JP6660581B2 - Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery - Google Patents
Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP6660581B2 JP6660581B2 JP2015187006A JP2015187006A JP6660581B2 JP 6660581 B2 JP6660581 B2 JP 6660581B2 JP 2015187006 A JP2015187006 A JP 2015187006A JP 2015187006 A JP2015187006 A JP 2015187006A JP 6660581 B2 JP6660581 B2 JP 6660581B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- active material
- electrode
- aqueous electrolyte
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、非水電解質二次電池用電極、及びその電極を有する非水電解質二次電池に関する。 The present invention relates to an electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery having the electrode.
リチウム二次電池に代表される非水電解質二次電池は、携帯用端末、電気自動車、ハイブリッド自動車等に広く用いられており、現在は、正極活物質にコバルト酸リチウム等のリチウム遷移金属酸化物が、負極活物質には黒鉛等の炭素材料が用いられていることが多い。
しかし、今後、ますます高容量化が期待されていることから、正極には、ニッケル酸リチウムや、リチウム過剰型活物質等の高容量材料の導入が検討されており、負極に対しても、高容量化の検討が進められている。さらに、ハイレート充電性能も求められている。
Non-aqueous electrolyte secondary batteries represented by lithium secondary batteries are widely used in portable terminals, electric vehicles, hybrid vehicles, etc. Currently, lithium transition metal oxides such as lithium cobalt oxide are used as positive electrode active materials. However, a carbon material such as graphite is often used for the negative electrode active material.
However, since higher capacity is expected in the future, the introduction of high-capacity materials such as lithium nickelate and lithium-excess type active materials for the positive electrode is being studied. The study of higher capacity is under way. Furthermore, high-rate charging performance is also required.
負極の高容量化には、黒鉛にケイ素酸化物等の高容量材料を部分添加する方法が提案されている。 To increase the capacity of the negative electrode, a method of partially adding a high-capacity material such as silicon oxide to graphite has been proposed.
特許文献1には、要約の欄に「[課題] 高容量で、良好な電池特性を有する非水二次電池を提供する。 [解決手段] 正極が、Ni、Mnなどを必須の構成元素とする特定のLi含有遷移金属酸化物を含有する正極合剤層を有しており、負極は、SiとOとを構成元素に含む材料(Siに対するOの原子比xは、0.5≦x≦1.5)および黒鉛を含有する負極合剤層を有しており、負極合剤層において、SiとOとを構成元素に含む材料と黒鉛との合計を100質量%としたとき、SiとOとを構成元素に含む材料の比率が3〜20質量%である非水二次電池により、前記課題を解決する。」と記載されている。 Patent Literature 1 describes in the summary column “[Problem] To provide a non-aqueous secondary battery having high capacity and good battery characteristics. [Solution] A positive electrode includes Ni, Mn and the like as essential constituent elements. The positive electrode mixture layer contains a specific Li-containing transition metal oxide, and the negative electrode is made of a material containing Si and O as constituent elements (the atomic ratio x of O to Si is 0.5 ≦ x ≦ 1.5) and a graphite-containing negative electrode mixture layer, and in the negative electrode mixture layer, when the total of graphite and a material containing Si and O as constituent elements is 100% by mass, Si The problem is solved by a non-aqueous secondary battery in which the ratio of a material containing P and O as constituent elements is 3 to 20% by mass. "
また、入出力特性の高い負極として、多層構造の負極とすることも提案されている。
特許文献2には、「負極集電体と、前記負極集電体上に配置された、負極活物質として結晶性炭素および非晶質炭素を含む負極合剤層と;を含むリチウムイオン二次電池用負極であって、前記負極合剤層は複数の層よりなり、前記負極集電体に近い層ほど結晶性炭素の含有率が高く、前記負極集電体から遠い層ほど非晶質炭素の含有率が高く、前記負極集電体に最も近い層における結晶性炭素の含有率が非晶質炭素の含有率よりも高い、リチウムイオン二次電池用負極。」(請求項1)の発明が記載されている。そして、実施例として、集電箔の両面に、X線回折法による(002)面の面間隔(d値)が0.34nm以下の高結晶性黒鉛材料を活物質として用いた黒鉛炭素合剤層Aが形成され、その上層に、X線回折法による(002)面の面間隔(d値)が0.36nm〜0.38nmの非晶質炭素材料を活物質として用いた非晶質炭素合剤層Bが形成され、合剤Aと合剤Bの塗布量の比が4:1である負極が記載されている(段落[0047]〜[0060])。
It has also been proposed that a negative electrode having a multilayer structure be used as a negative electrode having high input / output characteristics.
Patent Literature 2 discloses “a lithium ion secondary battery including a negative electrode current collector and a negative electrode mixture layer including crystalline carbon and amorphous carbon as a negative electrode active material disposed on the negative electrode current collector. A negative electrode for a battery, wherein the negative electrode mixture layer is composed of a plurality of layers, and a layer closer to the negative electrode current collector has a higher content of crystalline carbon, and a layer farther from the negative electrode current collector has a higher amorphous carbon content. , The crystalline carbon content of the layer closest to the negative electrode current collector is higher than the amorphous carbon content of the negative electrode current collector. " Is described. Then, as an example, a graphite-carbon mixture using a highly crystalline graphite material having an interplanar spacing (d value) of (002) plane of 0.34 nm or less by X-ray diffraction on both surfaces of a current collector foil as an active material A layer A is formed, and an amorphous carbon material using an amorphous carbon material having an interplanar spacing (d value) of (002) plane of 0.36 nm to 0.38 nm by X-ray diffraction as an active material is formed on the layer A. The negative electrode in which the mixture layer B is formed and the ratio of the coating amounts of the mixture A and the mixture B is 4: 1 is described (paragraphs [0047] to [0060]).
特許文献3には、「負極集電板、及び、負極活物質粒子を含み、上記負極集電板上に形成されてなる負極活物質層、を有する負極板と、上記負極板に、セパレータを介して対向する正極板と、を備えるリチウムイオン二次電池であって、上記負極活物質粒子は、少なくとも、黒鉛からなる第1粒子、及び、非晶質炭素からなる第2粒子からなり、上記負極活物質層は、この負極活物質層に含まれる上記負極活物質粒子全体に占める上記第1粒子の比率に比して、上記負極活物質層のうち層厚方向上記負極集電板側の部位において、この部位に含まれる上記負極活物質粒子全体に占める上記第1粒子の比率が高く、上記負極活物質層に含まれる上記負極活物質粒子全体に占める上記第2粒子の比率に比して、上記負極活物質層のうち上記層厚方向表面側の部位において、この部位に含まれる上記負極活物質粒子全体に占める上記第2粒子の比率が高くされてなるリチウムイオン二次電池。」(請求項1)の発明について記載されている。そして、実施例として、銅箔側の第1層L1が含む第1粒子の比率は100%であり、第1層L1の上層をなす第2層L2が含む第2粒子の比率は100%である負極板を有する電池が記載されている。 Patent Literature 3 discloses “a negative electrode current collector plate, a negative electrode plate including a negative electrode active material layer including negative electrode active material particles, and formed on the negative electrode current collector plate, and a separator formed on the negative electrode plate. A positive electrode plate opposed to the negative electrode active material particles, wherein the negative electrode active material particles comprise at least a first particle made of graphite, and a second particle made of amorphous carbon, Negative electrode active material layer, compared to the ratio of the first particles in the entire negative electrode active material particles contained in the negative electrode active material layer, of the negative electrode active material layer in the layer thickness direction of the negative electrode current collector plate side In the region, the ratio of the first particles in the entire negative electrode active material particles contained in the region is higher than the ratio of the second particles in the entire negative electrode active material particles contained in the negative electrode active material layer. The thickness of the negative electrode active material layer At the site of the surface side, it has been described for the invention of the lithium ion secondary battery the ratio of the second particles to the total the negative electrode active material particles contained in the site formed by high. "(Claim 1). As an example, the ratio of the first particles included in the first layer L1 on the copper foil side is 100%, and the ratio of the second particles included in the second layer L2, which is the upper layer of the first layer L1, is 100%. A battery having a certain negative electrode plate is described.
特許文献4には、「正極集電体と正極活物質層とを含む正極、負極集電体と負極活物質層とを含む負極、前記正極と前記負極との間に介在する多孔質絶縁層および非水電解質を備え、前記負極活物質層は、黒鉛粒子を含み、前記負極活物質層の表面側に分布する前記黒鉛粒子の黒鉛化度が、前記負極集電体側に分布する前記黒鉛粒子の黒鉛化度よりも低い、非水電解質二次電池。」(請求項1)の発明が記載されている。また、その実施例として、負極集電体上に第1黒鉛粒子として球状天然黒鉛を用いた45μmの第1層を形成し、第1層の上に、第2黒鉛粒子として表面の一部が非晶質化した黒鉛粒子を用いた同厚の第2層を形成した負極を有する電池が記載されている(段落[0050]〜[0052])。 Patent Document 4 discloses “a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and a porous insulating layer interposed between the positive electrode and the negative electrode. And a non-aqueous electrolyte, wherein the negative electrode active material layer contains graphite particles, and the degree of graphitization of the graphite particles distributed on the surface side of the negative electrode active material layer is distributed on the negative electrode current collector side. Non-aqueous electrolyte secondary battery having a degree of graphitization lower than that of the above. " Further, as an example thereof, a 45 μm first layer using spherical natural graphite as the first graphite particles is formed on the negative electrode current collector, and a part of the surface is formed as the second graphite particles on the first layer. A battery having a negative electrode in which a second layer of the same thickness is formed using amorphous graphite particles is described (paragraphs [0050] to [0052]).
