Nothing Special   »   [go: up one dir, main page]

JP6651878B2 - Vacuum valve - Google Patents

Vacuum valve Download PDF

Info

Publication number
JP6651878B2
JP6651878B2 JP2016018800A JP2016018800A JP6651878B2 JP 6651878 B2 JP6651878 B2 JP 6651878B2 JP 2016018800 A JP2016018800 A JP 2016018800A JP 2016018800 A JP2016018800 A JP 2016018800A JP 6651878 B2 JP6651878 B2 JP 6651878B2
Authority
JP
Japan
Prior art keywords
fixed
movable
electrode
coil
vacuum valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016018800A
Other languages
Japanese (ja)
Other versions
JP2017139116A (en
JP2017139116A5 (en
Inventor
貴和 原田
貴和 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016018800A priority Critical patent/JP6651878B2/en
Publication of JP2017139116A publication Critical patent/JP2017139116A/en
Publication of JP2017139116A5 publication Critical patent/JP2017139116A5/ja
Application granted granted Critical
Publication of JP6651878B2 publication Critical patent/JP6651878B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

本発明は、真空遮断器等に使用され、電路の開閉を行う真空バルブに関し、特に電路の開閉時に生じるアークを効率的に拡散することができる真空バルブに関するものである。   The present invention relates to a vacuum valve used for a vacuum circuit breaker and the like, which opens and closes an electric circuit, and more particularly to a vacuum valve which can efficiently diffuse an arc generated when the electric circuit is opened and closed.

真空バルブは、ガラス材、セラミック材等の絶縁材からなり内部が高真空に排気された有底円筒状の真空容器と、この真空容器の両端部にそれぞれ設けられた電極棒と、各電極棒の対向する端部に設けられた渦巻環状のコイル電極と、接点を補強する支持材と、円板状の接点とを備え、一方の電極棒を軸方向に移動させることにより、両接点(即ち固定側接点と可動側接点)を接触又は離隔して通電又は遮断を行うものである。   The vacuum valve is a bottomed cylindrical vacuum vessel made of an insulating material such as glass material or ceramic material and evacuated to a high vacuum, electrode rods provided at both ends of the vacuum vessel, and each electrode rod. A spiral-shaped coil electrode provided at the opposite end of the coil, a support member for reinforcing the contact, and a disk-shaped contact. By moving one of the electrode rods in the axial direction, both contacts (ie, The energization or interruption is performed by contacting or separating the fixed contact and the movable contact.

ここでコイル電極とは、主電極である固定側接点及び可動側接点の周囲に軸方向の磁界を発生させる電極であり、当該両接点の背面側に、接点の外周縁に沿った複数の弧状のコイル部が分割配置されている。コイル部の一端は軸中心へ接続するアーム部を有し、他端は接点と接続する突出部を有している。   Here, the coil electrode is an electrode that generates an axial magnetic field around the fixed-side contact and the movable-side contact, which are the main electrodes. Are arranged separately. One end of the coil portion has an arm portion connected to the center of the shaft, and the other end has a protrusion connected to a contact.

上述のようなコイル電極を有する真空バルブにおいては、通電によりコイル電極が軸方向の磁界を発生し、遮断時に不可避的に発生する接点間のアークを接点の径内に閉じ込めつつ接点表面に広く拡散させる。これにより接点表面に対し電流密度を下げることができ、接点材料の遮断能力が勝り電流遮断を行うことができる。   In a vacuum valve having a coil electrode as described above, the coil electrode generates an axial magnetic field when energized, and diffuses widely across the contact surface while confining the arc between the contacts, which is inevitably generated at the time of interruption, within the diameter of the contact. Let it. As a result, the current density can be reduced with respect to the contact surface, and the breaking ability of the contact material is superior, so that the current can be cut off.

真空バルブの遮断容量をより大きくするためには、このコイル電極と接点材料の開発が必要不可欠であり、これまでに様々な研究がなされてきた、その結果、真空バルブの遮断性能はコイル電極が発生させる軸方向磁界が強く、均一で、面積が広いほど良いことがわかっている。   In order to further increase the breaking capacity of a vacuum valve, the development of this coil electrode and contact material is indispensable, and various studies have been made so far. It has been found that the stronger and uniform the axial magnetic field to be generated and the larger the area, the better.

特開平6−150786号公報JP-A-6-150786 特開平1−117217号公報JP-A-1-117217

磁界によって接点間に発生するアークを広く拡散させることで遮断性能を向上させる方式の真空バルブは、特許文献1、2に説明されたように通電される電流が固定側と可動側の2つのコイル電極を流れ、コイル電極間に軸方向の磁界を発生させる。   As described in Patent Documents 1 and 2, a vacuum valve of a type in which an arc generated between contacts is diffused widely by a magnetic field to improve a breaking performance is a method in which currents to be supplied are two coils on a fixed side and a movable side. It flows through the electrodes and generates an axial magnetic field between the coil electrodes.

例えば特許文献1に示すように、固定側電極棒を経て固定側コイル電極に流れる電流は、固定側電極棒から円形に形成された固定側コイル電極へ繋がるアーム部、円弧状に分割されたコイル部、コイル部から接点へと接続する突出部を通り、固定側接点へと流れる。さらに固定側接点から可動側接点へ流れ、可動側コイル電極の突出部、コイル部、アーム部を経由して可動側電極棒へ流れる。   For example, as shown in Patent Literature 1, an electric current flowing through a fixed-side electrode rod via a fixed-side electrode rod is an arm portion connected from the fixed-side electrode rod to a circular fixed-side coil electrode, and a coil divided into an arc shape. Through the protruding portion that connects from the coil portion to the contact, and flows to the fixed contact. Furthermore, it flows from the fixed side contact to the movable side contact, and flows to the movable side electrode rod via the protruding part, the coil part, and the arm part of the movable side coil electrode.

この際、コイル部で発生する磁界は、固定側及び可動側のコイル部に同じ方向に電流が流れるように接続、配置することで、お互いに発生する磁界を強め合う方向に作用する。しかし、固定側コイル電極のアーム部は外周方向に電流が流れ、可動側コイル電極のアーム部では電極棒方向に流れるので、アーム部ではそれぞれの電流の方向は逆方向となり、そのため発生する磁界は打ち消し合う。また、固定側及び可動側のコイル部のそれぞれの突出部では、コイル部のように円周方向の電流が流れるのではなく、電極棒の軸線方向に電流が流れるので、コイル部のような軸線方向の磁界は生じない。   At this time, the magnetic field generated in the coil unit acts in a direction in which the magnetic fields generated from each other are strengthened by connecting and arranging the fixed side and the movable side coil units so that current flows in the same direction. However, current flows in the outer circumferential direction in the arm portion of the fixed coil electrode, and flows in the direction of the electrode rod in the arm portion of the movable coil electrode. Therefore, in the arm portion, the directions of the currents are opposite to each other. Cancel each other out. In addition, in the respective projecting portions of the fixed-side and movable-side coil portions, current does not flow in the circumferential direction as in the coil portion, but flows in the axial direction of the electrode rod. No directional magnetic field is produced.

このように、コイル部については固定側コイル部及び可動側コイル部の双方に生じる磁界が強め合い、軸線方向の強い磁界が生じるが、突出部、アーム部では磁界が弱くなり、又は打ち消し合い、軸線方向のアークを拡散させる磁界は生じず、両電極の周囲の磁界は不均一となる。   As described above, the magnetic field generated in both the fixed-side coil portion and the movable-side coil portion in the coil portion reinforces each other, and a strong magnetic field in the axial direction is generated, but the magnetic field is weakened or canceled out in the protruding portion and the arm portion, No magnetic field is created to diffuse the axial arc, and the magnetic field around both electrodes is non-uniform.

固定側コイル電極、可動側コイル電極の周囲の磁界を均一にするために、各電極の裏面に磁性体を配置し、電極間の磁界が弱い部分を補うことで、電極間に発生する軸線方向の磁界を均一にすることが可能であり、遮断性能を向上させることが知られている。しかし、電極の内部に磁性体を配置すると、磁性体の内部を通る磁束による電磁誘導が生じ、その結果、渦電流が発生して負荷電流の通電時に渦電流の発熱により温度が上昇し、信頼性が低下するという問題がある。   In order to equalize the magnetic field around the fixed coil electrode and the movable coil electrode, a magnetic material is placed on the back surface of each electrode to compensate for the weak magnetic field between the electrodes, so that the axial direction generated between the electrodes It is known that the magnetic field can be made uniform and the blocking performance is improved. However, when a magnetic material is placed inside the electrode, electromagnetic induction occurs due to magnetic flux passing through the inside of the magnetic material. As a result, an eddy current is generated, and the temperature rises due to the heat generated by the eddy current when a load current is supplied, resulting in a high reliability. There is a problem that the performance is reduced.

磁性体を真空バルブの真空容器の外側に配置すると、真空容器の遮蔽効果により渦電流は発生せず、発熱を防止し、信頼性を高めることはできる。同時に、固定側コイル電極と可動側コイル電極との間に生じる軸線方向の磁界を強めることが可能である。しかしこの配置では、磁性体の影響が広い範囲に影響するため、両電極のアーム部、突出部に対応した部分に見られる磁界の弱い部分を補い、電極間に生じる磁界の不均一性を改善することはできない。   When the magnetic material is arranged outside the vacuum vessel of the vacuum valve, no eddy current is generated due to the shielding effect of the vacuum vessel, heat generation is prevented, and reliability can be improved. At the same time, it is possible to increase the axial magnetic field generated between the fixed coil electrode and the movable coil electrode. However, in this arrangement, the magnetic material affects a wide range, so the weak magnetic field found in the arm and protruding parts of both electrodes is compensated, and the non-uniformity of the magnetic field generated between the electrodes is improved. I can't.

以上のように、磁性体を配置したことにより磁界を強くすることができ、遮断性能を向上させることはできるが、磁界を均一にすることができない。そのため、アークを十分に拡散することができず、電極の小型化、低コスト化を達成することができないという課題もあった。   As described above, by arranging the magnetic material, the magnetic field can be strengthened and the blocking performance can be improved, but the magnetic field cannot be made uniform. For this reason, there has been a problem that the arc cannot be sufficiently diffused, and the electrode cannot be reduced in size and cost.

