, an electron donor compound selected from magnesium, titanium, halogen, and a succinate compound;
The method for producing a foamed polypropylene resin sheet according to any one of claims 7 to 9 , wherein a catalyst containing an external electron donor compound selected from (B) an organic aluminum compound; and (C) a silicon compound is used.
JP2016017310A 2016-02-01 2016-02-01 Polypropylene resin foam sheet and method for producing the same Active JP6673706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016017310A JP6673706B2 (en) 2016-02-01 2016-02-01 Polypropylene resin foam sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016017310A JP6673706B2 (en) 2016-02-01 2016-02-01 Polypropylene resin foam sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017136702A JP2017136702A (en) 2017-08-10
JP6673706B2 true JP6673706B2 (en) 2020-03-25

Family

ID=59566240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016017310A Active JP6673706B2 (en) 2016-02-01 2016-02-01 Polypropylene resin foam sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP6673706B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7004499B2 (en) * 2016-12-20 2022-01-21 サンアロマー株式会社 Masterbatch composition
JP7059554B2 (en) * 2017-10-05 2022-04-26 日本ポリプロ株式会社 Polypropylene-based multilayer foam sheet resin composition for surface layer
CN117730120A (en) * 2021-06-25 2024-03-19 巴塞尔聚烯烃意大利有限公司 Polypropylene-based resin compositions, sheet moldings and containers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2802023B2 (en) * 1993-08-10 1998-09-21 宇部興産株式会社 Reinforced polypropylene resin composition
JP3646858B2 (en) * 1999-08-09 2005-05-11 株式会社ジェイエスピー MULTILAYER POLYPROPYLENE RESIN FOAM MOLDED BODY, PROCESS FOR PRODUCING THE SAME, AND CONTAINER
JP3704034B2 (en) * 1999-12-06 2005-10-05 積水化成品工業株式会社 Polypropylene-based resin foam, molded product and method for producing the same
JP3994730B2 (en) * 2001-12-18 2007-10-24 住友化学株式会社 Non-foamed layer resin, multilayer foamed sheet, and method for producing the same
JP2004291626A (en) * 2003-03-12 2004-10-21 Sumitomo Chem Co Ltd Propylene resin multilayer foam sheet and mail box
JP5597361B2 (en) * 2009-05-21 2014-10-01 日本ポリプロ株式会社 Thermoforming sheet comprising polyolefin resin laminated foam sheet and thermoforming article using the same
JP5155958B2 (en) * 2009-07-16 2013-03-06 株式会社プライムポリマー Propylene polymer composition
JP5688247B2 (en) * 2010-08-10 2015-03-25 積水化成品工業株式会社 Method for producing resin foam sheet and method for repairing extrusion equipment
JP5624851B2 (en) * 2010-11-08 2014-11-12 日本ポリプロ株式会社 Polypropylene resin composition for foam sheet molding and foam sheet

Also Published As

Publication number Publication date
JP2017136702A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
US10752740B2 (en) Articles comprising broad molecular weight distribution polypropylene resins
CN104769018A (en) Articles containing polypropylene resin with broad molecular weight distribution
JP6301839B2 (en) Propylene resin composition for retort film
JP7153464B2 (en) Polypropylene composition and molding
JP2018095698A (en) Polypropylene composition, polypropylene sheet, method for producing polypropylene sheet, and secondarily molded body
JP6673706B2 (en) Polypropylene resin foam sheet and method for producing the same
JP6842291B2 (en) Polypropylene composition and its manufacturing method, and polypropylene sheet
JP5166811B2 (en) PROPYLENE RESIN COMPOSITION FOR SOFT FOAM AND USE THEREOF
JP7015635B2 (en) Effervescent polypropylene composition
JP2019137847A (en) Propylene-based polymer composition and foamed molded product thereof
JP7328745B2 (en) Expandable polypropylene composition, injection foam molded article, and method for producing the same
JP6887349B2 (en) Polypropylene composition
JP7542533B2 (en) Polypropylene resin composition containing ultra-high molecular weight propylene (co)polymer
JP6860326B2 (en) Polypropylene composition and matte film formed by molding the polypropylene composition
US11306198B2 (en) Polypropylene composition and molded article
JP6235805B2 (en) Polypropylene resin composition for biaxially stretched film
JP2018188504A (en) Polypropylene resin composition for hollow molding, method for producing the same, and hollow molding
JP7138019B2 (en) Polypropylene composition for highly transparent sheet molding
JP2016089132A (en) Method for producing polypropylene resin composition for foam molding and method for producing foam
JP2024171208A (en) Multi-layer foam sheet and method for producing same
JP2008163225A (en) Polypropylene based foamed film having good opacifying property
JP2022157195A (en) Polypropylene composition for high-rigidity stretched polypropylene film
WO2021015191A1 (en) Expandable polypropylene composition and injection molded foam
JP2019157083A (en) Polypropylene composition and molded article
JP2008162161A (en) Polypropylene-based foam film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200305

R150 Certificate of patent or registration of utility model

Ref document number: 6673706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150