黒鉛に単に高容量材料を添加した特許文献1に記載した負極では、電極単位面積当たりの電流密度が増加するから、特にハイレート充電時にLi金属の電析が生じてサイクル性能が劣化してしまう問題がある。したがって、充電時のLi受入性を向上させる必要がある。
特許文献2〜4には、負極活物質層を多層構造とし、集電体側の層の活物質を結晶性炭素とし、表面側(集電体から遠い側)の層の活物質を非晶質炭素又は黒鉛化度の低い炭素とすることが記載されている。そして、前記負極活物質層に含まれる非晶質炭素又は黒鉛化度の低い炭素の含有率について、特許文献2には、活物質材料の20%である実施例が、また、特許文献3、4には、活物質材料の50%である実施例が記載されている。
非晶質炭素又は黒鉛化度の低い炭素は、Li受入性が高いが、放電末期の電位が緩やかに上昇するから、これらを用いた電池は早くカットオフ電圧に達してしまう。そのため、十分な放電容量を取り出すことができず、特に、ニッケル酸リチウムやリチウム過剰型等の高容量の正極活物質と組み合わせる電池である場合、設計容量に対して実質的な放電容量が低下する。
特許文献2〜4においては、実質的な放電容量の低下の観点から、負極活物質層に含まれる非晶質炭素又は黒鉛化度の低い炭素の含有率について、考慮が払われていなかった。
In the negative electrode described in Patent Document 1 in which a high-capacity material is simply added to graphite, the current density per unit area of the electrode increases, so that, particularly at the time of high-rate charging, electrodeposition of Li metal occurs to deteriorate cycle performance. There is. Therefore, it is necessary to improve the Li acceptability during charging.
Patent Documents 2 to 4 disclose that the negative electrode active material layer has a multilayer structure, the active material of the current collector side layer is crystalline carbon, and the active material of the surface side (far side from the current collector) is amorphous. It describes that carbon or carbon having a low degree of graphitization is used. Regarding the content of amorphous carbon or carbon having a low degree of graphitization contained in the negative electrode active material layer, Patent Document 2 discloses an example in which the active material is 20%, and Patent Document 3, No. 4 describes an example in which 50% of the active material is used.
Amorphous carbon or carbon with a low degree of graphitization has a high Li-accepting property, but the potential at the end of discharge gradually rises, so that a battery using these quickly reaches the cutoff voltage. For this reason, a sufficient discharge capacity cannot be taken out, and in particular, in the case of a battery combined with a high-capacity positive electrode active material such as lithium nickelate or lithium excess, the substantial discharge capacity is reduced with respect to the design capacity. .
In Patent Documents 2 to 4, no consideration was given to the content of amorphous carbon or carbon having a low degree of graphitization contained in the negative electrode active material layer from the viewpoint of substantial reduction in discharge capacity.
本発明の解決しようとする課題は、電池に用いた際の実質的な放電容量を低下させることなく、充電の受入性を向上させた非水電解質二次電池用電極を提供すること、及び前記電極を負極として用いた非水電解質二次電池を提供することである。 The problem to be solved by the present invention is to provide an electrode for a non-aqueous electrolyte secondary battery which has improved acceptability for charging without reducing the substantial discharge capacity when used in a battery, and An object of the present invention is to provide a non-aqueous electrolyte secondary battery using an electrode as a negative electrode.
本発明の構成は、以下のとおりである。
(1)集電体と、活物質層とを含む非水電解質二次電池用電極であって、前記活物質層は、前記集電体に接する側の第一の層と、前記電極の表面側に位置する第二の層の少なくとも2層を有し、前記第一の層及び前記第二の層は、いずれも黒鉛の含有率が活物質材料中の80質量%以上であり、前記第二の層は、低結晶性炭素として難黒鉛化炭素又は易黒鉛化炭素をさらに含み、前記第一の層の黒鉛の含有率は、前記第二の層の黒鉛の含有率より高い非水電解質二次電池用電極。
(2)前記第二の層に含まれる低結晶性炭素の含有率は、前記第二の層に含まれる活物質材料の20質量%以下である前記(1)の非水電解質二次電池用電極。
(3)前記第二の層の厚さは、前記第一の層の厚さより薄い前記(1)又は(2)の非水電解質二次電池用電極。
(4)前記活物質層に含まれる低結晶性炭素の含有率は、前記活物質層に含まれる活物質材料の8質量%以下である前記(1)〜(3)のいずれかの非水電解質二次電池用電極。
(5)単位面積当たりの容量密度が4.0mAh/cm2以上である前記(1)〜(4)のいずれかの非水電解質二次電池用電極。
(6)前記第二の層は、さらにケイ素又はケイ素化合物を含む前記(1)〜(5)のいずれかの非水電解質二次電池用電極。
(7)正極と、負極と、非水電解質とを備えた非水電解質二次電池であって、負極が前記(1)〜(6)のいずれかの電極である非水電解質二次電池。
The configuration of the present invention is as follows.
(1) An electrode for a non-aqueous electrolyte secondary battery including a current collector and an active material layer, wherein the active material layer includes a first layer in contact with the current collector, and a surface of the electrode. has at least two layers of a second layer positioned on a side, the first layer and the second layer are both in the content of graphite than 80 mass% in the active material, the first The second layer further contains hardly graphitizable carbon or easily graphitizable carbon as low crystalline carbon , and the content of graphite in the first layer is higher than the content of graphite in the second layer. Electrodes for secondary batteries.
(2) The non-aqueous electrolyte secondary battery according to (1), wherein the content of the low-crystalline carbon contained in the second layer is 20% by mass or less of the active material contained in the second layer. electrode.
(3) The electrode for a non-aqueous electrolyte secondary battery according to (1) or (2), wherein the thickness of the second layer is smaller than the thickness of the first layer.
(4) The non-aqueous liquid according to any one of (1) to (3), wherein the content of the low-crystalline carbon contained in the active material layer is 8% by mass or less of the active material contained in the active material layer. Electrodes for electrolyte secondary batteries.
(5) The electrode for a non-aqueous electrolyte secondary battery according to any one of the above (1) to (4), wherein the capacity density per unit area is 4.0 mAh / cm 2 or more.
(6) The electrode for a non-aqueous electrolyte secondary battery according to any one of (1) to (5), wherein the second layer further contains silicon or a silicon compound.
(7) A non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the negative electrode is any one of the above-described (1) to (6).
本発明により、実質的な放電容量を低下させることなく、充電の受入性を向上させた電極、及び前記電極を負極として用いた非水電解質二次電池を提供することができる。 Advantageous Effects of Invention According to the present invention, it is possible to provide an electrode having improved charge acceptability without substantially reducing the discharge capacity, and a nonaqueous electrolyte secondary battery using the electrode as a negative electrode.
本実施形態の電極は、図1に示すように、集電体12と、活物質層11とを含む非水電解質二次電池用電極10であって、集電体12に近い第一の層14(以下、「下層」という。)と、表面に近い第二の層13(以下、「上層」という。)を少なくとも有する多層構造を有し、下層14及び上層13はいずれも主たる活物質材料を黒鉛とし、上層13が低結晶性炭素をさらに含み、下層14の黒鉛の含有率が、上層13の黒鉛の含有率より高い。具体的には、図1に示すように、下層14は集電体12に接し、上層13は電極10の表面に位置する。上記の構成により、高容量で、ハイレート充電受入性が高く、サイクル寿命性能に優れた電極を提供する。 As shown in FIG. 1, the electrode of the present embodiment is a nonaqueous electrolyte secondary battery electrode 10 including a current collector 12 and an active material layer 11, and a first layer close to the current collector 12. 14 (hereinafter, referred to as “lower layer”) and a second layer 13 (hereinafter, referred to as “upper layer”) close to the surface, and the lower layer 14 and the upper layer 13 are both main active material materials. Is graphite, the upper layer 13 further contains low crystalline carbon, and the graphite content of the lower layer 14 is higher than the graphite content of the upper layer 13. Specifically, as shown in FIG. 1, lower layer 14 is in contact with current collector 12, and upper layer 13 is located on the surface of electrode 10. According to the above configuration, an electrode having a high capacity, a high rate of high charge acceptance, and an excellent cycle life performance is provided.