また、例えば特許文献2に開示される例ではメタクラ等に配置される遮断器の端子引出カバーがコの字状であることに着目し、シールドの外側の全周の3/4周に亘って磁性体を配置しているが、例えばC−GISに内蔵される真空バルブのようなに端子引出バーが必ずしもコの字ではない場合があり、そのような場合には逆に磁界を不均一にするだけで遮断性能の向上は見込めなかった。   In addition, for example, in the example disclosed in Patent Document 2, attention is paid to the fact that the terminal lead-out cover of the circuit breaker arranged on the meta-clutch or the like has a U-shape, and over a 3/4 of the entire outer circumference of the shield. Although a magnetic material is arranged, the terminal extraction bar may not always be U-shaped, such as a vacuum valve built in C-GIS. In such a case, the magnetic field may be unevenly formed. It was not possible to expect an improvement in the breaking performance just by doing.

本発明はこのような課題を解決するためになされたもので、軸線方向の磁界を均一化することができ、かつ磁界を強くすることができる。さらに磁性体に生じる渦電流の発熱による温度上昇の影響を受けることがない。そのため、小型で遮断性能に優れる真空バルブを提供するものである。   The present invention has been made to solve such a problem, and can make the magnetic field in the axial direction uniform and can make the magnetic field strong. Further, there is no influence of temperature rise due to heat generated by eddy current generated in the magnetic material. Therefore, the present invention provides a vacuum valve that is small and has excellent shutoff performance.

本発明に係る真空バルブは、円筒状の絶縁円筒の一方の端部を固定側端板、他方の端部を可動側端板で覆う真空容器と、固定側端板に固設された固定側電極棒と、可動側端板に進退可能に設けられた可動側電極棒と、固定側電極棒と可動側電極棒の対向端に各々取り付けられた固定側電極、可動側電極と、真空容器の内側で、固定側電極と可動側電極の周りに配置したアークシールドと、を備え、 固定側電極と可動側電極は、相互に対向する固定側接点、可動側接点と、 固定側接点と可動側接点の背面に各々配置され、固定側電極棒と可動側電極棒の間に電流が流れる場合に、電極棒の軸線に直交する円周方向に電流を流す固定側コイル電極、可動側コイル電極を各々有し、固定側コイル電極と可動側コイル電極は、中央部分に位置し固定側電極棒、可動側電極棒と各々接続する固定側リング部、可動側リング部と、固定側リング部、可動側リング部の軸線に直交する面内に位置し、各々固定側スリット部、可動側スリット部により円周方向に複数に分割された同心円状の固定側コイル部、可動側コイル部と、固定側リング部、可動側リング部から軸線に直交する方向へ延出し、固定側リング部と固定側コイル部の一端、可動側リング部と可動側コイル部の一端を各々接続する複数本の固定側アーム部、可動側アーム部と、を有する真空バルブであって、固定側コイル電極、可動側コイル電極の円周方向に複数に分割された位置に各々対応して、アークシールドと真空容器との間に磁性体を備え、磁性体は、固定側コイル電極、可動側コイル電極に流れた電流によって発生された軸線方向の磁界を補正し、固定側コイル部と可動側コイル部に比べて、磁界を生じにくい部分である円周方向に複数に分割された位置の磁界に対する補正量をより大きくするように配置されることを特徴とする真空バルブ。
A vacuum valve according to the present invention includes a vacuum vessel that covers one end of a cylindrical insulating cylinder with a fixed end plate and the other end with a movable end plate, and a fixed side fixed to the fixed end plate. The electrode rod, the movable electrode rod provided to be movable back and forth on the movable end plate, the fixed electrode and the movable electrode attached to the opposite ends of the fixed electrode rod and the movable electrode rod, respectively. An inner side and an arc shield arranged around the fixed side electrode and the movable side electrode, wherein the fixed side electrode and the movable side electrode are opposed to each other, and the fixed side contact and the movable side contact, and the fixed side contact and the movable side A fixed-side coil electrode and a movable-side coil electrode that are arranged on the back of the contact and allow current to flow in a circumferential direction orthogonal to the axis of the electrode rod when current flows between the fixed-side electrode rod and the movable-side electrode rod. Each has a fixed side coil electrode and a movable side coil electrode located at the center and fixed The fixed side ring portion and the movable side ring portion which are respectively connected to the electrode bar and the movable side electrode bar, and the fixed side ring portion and the movable side ring portion are located in a plane orthogonal to the axis of the fixed side slit portion and the movable side, respectively. The concentric fixed-side coil part, the movable-side coil part, and the fixed-side ring part, which are divided into a plurality of parts in the circumferential direction by the slit part, extend from the fixed-side ring part, the movable-side ring part in a direction orthogonal to the axis, and the fixed-side ring part. A vacuum valve having one end of a fixed-side coil portion, a plurality of fixed-side arm portions connecting a movable-side ring portion and one end of a movable-side coil portion, and a movable-side arm portion. A magnetic material is provided between the arc shield and the vacuum vessel corresponding to each of the plurality of divided positions in the circumferential direction of the side coil electrode, and the magnetic material flows to the fixed side coil electrode and the movable side coil electrode. Axis generated by electric current Compensates the magnetic field in the linear direction, and arranges so that the amount of correction for the magnetic field at positions divided into a plurality of parts in the circumferential direction, which is a part that is less likely to generate a magnetic field, than the fixed side coil part and the movable side coil part, is larger. A vacuum valve characterized by being performed .

この発明の真空バルブによれば、コイル部によって発生する軸線方向の磁界を均一で広い範囲に発生させることができ、遮断性能に優れた真空バルブを得ることができる。同時に磁性体を電極内部に配置しないため、電流通電時の温度上昇も回避することができ、通電性能に優れた真空バルブを得ることができる。   ADVANTAGE OF THE INVENTION According to the vacuum valve of this invention, the magnetic field of the axial direction generate | occur | produced by a coil part can be generated uniformly and over a wide range, and the vacuum valve excellent in the shutoff performance can be obtained. At the same time, since the magnetic material is not disposed inside the electrode, a rise in temperature during current supply can be avoided, and a vacuum valve having excellent current supply performance can be obtained.

本発明の実施の形態1に係る真空バルブの縦断面図である。FIG. 2 is a vertical sectional view of the vacuum valve according to the first embodiment of the present invention. 本発明の実施の形態1に係る真空バルブの横断面図である。FIG. 2 is a cross-sectional view of the vacuum valve according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る真空バルブの磁界を表わす模式図である。FIG. 2 is a schematic diagram illustrating a magnetic field of the vacuum valve according to the first embodiment of the present invention. 本発明の実施の形態1に係る電極構成を示す分解斜視図である。FIG. 2 is an exploded perspective view illustrating an electrode configuration according to the first embodiment of the present invention. 本発明の実施の形態1に係る固定側コイル電極の平面図及び断面図である。FIG. 3 is a plan view and a cross-sectional view of the fixed-side coil electrode according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る真空バルブの横断面図である。FIG. 5 is a transverse sectional view of a vacuum valve according to a second embodiment of the present invention. 本発明の実施の形態3に係る真空バルブの横断面図である。FIG. 13 is a transverse sectional view of a vacuum valve according to Embodiment 3 of the present invention. 本発明の実施の形態4に係る真空バルブの横断面図である。FIG. 13 is a transverse sectional view of a vacuum valve according to Embodiment 4 of the present invention. 本発明の実施の形態に係る真空バルブの横断面図である。It is a cross-sectional view of the vacuum valve according to Embodiment 5 of the present invention. 本発明の実施の形態に係る真空バルブの横断面図である。FIG. 13 is a transverse sectional view of a vacuum valve according to Embodiment 6 of the present invention.

実施の形態の説明及び各図において、同一の符号を付した部分は、同一又は相当する部分を示すものである。   In the description of the embodiments and the drawings, parts denoted by the same reference numerals indicate the same or corresponding parts.

実施の形態1.
図1に本発明の実施の形態1に係る真空バルブの縦断面図、図2に固定側コイル電極、可動側コイル電極及び絶縁容器とアークシールドとの間の磁性体の配置を示す本発明の実施の形態1に係る真空バルブの横断面図を示す。また、図3には、本発明の実施の形態1に係る真空バルブの通電状態での磁界を表わす模式図を示す。さらに図4は本発明の電極の構造を示す分解斜視図であり、図5は本発明の固定側コイル電極の形状を示す平面図及び断面図である。
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view of a vacuum valve according to Embodiment 1 of the present invention, and FIG. 2 shows an arrangement of a fixed-side coil electrode, a movable-side coil electrode, and a magnetic body between an insulating container and an arc shield. 1 shows a cross-sectional view of a vacuum valve according to Embodiment 1. FIG. FIG. 3 is a schematic diagram showing a magnetic field when the vacuum valve according to Embodiment 1 of the present invention is energized. FIG. 4 is an exploded perspective view showing the structure of the electrode of the present invention, and FIG. 5 is a plan view and a sectional view showing the shape of the fixed coil electrode of the present invention.

図1に示すように、絶縁円筒1の上部の端部開口部を固定側端板2、下部の端部開口部を可動側端板3が覆っている。絶縁円筒1は絶縁材料で構成され、本実施の形態ではアルミナセラミックスを用いている。固定側端板2、可動側端板3は、それぞれ絶縁円筒1の端面にろう付けにより接合されている。   As shown in FIG. 1, the upper end opening of the insulating cylinder 1 is covered with the fixed end plate 2, and the lower end opening is covered with the movable end plate 3. The insulating cylinder 1 is made of an insulating material, and in this embodiment, alumina ceramics is used. The fixed-side end plate 2 and the movable-side end plate 3 are respectively joined to the end surfaces of the insulating cylinder 1 by brazing.

固定側端板2には固定側電極棒4がろう付けにより接合され、さらにこの固定側電極棒4に固定側電極10がろう付け接合されている。一方、可動側端板3には可動側電極棒5が移動可能な状態で取り付けられ、可動側電極棒5には可動側電極20がろう付けにより接合されている。   A fixed electrode rod 4 is joined to the fixed end plate 2 by brazing, and a fixed electrode 10 is joined to the fixed electrode rod 4 by brazing. On the other hand, the movable electrode 5 is attached to the movable end plate 3 in a movable state, and the movable electrode 20 is joined to the movable electrode 5 by brazing.

可動側端板3と可動側電極棒5との間には、真空バルブ内を真空に維持したまま可動側電極棒5が動作することができるよう蛇腹状のベローズ6が配置されている。このベローズ6は薄い金属板等を用いる。本実施の形態においては、薄いステンレス板を用いた。ベローズ6の上端にはベローズカバー7が可動側電極棒5にろう付けにより固定されている。   A bellows 6 having a bellows shape is arranged between the movable end plate 3 and the movable electrode bar 5 so that the movable electrode bar 5 can be operated while maintaining the vacuum in the vacuum valve. The bellows 6 uses a thin metal plate or the like. In the present embodiment, a thin stainless steel plate is used. A bellows cover 7 is fixed to the upper end of the bellows 6 by brazing to the movable electrode bar 5.

固定側電極10は固定側コイル電極12と円盤状の固定側接点11とからなり、可動側電極20は可動側コイル電極22と可動側接点21から形成される。電流遮断時には、固定側電極10の固定側接点11と可動側電極20の可動側接点21との間でアークが発生し金属蒸気により絶縁円筒1の内部は汚染される。この金属蒸気による汚染を抑制するために、固定側電極10と可動側電極20の周囲を囲むようにアークシールド8が配置されている。さらにアークシールド8の外面には、本発明のアークを均一に拡散するための磁性体9が配置されている。磁性体9の材質は通常の磁性体であれば用いることができ、特に限定するものではない。本実施の形態において、この磁性体9は鉄系合金を用いて作成した。     The fixed-side electrode 10 includes a fixed-side coil electrode 12 and a disk-shaped fixed-side contact 11, and the movable-side electrode 20 includes a movable-side coil electrode 22 and a movable-side contact 21. At the time of current interruption, an arc is generated between the fixed contact 11 of the fixed electrode 10 and the movable contact 21 of the movable electrode 20, and the inside of the insulating cylinder 1 is contaminated by metal vapor. In order to suppress the contamination by the metal vapor, the arc shield 8 is arranged so as to surround the fixed side electrode 10 and the movable side electrode 20. Further, on the outer surface of the arc shield 8, a magnetic body 9 for uniformly diffusing the arc of the present invention is arranged. The material of the magnetic body 9 can be used as long as it is a normal magnetic body, and is not particularly limited. In the present embodiment, the magnetic body 9 is made using an iron-based alloy.

次に図2〜5を用いて固定側電極10、可動側電極20の構造を説明する。図2は上述のように真空バルブの横断面図を示し、両電極10、20部分を上側(固定側端板2の側)から観察した状態を示している。そのため、固定側電極10の下面、固定側電極10の下側に位置する可動側電極20等は直接観察することができない。このように直接視認することができない部分については、図中の符番をカッコ書きとした。   Next, the structure of the fixed electrode 10 and the movable electrode 20 will be described with reference to FIGS. FIG. 2 is a cross-sectional view of the vacuum valve as described above, and shows a state in which both electrodes 10 and 20 are observed from above (the side of the fixed end plate 2). Therefore, the lower surface of the fixed side electrode 10, the movable side electrode 20 located below the fixed side electrode 10, and the like cannot be directly observed. In this manner, the parts that cannot be directly viewed are indicated by parentheses in the figure.

図3は両電極10、20部分の縦断面図を示しており、固定側コイル電極12と可動側コイル電極22との間に発生する磁界の状況を矢印で模式的に示している。図4は本発明の電極構造を示す分解斜視図で、固定側電極10、可動側電極20の構造を示しており、図5は固定側コイル電極12の形状を詳細に説明するもので、(a)平面図と(b)A−A部分の断面図を示している。   FIG. 3 is a vertical cross-sectional view of both electrodes 10 and 20, and schematically shows the state of a magnetic field generated between the fixed-side coil electrode 12 and the movable-side coil electrode 22 by arrows. FIG. 4 is an exploded perspective view showing the electrode structure of the present invention, and shows the structure of the fixed-side electrode 10 and the movable-side electrode 20, and FIG. 5 explains the shape of the fixed-side coil electrode 12 in detail. (a) is a plan view and (b) is a cross-sectional view of the AA portion.

図2、3に示すように固定側電極10と可動側電極20は、固定側接点11と可動側接点21とを対向させて配置し、それぞれの接点11、21の背面には固定側コイル電極12と可動側コイル電極22とが配置されている。固定側接点11は固定側支持材18を介して固定側電極棒4と機械的に支持され、可動側接点21は可動側支持材28を介して可動側電極棒5と機械的に支持されている。なお、固定側接点11、可動側接点21は、銀系合金や銅系合金を用いて形成するのが好ましく、固定側コイル電極12、可動側コイル電極22は銅または銅系の材料を用いて形成するのが好ましい。本実施の形態においては、固定側接点11、可動側接点21、および固定側コイル電極12、可動側コイル電極22のいずれも銅合金を用いた。また固定側支持材18、可動側支持材28は十分な強度を有することが求められ、本実施の形態においてはステンレス鋼を用いた。   As shown in FIGS. 2 and 3, the fixed-side electrode 10 and the movable-side electrode 20 are disposed with the fixed-side contact 11 and the movable-side contact 21 facing each other. 12 and the movable side coil electrode 22 are arranged. The fixed-side contact 11 is mechanically supported by the fixed-side electrode bar 4 via the fixed-side support member 18, and the movable-side contact 21 is mechanically supported by the movable-side electrode bar 5 via the movable-side support member 28. I have. The fixed contact 11 and the movable contact 21 are preferably formed using a silver-based alloy or a copper-based alloy, and the fixed-side coil electrode 12 and the movable-side coil electrode 22 are formed using copper or a copper-based material. Preferably, it is formed. In the present embodiment, the fixed-side contact 11, the movable-side contact 21, the fixed-side coil electrode 12, and the movable-side coil electrode 22 are all made of a copper alloy. Further, the fixed-side support member 18 and the movable-side support member 28 are required to have sufficient strength, and stainless steel is used in the present embodiment.

図2に示すように、本実施の形態においては、固定側電極10の固定側コイル電極12に形成された固定側コイル部15の間隙である固定側スリット部17と、可動側電極20の可動側コイル電極22に形成された可動側スリット部27とが、真空容器の上側(固定側端板2の側)から観察した場合に重なり合って配置するように設定した。この固定側電極10と可動側電極20の重なり方は、それぞれのスリット部17、27の位置が重なる配置に限定するものではなく、その他の重なり方であっても同様の効果を得ることができる。   As shown in FIG. 2, in the present embodiment, the fixed-side slit 17, which is a gap between the fixed-side coil 15 formed in the fixed-side coil electrode 12 of the fixed-side electrode 10, and the movable side electrode 20 The movable side slit portion 27 formed in the side coil electrode 22 is set so as to overlap with the movable side slit portion 27 when viewed from above the vacuum vessel (the side of the fixed side end plate 2). The manner in which the fixed-side electrode 10 and the movable-side electrode 20 overlap is not limited to the arrangement in which the positions of the respective slit portions 17 and 27 overlap, and similar effects can be obtained in other overlapping manners. .

このように配置した固定側電極10と可動側電極20の間には、電極どうしが接触して電流が流れた状態で、図3に矢印で示すように、固定側電極棒4、可動側電極棒5の軸線方向に沿う方向に磁界が発生する。この磁界によって電極間に生じるアークを分散させることができる。   In a state where the electrodes are in contact with each other and a current flows between the fixed-side electrode 10 and the movable-side electrode 20, the fixed-side electrode rod 4 and the movable-side electrode 20 are arranged as shown by arrows in FIG. A magnetic field is generated in a direction along the axis of the rod 5. The arc generated between the electrodes by this magnetic field can be dispersed.

図5に固定側コイル電極12を例にコイル電極の構造を説明する。可動側コイル電極22も基本的には固定側コイル電極12と同じ形状である。固定側コイル電極12は中心部分に、固定側電極棒4と接続する固定側リング部13を有し、この固定側リング部13から外周方向に向けて、ほぼ等間隔に延出された複数本(図では3本)の固定側アーム部14を有している。さらにこの固定側アーム部14の先端部分を円周方向に折り曲げ、円弧状の固定側コイル部15を形成している。固定側コイル部15は固定側アーム部14に対応して形成されており、固定側コイル部15の相互間に固定側スリット部17を有している。   FIG. 5 illustrates the structure of the coil electrode using the fixed-side coil electrode 12 as an example. The movable side coil electrode 22 also has basically the same shape as the fixed side coil electrode 12. The fixed-side coil electrode 12 has a fixed-side ring portion 13 connected to the fixed-side electrode rod 4 at the center portion, and a plurality of fixed-side coil electrodes 12 extending at substantially equal intervals from the fixed-side ring portion 13 toward the outer periphery. (Three in the figure). Further, the distal end portion of the fixed-side arm portion 14 is bent in the circumferential direction to form an arc-shaped fixed-side coil portion 15. The fixed side coil section 15 is formed corresponding to the fixed side arm section 14, and has a fixed side slit section 17 between the fixed side coil sections 15.

固定側アーム部14に接続された固定側コイル部15の先端部分には、固定側コイル電極12と、隣接して配置された固定側接点11とを電気的に接続するための突起部分である固定側突出部16が形成されている。この固定側突出部16は固定側コイル部15の先端部分に、固定側接点11とろう付けにより固定するために軸線方向に適当な長さだけ突出させて形成したものである。   The distal end portion of the fixed-side coil portion 15 connected to the fixed-side arm portion 14 is a protruding portion for electrically connecting the fixed-side coil electrode 12 and the adjacent fixed-side contact 11. A fixed-side protrusion 16 is formed. The fixed side protruding portion 16 is formed by protruding an appropriate length in the axial direction from the distal end portion of the fixed side coil portion 15 to be fixed to the fixed side contact 11 by brazing.

固定側コイル部15は、固定側リング部13の外周側の同心円上に配置されており、円周上に均等に分割(本実施の形態では3分割)し配置される。この固定側コイル部15に電流が流れることにより磁界を発生することができる。   The fixed-side coil portion 15 is arranged on a concentric circle on the outer peripheral side of the fixed-side ring portion 13 and is equally divided (three in the present embodiment) and arranged on the circumference. When a current flows through the fixed coil portion 15, a magnetic field can be generated.