黒鉛は、結晶性が高く真密度が高い炭素材料であるから、充填性が高く、高容量が得られる。また、放電電位が卑であるため、エネルギー密度が高い。したがって、本実施形態では、下層14及び上層13の主たる活物質材料は、いずれも黒鉛とするが、黒鉛の高容量性を損なわない範囲で、他の活物質を少量含有することを排除するものでない。また、本実施形態の活物質層は、少なくとも下層14と上層13を有する多層構造であり、本実施形態の効果を損なわない範囲で、下層14と上層13との間に1層以上の中間層を有することができる。 Since graphite is a carbon material having high crystallinity and high true density, it has a high filling property and a high capacity. Further, since the discharge potential is low, the energy density is high. Therefore, in the present embodiment, the main active material of the lower layer 14 and the upper layer 13 is graphite, but excluding containing a small amount of other active materials as long as the high capacity of graphite is not impaired. Not. Further, the active material layer of the present embodiment has a multilayer structure having at least the lower layer 14 and the upper layer 13, and one or more intermediate layers between the lower layer 14 and the upper layer 13 as long as the effects of the present embodiment are not impaired. Can be provided.
本実施形態において、下層14及び上層13はいずれも主たる活物質材料が黒鉛である。「主たる」とは、下層14又は上層13に含まれる活物質材料中、黒鉛の含有率が80質量%以上であることを意味し、好ましくは85質量%以上、より好ましくは90質量%以上である。 In the present embodiment, the main active material of both the lower layer 14 and the upper layer 13 is graphite. “Main” means that the graphite content in the active material contained in the lower layer 14 or the upper layer 13 is 80% by mass or more, preferably 85% by mass or more, more preferably 90% by mass or more. is there.
ところで、黒鉛は、配向性が高いために、電極の表面ではLiイオンの挿入面であるエッジ面よりもベーサル面が表面に配向してしまう。したがって、Liイオン受入性が低く、ハイレート充電時にLi金属が電析しやすくなり、サイクル寿命性能が低下する傾向にある。 By the way, graphite has a high degree of orientation, so that the basal surface is more oriented on the surface of the electrode than on the edge surface, which is the insertion surface of Li ions, on the surface of the electrode. Therefore, the Li ion acceptability is low, and the Li metal is easily deposited during high-rate charging, and the cycle life performance tends to decrease.
一方、低結晶性炭素は、充填密度が黒鉛より低いので、エネルギー密度が低い。また、放電末期には放電電位が緩やかに上昇するから、特に高容量正極と組み合わせた場合、電池は早くカットオフ電圧にかかり、十分な放電容量を取り出せない。しかし、低充填密度であるため、電解質が保持されやすく、また、配向性が小さいからLiイオンの挿入面であるエッジ面が表面に現れやすい。したがって、Liイオンの挿入・放出効率に優れ、ハイレート充電のLi金属の電析を抑制することができる。また、ハイレート放電も有利に行われる。
低結晶性炭素としては、難黒鉛化炭素及び易黒鉛化炭素が挙げられる。
なお、本実施形態における黒鉛とは、層間距離d002が0.34nm未満の炭素材料を指し、易黒鉛化炭素は、層間距離d002が0.34nm以上0.36nm未満、難黒鉛化炭素は、0.36nm以上の炭素材料である。
On the other hand, low crystalline carbon has a lower energy density because the packing density is lower than graphite. In addition, since the discharge potential gradually rises at the end of discharge, the battery is quickly subjected to the cutoff voltage especially when combined with a high-capacity positive electrode, and a sufficient discharge capacity cannot be obtained. However, since the packing density is low, the electrolyte is easily held, and since the orientation is small, an edge surface, which is the insertion surface of Li ions, is likely to appear on the surface. Therefore, the Li ion insertion / release efficiency is excellent, and electrodeposition of Li metal charged at a high rate can be suppressed. High rate discharge is also advantageously performed.
Examples of the low crystalline carbon include non-graphitizable carbon and graphitizable carbon.
Note that graphite in the present embodiment refers to a carbon material having an interlayer distance d002 of less than 0.34 nm, easily graphitizable carbon having an interlayer distance d002 of 0.34 nm or more and less than 0.36 nm, and a non-graphitizable carbon of 0. It is a carbon material of .36 nm or more.
本実施形態では、活物質層の上層13が、さらに低結晶性炭素を含むから、電解質と接する表面領域において、電解質の保持性を高め、Liイオンの挿入・放出効率を高めることができる。これにより、Li金属の電析を抑制してサイクル寿命性能を向上させるとともに、ハイレート充電性能を高めることができる。 In the present embodiment, since the upper layer 13 of the active material layer further contains low-crystalline carbon, in the surface region in contact with the electrolyte, the retention of the electrolyte can be increased, and the efficiency of insertion and release of Li ions can be increased. As a result, the cycle life performance can be improved by suppressing the deposition of Li metal, and the high-rate charging performance can be improved.
また、低結晶性炭素を上層13に含有させ、下層14には、上層13より高い含有率で黒鉛を含有させることにより、活物質層全体における低結晶性炭素の添加量を抑えることができ、実質的な放電容量の低下を抑制することができる。なお、中間層が存在する場合、低結晶性炭素の添加量を抑え、高容量とするために、中間層も上層13より高い含有率で黒鉛を含有することが好ましい。 Further, by adding low crystalline carbon to the upper layer 13 and graphite to the lower layer 14 at a higher content than the upper layer 13, the amount of low crystalline carbon added to the entire active material layer can be reduced, A substantial decrease in discharge capacity can be suppressed. When an intermediate layer is present, it is preferable that the intermediate layer also contains graphite at a higher content than the upper layer 13 in order to suppress the amount of low-crystalline carbon and increase the capacity.
上層13に含まれる低結晶性炭素の含有率は、上層13に含まれる活物質材料中、20質量%以下であることが好ましい。
20質量%を超えても、サイクル寿命性能やハイレート充電受入性に効果的であることはもちろんであるが、活物質の充填密度を維持し、高容量密度を維持するためには、20質量%以下であることが好ましい。
上層13及び下層14を含む活物質層全体に含まれる低結晶性炭素の含有率は、活物質層11に含まれる活物質材料中、8質量%以下であることが、高容量化の観点から好ましい。
The content of the low-crystalline carbon contained in the upper layer 13 is preferably 20% by mass or less in the active material contained in the upper layer 13.
Even if it exceeds 20% by mass, it is of course effective for cycle life performance and high-rate charge acceptability, but in order to maintain the packing density of the active material and maintain the high capacity density, 20% by mass is required. The following is preferred.
The content of low-crystalline carbon contained in the entire active material layer including the upper layer 13 and the lower layer 14 is preferably 8% by mass or less in the active material material contained in the active material layer 11 from the viewpoint of increasing the capacity. preferable.
高容量化の観点から、単位面積当たりの容量密度を4.0mAh/cm2以上とすることが好ましい。 From the viewpoint of increasing the capacity, the capacity density per unit area is preferably set to 4.0 mAh / cm 2 or more.
電解質と接する表面領域におけるLiイオンの挿入・放出効率を高めるためには、上層13の厚さを相対的に薄くして上層13における低結晶性炭素の濃度を高くすればよい。したがって、上層13の厚さは、下層14の厚さより薄いことが好ましい。 In order to increase the efficiency of insertion / release of Li ions in the surface region in contact with the electrolyte, the thickness of the upper layer 13 may be made relatively thin and the concentration of low crystalline carbon in the upper layer 13 may be increased. Therefore, it is preferable that the thickness of the upper layer 13 is smaller than the thickness of the lower layer 14.
本実施形態では、上層13に低結晶性炭素を含有することにより生じる容量低下を補うために、炭素材料より高容量の活物質であるケイ素又はケイ素化合物を活物質層11に含有させることができる。
ケイ素又はケイ素化合物としては、例えば、特許文献1に記載されたSiとOとを構成元素に含む酸化ケイ素粒子(Siに対するOの原子比xは、0.5≦x≦1.5)にカーボン等の導電性材料を被覆した酸化ケイ素−カーボン複合材料を用いることができる。
ケイ素又はケイ素化合物は、充放電に伴う体積変化が大きいから、集電体側に存在すると、膨張・収縮により集電体との密着性が低下し、活物質層11の脱落が起こりやすくなる。したがって、表面側の上層13にケイ素又はケイ素化合物を含むことが好ましい。上層13にケイ素又はケイ素化合物を含むと、充電時のLiイオンの挿入による膨張が、表面側の多孔度の増大をもたらし、Li金属の電析を抑制する効果が増すと考えられる。また、下層14が、この体積変化を緩衝し得るので、集電体12と活物質層11との密着性が維持されやすくなると考えられる。
なお、サイクル寿命性能の面からは、活物質の膨張の程度が大きすぎない方が好ましいから、活物質層11中のケイ素又はケイ素化合物の含有量は、5質量%以下が好ましく、3質量%以下がより好ましく、2質量%以下がさらに好ましい。
In the present embodiment, in order to compensate for a decrease in capacity caused by containing low-crystalline carbon in the upper layer 13, silicon or a silicon compound as an active material having a higher capacity than the carbon material can be contained in the active material layer 11. .