固定側接点11と可動側接点21とが接続し、固定側電極棒4と可動側電極棒5との間に電流が流された場合の電流の方向を図4に矢印で記載した。電流は固定側電極棒4から可動側電極棒5へ流れている。   The direction of the current when the fixed contact 11 and the movable contact 21 are connected and a current flows between the fixed electrode 4 and the movable electrode 5 is indicated by an arrow in FIG. The current flows from the fixed electrode rod 4 to the movable electrode rod 5.

固定側電極棒4から流れた電流は、固定側コイル電極12の固定側リング部13から固定側アーム部14へ分流し、固定側コイル部15、固定側突出部16を経て、固定側接点11へ流れる。さらに、固定側電極10と可動側電極20との間に発生するアークを介して可動側接点21から可動側コイル電極22へ流れ、可動側コイル電極22の可動側突出部26、可動側コイル部25、可動側アーム部24を経て合流し、可動側電極棒5に流れる。この時、固定側コイル電極12及び可動側コイル電極22に流れた電流によって磁界が発生する。   The current flowing from the fixed-side electrode rod 4 is diverted from the fixed-side ring portion 13 of the fixed-side coil electrode 12 to the fixed-side arm portion 14, passes through the fixed-side coil portion 15, and the fixed-side protrusion 16, and passes through the fixed-side contact 11. Flows to Further, the current flows from the movable contact 21 to the movable coil electrode 22 via an arc generated between the fixed electrode 10 and the movable electrode 20, and the movable projection 26 and the movable coil part of the movable coil electrode 22. 25, they merge via the movable arm 24 and flow to the movable electrode rod 5. At this time, a magnetic field is generated by the current flowing through the fixed side coil electrode 12 and the movable side coil electrode 22.

本実施の形態においては上述のように、固定側コイル電極12の固定側スリット部17と可動側コイル電極22の可動側スリット部27とが重なって配置しており、図2に示すように、固定側コイル電極12の固定側アーム部14と可動側コイル電極22の可動側突出部26、固定側コイル電極12の固定側突出部16と可動側コイル電極22の可動側アーム部24とが重なって配置しており、固定側コイル電極12の固定側コイル部15と可動側コイル電極22の可動側コイル部25とが重なり合って配置している。   In the present embodiment, as described above, the fixed-side slit portion 17 of the fixed-side coil electrode 12 and the movable-side slit portion 27 of the movable-side coil electrode 22 are arranged so as to overlap with each other, as shown in FIG. The fixed arm 14 of the fixed coil electrode 12, the movable projection 26 of the movable coil electrode 22, the fixed projection 16 of the fixed coil electrode 12 and the movable arm 24 of the movable coil electrode 22 overlap. The fixed-side coil portion 15 of the fixed-side coil electrode 12 and the movable-side coil portion 25 of the movable-side coil electrode 22 are disposed so as to overlap with each other.

図4に示した電流の方向でもわかるように、重なり合う固定側コイル部15と可動側コイル部25では同じ方向に電流が流れるため強い軸線方向の磁界が生じる。固定側アーム部14と可動側突出部26、固定側突出部16と可動側アーム部24とが重なる部分では、軸線方向の磁界を生じる円周方向成分の電流が小さく、このままでは磁界は弱くなる。   As can be seen from the direction of the current shown in FIG. 4, a strong axial magnetic field is generated in the overlapping fixed-side coil portion 15 and movable-side coil portion 25 because current flows in the same direction. At the portion where the fixed arm 14 and the movable arm 26 overlap, and where the fixed arm 16 and the movable arm 24 overlap, the current of the circumferential component that generates the magnetic field in the axial direction is small, and the magnetic field is weakened as it is. .

本実施の形態においては、図2等に示すように、アークシールド8と絶縁円筒1との間に磁性体9を備えている。この磁性体9は均等な厚みの板状で、アークシールド8の曲面に沿って湾曲した形状をしている。固定側電極10と可動側電極20の突出部16、26とアーム部14、24とが重なる部分のように、円周方向の電流が小さく、軸線方向に磁界を生じにくい部分に対応した位置に磁性体9は取り付けられる。   In the present embodiment, as shown in FIG. 2 and the like, a magnetic body 9 is provided between the arc shield 8 and the insulating cylinder 1. The magnetic body 9 is a plate having a uniform thickness and has a curved shape along the curved surface of the arc shield 8. In a position corresponding to a portion where the current in the circumferential direction is small and a magnetic field is hardly generated in the axial direction, such as a portion where the projecting portions 16 and 26 of the fixed side electrode 10 and the movable side electrode 20 and the arm portions 14 and 24 overlap. The magnetic body 9 is attached.

本実施の形態においては、固定側コイル電極12の固定側アーム部14と可動側コイル電極22の可動側突出部26、固定側コイル電極12の固定側突出部16と可動側コイル電極22の可動側アーム部24とが重なる部分で軸線方向の磁界が生じにくく、固定側電極10、可動側電極20の軸中心からこの磁界を生じにくい領域を結ぶ線の延長線上の絶縁円筒1とアークシールド8の間に磁性体9は配置される。   In the present embodiment, the fixed-side arm 14 of the fixed-side coil electrode 12 and the movable-side protrusion 26 of the movable-side coil electrode 22, and the fixed-side protrusion 16 of the fixed-side coil electrode 12 and the movable side of the movable-side coil electrode 22 are movable. The magnetic field in the axial direction is hardly generated in the portion where the side arm 24 overlaps, and the insulating cylinder 1 and the arc shield 8 on the extension of the line connecting the axis center of the fixed electrode 10 and the movable electrode 20 with the hardly generated magnetic field. The magnetic body 9 is disposed between them.

この磁性体9の配置により、この磁界を生じにくい部分の磁界を強めることができ、軸線方向の磁界分布を均一化することが可能となり、電流遮断器にアークを拡散する面積が拡大するため遮断性能が向上する。   The arrangement of the magnetic body 9 can enhance the magnetic field in a portion where the magnetic field is unlikely to be generated, makes it possible to make the magnetic field distribution in the axial direction uniform, and expands the area where the arc is diffused in the current breaker, thereby cutting off the current. Performance is improved.

このように固定側コイル電極12と可動側コイル電極22との位置決めを固定側スリット部17と可動側スリット部27の重なりにより決めた場合、磁性体9の幅WFは、磁界解析の結果、図2に示すように磁性体の内側半径RF、コイルの半径RC、コイル突出部の幅WC、スリット部の幅WSを用いて、WC≦WF≦(2×WC+WS)×RF/RCとするとき、つまり磁性体9の幅WFをコイル突出部の幅WC以上とし、かつ磁界が弱くなる領域の幅である、コイル突出部の幅WCの2倍とスリット部の幅WSとの和に半径の比率を乗じた値以下とした場合、磁界分布を特に均一とすることができる。   When the positioning of the fixed-side coil electrode 12 and the movable-side coil electrode 22 is determined by the overlapping of the fixed-side slit portion 17 and the movable-side slit portion 27, the width WF of the magnetic body 9 is determined by a magnetic field analysis. As shown in FIG. 2, when WC ≦ WF ≦ (2 × WC + WS) × RF / RC using the inner radius RF of the magnetic material, the radius RC of the coil, the width WC of the coil protrusion, and the width WS of the slit portion, In other words, the ratio of the radius to the sum of twice the width WC of the coil protrusion and the width WS of the slit, which is the width of the region where the magnetic field is weakened, is set so that the width WF of the magnetic body 9 is equal to or larger than the width WC of the coil protrusion. , The magnetic field distribution can be made particularly uniform.

本実施の形態1に記載した構造を用いることで、電極内部に磁性体9を配置し、通電したときに生じる温度上昇なしに、磁界を均一にすることができるため、小形で遮断性能に優れた真空バルブを得ることができる。   By using the structure described in the first embodiment, the magnetic body 9 can be arranged inside the electrode and the magnetic field can be made uniform without a rise in temperature when energized. Vacuum valve can be obtained.

実施の形態2.
本実施の形態に係る真空バルブの横断面図を図6に示す。なお、図6においても、図2と同様に、固定側電極10、可動側電極20を上側(固定側端板2の側)から観察しているので固定側電極10の下面、固定側電極10の下側に位置する可動側電極20等は直接観察することができない。このように直接視認することができない部分については、図中の符番をカッコ書きとした。
Embodiment 2 FIG.
FIG. 6 shows a cross-sectional view of the vacuum valve according to the present embodiment. In FIG. 6, similarly to FIG. 2, since the fixed side electrode 10 and the movable side electrode 20 are observed from above (the side of the fixed side end plate 2), the lower surface of the fixed side electrode 10 and the fixed side electrode 10 The movable-side electrode 20 and the like located underneath cannot be directly observed. In this manner, the parts that cannot be directly viewed are indicated by parentheses in the figure.

本実施の形態に係る真空バルブの基本的な構成は実施の形態1に係る真空バルブと同じであり、実施の形態1に係る真空バルブでは固定側コイル電極12及び可動側コイル電極22が、それぞれ3つの固定側コイル部15、可動側コイル部25に分割され、固定側スリット部17と可動側スリット部27とが重なり合うように配置されていたのに対し、本実施の形態においては、固定側コイル部15、可動側コイル部25が4つに分割され、固定側突出部16と可動側突出部26の位置が重なるように配置されている点で異なっている。   The basic configuration of the vacuum valve according to the present embodiment is the same as that of the vacuum valve according to the first embodiment. In the vacuum valve according to the first embodiment, the fixed-side coil electrode 12 and the movable-side coil electrode 22 are respectively provided. In contrast to the three fixed-side coil portions 15 and the movable-side coil portion 25, which are arranged so that the fixed-side slit portion 17 and the movable-side slit portion 27 overlap each other, in the present embodiment, The difference is that the coil portion 15 and the movable side coil portion 25 are divided into four, and the fixed side projecting portion 16 and the movable side projecting portion 26 are arranged so as to overlap.

固定側コイル電極12、可動側コイル電極22をそれぞれの突出部が重なるように位置を合わせた場合においても、固定側コイル部15と可動側コイル部25とが重なる部分では、固定側電極10、可動側電極20の間に電流が流れたときに、同じ円周方向に電流が流れるため軸線方向に強い磁界を生じることができるが、固定側突出部16と可動側突出部26とが重なる部分付近では円周方向の電流は小さく、生じる磁界も弱くなる。   Even in the case where the fixed-side coil electrode 12 and the movable-side coil electrode 22 are positioned so that their respective protruding portions overlap, in the portion where the fixed-side coil part 15 and the movable-side coil part 25 overlap, the fixed-side electrode 10, When a current flows between the movable electrodes 20, a strong magnetic field can be generated in the axial direction because the current flows in the same circumferential direction. However, the portion where the fixed-side protrusion 16 and the movable-side protrusion 26 overlap with each other. In the vicinity, the current in the circumferential direction is small, and the generated magnetic field is also weak.