As silicon or a silicon compound, for example, a silicon oxide particle containing Si and O as constituent elements described in Patent Document 1 (atomic ratio x of O to Si is 0.5 ≦ x ≦ 1.5) is used as carbon. A silicon oxide-carbon composite material coated with a conductive material such as
Since silicon or a silicon compound has a large volume change due to charge and discharge, if it is present on the current collector side, the adhesion to the current collector is reduced due to expansion and contraction, and the active material layer 11 is likely to fall off. Therefore, it is preferable that the upper layer 13 on the front side contains silicon or a silicon compound. When the upper layer 13 contains silicon or a silicon compound, it is considered that expansion due to insertion of Li ions during charging causes an increase in porosity on the surface side, and an effect of suppressing the deposition of Li metal is increased. In addition, since the lower layer 14 can buffer the volume change, it is considered that the adhesion between the current collector 12 and the active material layer 11 is easily maintained.
From the viewpoint of cycle life performance, it is preferable that the degree of expansion of the active material is not too large. Therefore, the content of silicon or silicon compound in the active material layer 11 is preferably 5% by mass or less, and more preferably 3% by mass. Or less, more preferably 2% by mass or less.
本実施形態に係る電極は、図1に模式的に示す構造を有し、以下の方法により作製することができる。
下層14用及び上層13用のそれぞれの活物質材料と結着剤、及び必要に応じて、増粘剤、導電剤、フィラー等を、N−メチルピロリドン,トルエン等の有機溶媒又は水に分散して、下層14用ペースト及び上層13用ペーストを作製する。
Cu箔等の集電体12の両面又は片面に下層14用ペーストを塗工し、乾燥した後、その上に上層13用ペーストを塗工し、乾燥し、ロールプレスする。
The electrode according to the present embodiment has a structure schematically shown in FIG. 1, and can be manufactured by the following method.
The active material and binder for each of the lower layer 14 and the upper layer 13 and, if necessary, a thickener, a conductive agent, a filler and the like are dispersed in an organic solvent such as N-methylpyrrolidone and toluene or water. Thus, a paste for the lower layer 14 and a paste for the upper layer 13 are prepared.
A paste for the lower layer 14 is applied on both sides or one side of the current collector 12 such as a Cu foil and dried, and then a paste for the upper layer 13 is applied thereon, dried, and roll-pressed.
結着剤には、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。 Examples of the binder include thermoplastic resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, and polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, and styrene-butadiene rubber (SBR). ) And polymers having rubber elasticity such as fluororubber can be used as one kind or as a mixture of two or more kinds.
増粘剤には、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロース等のセルロース系樹脂や、ポリビニルアルコール、ポリアクリル酸等を用いることができる。 Cellulose-based resins such as carboxymethylcellulose (CMC) and hydroxypropylcellulose, polyvinyl alcohol, and polyacrylic acid can be used as the thickener.
導電剤には、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。 Examples of the conductive agent include conductive materials such as carbon black, acetylene black, Ketjen black, carbon whiskers, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, and conductive ceramic material. It can be included as a seed or a mixture thereof.
フィラーは、電池性能に悪影響を及ぼさない材料であれば限定されない。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。 The filler is not limited as long as it does not adversely affect battery performance. Usually, olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used.
前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが好ましい。 Regarding the application method, for example, it is preferable to apply to an arbitrary thickness and an arbitrary shape using a means such as a roller coating such as an applicator roll, a screen coating, a doctor blade method, a spin coating, and a bar coater.
なお、黒鉛の含有率が下層14と上層13の中間である活物質材料を含む中間層用ペーストを別途作製し、下層14形成後、上層13形成前に、前記中間用ペーストを塗工、乾燥することにより、黒鉛を主たる活物質とし、黒鉛の含有率が下層14と上層13の中間である中間層を1層以上形成してもよい。 An intermediate layer paste containing an active material having a graphite content intermediate between the lower layer 14 and the upper layer 13 is separately prepared, and after the lower layer 14 is formed and before the upper layer 13 is formed, the intermediate paste is applied and dried. By doing so, one or more intermediate layers in which graphite is the main active material and the content of graphite is between the lower layer 14 and the upper layer 13 may be formed.
集電体12と活物質層11との間、すなわち集電体12と下層14との間に、少なくとも導電性物質と結着剤とを有するアンダーコート層を設けてもよい。アンダーコート層を設けることにより、集電体12と活物質層11との密着性が向上する。
活物質層11の表面、すなわち上層13の、下層14とは異なる側の表面に、少なくとも無機粒子と結着剤とを有するオーバーコート層を設けてもよい。オーバーコート層を設けることにより、イオン伝導性の向上や短絡の可能性の低下などの効果が得られる。
An undercoat layer having at least a conductive material and a binder may be provided between the current collector 12 and the active material layer 11, that is, between the current collector 12 and the lower layer 14. By providing the undercoat layer, the adhesion between the current collector 12 and the active material layer 11 is improved.
An overcoat layer having at least inorganic particles and a binder may be provided on the surface of the active material layer 11, that is, on the surface of the upper layer 13 on the side different from the lower layer 14. By providing the overcoat layer, effects such as an improvement in ion conductivity and a decrease in the possibility of a short circuit can be obtained.
上層13又は活物質層11に含まれる低結晶性炭素の含有率は、次のようにして求めることができる。
放電末状態の非水電解質二次電池を解体して負極を取り出し、ジメチルカーボネートで洗浄したのち、真空乾燥する。クロスセクションポリッシャ等で負極の断面を切り出し、ラマン散乱スペクトルを測定し、1580cm−1付近のGバンドと1360cm−1付近のDバンドのピーク強度比をマッピングする。GバンドとDバンドのピーク強度比で表されるR値(R=I1360/I1580)が0.8未満の粒子は黒鉛、0.8以上の粒子は低結晶性炭素とみなして、上層及び下層における各炭素材料の領域の面積比を算出する。
The content of the low-crystalline carbon contained in the upper layer 13 or the active material layer 11 can be determined as follows.
The non-aqueous electrolyte secondary battery in the discharged state is disassembled, the negative electrode is taken out, washed with dimethyl carbonate, and then dried in vacuum. Cut negative electrode cross-section a cross section polisher or the like, by measuring the Raman scattering spectrum, mapping the peak intensity ratio of G band and 1360 cm -1 vicinity of D band near 1580 cm -1. Particles having an R value (R = I 1360 / I 1580 ) of less than 0.8 expressed as a peak intensity ratio between the G band and the D band are regarded as graphite, and particles having an R value of 0.8 or more are regarded as low crystalline carbon. Then, the area ratio of the region of each carbon material in the lower layer is calculated.
黒鉛及び低結晶性炭素の面積比に、それぞれの物質の真密度の値を乗ずることにより、上層及び下層における黒鉛及び低結晶性炭素の質量比率を算出する。 The mass ratio of graphite and low crystalline carbon in the upper and lower layers is calculated by multiplying the area ratio of graphite and low crystalline carbon by the value of the true density of each substance.
上層13又は活物質層11に含まれるケイ素又はケイ素化合物の含有率は、次のようにして求めることができる。
放電末状態にした非水電解質二次電池を解体して負極を取り出し、ジメチルカーボネートで洗浄したのち、真空乾燥する。クロスセクションポリッシャ等で負極断面を切り出して、EPMA測定を行う。SiとCのマッピングを行い、SiとCのピーク強度比から、黒鉛の面積比及びケイ素又はケイ素化合物の面積比を算出する。
黒鉛の面積比及びケイ素又はケイ素化合物の面積比に、それぞれの材料の真密度の値を乗ずることにより、上層及び下層におけるケイ素又はケイ素化合物の含有率を算出する。
The content of silicon or a silicon compound contained in the upper layer 13 or the active material layer 11 can be determined as follows.
The non-aqueous electrolyte secondary battery in the discharged state is disassembled, the negative electrode is taken out, washed with dimethyl carbonate, and then dried in vacuum. The cross section of the negative electrode is cut out with a cross section polisher or the like, and EPMA measurement is performed. Si and C are mapped, and the area ratio of graphite and the area ratio of silicon or a silicon compound are calculated from the peak intensity ratio of Si and C.
By multiplying the area ratio of graphite and the area ratio of silicon or silicon compound by the value of the true density of each material, the content of silicon or silicon compound in the upper and lower layers is calculated.
なお、上層と下層とは、低結晶性炭素及び黒鉛の含まれる割合を基にして判別する。すなわち、負極の表面付近の低結晶性炭素の割合が高い部分を上層とし、集電体近傍の黒鉛の割合が高い部分を下層とする。
また、上層と下層の境界部が互いに部分的に入り込んでいたり、電極の厚み方向に低結晶性炭素の含有率が連続的に変化していたりする場合がある。このような場合には、活物質層の厚みを100%として、厚み方向で電極の表面に近い方から20%までを上層とし、集電体に近い方から20%までを下層とする。
The upper layer and the lower layer are distinguished based on the ratio of low crystalline carbon and graphite. That is, the portion near the surface of the negative electrode where the proportion of low crystalline carbon is high is the upper layer, and the portion near the current collector where the proportion of graphite is high is the lower layer.
Further, the boundary between the upper layer and the lower layer may partially enter each other, or the content of low crystalline carbon may continuously change in the thickness direction of the electrode. In such a case, assuming that the thickness of the active material layer is 100%, the upper layer is 20% from the side closer to the surface of the electrode in the thickness direction, and the lower layer is 20% from the side closer to the current collector in the thickness direction.
また、本実施形態は、正極と、上記の電極である負極と、非水電解質とを備えた非水電解質二次電池に関する。以下に本実施形態の非水電解質二次電池について詳述する。 In addition, the present embodiment relates to a non-aqueous electrolyte secondary battery including a positive electrode, the negative electrode serving as the above-described electrode, and a non-aqueous electrolyte. Hereinafter, the nonaqueous electrolyte secondary battery of the present embodiment will be described in detail.
(正極)
正極活物質としては、限定されない。例えば、LixMOy(Mは少なくとも一種の遷移金属を表す)で表される複合酸化物(LiCoO2、LiNiO2、LiNiyMnzCo(1−y−z)O2、Li1+α(NiyMnzCo(1−y−z))1-αO2、LiMn2O4等)、LiwMx(XOy)z(Xは例えばP、Si、B、Vを表す)で表されるポリアニオン化合物(LiFePO4、LiMnPO4、LiNiPO4、LiCoPO4、Li3V2(PO4)3、Li2MnSiO4、Li2CoPO4F等)が挙げられる。これらの化合物中の元素又はポリアニオンは、他の元素又はアニオン種で一部が置換されていてもよい。
なかでも、本実施形態は、例えば、特許文献1に記載のニッケル酸リチウムや、国際公開2012/091015に記載のリチウム過剰型のリチウム遷移金属複合酸化物を使用する高容量の正極活物質を用いた場合に、実質的な放電容量を大きくすることができる。
正極の作製は、負極の作製と同様にして、上記の正極活物質と結着剤及び他の必要な成分を含むペーストを、Al箔等の集電体上に塗工・乾燥することにより作製することができる。
(Positive electrode)
The positive electrode active material is not limited. For example, Li x MO y composite oxide (M is at least representative of a kind of transition metal) represented by (LiCoO 2, LiNiO 2, LiNi y Mn z Co (1-y-z) O 2, Li 1 + α (Ni y Mn z Co (1 -y-z)) 1-α O 2, LiMn 2 O 4 , etc.), Li w M x (XO y) z (X represents for example P, Si, B, and V) (LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F, etc.). The elements or polyanions in these compounds may be partially substituted with other elements or anionic species.
Above all, the present embodiment uses, for example, a lithium nickel oxide described in Patent Document 1 or a high-capacity positive electrode active material using a lithium-excess lithium transition metal composite oxide described in WO2012 / 091015. In this case, the substantial discharge capacity can be increased.
The positive electrode is prepared by applying and drying the paste containing the positive electrode active material, the binder and other necessary components on a current collector such as an Al foil in the same manner as the negative electrode. can do.
(非水電解質)
本実施形態に係る非水電解質二次電池に用いる非水電解質は、限定されず、一般にリチウム二次電池等への使用が提案されているものが使用可能である。非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。
(Non-aqueous electrolyte)
The non-aqueous electrolyte used for the non-aqueous electrolyte secondary battery according to the present embodiment is not limited, and those generally proposed for use in a lithium secondary battery or the like can be used. Examples of the non-aqueous solvent used for the non-aqueous electrolyte include propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, cyclic carbonates such as vinylene carbonate; γ-butyrolactone, cyclic esters such as γ-valerolactone; dimethyl carbonate; Chain carbonates such as diethyl carbonate and ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxy Ethers such as ethane, 1,4-dibutoxyethane and methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxolane or derivatives thereof; ethylene sulfide, sulfolane, sultone or derivatives thereof. Examples of the conductor include a single conductor or a mixture of two or more conductors, but are not limited thereto.
非水電解質に用いる電解質塩としては、限定されない。例えば、LiClO4,LiBF4,LiAsF6,LiPF6,LiSCN,LiBr,LiI,Li2SO4,Li2B10Cl10,NaClO4,NaI,NaSCN,NaBr,KClO4,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCF3SO3,LiN(CF3SO2)2,LiN(C2F5SO2)2,LiN(CF3SO2)(C4F9SO2),LiC(CF3SO2)3,LiC(C2F5SO2)3,(CH3)4NBF4,(CH3)4NBr,(C2H5)4NClO4,(C2H5)4NI,(C3H7)4NBr,(n−C4H9)4NClO4,(n−C4H9)4NI,(C2H5)4N−maleate,(C2H5)4N−benzoate,(C2H5)4N−phthalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。 The electrolyte salt used for the non-aqueous electrolyte is not limited. For example, lithium (Li) such as LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr, KClO 4 , KSCN ), An inorganic ion salt containing one kind of sodium (Na) or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , (CH 3 ) 4 NBr, (C 2 H) 5) 4 NClO 4, (C 2 H 5) 4 NI, (C 3 H 7) 4 NBr, (n-C 4 H 9) 4 NClO 4, (n-C 4 H ) 4 NI, (C 2 H 5) 4 N-maleate, (C 2 H 5) 4 N-benzoate, (C 2 H 5) 4 N-phthalate, lithium stearyl sulfonate, lithium octyl sulfonate, dodecylbenzene sulfonate Organic ionic salts such as lithium oxide and the like can be mentioned, and these ionic compounds can be used alone or in combination of two or more.
さらに、LiPF6又はLiBF4と、LiN(C2F5SO2)2のようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、電解質の粘度を下げることができるので、低温性能を高めることができ、また、自己放電を抑制することができ、より好ましい。 Further, by using a mixture of LiPF 6 or LiBF 4 and a lithium salt having a perfluoroalkyl group such as LiN (C 2 F 5 SO 2 ) 2 , the viscosity of the electrolyte can be reduced. It is more preferable that the performance can be enhanced and the self-discharge can be suppressed.
また、非水電解質として常温溶融塩やイオン液体を用いてもよい。 Further, a room temperature molten salt or an ionic liquid may be used as the non-aqueous electrolyte.
非水電解質における電解質塩の濃度としては、高い電池性能を有する非水電解質電池を確実に得るために、0.1mol/L〜5mol/Lが好ましく、さらに好ましくは、0.5mol/L〜2.5mol/Lである。 The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably from 0.1 mol / L to 5 mol / L, more preferably from 0.5 mol / L to 2 mol / L in order to reliably obtain a non-aqueous electrolyte battery having high battery performance. 0.5 mol / L.
(セパレータ)
セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。
(Separator)
As the separator, it is preferable to use a porous film or a nonwoven fabric exhibiting excellent high-rate discharge performance alone or in combination. Examples of the material constituting the separator for a non-aqueous electrolyte battery include polyolefin resins represented by polyethylene, polypropylene, etc., polyester resins represented by polyethylene terephthalate, polybutylene terephthalate, etc., polyvinylidene fluoride, vinylidene fluoride-hexa. Fluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, fluorine Vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride - tetrafluoroethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer.
セパレータの空孔率は、強度の観点から98体積%以下が好ましい。また、充放電性能の観点から、空孔率は20体積%以上が好ましい。 The porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. From the viewpoint of charge and discharge performance, the porosity is preferably 20% by volume or more.
また、セパレータとして、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。 Further, as the separator, a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride and the like and an electrolyte may be used. It is preferable to use the non-aqueous electrolyte in a gel state as described above, since it has an effect of preventing liquid leakage.
さらに、セパレータとして、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため好ましい。例えば、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。 Furthermore, it is preferable to use a polymer gel in combination with the above-described porous membrane, nonwoven fabric, or the like as the separator because the liquid retention of the electrolyte is improved. For example, by forming a film having a thickness of several μm or less coated with a lipophilic polymer on the surface and the micropore wall surface of the polyethylene microporous membrane, and holding an electrolyte in the micropores of the film, Gels.
前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、電子線(EB)照射、又はラジカル開始剤を添加して加熱若しくは紫外線(UV)照射を行う等により、架橋反応を行わせることが可能である。 Examples of the solvent-philic polymer include, in addition to polyvinylidene fluoride, a crosslinked polymer of an acrylate monomer having an ethylene oxide group or an ester group, an epoxy monomer, a monomer having an isocyanate group, or the like. The monomer can be subjected to a cross-linking reaction by irradiation with an electron beam (EB) or heating or ultraviolet (UV) irradiation with the addition of a radical initiator.