電極の軸中心から固定側突出部16、可動側突出部26が重なる部分を結ぶ延長線上で、かつ絶縁円筒1とアークシールド8との間に磁性体9を配置する。この磁性体9は実施の形態1と同様に均等な厚みの板状で、アークシールド8の曲面に沿って湾曲した形状であり、本実施の形態では鉄コバルト合金を用いた。磁性体9の配置により固定側突出部16と可動側突出部26とが重なる部分付近の磁界が強められ、磁界分布を均一化することができ、電流遮断時にアークを拡散する面積を拡大することができるため遮断特性を向上させることができる。   The magnetic body 9 is arranged on an extension line connecting a portion where the fixed-side protrusion 16 and the movable-side protrusion 26 overlap from the center of the electrode axis and between the insulating cylinder 1 and the arc shield 8. The magnetic body 9 has a plate shape having a uniform thickness as in the first embodiment and has a shape curved along the curved surface of the arc shield 8, and in the present embodiment, an iron-cobalt alloy is used. Due to the arrangement of the magnetic body 9, the magnetic field near the portion where the fixed side protrusion 16 and the movable side protrusion 26 overlap is strengthened, the magnetic field distribution can be made uniform, and the area where the arc is diffused when current is interrupted can be enlarged. Therefore, the cutoff characteristics can be improved.

固定側突出部16と可動側突出部26とが重なるように固定側電極10と可動側電極20とを配置した場合、磁性体9の幅WFは、磁性体9の内半径をRF、突出部幅をWC、アーム部幅をWA、スリット部の幅をWS、コイルの半径をRCとしたとき、WC≦WF≦(2×WA+WC+2×WS)×RF/RCとする時、つまり磁性体9の幅WFをコイル突出部の幅WC以上とし、かつ磁界が弱くなる領域の幅である、アーム部に幅WAの2倍とコイル突出部の幅WCとスリット部の幅WSの2倍との和に半径の比率を乗じた値以下とした場合、磁界分布を特に均一にすることができることが磁界解析により判明した。   When the fixed-side electrode 10 and the movable-side electrode 20 are arranged so that the fixed-side protrusion 16 and the movable-side protrusion 26 overlap, the width WF of the magnetic body 9 is RF, the inner radius of the magnetic body 9 is RF, and the protrusion is When the width is WC, the width of the arm is WA, the width of the slit is WS, and the radius of the coil is RC, when WC ≦ WF ≦ (2 × WA + WC + 2 × WS) × RF / RC, that is, The width WF is equal to or larger than the width WC of the coil protrusion, and the width of the region where the magnetic field is weakened is the sum of twice the width WA of the arm, the width WC of the coil protrusion, and twice the width WS of the slit. It has been found from magnetic field analysis that the magnetic field distribution can be made particularly uniform when the value is less than or equal to the value obtained by multiplying by the ratio of the radius.

本実施の形態に示した真空バルブの構造では、電極内部に磁性体9を配置しないため電流通電時の温度上昇による悪影響を受けることなく、磁界を均一にすることができ、小形で遮断性能に優れた真空バルブを得ることができる。   In the structure of the vacuum valve shown in the present embodiment, since the magnetic body 9 is not disposed inside the electrode, the magnetic field can be made uniform without being adversely affected by a rise in temperature when current is applied, and the size is reduced, and the cutoff performance is improved. An excellent vacuum valve can be obtained.

実施の形態3.
本実施の形態に係る真空バルブの横断面図を図7に示す。なお、図7においても、図2と同様に、固定側電極10、可動側電極20を上側(固定側端板2の側)から観察しているので固定側電極10の下面、固定側電極10の下側に位置する可動側電極20等は直接観察することができない。このように直接視認することができない部分については、図中の符番をカッコ書きとした。
Embodiment 3 FIG.
FIG. 7 shows a cross-sectional view of the vacuum valve according to the present embodiment. In FIG. 7, similarly to FIG. 2, since the fixed side electrode 10 and the movable side electrode 20 are observed from above (the side of the fixed side end plate 2), the lower surface of the fixed side electrode 10 and the fixed side electrode 10 The movable-side electrode 20 and the like located underneath cannot be directly observed. In this manner, the parts that cannot be directly viewed are indicated by parentheses in the figure.

本実施の形態に係る真空バルブの基本的な構成は実施の形態1に記載の真空バルブと同じであり、固定側電極10を構成する固定側コイル部15、可動側電極20を構成する可動側コイル部25が各々3つに分割され、重なり合って配置されている。本実施の形態では、これに対応して絶縁円筒1とアークシールド8との間に配置した3つの磁性体の構成が異なっている。   The basic configuration of the vacuum valve according to the present embodiment is the same as that of the vacuum valve according to the first embodiment, and includes a fixed-side coil unit 15 constituting the fixed-side electrode 10 and a movable side constituting the movable-side electrode 20. Each of the coil portions 25 is divided into three, and is arranged so as to overlap. In the present embodiment, the configuration of the three magnetic members disposed between the insulating cylinder 1 and the arc shield 8 is correspondingly different.

なお、本実施の形態およびこれ以降に示す実施の形態においては、基本的に実施の形態1と固定側電極10、可動側電極20の形状、配置が同様の構成を用いて説明しているが、これに限定されるものではない。固定側電極10、可動側電極20の形状、配置を実施の形態2に示したように、コイル部15、25を4分割して突出部16、26どうしを重なり合う構成とすることもでき、またそれ以外の構成とすることもできる。ただし、固定側電極10、可動側電極20の形状、配置を変更した場合、磁性体9等その他の構成も同時に変更する必要がある場合もあり注意が必要である。   In this embodiment and the following embodiments, basically, the shapes and arrangements of the fixed electrode 10 and the movable electrode 20 are the same as those of the first embodiment. However, the present invention is not limited to this. As shown in Embodiment 2, the shapes and arrangements of the fixed side electrode 10 and the movable side electrode 20 can be divided into four parts of the coil parts 15 and 25 so that the projecting parts 16 and 26 overlap each other. Other configurations are also possible. However, when the shapes and arrangements of the fixed side electrode 10 and the movable side electrode 20 are changed, it may be necessary to change other configurations such as the magnetic body 9 at the same time.

実施の形態1においては、磁性体9は鉄系の合金を用い、均等な厚みの板状で、アークシールド8の形状に沿って湾曲させた形状を用いていた。本実施の形態においては、磁性体9cが2種類の磁性体材料により構成され、円周方向の両端に位置する磁性体9aと、中央部分に位置する磁性体9bを構成する磁性体材料が異なっている。具体的には磁性体9cの円周方向の両端の磁性体9aは鉄からなり、中央部分の磁性体9bは純鉄よりも透磁率の高い鉄コバルト合金で形成されている。   In the first embodiment, the magnetic body 9 is made of an iron-based alloy, has a plate shape having a uniform thickness, and has a shape curved along the shape of the arc shield 8. In the present embodiment, the magnetic material 9c is made of two types of magnetic materials, and the magnetic material constituting the magnetic material 9a located at both ends in the circumferential direction and the magnetic material forming the magnetic material 9b located at the central portion are different. ing. Specifically, the magnetic bodies 9a at both ends in the circumferential direction of the magnetic body 9c are made of iron, and the magnetic body 9b at the center is made of an iron-cobalt alloy having a higher magnetic permeability than pure iron.

本実施の形態においては、固定側電極10と可動側電極20の位置関係は、実施の形態1と同様であり、それぞれのスリット部17、27が一致するように配置している。この時、固定側コイル電極12のアーム部14と可動側コイル電極22の突出部26とが重なり、また固定側コイル電極12の突出部16と可動側コイル電極22のアーム部24とが重なり合う。これらの部分では円周方向の電流が小さく、生じる磁界も弱くなる。   In the present embodiment, the positional relationship between the fixed-side electrode 10 and the movable-side electrode 20 is the same as in the first embodiment, and the slits 17 and 27 are arranged so as to match. At this time, the arm 14 of the fixed-side coil electrode 12 and the protrusion 26 of the movable-side coil electrode 22 overlap, and the protrusion 16 of the fixed-side coil electrode 12 and the arm 24 of the movable-side coil electrode 22 overlap. In these portions, the current in the circumferential direction is small, and the generated magnetic field is also weak.

この磁界の低い部分を詳細に検討すると、その中央部分で最も磁界が弱く、周辺部分ではやや強くなっている。本実施の形態に用いた磁性体9cは両端には透磁率が低い磁性体材料を用い、中央部分には透磁率の高い磁性体材料を用いているので、中央部分の特に磁界が弱い部分では大きく磁界を強め、その周囲の部分のやや磁界が低い部分では磁界を強める効果は比較的小さく、磁界の分布をより均一にすることができ、小形で遮断特性に優れた真空バルブを得ることができる。   When the low magnetic field portion is examined in detail, the magnetic field is weakest at the center portion and slightly strong at the peripheral portion. The magnetic material 9c used in the present embodiment uses a magnetic material having a low magnetic permeability at both ends and a magnetic material having a high magnetic permeability at the central portion. The effect of strengthening the magnetic field is relatively small in the area where the magnetic field is greatly increased and the surrounding magnetic field is slightly lower, so that the distribution of the magnetic field can be made more uniform, and a compact vacuum valve with excellent shut-off characteristics can be obtained. it can.

本実施の形態において、両端の磁性体9aは、それぞれ磁性体9cの全体の1/4の幅とし、中央部分の磁性体9bは磁性体9cの全体の1/2の幅として3つの部分に分割したがこれに限定されるものではなく、分割比率は自由に設定することができる。ただし、両端部分には透磁率の低い磁性体、中央部分には透磁率の高い磁性体を用いることが重要である。   In the present embodiment, the magnetic bodies 9a at both ends have a width of 1 / of the entire magnetic body 9c, and the magnetic body 9b at the center has three widths of 1 / of the whole magnetic body 9c. Although the division is made, the invention is not limited to this, and the division ratio can be freely set. However, it is important to use a magnetic material having low magnetic permeability at both ends and a magnetic material having high magnetic permeability at the center.

本実施の形態に示した真空バルブの構造では、電極内部に磁性体9を配置しないため電流通電時の温度上昇による信頼性の低下はなく、磁界を均一にすることができ、小形で遮断性能に優れた真空バルブを得ることができる。   In the structure of the vacuum valve shown in the present embodiment, since the magnetic body 9 is not disposed inside the electrode, there is no reduction in reliability due to a rise in temperature when current is applied, the magnetic field can be made uniform, and the size and the breaking performance can be reduced. It is possible to obtain an excellent vacuum valve.

実施の形態4.
本実施の形態に係る真空バルブの横断面図を図8に示す。なお、図8においても、図2と同様に、固定側電極10、可動側電極20を上側(固定側端板2の側)から観察しているので固定側電極10の下面、固定側電極10の下側に位置する可動側電極20等は直接観察することができない。このように直接視認することができない部分については、図中の符番をカッコ書きとした。
Embodiment 4 FIG.
FIG. 8 shows a cross-sectional view of the vacuum valve according to the present embodiment. In FIG. 8, similarly to FIG. 2, since the fixed-side electrode 10 and the movable-side electrode 20 are observed from above (the side of the fixed-side end plate 2), the lower surface of the fixed-side electrode 10 and the fixed-side electrode 10 The movable-side electrode 20 and the like located underneath cannot be directly observed. In this manner, the parts that cannot be directly viewed are indicated by parentheses in the figure.

本実施の形態に係る真空バルブの基本的な構成は実施の形態1に記載の真空バルブと同じであり、固定側電極10を構成する固定側コイル部15、可動側電極20を構成する可動側コイル部25が各々3つに分割されている。これらの構成は、上述のように一例であり、これ以外の構成であっても用いることができる。   The basic configuration of the vacuum valve according to the present embodiment is the same as that of the vacuum valve according to the first embodiment, and includes a fixed-side coil unit 15 constituting the fixed-side electrode 10 and a movable side constituting the movable-side electrode 20. Each of the coil portions 25 is divided into three. These configurations are examples as described above, and other configurations can be used.

本実施の形態では、絶縁円筒1とアークシールド8との間に配置した3つの磁性体の形状が異なっている。実施の形態1においては、均等な厚みの板状の鉄系合金を用い、アークシールド8の形状に合わせて湾曲した形状の磁性体9を用いていた。本実施の形態においては、鉄系合金を用い、アークシールド8の形状に合わせて湾曲させた磁性体9dを用いる点では実施の形態1と同じであるが、磁性体9dの厚みが均一ではなく、円周方向の両端が薄く、中央部分が厚くなっている点で異なっている。   In the present embodiment, the shapes of three magnetic bodies disposed between the insulating cylinder 1 and the arc shield 8 are different. In the first embodiment, a plate-like iron-based alloy having a uniform thickness is used, and the magnetic body 9 that is curved in accordance with the shape of the arc shield 8 is used. The present embodiment is the same as the first embodiment in that an iron-based alloy is used and a magnetic body 9d curved in accordance with the shape of the arc shield 8 is used, but the thickness of the magnetic body 9d is not uniform. The difference is that both ends in the circumferential direction are thin and the center part is thick.

電極間の通電時に発生する磁界が弱くなる部分は、その中央部分で最も磁界が弱く、その周囲では中央部分よりやや強くなる。一方、磁性体9dの形状が中央部分が厚く、円周方向の両端が薄くなっている。薄い部分ほど磁気飽和が起こりやすく磁界を強める効果は少ないため、最も磁界が弱い中央部分に対応する磁性体9dは厚く、磁界を強める効果が大きく、反対に円周方向の両端では磁性体9dは薄く磁界を強める効果は弱くなるため、磁性体9を用いないときの磁界分布を補い、磁界の分布をより均一にすることができ、小形で遮断特性に優れた真空バルブを得ることができる。   The portion where the magnetic field generated when the current flows between the electrodes is weakest at the central portion, and is slightly stronger around the central portion than at the central portion. On the other hand, the shape of the magnetic body 9d is thick at the center and thin at both ends in the circumferential direction. Since the thinner portion is more likely to cause magnetic saturation and has less effect of strengthening the magnetic field, the magnetic material 9d corresponding to the central portion where the magnetic field is weakest is thicker and has a greater effect of strengthening the magnetic field. Since the effect of strengthening the magnetic field is weakened, the magnetic field distribution when the magnetic body 9 is not used is supplemented, the magnetic field distribution can be made more uniform, and a small-sized vacuum valve having excellent shut-off characteristics can be obtained.

本実施の形態に示した真空バルブの構造では、電極内部に磁性体9を配置しないため電流通電時の温度上昇による悪影響を受けることなく、磁界を均一にすることができ、小形で遮断性能に優れた真空バルブを得ることができる。   In the structure of the vacuum valve shown in the present embodiment, since the magnetic body 9 is not disposed inside the electrode, the magnetic field can be made uniform without being adversely affected by a rise in temperature when current is applied, and the size is reduced, and the cutoff performance is improved. An excellent vacuum valve can be obtained.

実施の形態5.
本実施の形態に係る真空バルブの横断面図を図9に示す。なお、図9においても、図2等と同様に上側(固定側端板2の側)から観察しており、直接視認することができない部分については、図中の符番をカッコ書きとした。
Embodiment 5 FIG.
FIG. 9 shows a cross-sectional view of the vacuum valve according to the present embodiment. Also in FIG. 9, as in FIG. 2 and the like, observation is made from the upper side (the side of the fixed-side end plate 2).

本実施の形態に係る真空バルブも基本的な構成は実施の形態1に記載の真空バルブと同じで、固定側電極10を構成する固定側コイル部15、可動側電極20を構成する可動側コイル部25が各々3か所に分かれて配置している。これらの配置は一例であり、これらと異なる構成も用いることができる。   The basic configuration of the vacuum valve according to the present embodiment is the same as that of the vacuum valve according to the first embodiment, and the fixed coil portion 15 that forms the fixed electrode 10 and the movable coil that forms the movable electrode 20. The parts 25 are respectively arranged in three places. These arrangements are merely examples, and configurations different from these can also be used.

本実施の形態においては、それぞれの磁性体9hが上下方向(軸線方向)に延びる棒状である点が異なっている。実施の形態1においては、磁性体9は鉄系の合金を用い、均一な厚みの板状で、アークシールド8の形状に沿って湾曲した形状をしている。本実施の形態においては、磁性体9hは上下方向(軸線方向)に延びる棒状の部材に5分割されており、両端の2つの磁性体9g、中間位置の2つの磁性体9f、中央部分の一つの磁性体9eで構成されている。   The present embodiment is different from the first embodiment in that each magnetic body 9h has a bar shape extending in the vertical direction (axial direction). In the first embodiment, the magnetic body 9 is made of an iron-based alloy, has a plate shape with a uniform thickness, and has a shape that is curved along the shape of the arc shield 8. In the present embodiment, the magnetic body 9h is divided into five rod-like members extending in the up-down direction (axial direction), two magnetic bodies 9g at both ends, two magnetic bodies 9f at an intermediate position, and a central portion. It is composed of two magnetic bodies 9e.

5つの磁性体9hの断面積は、周囲の磁性体9g<中間位置の磁性体9h<中央部分の磁性体9eの関係となっており、それぞれの磁性体の取付間隔も中央部分から両端に向けて広くなるように構成している。このような磁性体9hの構成とすることにより、左右方向(円周方向)に見ると磁性体9は中央部分の方が両端の部分よりも断面積が広く、両端よりも中央部の方が磁界を強める効果が大きい。   The cross-sectional area of the five magnetic bodies 9h has a relation of the surrounding magnetic bodies 9g <the magnetic body 9h at the intermediate position <the magnetic body 9e at the central part, and the mounting interval of each magnetic body is also from the central part to both ends. It is configured to be wider. With such a configuration of the magnetic body 9h, when viewed in the left-right direction (circumferential direction), the magnetic body 9 has a larger cross-sectional area at the center than at both ends, and the center of the magnetic body 9 is larger than both ends. The effect of strengthening the magnetic field is great.

本実施の形態においては、固定側電極10と可動側電極20の位置関係は、実施の形態1と同様であり、それぞれのスリット部17、27が一致するように配置している。このスリット部17、27を中心とする部分では円周方向の電流が小さく、生じる磁界も弱くなる。さらに詳細には、中央部分で最も磁界が弱く、両端ではやや強くなっている。   In the present embodiment, the positional relationship between the fixed-side electrode 10 and the movable-side electrode 20 is the same as in the first embodiment, and the slits 17 and 27 are arranged so as to coincide with each other. In the portion around the slits 17 and 27, the current in the circumferential direction is small, and the generated magnetic field is also weak. More specifically, the magnetic field is weakest at the center and slightly stronger at both ends.

この磁界が弱くなる部分に、本実施の形態に用いた5つに分割した磁性体9hを用いると中央部分では磁界を強める効果が大きく、両端では磁界を強める効果が小さいので、磁界の分布を均一にすることができ、小形で遮断特性に優れた真空バルブを得ることができる。   If the magnetic material 9h divided into five portions used in the present embodiment is used in the portion where the magnetic field is weakened, the effect of strengthening the magnetic field is large at the center portion and the effect of strengthening the magnetic field at both ends is small, so that the distribution of the magnetic field is reduced. It is possible to obtain a vacuum valve which can be made uniform, small and excellent in shut-off characteristics.

本実施の形態においては、磁性体9hを5分割にし、両端方向(円周方向)の磁性体ほど細く、設置間隔を広くしたが、磁性体の幅、設置間隔は特に限定するものではなく、磁性体の断面積が、中央部分で広く、両端の部分では狭くなるようにすればよい。   In the present embodiment, the magnetic body 9h is divided into five parts, and the magnetic body in the both ends direction (circumferential direction) is narrower and the installation interval is widened. However, the width and the installation interval of the magnetic body are not particularly limited. The cross-sectional area of the magnetic body may be wide at the center and narrow at both ends.

本実施の形態に示した真空バルブの構造では、電極内部に磁性体を配置しないため電流通電時の温度上昇による悪影響を受けることなく、磁界を均一にすることができ、小形で遮断性能に優れた真空バルブを得ることができる。     In the structure of the vacuum valve shown in the present embodiment, no magnetic material is arranged inside the electrode, so that the magnetic field can be made uniform without being adversely affected by a temperature rise when current is supplied, and the size is excellent and the breaking performance is excellent. Vacuum valve can be obtained.

実施の形態
本実施の形態に係る真空バルブの横断面図を図10に示す。なお、図10においても、図2等と同様に上側(固定側端板2の側)から観察しており、直接視認することができない部分については、図中の符番をカッコ書きとした。
Embodiment 6
FIG. 10 shows a cross-sectional view of the vacuum valve according to the present embodiment. Also, in FIG. 10, as in FIG. 2 and the like, the part is observed from the upper side (the side of the fixed end plate 2), and the parts that cannot be directly viewed are indicated by parentheses in the figure.

本実施の形態に係る真空バルブも基本的な構成は実施の形態1に記載した真空バルブと同じで、固定側電極10を構成する固定側コイル部15、可動側電極20を構成する可動側コイル部25が各々3つに分かれて、重なって配置されている。上述のようにこの構成は一例であり、異なる構成であっても用いることができる。   The basic configuration of the vacuum valve according to the present embodiment is the same as that of the vacuum valve described in the first embodiment, and includes a fixed-side coil unit 15 forming the fixed-side electrode 10 and a movable-side coil forming the movable-side electrode 20. The parts 25 are respectively divided into three parts and arranged so as to overlap. As described above, this configuration is an example, and a different configuration can be used.

例えば実施の形態1においては、磁性体は、固定側電極10と可動側電極20とによって生じる磁界が弱くなる部分に対応した位置に配置されていた。具体的には、実施の形態1においては、固定側電極10の固定側スリット部17と可動側電極20の可動側スリット部27が重なるように配置されており、この部分近傍では磁界が弱くなる。そこでこの部分に対応した位置に磁性体9を配置していた。   For example, in the first embodiment, the magnetic body is arranged at a position corresponding to a portion where the magnetic field generated by the fixed electrode 10 and the movable electrode 20 is weakened. Specifically, in the first embodiment, the fixed-side slit 17 of the fixed-side electrode 10 and the movable-side slit 27 of the movable-side electrode 20 are arranged so as to overlap with each other. . Therefore, the magnetic body 9 is arranged at a position corresponding to this portion.

本実施の形態においては、アークシールド8自体を磁性体材料で形成して、磁性体(兼アークシールド)9を形成し、実施の形態1で磁性体9を配置した部分、つまり固定側電極10と可動側電極20とによって生じる磁界の弱い部分では、磁性体9の厚みを大きくして磁性体(肉厚部)9を形成する。
In the present embodiment, the arc shield 8 itself is formed of a magnetic material to form a magnetic body (also serving as an arc shield) 9j, and the portion where the magnetic body 9 is arranged in the first embodiment, that is, the fixed-side electrode the magnetic field weak portion caused by the 10 and the movable electrode 20, the magnetic body by increasing the thickness of the magnetic body 9 j (thick portions) to form a 9 i.

本実施の形態では、磁性体(兼アークシールド)9は磁性体(肉厚部)9も含めて鉄系の合金を用いて形成している。磁性体(兼アークシールド)9の薄い部分も磁性体(肉厚部)9とも同じ材質で形成しているので基本的には透磁率は同じであり、磁界を強くする効果は同じであるが、薄い部分に比べ磁性体(肉厚部)9では、実施の形態4でも説明したように磁気飽和が起こりにくく、電界を強める効果も大きい。そのため磁界の分布を均一にすることができ、小形で遮断特性に優れた真空バルブを得ることができる 。
In the present embodiment, the magnetic body (also serving as an arc shield) 9j is formed using an iron-based alloy including the magnetic body (thick portion) 9i . Basically, the magnetic permeability so thin portion of the magnetic material (and arc shield) 9 j is also formed in the same material as the magnetic material (thick portion) 9 i is the same, the effect of strong magnetic field the same the case, the magnetic material (thick portion) in 9 i compared to the thin portion, the magnetic saturation hardly occurs as described in the fourth embodiment, the effect is large to strengthen the electric field. Therefore, the distribution of the magnetic field can be made uniform, and a small-sized vacuum valve having excellent shut-off characteristics can be obtained.

本実施の形態に示した真空バルブの構造では、電極内部に磁性体を配置しないため電流通電時の温度上昇による悪影響を受けることなく、磁界を均一にすることができ、小形で遮断性能に優れた真空バルブを得ることができる。   In the structure of the vacuum valve shown in the present embodiment, no magnetic material is arranged inside the electrode, so that the magnetic field can be made uniform without being adversely affected by a temperature rise when current is supplied, and the size is excellent and the breaking performance is excellent. Vacuum valve can be obtained.

1 絶縁円筒、2 固定側端板、3 可動側端板、4 固定側電極棒、5 可動側電極棒、6 ベローズ、7 ベローズカバー、8 アークシールド、9 磁性体、9a、b、c、d、e、f、g、h、i、j、k、m 磁性体、10 固定側電極、11固定側接点、12 固定側コイル電極、13 固定側リング部、14 固定側アーム部、15 固定側コイル部、16 固定側突出部、17 固定側スリット部、18 固定側支持材、20 可動側電極、21 可動側接点、22 可動側コイル電極、23 可動側リング部、24 可動側アーム部、25 可動側コイル部、26 可動側突出部、27 可動側スリット部、28 可動側支持材、RF 磁性体内半径、WF 磁性体幅、RC コイル半径、WC 突出部幅、WA アーム部幅。WS スリット部幅。 DESCRIPTION OF SYMBOLS 1 Insulated cylinder, 2 fixed end plate, 3 movable end plate, 4 fixed electrode rod, 5 movable electrode rod, 6 bellows, 7 bellows cover, 8 arc shield, 9 magnetic body, 9a, b, c, d , E, f, g, h, i, j, k, m Magnetic material, 10 fixed side electrode, 11 fixed side contact, 12 fixed side coil electrode, 13 fixed side ring, 14 fixed side arm, 15 fixed side Coil part, 16 fixed side protrusion, 17 fixed side slit part, 18 fixed side support material, 20 movable side electrode, 21 movable side contact, 22 movable side coil electrode, 23 movable side ring part, 24 movable side arm part, 25 Movable coil, 26 Movable protrusion, 27 Movable slit, 28 Movable support, RF magnetic material radius, WF magnetic material width, RC coil radius, WC protrusion width, WA arm width. WS Slit width.

Claims (12)

円筒状の絶縁円筒の一方の端部を固定側端板、他方の端部を可動側端板で覆う真空容器と、
前記固定側端板に固設された固定側電極棒と、
前記可動側端板に進退可能に設けられた可動側電極棒と、
前記固定側電極棒と前記可動側電極棒の対向端に各々取り付けられた固定側電極、可動側電極と、
前記真空容器の内側で、前記固定側電極と前記可動側電極の周りに配置したアークシールドと、を備え、
前記固定側電極と前記可動側電極は、相互に対向する固定側接点、可動側接点と、
前記固定側接点と前記可動側接点の背面に各々配置され、前記固定側電極棒と前記可動側電極棒の間に電流が流れる場合に、電極棒の軸線に直交する円周方向に電流を流す固定側コイル電極、可動側コイル電極を各々有し、
前記固定側コイル電極と前記可動側コイル電極は、中央部分に位置し前記固定側電極棒、前記可動側電極棒と各々接続する固定側リング部、可動側リング部と、
前記固定側リング部、前記可動側リング部の前記軸線に直交する面内に位置し、各々固定側スリット部、可動側スリット部により円周方向に複数に分割された同心円状の固定側コイル部、可動側コイル部と、
前記固定側リング部、前記可動側リング部から前記軸線に直交する方向へ延出し、前記固定側リング部と前記固定側コイル部の一端、前記可動側リング部と前記可動側コイル部の一端を各々接続する複数本の固定側アーム部、可動側アーム部と、
を有する真空バルブであって、
前記固定側コイル電極、前記可動側コイル電極の前記円周方向に複数に分割された位置に各々対応して、前記アークシールドと前記真空容器との間に磁性体を備え
前記磁性体は、前記固定側コイル電極、前記可動側コイル電極に流れた電流によって発生された軸線方向の磁界を補正し、前記固定側コイル部と可動側コイル部に比べて、前記磁界を生じにくい部分である前記円周方向に複数に分割された位置の磁界に対する補正量をより大きくするように配置されることを特徴とする真空バルブ。
A vacuum vessel covering one end of the cylindrical insulating cylinder with a fixed end plate and the other end with a movable end plate,
A fixed electrode rod fixed to the fixed end plate,
A movable electrode rod provided on the movable end plate so as to be able to advance and retreat,
A fixed-side electrode and a movable-side electrode attached to opposite ends of the fixed-side electrode rod and the movable-side electrode rod,
An arc shield disposed around the fixed side electrode and the movable side electrode inside the vacuum vessel,
The fixed side electrode and the movable side electrode, a fixed side contact facing each other, a movable side contact,
When a current flows between the fixed-side electrode rod and the movable-side electrode rod, the current flows in a circumferential direction perpendicular to the axis of the electrode rod when the current flows between the fixed-side electrode rod and the movable-side electrode rod. It has a fixed-side coil electrode and a movable-side coil electrode,
The fixed-side coil electrode and the movable-side coil electrode are located at a central portion, the fixed-side electrode rod, a fixed-side ring portion respectively connected to the movable-side electrode rod, a movable-side ring portion,
The fixed side ring portion, the concentric fixed side coil portion which is located in a plane orthogonal to the axis of the movable side ring portion and is divided into a plurality of pieces in the circumferential direction by the fixed side slit portion and the movable side slit portion, respectively. , The movable side coil part,
The fixed-side ring portion, the movable-side ring portion extends in a direction perpendicular to the axis, and the fixed-side ring portion and one end of the fixed-side coil portion, the movable-side ring portion and one end of the movable-side coil portion A plurality of fixed-side arm units and a movable-side arm unit to be connected to each other,
A vacuum valve having
The fixed-side coil electrode and the movable-side coil electrode are provided with a magnetic body between the arc shield and the vacuum vessel, respectively corresponding to the plurality of divided positions in the circumferential direction of the movable-side coil electrode ,
The magnetic body corrects an axial magnetic field generated by a current flowing through the fixed-side coil electrode and the movable-side coil electrode, and generates the magnetic field as compared with the fixed-side coil unit and the movable-side coil unit. A vacuum valve, which is arranged so as to further increase the correction amount for a magnetic field at a position divided into a plurality of parts in the circumferential direction, which is a difficult part .
前記固定側コイル電極、前記可動側コイル電極の分割数と前記磁性体の数が同数であることを特徴とする請求項1に記載の真空バルブ。   The vacuum valve according to claim 1, wherein the number of divisions of the fixed side coil electrode and the movable side coil electrode is the same as the number of the magnetic bodies. 前記固定側電極と前記可動側電極とが、前記固定側スリット部の位置と前記可動側スリット部の位置と各々重なり合って配置し、
前記軸線と前記両スリット部とを結ぶ線の延長線上に前記磁性体が配置されていることを特徴とする請求項1又は2に記載の真空バルブ。
The fixed-side electrode and the movable-side electrode are disposed so as to overlap with the position of the fixed-side slit and the position of the movable-side slit, respectively.
The vacuum valve according to claim 1, wherein the magnetic body is disposed on an extension of a line connecting the axis and the slits. 4.
前記固定側アーム部が接続された前記固定側コイル部の前記一端の反対側である他端から前記軸線方向に前記固定側接点へ突出し、前記固定側接点と電気的に接続する固定側突出部、および、前記可動側コイル部の前記可動側アーム部が接続された前記一端の反対側である他端から前記軸線方向に前記可動側接点へ突出し、前記可動側接点と電気的に接続する可動側突出部を有し、
前記磁性体の幅をWF、前記軸線から前記磁性体の距離をRF、前記固定側突出部の幅と前記可動側突出部の幅とをWC、前記固定側スリット部の幅と前記可動側スリット部の幅とをWS、前記固定側コイル電極の内半径と前記可動側コイル電極の内半径とをRCとしたときに、磁性体の幅WFは、WC≦WF≦(2×WC+WS)×RF/RCの関係を満たすことを特徴とする請求項3に記載の真空バルブ。
A fixed-side protruding portion that protrudes in the axial direction from the other end of the fixed-side coil portion to which the fixed-side coil portion is connected to the one end and that is electrically connected to the fixed-side contact; And movable from the other end of the movable coil portion opposite to the one end to which the movable arm portion is connected, in the axial direction to the movable contact, and electrically connected to the movable contact. With side protrusions,
The width of the magnetic body is WF, the distance of the magnetic body from the axis is RF, the width of the fixed side protruding portion and the width of the movable side protruding portion are WC, the width of the fixed side slit portion and the movable side slit are When the width of the portion is WS and the inner radius of the fixed-side coil electrode and the inner radius of the movable-side coil electrode are RC, the width WF of the magnetic body is WC ≦ WF ≦ (2 × WC + WS) × RF The vacuum valve according to claim 3, wherein a relationship of / RC is satisfied.
前記固定側アーム部が接続された前記固定側コイル部の前記一端の反対側である他端から前記軸線方向に前記固定側接点へ突出し、前記固定側接点と電気的に接続する固定側突出部、および、前記可動側コイル部の前記可動側アーム部が接続された前記一端の反対側である他端から前記軸線方向に前記可動側接点へ突出し、前記可動側接点と電気的に接続する可動側突出部を有し、
前記固定側電極と前記可動側電極が、前記固定側突出部の位置と前記可動側突出部の位置と各々重なり合って配置し、
前記軸線と前記両突出部とを結ぶ線の延長線上に前記磁性体が配置されていることを特徴とする請求項1又は2に記載の真空バルブ。
A fixed-side protruding portion that protrudes in the axial direction from the other end of the fixed-side coil portion to which the fixed-side coil portion is connected to the one end and that is electrically connected to the fixed-side contact; And movable from the other end of the movable coil portion opposite to the one end to which the movable arm portion is connected, in the axial direction to the movable contact, and electrically connected to the movable contact. With side protrusions,
The fixed-side electrode and the movable-side electrode are disposed so as to overlap with the position of the fixed-side protrusion and the position of the movable-side protrusion, respectively.
The vacuum valve according to claim 1, wherein the magnetic body is disposed on an extension of a line connecting the axis and the two protruding portions.
前記磁性体の幅をWF、前記軸線から前記磁性体の距離をRF、前記固定側突出部の幅と前記可動側突出部の幅とをWC、前記固定側アーム部の幅と前記可動側アーム部の幅とをWA、前記固定側スリット部の幅と前記可動側スリット部の幅とをWS、前記固定側コイル電極の内半径と前記可動側コイル電極の内半径とをRCとしたときに、磁性体の幅WFは、WC≦WF≦(2×WA+WC+2×WS)×RF/RCの関係を満たすことを特徴とする請求項5に記載の真空バルブ。 The width of the magnetic body is WF, the distance of the magnetic body from the axis is RF, the width of the fixed-side protrusion and the width of the movable-side protrusion are WC, the width of the fixed-side arm and the width of the movable-side arm. When the width of the portion is WA, the width of the fixed slit portion and the width of the movable slit portion are WS, and the inner radius of the fixed coil electrode and the inner radius of the movable coil electrode are RC. 6. The vacuum valve according to claim 5, wherein the width WF of the magnetic material satisfies a relationship of WC ≦ WF ≦ (2 × WA + WC + 2 × WS) × RF / RC. 前記磁性体が前記軸線に直交する円周方向に形成された複数の領域から構成され、前記各領域が、磁性体材料の異なる2種以上の領域からなることを特徴とする請求項1〜6のいずれか1項に記載の真空バルブ。   7. The magnetic material according to claim 1, wherein the magnetic material is composed of a plurality of regions formed in a circumferential direction perpendicular to the axis, and each of the regions is composed of two or more types of regions having different magnetic material. The vacuum valve according to any one of the preceding claims. 前記磁性体が前記軸線に直交する円周方向に形成された複数の領域から構成され、両端の領域ほど透磁率が高い磁性体材料で形成されていることを特徴とする請求項7に記載の真空バルブ。   The magnetic material according to claim 7, wherein the magnetic material is formed of a plurality of regions formed in a circumferential direction orthogonal to the axis, and the magnetic material having a higher magnetic permeability as the region at both ends is formed. Vacuum valve. 前記磁性体が前記軸線に直交する円周方向に厚みが変化しており、両端の領域ほど薄く、中央ほど厚く形成されていることを特徴とする請求項1〜6のいずれか1項に記載の真空バルブ。   7. The magnetic material according to claim 1, wherein the thickness of the magnetic material changes in a circumferential direction orthogonal to the axis, and the magnetic material is formed to be thinner at both end regions and thicker at the center. Vacuum valve. 前記磁性体が前記軸線に直交する円周方向に複数の領域に分割されており、両端ほど前記磁性体の断面積を小さくして隙間を空けて配置することを特徴とする請求項1〜6のいずれか1項に記載の真空バルブ。   The magnetic material is divided into a plurality of regions in a circumferential direction orthogonal to the axis, and the magnetic material is arranged so as to have a smaller cross-sectional area at both ends and with a gap therebetween. The vacuum valve according to any one of the preceding claims. 前記磁性体と前記アークシールドが同一材料で一体に形成されており、前記固定側コイル電極、前記可動側コイル電極の前記円周方向に複数に分割された位置に各々対応して前記磁性体の厚みを大きくしていることを特徴とする請求項1〜6のいずれか1項に記載の真空バルブ。 The magnetic body and the arc shield are integrally formed of the same material, and the fixed-side coil electrode and the movable-side coil electrode correspond to the plurality of divided positions in the circumferential direction of the magnetic body. The vacuum valve according to any one of claims 1 to 6, wherein the thickness is increased . 前記磁性体と前記アークシールドが同一材料で一体に形成され、前記磁性体が前記軸線に直交する円周方向に厚みを変化し、両端の領域ほど薄く、中央部分ほど厚く形成されていることを特徴とする請求項11に記載の真空バルブ。   The magnetic body and the arc shield are integrally formed of the same material, the magnetic body changes its thickness in a circumferential direction perpendicular to the axis, and is formed thinner in both end regions and thicker in a central portion. The vacuum valve according to claim 11, wherein:
JP2016018800A 2016-02-03 2016-02-03 Vacuum valve Active JP6651878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016018800A JP6651878B2 (en) 2016-02-03 2016-02-03 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016018800A JP6651878B2 (en) 2016-02-03 2016-02-03 Vacuum valve

Publications (3)

Publication Number Publication Date
JP2017139116A JP2017139116A (en) 2017-08-10
JP2017139116A5 JP2017139116A5 (en) 2018-09-13
JP6651878B2 true JP6651878B2 (en) 2020-02-19

Family

ID=59566893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016018800A Active JP6651878B2 (en) 2016-02-03 2016-02-03 Vacuum valve

Country Status (1)

Country Link
JP (1) JP6651878B2 (en)

Also Published As

Publication number Publication date
JP2017139116A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
US4704506A (en) Vacuum interrupter
USRE32116E (en) Electrical vacuum switch having means for generating an axial magnetic field between the contact faces
EP0329410B1 (en) Vacuum interrupter
WO2011086699A1 (en) Vacuum bulb
JP5274676B2 (en) Vacuum valve
JP6651878B2 (en) Vacuum valve
US9330869B2 (en) Vacuum valve
US9496106B2 (en) Electrode assembly and vacuum interrupter including the same
US3711622A (en) Means for reducing eddy current heating of a tank in electrical apparatus
JP3938521B2 (en) Vacuum valves and circuit breakers
WO2011052109A1 (en) Vacuum valve
JP5302723B2 (en) Vacuum valve
JP2001006501A (en) Vacuum valve
JPH1031943A (en) Vacuum switch or breaker
JP3568683B2 (en) Vacuum valve
JP4048367B2 (en) Electromagnetic induction heating cooker
JP3243162B2 (en) Vacuum valve
US20170032914A1 (en) Vacuum valve
JP2012243444A (en) Vacuum interrupter
JP2020194733A (en) Vacuum valve
JP2895449B2 (en) Vacuum valve
JPS6245401Y2 (en)
JPH0547274A (en) Vacuum valve
JPH01163938A (en) Vacuum valve
JPH06215671A (en) Vacuum switch

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200106

R151 Written notification of patent or utility model registration

Ref document number: 6651878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250