(非水電解質二次電池の構成)
本実施形態に係る非水電解質二次電池の構成については、特に限定されるものではなく、正極、負極及びセパレータをロール状に巻回した円筒型電池、角型電池、扁平型電池等が一例として挙げられる。
図4に角型電池の一例を示す。セパレータを挟んで巻回された正極及び負極よりなる電極群2が角型の電池容器3に収納され、正極リード4’を介して正極端子4が、負極リード5’を介して負極端子5が電池容器外に導出されている。
(Configuration of non-aqueous electrolyte secondary battery)
The configuration of the nonaqueous electrolyte secondary battery according to this embodiment is not particularly limited, and examples thereof include a cylindrical battery, a square battery, and a flat battery in which a positive electrode, a negative electrode, and a separator are wound in a roll shape. It is listed as.
FIG. 4 shows an example of a prismatic battery. An electrode group 2 composed of a positive electrode and a negative electrode wound around a separator is housed in a rectangular battery container 3, and the positive electrode terminal 4 is connected via a positive electrode lead 4 ′, and the negative electrode terminal 5 is connected via a negative electrode lead 5 ′. It is led out of the battery container.
(蓄電装置の構成)
本実施形態の非水電解質二次電池は、特に電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)などの自動車用電源として用いる場合に、複数の非水電解質二次電池を集合して構成した蓄電装置(バッテリーモジュール)として搭載することができる。
図5に、非水電解質二次電池1が集合した蓄電ユニット20をさらに集合した蓄電装置30の一例を示す。
(Configuration of power storage device)
The non-aqueous electrolyte secondary battery of the present embodiment is particularly suitable for use as a power source for vehicles such as electric vehicles (EV), hybrid vehicles (HEV) and plug-in hybrid vehicles (PHEV). Can be mounted as a power storage device (battery module) configured as a group.
FIG. 5 shows an example of the power storage device 30 in which the power storage units 20 in which the non-aqueous electrolyte secondary batteries 1 are assembled are further assembled.
(実施例1)
<電極の作製>
球晶人造黒鉛、天然黒鉛、鱗片状黒鉛を質量比40:40:20の割合で混合して、下層用の負極活物質とした。この負極活物質、カルボキシメチルセルロース(CMC)、スチレンブタジエン共重合体(SBR)が、固形分質量比で97:1:2の割合で含有し、水を分散媒とする下層用の塗料液を調整した。下層用の塗料液を厚さ10μmの銅箔集電体に塗布し、乾燥させることによって、集電体に接する側の活物質層(下層)を作製した。
次に、球晶人造黒鉛、天然黒鉛、鱗片状黒鉛、難黒鉛化炭素を質量比36:36:18:10の割合で混合した負極活物質、カルボキシメチルセルロース(CMC)、スチレンブタジエン共重合体(SBR)が、固形分質量比で97:1:2の割合で含有し、水を分散媒とする上層用の塗料液を調整した。該塗料液を、下層上に塗布し、乾燥させた。ここで、下層の黒鉛の含有率は活物質材料の100質量%であり、上層の黒鉛の含有率、難黒鉛化炭素の含有率は、それぞれ90質量%、10質量%であり、上下層合わせた活物質層に含まれる難黒鉛化炭素の含有率は、3.8質量%である。
乾燥後の単位面積当たりの塗布量は、下層で8mg/cm2、上層で5mg/cm2となるようにした。この積層体を、電極多孔度が30体積%となるようにロールプレスした。これを3cm×4cmの面積の塗工部に、集電端子を溶着できる部分を付けた形状に加工し、実施例1に係る試験極を作製した。
(Example 1)
<Preparation of electrode>
Spherulite artificial graphite, natural graphite, and flaky graphite were mixed at a mass ratio of 40:40:20 to obtain a negative electrode active material for a lower layer. This negative electrode active material, carboxymethylcellulose (CMC), and styrene-butadiene copolymer (SBR) were contained at a solid content mass ratio of 97: 1: 2, and a coating liquid for a lower layer was prepared using water as a dispersion medium. did. An active material layer (lower layer) on the side in contact with the current collector was prepared by applying a lower layer coating liquid to a 10-μm-thick copper foil current collector and drying it.
Next, a negative electrode active material obtained by mixing spherulite artificial graphite, natural graphite, flaky graphite, and non-graphitizable carbon at a mass ratio of 36: 36: 18: 10, carboxymethyl cellulose (CMC), styrene butadiene copolymer ( SBR) at a solid content mass ratio of 97: 1: 2, and a coating liquid for an upper layer containing water as a dispersion medium was prepared. The coating liquid was applied on the lower layer and dried. Here, the lower layer graphite content is 100% by mass of the active material, the upper layer graphite content and non-graphitizable carbon content are 90% by mass and 10% by mass, respectively. The content of the non-graphitizable carbon contained in the active material layer was 3.8% by mass.
The coating amount per unit area after drying, 8 mg / cm 2 in the lower layer was made to be 5 mg / cm 2 in the upper layer. This laminate was roll-pressed so that the electrode porosity was 30% by volume. This was processed into a shape in which a portion to which a current collecting terminal could be welded was attached to a coated portion having an area of 3 cm × 4 cm, to produce a test electrode according to Example 1.
<セルの作製>
対極には負極単独での挙動を把握するために、金属リチウムを用いた。負極板塗工部と同面積になるよう加工し、ニッケル箔集電体に貼りつけたものを対極板とした。
セパレータにはポリエチレン製の微多孔膜を用いた。
電解液としては、エチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネートを体積比が6:7:7となるように混合した溶媒に、LiPF6を1mol/lとなるように溶解させて用いた。
セパレータを介して、負極板と対極板(金属リチウム)とを対向させ、各集電端子が外部に露出するようにして、袋状に加工したアルミラミネート膜の内部に収納し、電解液を注入後、気密封止した。
<Preparation of cell>
Metal lithium was used as the counter electrode in order to grasp the behavior of the negative electrode alone. What processed so that it might become the same area as the coating part of a negative electrode plate, and stuck on the nickel foil collector was used as the counter electrode plate.
A polyethylene microporous membrane was used for the separator.
As an electrolytic solution, LiPF 6 was dissolved in a solvent in which ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate were mixed at a volume ratio of 6: 7: 7 so as to be 1 mol / l.
A negative electrode plate and a counter electrode plate (metal lithium) are opposed to each other via a separator, and each current collecting terminal is exposed to the outside, and is housed inside a bag-shaped aluminum laminate film, and an electrolyte is injected. After that, it was hermetically sealed.
<容量確認>
上記のラミネートセルを用い、充電条件を、0.1CAの定電流定電圧充電(設定電位0.01V(Li+/Li)、カットオフ電流0.02CA)、放電条件を0.1CAの定電流放電(カットオフ電位0.6V(Li+/Li))として充放電を2サイクル繰り返す初期充放電を行い、2サイクル目の放電容量を確認した。すべてのサイクルにおいて、充電および放電後に10分間の休止を設定した。なお、カットオフ電位は、実際のセルへの適用を想定して設定した。
<Confirm capacity>
Using the above-mentioned laminate cell, the charging conditions were a constant current constant voltage charging of 0.1 CA (setting potential 0.01 V (Li + / Li), a cutoff current of 0.02 CA), and a discharging condition was a constant current of 0.1 CA. Initial charging / discharging was repeated for two cycles of charging / discharging as discharge (cutoff potential 0.6 V (Li + / Li)), and the discharge capacity at the second cycle was confirmed. In all cycles, a 10 minute pause was set after charging and discharging. Note that the cutoff potential was set assuming application to an actual cell.
<充電受入性評価>
電流密度6.5mA/cm2にて電圧範囲の規制を設けることなく、定電流充電を行い、試験極の充電状態(State of Charge;以下「SOC」という。)に対する電位(Li+/Li)のプロファイルを取得した。充電が進むにつれて試験極に対する過電圧が増加していくが、Li電析が生じると、電析部分に電流が流れることにより、過電圧の減少が生じる。電流の割合が急激に増加し、過電圧が減少し始める変曲点に当たるSOCを充電時のLi電析SOCとして、充電受入性を評価した。
<Charge acceptance evaluation>
A constant current charge is performed at a current density of 6.5 mA / cm 2 without regulating the voltage range, and the potential (Li + / Li) with respect to the state of charge (hereinafter referred to as “SOC”) of the test electrode. I got a profile. As the charging proceeds, the overvoltage to the test electrode increases. However, when Li electrodeposition occurs, a current flows through the electrodeposited portion, thereby reducing the overvoltage. The SOC at the inflection point at which the current ratio sharply increased and the overvoltage began to decrease was defined as the Li electrodeposited SOC during charging, and the charge acceptability was evaluated.
(実施例2)
質量比で球晶人造黒鉛、天然黒鉛、鱗片状黒鉛、難黒鉛化炭素が32:32:16:20の活物質材料を含む上層用ペーストを用いて上層を作製した以外は、実施例1と同様にして実施例2に係る電極を作製した。ここで、下層の黒鉛の含有率は活物質材料の100質量%であり、上層の黒鉛の含有率、難黒鉛化炭素の含有率はそれぞれ80質量%、20質量%であり、上下層合わせた活物質層に含まれる難黒鉛化炭素の含有率は、7.7質量%である。
(Example 2)
Example 1 was the same as Example 1 except that the upper layer was produced using an upper layer paste containing an active material having a mass ratio of spherulite artificial graphite, natural graphite, flaky graphite, and non-graphitizable carbon of 32: 32: 16: 20. Similarly, an electrode according to Example 2 was manufactured. Here, the lower layer graphite content was 100% by mass of the active material, the upper layer graphite content and the non-graphitizable carbon content were 80% by mass and 20% by mass, respectively. The content of the non-graphitizable carbon contained in the active material layer is 7.7% by mass.
(実施例3)
質量比で球晶人造黒鉛、天然黒鉛、鱗片状黒鉛、難黒鉛化炭素、一酸化ケイ素(以下、「SiO」という。)を質量比35.28:35.28:17.64:9.8:2の活物質材料を含む上層用のペーストを用いて上層を作製した以外は、実施例1と同様にして実施例3に係る電極を作製した。ここで、下層の黒鉛の含有率は活物質材料の100質量%であり、上層の黒鉛の含有率、難黒鉛化炭素の含有率はそれぞれ88.2質量%、9.8%であり、上下層合わせた活物質層に含まれる難黒鉛化炭素の含有率は、3.8質量%である。
(Example 3)
Spherulite artificial graphite, natural graphite, flaky graphite, non-graphitizable carbon, and silicon monoxide (hereinafter referred to as “SiO”) in a mass ratio of 35.28: 35.28: 17.64: 9.8 by mass ratio. The electrode according to Example 3 was produced in the same manner as in Example 1 except that the upper layer was produced using the paste for the upper layer containing the active material material of No. 2: 2. Here, the lower layer graphite content is 100% by mass of the active material, the upper layer graphite content and the non-graphitizable carbon content are 88.2% by mass and 9.8%, respectively. The content of the non-graphitizable carbon contained in the lower active material layer is 3.8% by mass.
(比較例1)
実施例1にて作製した、球晶人造黒鉛、天然黒鉛、鱗片状黒鉛を質量比40:40:20の割合で含む下層用ペーストを、乾燥後の単位面積当たりの塗布量が13mg/cm2となるように、Cu箔上に塗工し、乾燥して、単層の活物質層を作製した以外は、実施例1と同様にして、比較例1に係る電極を作製した。
(Comparative Example 1)
The lower layer paste prepared in Example 1 and containing spherulite artificial graphite, natural graphite, and flaky graphite at a weight ratio of 40:40:20 was applied in an amount of 13 mg / cm 2 per unit area after drying. Thus, an electrode according to Comparative Example 1 was produced in the same manner as in Example 1, except that a single active material layer was produced by coating on a Cu foil and drying.
(比較例2)
実施例1にて作製した、球晶人造黒鉛、天然黒鉛、鱗片状黒鉛、難黒鉛化炭素を質量比36:36:18:10の割合で含む上層用ペーストを、乾燥後の単位面積当たりの塗布量が13mg/cm2となるように、Cu箔上に塗工し、乾燥して、単層の活物質層を作製した以外は、実施例1と同様にして、比較例2に係る電極を作製した。
(Comparative Example 2)
The upper layer paste containing the spherulite artificial graphite, natural graphite, flaky graphite, and non-graphitizable carbon in a mass ratio of 36: 36: 18: 10 prepared in Example 1 was dried per unit area. An electrode according to Comparative Example 2 was applied in the same manner as in Example 1 except that a single active material layer was prepared by coating on a Cu foil and drying so that the coating amount was 13 mg / cm 2. Was prepared.
(比較例3)
実施例2にて作製した、球晶人造黒鉛、天然黒鉛、鱗片状黒鉛、難黒鉛化炭素を質量比32:32:16:20の割合で含む上層用ペーストを、乾燥後の単位面積当たりの塗布量が13mg/cm2となるように、Cu箔上に塗工し、乾燥して、単層の活物質層を作製した以外は、実施例1と同様にして、比較例3に係る電極を作製した。
(Comparative Example 3)
The upper layer paste containing spherulite artificial graphite, natural graphite, flaky graphite, and non-graphitizable carbon in a mass ratio of 32: 32: 16: 20, prepared in Example 2, was dried per unit area. An electrode according to Comparative Example 3 was prepared in the same manner as in Example 1 except that a single active material layer was prepared by coating on a Cu foil and drying so as to have a coating amount of 13 mg / cm 2. Was prepared.
(比較例4)
実施例3にて作製した、球晶人造黒鉛、天然黒鉛、鱗片状黒鉛、難黒鉛化炭素、一酸化ケイ素を質量比35.28:35.28:17.64:9.8:2の割合で含む上層用ペーストを、乾燥後の単位面積当たりの塗布量が13mg/cm2となるように、Cu箔上に塗工し、乾燥して、単層の活物質層を作製した以外は、実施例1と同様にして、比較例4に係る電極を作製した。
(Comparative Example 4)
Spherulite artificial graphite, natural graphite, flaky graphite, non-graphitizable carbon, and silicon monoxide produced in Example 3 were in a mass ratio of 35.28: 35.28: 17.64: 9.8: 2. Except that the upper layer paste contained in was coated on a Cu foil and dried to prepare a single-layer active material layer so that the coating amount per unit area after drying was 13 mg / cm 2 . An electrode according to Comparative Example 4 was produced in the same manner as in Example 1.
実施例2、3、及び比較例1〜4に係る電極を用いる以外は、実施例1と同様にして各ラミネートセルを作製し、実施例1と同じ条件で容量確認、及び充電受入性評価を行った。
充電受入充電性評価のために取得したSOCに対する電位(Li+/Li)のプロファイルを図2(実施例1、2及び比較例1)、及び図3(実施例3及び比較例1、4)に示す。
以下の表1に、実施例1〜3、及び比較例1〜4に係るラミネートセルについて、下層、上層それぞれに含まれる活物質材料、活物質層に含まれる活物質材料中の難黒鉛化炭素含有率(HC率)、充電時のLi電析SOC(Li電析SOC)、放電容量、及び単位面積当たりの容量密度(容量密度)を示す。なお、活物質層が単層である比較例1〜4については、下層の欄に活物質材料を記載している。
Except for using the electrodes according to Examples 2 and 3, and Comparative Examples 1 to 4, each laminated cell was prepared in the same manner as in Example 1, and the capacity confirmation and the charge acceptability evaluation were performed under the same conditions as in Example 1. went.
FIGS. 2 (Examples 1 and 2 and Comparative Example 1) and FIG. 3 (Example 3 and Comparative Examples 1 and 4) show the profile of the potential (Li + / Li) with respect to the SOC acquired for the evaluation of the charge receiving chargeability. Shown in
Table 1 below shows, for the laminate cells according to Examples 1 to 3 and Comparative Examples 1 to 4, the active material included in the lower layer and the upper layer, and the non-graphitizable carbon in the active material included in the active material layer. The content ratio (HC ratio), the Li deposited SOC during charging (Li deposited SOC), the discharge capacity, and the capacity density per unit area (capacity density) are shown. In addition, about Comparative Examples 1-4 in which an active material layer is a single layer, the active material is described in the column of the lower layer.
比較例1では、放電容量は大きいものの、表面側の層も黒鉛であるから、Li電析SOCが低く、充電受入性が悪い。
比較例2、3では、表面側にも難黒鉛化炭素が存在するから、充電受入性に改善が見られる。しかし、活物質層に含まれる難黒鉛化炭素の比率が高いから、放電容量が低下しており、特に比較例3では著しく低下している。
比較例4では、高容量活物質であるSiOを含むから、放電容量は実施例1と同等であるが、充電受入性の改善度が低い。
In Comparative Example 1, although the discharge capacity was large, the layer on the surface side was also graphite, so that the Li deposited SOC was low and the charge acceptability was poor.
In Comparative Examples 2 and 3, since the non-graphitizable carbon is also present on the surface side, the charge acceptability is improved. However, since the ratio of the non-graphitizable carbon contained in the active material layer was high, the discharge capacity was reduced, and particularly in Comparative Example 3, it was significantly reduced.
Comparative Example 4 includes SiO, which is a high-capacity active material, and thus has the same discharge capacity as Example 1, but has a low degree of improvement in charge acceptability.
これに対して、実施例1は、この下層と同じ活物質材料を有する層の単層である比較例1と放電容量が同等であり、充電受入性を大きく改善している。また、この上層と同じ活物質材料を有する層の単層である比較例2と充電受入性が同程度で、放電容量が改善されている。
実施例2では、難黒鉛化炭素率が実施例1より高いため、放電容量が実施例1よりは低いが、充電受入性が改善されている。なお、実施例2における難黒鉛化炭素率を超えると、放電容量低下が抑制しにくくなるから、活物質材料中の難黒鉛化炭素率は8質量%以下であることが好ましい。
実施例3では、高容量活物質であるSiOをさらに上層に含むため、実施例1と同程度の充電受入性を保ちつつ、さらに高い放電容量を得ることができる。
On the other hand, Example 1 has the same discharge capacity as Comparative Example 1, which is a single layer having the same active material as the lower layer, and has greatly improved charge acceptability. Further, the charge acceptability is comparable to that of Comparative Example 2, which is a single layer having the same active material as the upper layer, and the discharge capacity is improved.
In Example 2, since the non-graphitizable carbon ratio was higher than that of Example 1, the discharge capacity was lower than that of Example 1, but the charge acceptability was improved. If the ratio exceeds the non-graphitizable carbon ratio in Example 2, it is difficult to suppress a decrease in discharge capacity. Therefore, the non-graphitizable carbon ratio in the active material is preferably 8% by mass or less.
In the third embodiment, SiO, which is a high-capacity active material, is further included in the upper layer, so that a higher discharge capacity can be obtained while maintaining the same level of charge acceptability as in the first embodiment.
本実施形態によると、高容量で、充電受入性に優れた非水電解質二次電池用電極、及び前記電極を負極とした非水電解質二次電池を提供することができる。
したがって、より高容量でハイレート充電性能が求められる携帯用端末や、電気自動車、ハイブリッド自動車等の電源としての利用が期待される。
According to the present embodiment, it is possible to provide a non-aqueous electrolyte secondary battery electrode having a high capacity and excellent charge acceptability, and a non-aqueous electrolyte secondary battery having the electrode as a negative electrode.
Therefore, it is expected to be used as a power source for a portable terminal requiring a higher capacity and a higher rate charging performance, or a power source for an electric vehicle, a hybrid vehicle and the like.
1 非水電解質二次電池
2 電極群
3 電池容器
4 正極端子
4’正極リード
5 負極端子
5’負極リード
10 電極
11 活物質層
12 集電体
13 上層
14 下層
20 蓄電ユニット
30 蓄電装置
DESCRIPTION OF SYMBOLS 1 Non-aqueous electrolyte secondary battery 2 Electrode group 3 Battery container 4 Positive terminal 4 'Positive lead 5 Negative terminal 5' Negative lead 10 Electrode 11 Active material layer 12 Current collector 13 Upper layer 14 Lower layer 20 Power storage unit 30 Power storage device
Claims (7)
前記活物質層は、前記集電体に接する側の第一の層と、前記電極の表面側に位置する第二の層の少なくとも2層を有し、
前記第一の層及び前記第二の層はいずれも黒鉛の含有率が活物質材料中の80質量%以上であり、
前記第二の層は、低結晶性炭素として難黒鉛化炭素又は易黒鉛化炭素をさらに含み、
前記第一の層の黒鉛の含有率は、前記第二の層の黒鉛の含有率より高いことを特徴とする非水電解質二次電池用電極。 An electrode for a non-aqueous electrolyte secondary battery including a current collector and an active material layer,
The active material layer has at least two layers, a first layer on the side in contact with the current collector, and a second layer located on the surface side of the electrode,
Both the first layer and the second layer have a graphite content of 80% by mass or more in the active material,
The second layer further includes hardly graphitizable carbon or easily graphitizable carbon as low crystalline carbon,
An electrode for a non-aqueous electrolyte secondary battery, wherein the graphite content of the first layer is higher than the graphite content of the second layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015187006A JP6660581B2 (en) | 2015-09-24 | 2015-09-24 | Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015187006A JP6660581B2 (en) | 2015-09-24 | 2015-09-24 | Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017062911A JP2017062911A (en) | 2017-03-30 |
JP6660581B2 true JP6660581B2 (en) | 2020-03-11 |
Family
ID=58429004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015187006A Active JP6660581B2 (en) | 2015-09-24 | 2015-09-24 | Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6660581B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3761428A4 (en) * | 2018-02-28 | 2021-04-07 | Panasonic Intellectual Property Management Co., Ltd. | Nonaqueous electrolyte secondary battery |
US20210194002A1 (en) * | 2018-07-25 | 2021-06-24 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
JP7010795B2 (en) * | 2018-09-25 | 2022-01-26 | 本田技研工業株式会社 | A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery using the negative electrode for the lithium ion secondary battery. |
JP7358228B2 (en) * | 2019-12-23 | 2023-10-10 | パナソニックホールディングス株式会社 | Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries |
JP7358229B2 (en) * | 2019-12-23 | 2023-10-10 | パナソニックホールディングス株式会社 | Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries |
EP4084125B1 (en) * | 2019-12-24 | 2024-04-10 | Panasonic Energy Co., Ltd. | Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
HUE064506T2 (en) * | 2020-04-30 | 2024-03-28 | Contemporary Amperex Technology Co Ltd | Secondary battery, process for preparing same, and apparatus comprising secondary battery |
WO2022080995A1 (en) * | 2020-10-16 | 2022-04-21 | 주식회사 엘지에너지솔루션 | Negative electrode for lithium-ion secondary battery |
KR20220057125A (en) * | 2020-10-29 | 2022-05-09 | 에스케이온 주식회사 | Negative electrode for battery, and secondary battery including same |
JP7150797B2 (en) * | 2020-11-05 | 2022-10-11 | プライムプラネットエナジー&ソリューションズ株式会社 | Manufacturing method of negative electrode plate for non-aqueous electrolyte secondary battery |
CN116830292A (en) * | 2021-02-18 | 2023-09-29 | 松下新能源株式会社 | Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08153514A (en) * | 1994-11-28 | 1996-06-11 | Ricoh Co Ltd | Film-shaped negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using same |
JP2012114374A (en) * | 2010-11-26 | 2012-06-14 | Taiyo Yuden Co Ltd | Electrochemical device |
JP5682318B2 (en) * | 2011-01-12 | 2015-03-11 | トヨタ自動車株式会社 | All solid battery |
WO2013018182A1 (en) * | 2011-07-29 | 2013-02-07 | トヨタ自動車株式会社 | Lithium ion secondary battery |
CN106030864B (en) * | 2014-01-31 | 2019-05-28 | 三洋电机株式会社 | Anode for nonaqueous electrolyte secondary battery |
-
2015
- 2015-09-24 JP JP2015187006A patent/JP6660581B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017062911A (en) | 2017-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6660581B2 (en) | Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
JPWO2017082083A1 (en) | Lithium ion secondary battery and manufacturing method thereof | |
JP6769334B2 (en) | Method for manufacturing negative electrode for non-aqueous electrolyte storage element, negative electrode for non-aqueous electrolyte storage element and non-aqueous electrolyte storage element | |
US11562862B2 (en) | Nonaqueous electrolyte energy storage device | |
JP6658744B2 (en) | Negative electrode for non-aqueous electrolyte storage element | |
WO2017056585A1 (en) | Positive electrode active material, positive electrode and lithium ion secondary battery | |
JP2017208186A (en) | Nonaqueous electrolyte solution for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
JP6848363B2 (en) | Negative electrode and non-aqueous electrolyte power storage element | |
WO2018135253A1 (en) | Positive electrode active substance, positive electrode, and lithium ion secondary cell | |
JP6763144B2 (en) | Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries and non-aqueous electrolyte secondary batteries | |
JP6465456B2 (en) | Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
JP2016192272A (en) | Negative electrode for power storage element, power storage element and power storage device | |
JP6252353B2 (en) | Non-aqueous electrolyte storage element and storage device including the same | |
WO2023224070A1 (en) | Non-aqueous electrolyte power storage element | |
JP7484884B2 (en) | Nonaqueous electrolyte storage element and storage device | |
JP6699267B2 (en) | Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries | |
JP6699268B2 (en) | Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries | |
JP6991877B2 (en) | Secondary battery | |
JP6164012B2 (en) | Electrode for nonaqueous electrolyte storage element | |
JP6790877B2 (en) | Non-aqueous electrolyte power storage element and its manufacturing method | |
WO2018180829A1 (en) | Power storage element | |
JP6766359B2 (en) | Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries and non-aqueous electrolyte secondary batteries | |
JP6164011B2 (en) | Electrode for nonaqueous electrolyte storage element | |
JP2015176677A (en) | Nonaqueous electrolyte storage element and power storage device including the same | |
JP2021163707A (en) | Nonaqueous electrolyte power storage element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180626 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190529 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190701 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200123 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6660581 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |