Nothing Special   »   [go: up one dir, main page]

JP6651362B2 - Zeolite containing metal particles - Google Patents

Zeolite containing metal particles Download PDF

Info

Publication number
JP6651362B2
JP6651362B2 JP2016009258A JP2016009258A JP6651362B2 JP 6651362 B2 JP6651362 B2 JP 6651362B2 JP 2016009258 A JP2016009258 A JP 2016009258A JP 2016009258 A JP2016009258 A JP 2016009258A JP 6651362 B2 JP6651362 B2 JP 6651362B2
Authority
JP
Japan
Prior art keywords
zeolite
metal particles
present
size
rhodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016009258A
Other languages
Japanese (ja)
Other versions
JP2017128480A (en
Inventor
隆夫 増田
隆夫 増田
多湖 輝興
輝興 多湖
鶴田 俊二
俊二 鶴田
中島 昭
昭 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
JGC Catalysts and Chemicals Ltd
Original Assignee
Hokkaido University NUC
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, JGC Catalysts and Chemicals Ltd filed Critical Hokkaido University NUC
Priority to JP2016009258A priority Critical patent/JP6651362B2/en
Publication of JP2017128480A publication Critical patent/JP2017128480A/en
Application granted granted Critical
Publication of JP6651362B2 publication Critical patent/JP6651362B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/44Noble metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Description

本発明は、金属粒子を内包したゼオライト(以下、本発明のゼオライトともいう)に関する。   The present invention relates to a zeolite containing metal particles (hereinafter, also referred to as a zeolite of the present invention).

ゼオライトは、多様な組成及び構造を有する。ゼオライトの構造は、国際ゼオライト学会において、アルファベット3文字を用いた構造コードで分類されている。本発明のゼオライトは、構造コードでMFIに分類される構造を有している。   Zeolites have a variety of compositions and structures. The structure of zeolite is classified by the International Zeolite Society using a structure code using three letters of the alphabet. The zeolite of the present invention has a structure classified as MFI by a structure code.

MFI構造のゼオライトは、酸素10員環で構成されており、b軸方向に直線状の貫通細孔と、a軸方向にジグザグ状の貫通細孔を有している。代表的なMFI構造のゼオライトは、ZSM−5、シリカライトなどがある(ZSM−5は、構造中にAlを含むゼオライトであり、シリカライトは、構造中にAlを含まず、実質的に酸化ケイ素からなるゼオライトである。)。   The zeolite having the MFI structure is composed of a 10-membered oxygen ring, and has straight through pores in the b-axis direction and zigzag through pores in the a-axis direction. Representative zeolites having an MFI structure include ZSM-5 and silicalite (ZSM-5 is a zeolite containing Al in the structure, and silicalite contains no Al in the structure and is substantially oxidized. It is a zeolite made of silicon.).

MFI構造のゼオライトは、広く石油精製・石油化学プロセスの触媒として使用されている。また、近年では、MFI構造のゼオライトは、遷移金属や貴金属を担持することで、排ガス浄化用触媒としても使用されている。   MFI-structured zeolites are widely used as catalysts in petroleum refining and petrochemical processes. In recent years, zeolite having an MFI structure has been used as an exhaust gas purifying catalyst by supporting a transition metal or a noble metal.

排ガス浄化用触媒として用いられる遷移金属や貴金属は、一般的にナノオーダーサイズの金属粒子として、MFI構造のゼオライトに担持されている。これらの金属粒子は、高温環境下において、MFI構造のゼオライト上を移動し金属粒子同士が接触して成長する(シンタリング)。金属粒子の成長は、触媒活性の低下や細孔の閉塞を引き起こすため、触媒として使用する際に好ましくない。   Transition metals and precious metals used as exhaust gas purifying catalysts are generally supported as nano-sized metal particles on zeolite having an MFI structure. These metal particles move on the MFI-structured zeolite in a high-temperature environment and grow by contacting the metal particles with each other (sintering). The growth of metal particles is not preferable when used as a catalyst because it causes a decrease in catalytic activity and blockage of pores.

そこで、金属粒子のシンタリングを防止する方法として、金属粒子が担持された触媒をゼオライトでコーティングする方法がこれまで検討されてきた(特許文献1〜3)。しかし、これらの方法で得られた排ガス浄化処理触媒は、担体のサイズが大きいので、コーティングしてもクラックが生成したり、触媒の表面に均一にコートされないといった問題があった。クラックを有していたり表面の一部がコートされていない触媒は、高温環境下で使用するとシンタリングが起こり、触媒活性が低下するため好ましくない。   Therefore, as a method of preventing sintering of metal particles, a method of coating a catalyst supporting metal particles with zeolite has been studied (Patent Documents 1 to 3). However, since the exhaust gas purifying catalysts obtained by these methods have a large carrier size, there is a problem that even if coated, cracks are generated and the surface of the catalyst is not uniformly coated. A catalyst having a crack or a part of the surface of which is not coated is not preferable because sintering occurs when used in a high-temperature environment and the catalyst activity is reduced.

特開2009−165941号公報JP 2009-165941 A WO2010/101223号公報WO2010 / 101223 特開2003−62466号公報JP-A-2003-62466

高温環境下において、金属粒子のシンタリングを抑制すること。また、被毒物質の存在下において、金属粒子の被毒を抑制すること。   To suppress sintering of metal particles in a high temperature environment. In addition, in the presence of a poisoning substance, the poisoning of metal particles should be suppressed.

下記(1)〜(3)の構成を有する、金属粒子を内包したゼオライトは、上記の課題を解決することができる。
(1)MFI構造のゼオライトの結晶内に金属粒子が内包されている。
(2)前記ゼオライトが有する細孔の平均径よりも、前記金属粒子の平均粒子径の方が大きい。
(3)前記ゼオライトのサイズが、50〜1000nmである。
The zeolite including the metal particles and having the following configurations (1) to (3) can solve the above problem.
(1) Metal particles are included in zeolite crystals having an MFI structure.
(2) The average particle diameter of the metal particles is larger than the average diameter of the pores of the zeolite.
(3) The size of the zeolite is 50 to 1000 nm.

高温環境下において、金属粒子のシンタリングを抑制すること。また、被毒物質の存在下において、金属粒子の被毒を抑制すること。   To suppress sintering of metal particles in a high temperature environment. In addition, in the presence of a poisoning substance, the poisoning of metal particles should be suppressed.

本発明のゼオライトの概略断面図である。It is a schematic sectional view of the zeolite of the present invention. 本発明のゼオライトのTEM画像である。It is a TEM image of the zeolite of the present invention. 実施例1で得られた本発明のゼオライトのTEM画像である。3 is a TEM image of the zeolite of the present invention obtained in Example 1. ベンゼン水素化試験で用いた液相回分反応器の概略図である。It is the schematic of the liquid-phase batch reactor used for the benzene hydrogenation test.

本発明のゼオライトについて、以下に説明する。   The zeolite of the present invention will be described below.

[本発明のゼオライト]
本発明のゼオライトの概略断面図を図1に示す。
図1に示すように、本発明のゼオライトは、金属粒子を内包している。ゼオライトに内包された金属粒子は、ゼオライト壁に移動を阻害されるため、高温環境下においても成長が抑制される。また、金属粒子をゼオライト以外の粒子で完全に覆った場合、原料または反応物が貴金属と接触することができないので触媒活性が発揮されない。しかし、本発明のゼオライトは、a軸方向およびb軸方向に貫通孔(図1では細孔と記している)を有しているので、貫通孔を通して原料または反応物のやりとりができる。なぜなら、貫通孔の断面直径は一般的には0.5〜0.6nmであるのに対して金属粒子の粒径は、それよりも大きいので貫通孔を通じて金属粒子は移動できないが、原料または反応物は貫通孔内を移動できるからである。そのため、金属粒子が完全に覆われていたとしても触媒活性を発揮することができる。また、本発明のゼオライトは、実質的に金属粒子のみが内包されている(洗浄やイオン交換等で除去ができないレベルの成分は含んでいてもよい。)。
[Zeolite of the present invention]
FIG. 1 shows a schematic sectional view of the zeolite of the present invention.
As shown in FIG. 1, the zeolite of the present invention contains metal particles. Since the movement of the metal particles included in the zeolite is inhibited by the zeolite wall, the growth is suppressed even in a high-temperature environment. Further, when the metal particles are completely covered with particles other than zeolite, the raw material or the reactant cannot come into contact with the noble metal, so that no catalytic activity is exhibited. However, since the zeolite of the present invention has through-holes (depicted as pores in FIG. 1) in the a-axis direction and the b-axis direction, raw materials or reactants can be exchanged through the through-holes. This is because the cross-sectional diameter of the through-hole is generally 0.5 to 0.6 nm, whereas the diameter of the metal particle is larger than that, so that the metal particle cannot move through the through-hole. This is because the object can move in the through hole. Therefore, even if the metal particles are completely covered, the catalytic activity can be exhibited. Further, the zeolite of the present invention substantially contains only metal particles (components of a level that cannot be removed by washing, ion exchange, or the like may be contained).

このように本発明のゼオライトは、ゼオライトの結晶内に金属粒子が内包されているので、後述するメチシレン水素化試験を行った場合に測定される水素化反応生成物の収率は好ましくは3mol%以下、より好ましくは1mol%以下、さらに好ましくは0.5mol%以下となる。なぜなら、メチシレンの分子サイズはゼオライトがもつ細孔の径よりも大きいため、金属粒子と接触しないためである。   As described above, since the zeolite of the present invention contains metal particles in the zeolite crystal, the yield of the hydrogenation reaction product measured when a methysylene hydrogenation test described below is performed is preferably 3 mol%. Or less, more preferably 1 mol% or less, still more preferably 0.5 mol% or less. This is because the molecular size of methicylene is larger than the diameter of the pores of the zeolite and does not come into contact with metal particles.

また、本発明のゼオライトは、ゼオライトの結晶内に金属粒子が内包されているので、後述する熱処理を行った場合の金属粒子の成長率(成長率[%]=((熱処理後の金属粒子サイズ/熱処理前の金属粒子サイズ)−1)×100)は、好ましくは50%以下、さらに好ましくは30%以下となる。なぜなら、金属粒子の移動がゼオライト壁によって阻害されるためである。     In addition, since the zeolite of the present invention contains metal particles in the zeolite crystal, the growth rate of the metal particles when the heat treatment described below is performed (growth rate [%] = ((metal particle size after heat treatment) / Metal particle size before heat treatment) -1) × 100) is preferably 50% or less, more preferably 30% or less. This is because the movement of the metal particles is hindered by the zeolite wall.

[本発明のゼオライトの構造]
本発明のゼオライトは、MFI構造を有している。本発明において、MFI構造の有無は、X線回折パターンから判断することができる。本発明のゼオライトは、X線回折パターンにおいて2θが下記の範囲に少なくとも1本のピークが存在する場合、MFI構造を有していると判断する。詳しい測定方法は後述する。
2θ=7.5〜8.5°
2θ=8.5〜9.5°
2θ=13.5〜14.5°
2θ=14.5〜15.5°
2θ=22.5〜23.5°
2θ=23.0〜24.0°
2θ=24.0〜25.0°
[Structure of the zeolite of the present invention]
The zeolite of the present invention has an MFI structure. In the present invention, the presence or absence of the MFI structure can be determined from the X-ray diffraction pattern. The zeolite of the present invention is determined to have the MFI structure when at least one peak exists in the following range of 2θ in the X-ray diffraction pattern. The detailed measuring method will be described later.
2θ = 7.5-8.5 °
2θ = 8.5-9.5 °
2θ = 13.5 to 14.5 °
2θ = 14.5 to 15.5 °
2θ = 22.5 to 23.5 °
2θ = 23.0-24.0 °
2θ = 24.0-25.0 °

MFI構造を有するゼオライトは、前述のごとく、ZSM−5、シリカライトがある。本発明のゼオライトは、Alを含まず、実質的に酸化ケイ素からなるシリカライトであることが好ましい。シリカライトは、Alを含んでいないので、高温で水分の多い環境下においても、安定してMFI構造を維持できる。また、本発明のゼオライトとしてZSM−5を用いる場合は、SiO2/Al23比が、50以上であることが好ましい。ZSM−5のSiO2/Al23比が50より低い場合、高温で水分の多い環境下において水分によりMFI構造が破壊される可能性があるので、好ましくない。 As described above, zeolite having an MFI structure includes ZSM-5 and silicalite. The zeolite of the present invention is preferably a silicalite which does not contain Al and is substantially composed of silicon oxide. Since silicalite does not contain Al, it can stably maintain the MFI structure even in a high-temperature and high-moisture environment. When ZSM-5 is used as the zeolite of the present invention, the ratio of SiO 2 / Al 2 O 3 is preferably 50 or more. If the SiO 2 / Al 2 O 3 ratio of ZSM-5 is lower than 50, the MFI structure may be destroyed by moisture in a high-temperature and high-moisture environment, which is not preferable.

[本発明のゼオライトのサイズ]
本発明のゼオライトは、ナノサイズのゼオライトである。そのサイズは、50〜1000nmの範囲にある。本発明におけるサイズとは、電子顕微鏡写真(倍率:10万〜20万倍)から100個の粒子を抽出し、その粒子の最も長い径を計測した値の平均値である。詳しい測定方法は後述する。本発明のゼオライトのサイズは、50〜200nmであることが好ましい。200nm以下のサイズのゼオライトは、強度に優れるので、他の材料と混合したり成形してもクラッキングや剥がれが起きにくい。50nmより小さいゼオライトは、合成が困難である。
[Size of zeolite of the present invention]
The zeolite of the present invention is a nano-sized zeolite. Its size is in the range of 50-1000 nm. The size in the present invention is an average value of values obtained by extracting 100 particles from an electron micrograph (magnification: 100,000 to 200,000 times) and measuring the longest diameter of the particles. The detailed measuring method will be described later. The size of the zeolite of the present invention is preferably 50 to 200 nm. Since zeolite having a size of 200 nm or less has excellent strength, cracking and peeling hardly occur even when mixed or molded with other materials. Zeolites smaller than 50 nm are difficult to synthesize.

[本発明のゼオライトの比表面積]
本発明のゼオライトの比表面積は、250〜400m2/gであることが好ましい。本発明における比表面積は、BET1点法により求めることができる。詳しい測定方法は後述する。比表面積が250m2/gより低いゼオライトは、触媒活性が低くなる可能性があるため、好ましくない。
[Specific surface area of zeolite of the present invention]
The specific surface area of the zeolite of the present invention is preferably from 250 to 400 m 2 / g. The specific surface area in the present invention can be determined by the BET one-point method. The detailed measuring method will be described later. Zeolites having a specific surface area of less than 250 m 2 / g are not preferred because the catalytic activity may be reduced.

[本発明のゼオライトが内包する金属粒子]
本発明のゼオライトが内包する金属粒子は、遷移金属または貴金属である。本発明のゼオライトが内包する金属粒子は、貴金属であることが好ましい。貴金属は、Au、Ag、Pt、Pd、Rh、Ir、Ru、Osの元素からなり、本発明のゼオライトが内包する金属粒子は、Au、Ag、Pt、Pd、Rh、Ruから選ばれる少なくとも1種であることが特に好ましい(これらの元素は、金属単体であってもよく、化合物の状態でもよい。)。これらの元素は、触媒の活性金属として特に有効なためである。しかし、これらの貴金属は埋蔵量が少なく大変高価であるため、大量に使用することは好ましくない。そこで、可能な限りこれらの貴金属のサイズを小さくすることで、少量であっても高い触媒活性を得ることができる。一方で、サイズの小さい貴金属は、シンタリングしやすいという課題も抱えている。本発明のゼオライトは、このような課題を解決する方法として特に優れている。
[Metal particles included in the zeolite of the present invention]
The metal particles included in the zeolite of the present invention are transition metals or noble metals. The metal particles included in the zeolite of the present invention are preferably noble metals. The noble metal is composed of Au, Ag, Pt, Pd, Rh, Ir, Ru, and Os. The metal particles included in the zeolite of the present invention are at least one selected from Au, Ag, Pt, Pd, Rh, and Ru. It is particularly preferable to be a seed (these elements may be a simple metal or a compound). This is because these elements are particularly effective as active metals of the catalyst. However, since these precious metals have very small reserves and are very expensive, it is not preferable to use them in large quantities. Therefore, by reducing the size of these noble metals as much as possible, a high catalytic activity can be obtained even in a small amount. On the other hand, small-sized noble metals also have a problem that they are easy to sinter. The zeolite of the present invention is particularly excellent as a method for solving such a problem.

[本発明のゼオライトが内包する金属粒子の量]
本発明のゼオライトは、金属粒子を少なくとも1個以上内包している。本発明のゼオライトが内包する金属粒子の数は、1〜50個が好ましい。ゼオライトが内包する金属粒子の数が多い場合、ゼオライトの強度が低下し、クラック等が発生する可能性があるため好ましくない。また、ゼオライトの細孔を閉塞させるので、ゼオライト内部における原料または生成物の拡散を阻害するので好ましくない。本発明のゼオライトが内包する金属粒子の数は、SEMまたはTEM画像において一つのゼオライト粒子に含まれる金属粒子を数えて算出する。測定方法の詳細は、後述する。
[Amount of metal particles included in zeolite of the present invention]
The zeolite of the present invention contains at least one or more metal particles. The number of metal particles included in the zeolite of the present invention is preferably 1 to 50. When the number of metal particles included in the zeolite is large, the strength of the zeolite is reduced, and cracks or the like may occur, which is not preferable. In addition, since the pores of the zeolite are closed, the diffusion of the raw material or the product inside the zeolite is undesirably inhibited. The number of metal particles included in the zeolite of the present invention is calculated by counting metal particles contained in one zeolite particle in an SEM or TEM image. Details of the measurement method will be described later.

また、金属粒子の含有量は、ゼオライトの含有量に対して、0.1〜10wt%であることが好ましい。金属粒子の含有量が増加すると、ゼオライトが内包する金属粒子の数が増加して、ゼオライトの強度が低下するため好ましくない。また、合成過程において金属粒子同士が接触する頻度が高まり、金属粒子が成長して大きくなる可能性があるため、金属粒子のサイズを小さく保つことが必要な用途(例えば、触媒等)に使用する場合は好ましくない。金属粒子とゼオライトの含有量は、例えば、ICP分析法により算出することができる。   Further, the content of the metal particles is preferably 0.1 to 10% by weight based on the zeolite content. When the content of the metal particles increases, the number of metal particles included in the zeolite increases, and the strength of the zeolite decreases, which is not preferable. Further, in the synthesis process, the frequency of contact between the metal particles increases, and there is a possibility that the metal particles grow and become large. This is not preferred. The contents of the metal particles and the zeolite can be calculated by, for example, an ICP analysis method.

[本発明のゼオライトが内包する金属粒子のサイズ]
本発明のゼオライトが内包する金属粒子のサイズは、1〜10nmであることが好ましい。特に、1〜5nmであることが好ましい。本発明のゼオライトが内包する金属粒子のサイズが1〜5nmの範囲にある金属粒子は、特にシンタリングが起こりやすく、本発明のシンタリングを抑制する効果が顕著に表れる。
[Size of metal particles included in zeolite of the present invention]
The size of the metal particles included in the zeolite of the present invention is preferably 1 to 10 nm. In particular, the thickness is preferably 1 to 5 nm. Metal particles in which the size of the metal particles included in the zeolite of the present invention is in the range of 1 to 5 nm particularly easily cause sintering, and the effect of suppressing the sintering of the present invention is remarkably exhibited.

[本発明のゼオライトと金属粒子のサイズの比率]
本発明のゼオライトと金属粒子のサイズの比率(金属粒子のサイズ/ゼオライトのサイズ)は、0.001〜0.2であることが好ましい。該比率が1より低い場合、ゼオライト中に金属粒子を内包することができなくなる。また、該比率が高すぎても、不必要に金属粒子を覆うことになり、好ましくない。
[Ratio of size of zeolite of the present invention and metal particles]
The ratio of the size of the zeolite and the metal particles of the present invention (the size of the metal particles / the size of the zeolite) is preferably from 0.001 to 0.2. When the ratio is lower than 1, the metal particles cannot be included in the zeolite. If the ratio is too high, the metal particles are unnecessarily covered, which is not preferable.

本発明のゼオライトの製造方法(以下、本発明の製造方法ともいう。)について、以下に説明する。   The method for producing the zeolite of the present invention (hereinafter, also referred to as the production method of the present invention) will be described below.

[本発明のゼオライトの製造方法]
本発明のゼオライトの製造方法は、下記(A)〜(D)の工程を具備する。
(A)金属粒子生成工程
(B)SiO2層形成工程
(C)ゼオライト生成工程
(D)後処理工程
[Method for producing zeolite of the present invention]
The method for producing a zeolite of the present invention includes the following steps (A) to (D).
(A) Metal particle generation step (B) SiO 2 layer formation step (C) Zeolite generation step (D) Post-treatment step

以下、(A)〜(D)の工程について詳述する。   Hereinafter, the steps (A) to (D) will be described in detail.

[(A)金属粒子生成工程]
本発明の製造方法において、(A)の工程は、金属粒子を生成する工程である。例えば、界面活性剤と有機溶媒を混合し、これに一定量の金属塩を溶解し、更に還元剤を加え金属粒子を生成させることができる。また、市販の金属ゾル等を用いてもよい。
[(A) Metal particle generation step]
In the production method of the present invention, the step (A) is a step of producing metal particles. For example, a surfactant and an organic solvent are mixed, a certain amount of a metal salt is dissolved therein, and a reducing agent is further added to generate metal particles. Alternatively, a commercially available metal sol or the like may be used.

前述の界面活性剤は、金属粒子の表面にミセルを形成することでエマルション化できるものであれば、従来公知のものを使用することができる。本発明の製造方法では、ポリオキシエチレン(15)オレイルエーテルを使用することが好ましい。ポリオキシエチレン(15)オレイルエーテルを界面活性剤として使用する場合、金属粒子の成長を抑制し、サイズの小さい金属粒子を得ることができる。   As the above-mentioned surfactant, conventionally known surfactants can be used as long as they can be emulsified by forming micelles on the surface of the metal particles. In the production method of the present invention, it is preferable to use polyoxyethylene (15) oleyl ether. When polyoxyethylene (15) oleyl ether is used as a surfactant, growth of metal particles can be suppressed, and metal particles having a small size can be obtained.

前述の有機溶剤は、前記の金属粒子と界面活性剤の組合せでミセルを形成するものであれば、従来公知のものを使用することができる。本発明の製造方法では、シクロヘキサンを使用することが好ましい。   As the above-mentioned organic solvent, a conventionally known organic solvent can be used as long as it forms micelles by the combination of the metal particles and the surfactant. In the production method of the present invention, it is preferable to use cyclohexane.

前述の界面活性剤と有機溶媒の混合比率(界面活性剤[mol]/(界面活性剤[L]+有機溶媒[L]))は、0.1〜0.75、好ましくは0.3〜0.6である。   The mixing ratio of the surfactant and the organic solvent (surfactant [mol] / (surfactant [L] + organic solvent [L])) is 0.1 to 0.75, preferably 0.3 to 0.7. 0.6.

前述の金属塩は、有機溶媒に溶解するものであれば、従来公知のものを使用することができる。例えば、塩化物、硫酸塩、硝酸塩、アンモニウム塩等を用いることができる。本発明の製造方法では、塩化物を使用することが好ましい。塩化物は、前記の有機溶媒に対して溶解度が大きいので好ましい。また、有機溶媒の温度を沸点以下に高めることで、前述の金属塩の溶解度を高めることもできる。   As the above-mentioned metal salt, any conventionally known one can be used as long as it is soluble in an organic solvent. For example, chlorides, sulfates, nitrates, ammonium salts and the like can be used. In the production method of the present invention, it is preferable to use a chloride. Chloride is preferred because of its high solubility in the above-mentioned organic solvents. By increasing the temperature of the organic solvent below the boiling point, the solubility of the metal salt can be increased.

前述の還元剤は、有機溶剤に溶解した金属を還元できるものであれば、従来公知の物を使用することができる。例えば、還元力性の高いヒドラジンが好ましい。   As the above-mentioned reducing agent, a conventionally known reducing agent can be used as long as it can reduce a metal dissolved in an organic solvent. For example, hydrazine having high reducing power is preferable.

還元剤を添加するとき、有機溶媒の温度は、0〜60℃、好ましくは40〜50℃である。0℃より低い場合、金属の還元が進みにくく、60℃より高い場合、生成した金属粒子が凝集し金属粒子のサイズが大きくなる可能性があるため好ましくない。また、還元剤と有機溶媒の反応が進み、発火する恐れもある。   When adding the reducing agent, the temperature of the organic solvent is from 0 to 60C, preferably from 40 to 50C. If the temperature is lower than 0 ° C., reduction of the metal is difficult to proceed, and if the temperature is higher than 60 ° C., the generated metal particles may aggregate and increase the size of the metal particles, which is not preferable. In addition, the reaction between the reducing agent and the organic solvent may proceed, which may cause ignition.

[(B)SiO2層形成工程]
本発明の製造方法において、(B)の工程は、(A)工程で生成した金属粒子の表面にSiO2層を形成する工程である。例えば、金属の外表面を覆っている界面活性剤と金属アルコキシドが反応することで、金属粒子の表面にSiO2層を形成することができる。具体的には、(A)工程で得られた溶液にSiアルコキシドを添加し、Siアルコキシドを加水分解することによって、金属粒子の表面にSiO2層を形成することができる。
[(B) SiO 2 layer forming step]
In the manufacturing method of the present invention, the step (B) is a step of forming an SiO 2 layer on the surface of the metal particles generated in the step (A). For example, a surfactant covering the outer surface of the metal reacts with the metal alkoxide to form an SiO 2 layer on the surface of the metal particles. Specifically, by adding a Si alkoxide to the solution obtained in the step (A) and hydrolyzing the Si alkoxide, an SiO 2 layer can be formed on the surfaces of the metal particles.

前述のSiアルコキシドは、加水分解できるものであれば、従来公知のものを使用することができる。例えば、オルトケイ酸テトラエチル、オルトケイ酸テトラメチル、オルトケイ酸テトラプロピル等を使用することができる。また、この他にシランカップリング剤を用いてもよい。本発明の製造方法において、オルトケイ酸テトラメチルまたはオルトケイ酸テトラエチルを使用することが好ましい。アルコキシ基が短い方が加水分解性が良く、SiO2層が均一に形成される。 As the aforementioned Si alkoxide, a conventionally known one can be used as long as it can be hydrolyzed. For example, tetraethyl orthosilicate, tetramethyl orthosilicate, tetrapropyl orthosilicate and the like can be used. In addition, a silane coupling agent may be used. In the production method of the present invention, it is preferable to use tetramethyl orthosilicate or tetraethyl orthosilicate. The shorter the alkoxy group, the better the hydrolyzability and the uniform formation of the SiO 2 layer.

前述のSiアルコキシドを加水分解するために、水を加える。この時、酸または塩基を含む水溶液を用いることが好ましい。酸または塩基は、加水分解反応を促進するための触媒となる。酸または塩基を含む水溶液として、例えば、塩酸やアンモニア水等を使用することができる。本発明の製造方法において、アンモニア水を用いることが好ましい。   Water is added to hydrolyze the aforementioned Si alkoxide. At this time, it is preferable to use an aqueous solution containing an acid or a base. The acid or base serves as a catalyst for promoting the hydrolysis reaction. As the aqueous solution containing an acid or a base, for example, hydrochloric acid, aqueous ammonia, or the like can be used. In the production method of the present invention, it is preferable to use aqueous ammonia.

加水分解中または加水分解後の溶液のpHは7〜11が好ましい。pHが7より低い場合、金属粒子の表面に被覆されたSiO2層同士が反応して、凝集しやすくなるため好ましくない。場合によっては、溶液が固化する恐れもある。また、これらの粒子が凝集した状態で(C)工程以降を行った場合、最終的に得られる金属粒子を内包したゼオライトの粒子径が大きくなるため好ましくない。更に、pHが11より高い場合、SiO2層が溶解するので好ましくない。したがって、適切なpHの範囲で加水分解反応を行う必要がある。 The pH of the solution during or after the hydrolysis is preferably from 7 to 11. If the pH is lower than 7, the SiO 2 layers coated on the surfaces of the metal particles react with each other and tend to aggregate, which is not preferable. In some cases, the solution may solidify. Further, when the step (C) and the subsequent steps are performed in a state where these particles are aggregated, the particle diameter of the finally obtained zeolite containing metal particles is not preferable. Further, when the pH is higher than 11, the SiO 2 layer dissolves, which is not preferable. Therefore, it is necessary to carry out the hydrolysis reaction in an appropriate pH range.

加水分解中または加水分解後の溶液の温度は0〜50℃が好ましい。前記の溶液の温度が0℃より低い場合、SiO2層同士の反応は抑制されるものの、加水分解反応も遅くなるため、SiO2層の形成に要する時間が極端に長くなるため好ましくない。また、前記の溶液の温度が50℃より高い場合、加水分解反応は進行しやすくなるものの、金属粒子の表面に被覆されたSiO2層同士が反応して、凝集しやすくなるため好ましくない。したがって、適切な温度範囲で加水分解反応を行う必要がある。 The temperature of the solution during or after the hydrolysis is preferably from 0 to 50C. When the temperature of the solution is lower than 0 ° C., although the reaction between the SiO 2 layers is suppressed, the hydrolysis reaction is also slow, and the time required for forming the SiO 2 layer is undesirably extremely long. When the temperature of the solution is higher than 50 ° C., the hydrolysis reaction proceeds easily, but the SiO 2 layers coated on the surface of the metal particles react with each other, which is not preferable because the SiO 2 layers tend to aggregate. Therefore, it is necessary to carry out the hydrolysis reaction in an appropriate temperature range.

[(C)ゼオライト生成工程]
本発明の製造方法において、(C)の工程は、(B)工程で生成した金属粒子の表面のSiO2層を有機構造規定剤と共に水熱処理し、SiO2層からゼオライト層を生成する工程である。
[(C) Zeolite generation step]
In the production method of the present invention, the step (C) is a step of hydrothermally treating the SiO 2 layer on the surface of the metal particles generated in the step (B) together with the organic structure directing agent to form a zeolite layer from the SiO 2 layer. is there.

前述の水熱処理は、オートクレーブを用いて行う。具体的には、オートクレーブに(B)工程により得られた溶液を充填し、有機構造規定剤を添加した後、密閉して撹拌する。その後、オートクレーブを80〜120℃に昇温し、24〜120時間保持する。この時、オートクレーブの温度および保持時間が前述の範囲にない場合、ゼオライトが十分に生成しない可能性がある。   The above-mentioned hydrothermal treatment is performed using an autoclave. Specifically, an autoclave is filled with the solution obtained in the step (B), and after adding an organic structure directing agent, the mixture is closed and stirred. Thereafter, the temperature of the autoclave is raised to 80 to 120 ° C. and maintained for 24 to 120 hours. At this time, if the temperature and the holding time of the autoclave are not in the above ranges, zeolite may not be sufficiently generated.

前述の有機構造規定剤は、水熱処理によってゼオライトを生成できるものであれば、従来公知のものを用いることができる。例えば、MFI構造のゼオライトを得たい場合は、テトラプロピルアンモニウム等を用いることができる。有機構造規定剤の添加量は、SiOの含有量に対して0.1〜0.5wt%であることが好ましい。有機添加剤の量が少なすぎても多すぎても、目的の構造を有するゼオライトが生成しにくくなる。 As the above-mentioned organic structure directing agent, any conventionally known one can be used as long as it can generate zeolite by hydrothermal treatment. For example, when it is desired to obtain a zeolite having an MFI structure, tetrapropyl ammonium or the like can be used. The addition amount of the organic structure directing agent is preferably 0.1 to 0.5 wt% based on the content of SiO 2 . If the amount of the organic additive is too small or too large, it becomes difficult to form a zeolite having a desired structure.

(D)後処理工程
本発明の製造方法において、(D)の工程は、(C)工程で得られた金属粒子を内包したゼオライトを含む溶液から、金属粒子を内包したゼオライトを回収する工程である。具体的には、(C)工程で得られた前記の溶液から金属粒子を内包したゼオライトを分離・乾燥した後、焼成して有機構造規定剤を除去する。また、焼成によって金属粒子が酸化される場合は、必要によって水素還元処理を追加する。
(D) Post-treatment step In the production method of the present invention, the step (D) is a step of recovering the zeolite containing the metal particles from the solution containing the zeolite containing the metal particles obtained in the step (C). is there. Specifically, the zeolite containing the metal particles is separated and dried from the solution obtained in the step (C), and then calcined to remove the organic structure directing agent. When the metal particles are oxidized by firing, a hydrogen reduction treatment is added if necessary.

前述の分離は、溶媒を除去できる方法であればよく、例えば、濾過、遠心分離、加熱、減圧等の従来公知の方法を用いることができる。本発明の製造方法において、前述の分離は加熱せずに行うことが好ましく、溶媒の除去速度を考慮すれば、濾過、遠心分離を用いることが好ましい。また、分離して得られた金属粒子を内包したゼオライトは、表面に溶媒が残っているため、必要によって乾燥を行うとよい。乾燥は、表面の溶媒が除去できる条件であればよく、加熱乾燥、減圧乾燥、真空乾燥等を行うとよい。この場合も、加熱せずに減圧乾燥や真空乾燥を行うとよい。   The above-mentioned separation may be any method as long as it can remove the solvent, and for example, a conventionally known method such as filtration, centrifugation, heating, and decompression can be used. In the production method of the present invention, the above-mentioned separation is preferably performed without heating, and in consideration of the removal rate of the solvent, it is preferable to use filtration and centrifugation. Further, the zeolite enclosing the metal particles obtained by separation may be dried if necessary because the solvent remains on the surface. Drying may be performed under conditions that allow the solvent on the surface to be removed, and heat drying, reduced-pressure drying, vacuum drying, or the like may be performed. Also in this case, it is preferable to perform vacuum drying or vacuum drying without heating.

前述の焼成は、ゼオライトに含まれる有機構造規定剤を除去できる条件であればよく、例えば、大気中において400〜600℃で1〜48時間程度加熱するとよい。加熱温度および加熱時間が前述の範囲にない場合、有機構造規定剤の除去が十分でなかったり、金属粒子またはゼオライトが成長し、
サイズが大きくなる可能性があるので、前述の範囲で行うとよい。
The calcination described above may be performed under conditions that can remove the organic structure directing agent contained in the zeolite. For example, heating may be performed at 400 to 600 ° C. in the air for about 1 to 48 hours. When the heating temperature and the heating time are not in the above ranges, the removal of the organic structure directing agent is not sufficient, or metal particles or zeolite grows,
Since the size may be large, it is preferable to perform the processing in the above-described range.

前述の焼成を行った場合、ゼオライトに内包される金属粒子の表面が酸化される場合がある。そこで、必要によって、焼成後に水素還元処理を行って酸素を除去するとよい。水素還元処理は、水素雰囲気下において、150〜450℃、1〜48hr程度行うとよい。温度および時間が前述の範囲にない場合、水素還元が十分に進行せず金属粒子に酸化物が残存したり、金属粒子またはゼオライトが成長し、サイズが大きくなる可能性があるので、前述の範囲で水素還元処理を行うとよい。また、水素還元処理後の金属粒子は、空気中の酸素と容易に反応しやすいため注意が必要である。場合によって、酸化で生じた反応熱によってゼオライトが発火する恐れがある。水素還元処理後は、水素雰囲気から窒素等の不活性雰囲気にガス置換し、徐々に酸素濃度を21%に近づけていくとよい。   When the above-described firing is performed, the surface of the metal particles included in the zeolite may be oxidized. Therefore, if necessary, oxygen may be removed by performing a hydrogen reduction treatment after firing. The hydrogen reduction treatment is preferably performed in a hydrogen atmosphere at 150 to 450 ° C. for about 1 to 48 hours. If the temperature and the time are not within the above-mentioned ranges, the hydrogen reduction may not proceed sufficiently, and an oxide may remain on the metal particles, or the metal particles or zeolite may grow and become large in size. To perform a hydrogen reduction treatment. Care must be taken because the metal particles after the hydrogen reduction treatment easily react with oxygen in the air. In some cases, the zeolite may be ignited by the reaction heat generated by the oxidation. After the hydrogen reduction treatment, it is preferable to replace the gas from the hydrogen atmosphere with an inert atmosphere such as nitrogen to gradually bring the oxygen concentration closer to 21%.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

[実施例1]
(A)金属粒子生成工程
界面活性剤であるポリオキシエチレン(15)オレイルエーテル[O-15](日本サーファクタント工業株式会社製)と有機溶媒であるシクロヘキサン(和光純薬工業株式会社製,99.5%)を、界面活性剤/有機溶媒混合=0.5mol/Lとなるよう混合した。この溶液をウォーターバスで50℃まで加熱し、塩化ロジウム(RhCl3・3H2O,和光純薬工業株式会社製,99.5%)を蒸留水(和光純薬工業株式会社製)に溶解し0.18Mの塩化ロジウム水溶液を調製し、0.36cc添加した。1時間撹拌後、ヒドラジン一水和物(N・HO,和光純薬工業株式会社製、99.0%)を0.0010g添加して、0.5時間撹拌を継続し、溶液Aを調製した。
[Example 1]
(A) Metal Particle Formation Step A surfactant, polyoxyethylene (15) oleyl ether [O-15] (manufactured by Nippon Surfactant Industries, Ltd.) and an organic solvent, cyclohexane (manufactured by Wako Pure Chemical Industries, Ltd., 99. 5%) was mixed so that surfactant / organic solvent mixture = 0.5 mol / L. This solution was heated to 50 ° C. in a water bath, and rhodium chloride (RhCl 3 .3H 2 O, manufactured by Wako Pure Chemical Industries, Ltd., 99.5%) was dissolved in distilled water (manufactured by Wako Pure Chemical Industries, Ltd.). A 0.18 M rhodium chloride aqueous solution was prepared, and 0.36 cc was added. After stirring for 1 hour, 0.0010 g of hydrazine monohydrate (N 2 H 4 .H 2 O, manufactured by Wako Pure Chemical Industries, Ltd., 99.0%) was added, and stirring was continued for 0.5 hour, Solution A was prepared.

(B)SiO2層形成工程
撹拌を継続しつつ、溶液Aの温度を50℃に調整した。その後、溶液Aにオルトケイ酸テトラエチル(和光純薬工業株式会社製、95.0%)を2.31g添加し0.5時間撹拌した。更に、アンモニア水(和光純薬工業株式会社製,28.0%)3.23ccを0.5時間かけて添加し、溶液Bを調製した。
(B) SiO 2 layer forming step The temperature of the solution A was adjusted to 50 ° C while stirring was continued. Thereafter, 2.31 g of tetraethyl orthosilicate (manufactured by Wako Pure Chemical Industries, Ltd., 95.0%) was added to solution A, followed by stirring for 0.5 hour. Further, 3.23 cc of aqueous ammonia (manufactured by Wako Pure Chemical Industries, Ltd., 28.0%) was added over 0.5 hour to prepare a solution B.

(C)ゼオライト生成工程
溶液Bに、テトラプロピルアンモニウム(和光純薬工業株式会社製,10%水溶液)を7.50g添加し、2時間撹拌した後、オートクレーブで100℃、72時間水熱処理を行った。
(C) Zeolite generation step To solution B, add 7.50 g of tetrapropylammonium (manufactured by Wako Pure Chemical Industries, Ltd., 10% aqueous solution), stir for 2 hours, and perform hydrothermal treatment in an autoclave at 100 ° C for 72 hours. Was.

(D)後処理工程
水熱処理後の溶液Bを濾過し、得られた粉末を2-プロパノールで洗浄した。前記の粉末を、110℃、10時間大気中で乾燥した。その後、テンプレート、界面活性剤、有機溶媒を除去するために、前記の粉末を550℃、12時間、空気中で焼成した。前記の粉末を焼成した後、ロジウムを還元するために、450℃、水素濃度99.5%の雰囲気下で2時間水素還元し、ロジウムを内包したゼオライトを得た。
(D) Post-treatment step The solution B after the hydrothermal treatment was filtered, and the obtained powder was washed with 2-propanol. The powder was dried in air at 110 ° C. for 10 hours. Thereafter, the powder was calcined at 550 ° C. for 12 hours in air in order to remove the template, the surfactant and the organic solvent. After calcining the above-mentioned powder, in order to reduce rhodium, hydrogen reduction was carried out at 450 ° C. in an atmosphere having a hydrogen concentration of 99.5% for 2 hours to obtain a zeolite containing rhodium.

[X線回折測定]
前述のゼオライトについて、下記の条件でX線回折測定を行った。
X線回折装置:UltimaIV(リガク製)
線源:Cu−Kα線
加速電圧、電流:40KV、20mA
受光スリット:開放
スキャン速度:20°/min
ステップ幅:0.020°
測定範囲(2θ):5°〜80°
[X-ray diffraction measurement]
X-ray diffraction measurement was performed on the above zeolite under the following conditions.
X-ray diffractometer: Ultima IV (Rigaku)
Source: Cu-Kα ray Accelerating voltage, current: 40 KV, 20 mA
Receiving slit: Open Scanning speed: 20 ° / min
Step width: 0.020 °
Measurement range (2θ): 5 ° to 80 °

前述の測定で得られたX線回折パターンから、前述のゼオライトは、MFI構造を有するSilicalite-1であることが確認された。また、金属ロジウムを含有していることも確認された。X線回折パターンを図2に示す。   From the X-ray diffraction pattern obtained by the above measurement, it was confirmed that the above zeolite was Silicalite-1 having an MFI structure. It was also confirmed that the metal contained rhodium. The X-ray diffraction pattern is shown in FIG.

[金属粒子サイズ測定]
前述のゼオライトについて、水素パルス吸着法により、ロジウムのサイズを算出した。
装置名:BELCAT‐A(日本ベル株式会社)
前処理温度:450℃
前処理時間:Nを15分流通し、その後Hを15分流通し、更にその後Nを15分流通
前処理ガス流量:30cc/min
サンプル量:0.075g
パルス吸着:50℃、9.95%H/NBalance
[Metal particle size measurement]
For the above-mentioned zeolite, the size of rhodium was calculated by the hydrogen pulse adsorption method.
Equipment name: BELCAT-A (Nippon Bell Co., Ltd.)
Pretreatment temperature: 450 ° C
Pretreatment time: N 2 was circulated 15 minutes, then with H 2 flows 15 minutes, further thereafter N 2 for 15 minutes circulation pretreatment gas flow rate: 30 cc / min
Sample amount: 0.075g
Pulse adsorption: 50 ° C., 9.95% H 2 / N 2 Balance

前述の測定で得られた水素パルス吸着の結果から、前述のゼオライトに内包されるロジウムのサイズを算出したところ、2.8nmであった。結果を表1に示す。   The size of rhodium included in the zeolite was calculated from the result of the hydrogen pulse adsorption obtained in the above measurement, and was 2.8 nm. Table 1 shows the results.

前述のゼオライトについて、熱処理を行った後、前述のゼオライトに内包されるロジウムの粒子径を算出した。下記の条件以外は、前述の条件と同様の方法で測定した。
熱処理:空気雰囲気下、600℃で2hr保持
After heat-treating the above-mentioned zeolite, the particle size of rhodium contained in the above-mentioned zeolite was calculated. Except for the following conditions, the measurement was performed by the same method as the above-mentioned conditions.
Heat treatment: maintained at 600 ° C for 2 hours in air atmosphere

前述の測定で得られた水素パルス吸着の結果から、600℃で熱処理した前述のゼオライトに内包されるロジウムのサイズは、3.5nmであった。また、その成長率(成長率[%]=((熱処理後の金属粒子サイズ/熱処理前の金属粒子サイズ)−1)×100)は、25%であった。結果を表1に示す。   From the result of the hydrogen pulse adsorption obtained in the above-mentioned measurement, the size of rhodium contained in the above-mentioned zeolite heat-treated at 600 ° C. was 3.5 nm. The growth rate (growth rate [%] = ((metal particle size after heat treatment) / metal particle size before heat treatment) −1) × 100) was 25%. Table 1 shows the results.

[ゼオライトのサイズ測定]
前述のゼオライトについて、SEM観察を行い、ゼオライトのサイズを算出した。具体的には粒子100個をランダムに抽出し,その長径の平均値をサイズとした。
装置名:JEOL JSM−6500F
[Measurement of zeolite size]
SEM observation was performed on the above-mentioned zeolite, and the size of the zeolite was calculated. Specifically, 100 particles were randomly extracted, and the average value of the major axis was defined as the size.
Apparatus name: JEOL JSM-6500F

前述の測定で得られたゼオライトのサイズは、110nmであった。結果を表1に示す。また、TEM観察で得られたTEM画像から、ゼオライトの内部にロジウムが1個以上内包されていることが確認された。TEM画像を図3に示す。
装置名:JEOL JEM−2010
The size of the zeolite obtained in the above measurement was 110 nm. Table 1 shows the results. In addition, it was confirmed from the TEM image obtained by the TEM observation that one or more rhodium was included in the zeolite. A TEM image is shown in FIG.
Apparatus name: JEOL JEM-2010

[反応評価:ベンゼン水素化]
前述のゼオライトについて、ベンゼン水素化試験により、触媒活性の評価を行った。なお、ベンゼンの分子サイズは、前述のゼオライトが持つ細孔径より小さい。
反応器 :液相回分反応器(図4)
前処理 :反応器内部で、450℃、2hr、水素雰囲気下
ゼオライト仕込量:0.08g
反応原料 :ベンゼン17.52g
触媒/反応原料 :6.45×10−5g/g(Rh基準)
反応温度 :80℃
反応時間 :4時間
水素圧 :1MPa
反応液分析 :ガスクロマトグラフィー(カラム:SHIMADZU CBP−20)
[Reaction evaluation: hydrogenation of benzene]
The zeolite was evaluated for catalytic activity by a benzene hydrogenation test. The molecular size of benzene is smaller than the pore size of the above-mentioned zeolite.
Reactor: Liquid phase batch reactor (Fig. 4)
Pretreatment: Inside the reactor at 450 ° C. for 2 hours under a hydrogen atmosphere Zeolite charge: 0.08 g
Reaction raw material: 17.52 g of benzene
Catalyst / reaction raw material: 6.45 × 10 −5 g / g (Rh basis)
Reaction temperature: 80 ° C
Reaction time: 4 hours Hydrogen pressure: 1 MPa
Reaction solution analysis: gas chromatography (column: SHIMADZU CBP-20)

前述の反応評価で得られた生成物(シクロヘキサン)の収率は、61.8mol%であった。結果を表に示す。   The yield of the product (cyclohexane) obtained in the above reaction evaluation was 61.8 mol%. The results are shown in the table.

[反応評価:ベンゼン水素化(被毒物質あり)]
前述のゼオライトについて、被毒物質(4,6ジメチルジベンゾチオフェン)の存在下でベンゼン水素化を行った。具体的には、下記の条件以外は、前述のベンゼン水素化の条件と同じ条件で触媒活性の評価を行った。なお、4,6ジメチルジベンゾチオフェンは、Rhに吸着して触媒活性を低下させる被毒物質の一つであって、その分子サイズは、前述のゼオライトがもつゼオライトの細孔径より大きい。
反応原料:ベンゼン17.52g、4,6ジメチルジベンゾチオフェン0.0351g
[Reaction evaluation: hydrogenation of benzene (with poisonous substances)]
The zeolites described above were subjected to benzene hydrogenation in the presence of the poisoning substance (4,6 dimethyldibenzothiophene). Specifically, the catalyst activity was evaluated under the same conditions as the above-mentioned benzene hydrogenation conditions except for the following conditions. It should be noted that 4,6 dimethyldibenzothiophene is one of the poisonous substances which lowers the catalytic activity by adsorbing on Rh, and has a molecular size larger than the pore size of the zeolite of the above-mentioned zeolite.
Reaction raw material: benzene 17.52 g, 4,6 dimethyldibenzothiophene 0.0351 g

前述の反応評価で得られた生成物(シクロヘキサン)の収率は、24.0mol%であった。結果を表1に示す。   The yield of the product (cyclohexane) obtained in the above reaction evaluation was 24.0 mol%. Table 1 shows the results.

[反応評価:メチシレン水素化]
前述のゼオライトについてメチシレン水素化を行った。具体的には、下記の条件以外は、前述のベンゼン水素化の条件と同じ条件で触媒活性の評価を行った。なお、メチシレンの分子サイズは、前述のゼオライトがもつゼオライトの細孔径より大きい。
反応原料:メチシレン17.2g
[Reaction evaluation: hydrogenation of methicylene]
Methisilene hydrogenation was performed on the aforementioned zeolite. Specifically, the catalyst activity was evaluated under the same conditions as the above-mentioned benzene hydrogenation conditions except for the following conditions. The molecular size of methicylene is larger than the pore size of zeolite of the above-mentioned zeolite.
Raw material for reaction: 17.2 g of methicylene

前述の反応評価で得られた生成物(1,3,5−トリメチルシクロヘキサン)の収率は、0mol%であった。結果を表1に示す。   The yield of the product (1,3,5-trimethylcyclohexane) obtained in the above reaction evaluation was 0 mol%. Table 1 shows the results.

[比較例1]
エマルション法で得られた粒子径が80nmであるゼオライト(Silicalite−1)1.0gと塩化ロジウム水溶液(Rh濃度0.18M)を混合し、12時間室温で乾燥してロジウム担持ゼオライト前駆体を得た。得られたロジウム担持ゼオライト前駆体を真空乾燥し、550℃、12時間、空気中で焼成した。その後、450℃、水素濃度99.5%の雰囲気下で2時間水素還元し、ロジウム担持ゼオライトを得た。
[Comparative Example 1]
A mixture of 1.0 g of zeolite (Silicalite-1) having a particle diameter of 80 nm obtained by an emulsion method and an aqueous rhodium chloride solution (Rh concentration: 0.18 M) was dried at room temperature for 12 hours to obtain a rhodium-supported zeolite precursor. Was. The obtained rhodium-supported zeolite precursor was vacuum dried and calcined at 550 ° C. for 12 hours in air. Thereafter, hydrogen reduction was performed at 450 ° C. in an atmosphere having a hydrogen concentration of 99.5% for 2 hours to obtain a rhodium-supported zeolite.

前述のロジウム担持ゼオライトについて、実施例1と同様の評価を行った。結果を表1に示す。   The same evaluation as in Example 1 was performed for the above-mentioned rhodium-supported zeolite. Table 1 shows the results.

実施例1のゼオライトは、600℃で熱処理しても、ロジウムのサイズがシングルナノオーダーを維持している。これは、ロジウムがゼオライトで覆われており、ロジウムの移動を抑制したためと考えられる。一方、比較例1のゼオライトは、600℃で熱処理すると、ロジウムのサイズが18.6nmまで大きくなる。これは、ロジウムが移動し、ロジウム同士が接触し凝集または結晶成長したためと考えられる。したがって、本発明のゼオライトは、600℃という過酷な環境下においても、ロジウムの成長を抑制できる。   The zeolite of Example 1 maintains the size of rhodium in the single nano order even after heat treatment at 600 ° C. This is probably because rhodium was covered with the zeolite and suppressed the movement of rhodium. On the other hand, when the zeolite of Comparative Example 1 is heat-treated at 600 ° C., the size of rhodium increases to 18.6 nm. It is considered that this is because the rhodium moved, and the rhodiums came into contact with each other to cause aggregation or crystal growth. Therefore, the zeolite of the present invention can suppress the growth of rhodium even under a severe environment of 600 ° C.

実施例1のゼオライトは、ベンゼン水素化試験において活性を示すが、メチシレン水素化試験においては活性を示さない。これは、実施例1のゼオライトに含まれるロジウムがゼオライトに内包されているため、ゼオライトの細孔より小さいベンゼンはゼオライト内に侵入してロジウムと接触することにより水素化され、ゼオライトの細孔より大きいメチシレンはゼオライト内に侵入できずロジウムと接触できなかったため、水素化されなかったものと考えられる。   The zeolite of Example 1 shows activity in the benzene hydrogenation test but not in the methysylene hydrogenation test. This is because, since the rhodium contained in the zeolite of Example 1 is included in the zeolite, benzene smaller than the pores of the zeolite penetrates into the zeolite and is hydrogenated by being brought into contact with the rhodium. It is probable that large methicylene was not hydrogenated because it could not penetrate into the zeolite and could not contact rhodium.

実施例1のゼオライトと比較例1のゼオライトを比較すると、被毒物質のない状態では、比較例1のゼオライトの方がベンゼン水素化活性が高い。しかし、被毒物質がある状態では、実施例1のゼオライトの方がベンゼン水素化活性が高い。これは、水素化活性金属であるロジウムがゼオライトの表面にある比較例1のゼオライトは、被毒物質によってロジウムが被毒されたため、ベンゼン水素化活性が低くなったものと考える。一方、ロジウムがゼオライトに内包されている実施例1のゼオライトは、被毒物質がゼオライトの内部に侵入できずロジウムが被毒されなかったため、ベンゼンの水素化活性が高くなったものと考えられる。   Comparing the zeolite of Example 1 with the zeolite of Comparative Example 1, the zeolite of Comparative Example 1 has higher benzene hydrogenation activity without any poisoning substance. However, in the presence of poisons, the zeolite of Example 1 has higher benzene hydrogenation activity. This is thought to be because the zeolite of Comparative Example 1 in which rhodium, which is a hydrogenation active metal, is on the surface of zeolite has a low benzene hydrogenation activity because rhodium is poisoned by the poisoning substance. On the other hand, the zeolite of Example 1 in which rhodium is included in the zeolite is considered to have increased hydrogenation activity of benzene because the poisoning substance could not enter the zeolite and the rhodium was not poisoned.


Claims (4)

下記(1)〜()の構成を有する、金属粒子を内包したゼオライト。
(1)MFI構造のゼオライトの結晶内に金属粒子が内包されている。
(2)前記ゼオライトが有する細孔の平均径よりも、前記金属粒子の平均粒子径の方が大きい。
(3)前記ゼオライトのサイズが、50〜200nmの範囲にある。
(4)メチシレン水素化試験を行って測定される水素化反応生成物の収率が、3mol%以下である。
A zeolite containing metal particles, having the following constitutions (1) to ( 4 ).
(1) Metal particles are included in zeolite crystals having an MFI structure.
(2) The average particle diameter of the metal particles is larger than the average diameter of the pores of the zeolite.
(3) The size of the zeolite is in the range of 50 to 200 nm.
(4) The yield of a hydrogenation reaction product measured by performing a methysylene hydrogenation test is 3 mol% or less.
金属粒子のサイズが、1〜10nmである請求項1に記載の金属粒子を内包したゼオライト。   The zeolite according to claim 1, wherein the size of the metal particles is 1 to 10 nm. 600℃で熱処理したときの金属粒子の成長率が、50%以下である請求項1又は2に記載の金属粒子を内包したゼオライト。   The zeolite according to claim 1 or 2, wherein a growth rate of the metal particles when heat-treated at 600 ° C is 50% or less. 金属粒子が、Au、Ag、Pt、Pd、Rh、Ruから選ばれる少なくとも1種である請求項1〜3のいずれかに記載の金属粒子を内包したゼオライト。   The zeolite according to any one of claims 1 to 3, wherein the metal particles are at least one selected from Au, Ag, Pt, Pd, Rh, and Ru.
JP2016009258A 2016-01-20 2016-01-20 Zeolite containing metal particles Expired - Fee Related JP6651362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016009258A JP6651362B2 (en) 2016-01-20 2016-01-20 Zeolite containing metal particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016009258A JP6651362B2 (en) 2016-01-20 2016-01-20 Zeolite containing metal particles

Publications (2)

Publication Number Publication Date
JP2017128480A JP2017128480A (en) 2017-07-27
JP6651362B2 true JP6651362B2 (en) 2020-02-19

Family

ID=59394454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016009258A Expired - Fee Related JP6651362B2 (en) 2016-01-20 2016-01-20 Zeolite containing metal particles

Country Status (1)

Country Link
JP (1) JP6651362B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7323114B2 (en) * 2017-05-31 2023-08-08 国立大学法人北海道大学 Functional structure and method for producing functional structure
WO2018221696A1 (en) * 2017-05-31 2018-12-06 古河電気工業株式会社 Oxidation catalyst structure for exhaust gas purification and production method thereof, exhaust gas treatment device for vehicle, catalyst molded body, and gas purification method
EP3632550A4 (en) * 2017-05-31 2021-03-03 National University Corporation Hokkaido University Functional structure and production method for functional structure
EP3632542A4 (en) 2017-05-31 2021-01-06 Furukawa Electric Co., Ltd. Co shift or reverse shift catalyst structure and production method thereof, co shift or reverse shift reaction device, production method of carbon dioxide and hydrogen, and production method of carbon monoxide and water
CN110691650A (en) * 2017-05-31 2020-01-14 古河电气工业株式会社 Hydrocracking catalyst structure, hydrocracking device provided with same, and method for producing hydrocracking catalyst structure
EP3632553A4 (en) * 2017-05-31 2021-01-06 Furukawa Electric Co., Ltd. Catalyst structure for aromatic hydrocarbon production, aromatic hydrocarbon production device provided with said catalyst structure for aromatic hydrocarbon production, production method of catalyst structure for aromatic hydrocarbon production, and production method of aromatic hydrocarbons
WO2018221694A1 (en) * 2017-05-31 2018-12-06 古河電気工業株式会社 Hydrodesulfurization catalyst structure, hydrodesulfurization device provided with said catalyst structure, and production method of hydrodesulfurization catalyst structure
US11161101B2 (en) 2017-05-31 2021-11-02 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
AU2018276618B2 (en) 2017-05-31 2021-05-27 Furukawa Electric Co., Ltd. Functional structure and production method for functional structure
AU2018276617B2 (en) 2017-05-31 2021-03-25 Furukawa Electric Co., Ltd. Functional structure and production method for functional structure
AU2018277967B2 (en) 2017-05-31 2021-05-27 Furukawa Electric Co., Ltd. Functional structure and production method for functional structure
JP7328145B2 (en) 2017-05-31 2023-08-16 古河電気工業株式会社 Steam reforming catalyst structure, reformer equipped with the steam reforming catalyst structure, and method for producing the steam reforming catalyst structure
CN110678260A (en) * 2017-05-31 2020-01-10 古河电气工业株式会社 Fluid catalytic cracking structure, method for producing same, and fluid catalytic cracking apparatus provided with same
EP3632539A4 (en) 2017-05-31 2021-01-06 Furukawa Electric Co., Ltd. Methanol reforming catalyst structure, methanol reforming device, production method for methanol reforming catalyst structure, and production method for at least one of olefins and aromatic hydrocarbons
CN110730687A (en) 2017-05-31 2020-01-24 古河电气工业株式会社 Catalyst structure for catalytic cracking or hydrodesulfurization, catalytic cracking device and hydrodesulfurization device each having the catalyst structure, and method for producing catalyst structure for catalytic cracking or hydrodesulfurization
EP3892376A4 (en) * 2018-12-03 2022-09-07 National University Corporation Hokkaido University Functional structure
JP7449525B2 (en) * 2018-12-03 2024-03-14 国立大学法人北海道大学 Functional structure and its manufacturing method
JP7366431B2 (en) * 2018-12-03 2023-10-23 古河電気工業株式会社 Catalyst structure, method for producing the same, and method for producing hydrocarbons using the catalyst structure
US20220016607A1 (en) 2018-12-03 2022-01-20 National University Corporation Hokkaido University Functional structure precursor and functional structure
CN113164934A (en) * 2018-12-03 2021-07-23 国立大学法人北海道大学 Functional structure
JP2020089811A (en) * 2018-12-03 2020-06-11 国立大学法人北海道大学 Functional structure, catalyst, and catalyst for ethylene gas oxidation
CN113164937B (en) 2018-12-03 2024-08-13 古河电气工业株式会社 Catalyst structure, process for producing the same, and process for producing hydrocarbon using the catalyst structure
FI3892374T3 (en) 2018-12-03 2024-09-30 Furukawa Electric Co Ltd Syngas-production catalyst structure
JPWO2020116472A1 (en) * 2018-12-03 2021-12-09 国立大学法人北海道大学 Functional structure
WO2020116470A1 (en) 2018-12-03 2020-06-11 国立大学法人北海道大学 Functional structure
CN118922382A (en) 2022-03-25 2024-11-08 三井金属矿业株式会社 Zeolite, process for producing the same, hydrocarbon adsorbing material, and exhaust gas purifying catalyst

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3049317B1 (en) * 1999-04-01 2000-06-05 工業技術院長 Method for producing noble metal encapsulated zeolite
JP2005231908A (en) * 2001-07-10 2005-09-02 Kubota Corp Method for producing microporous body and denitration catalyst
WO2010097108A1 (en) * 2009-02-27 2010-09-02 Haldor Topsøe A/S Process for the preparation of hybrid zeolite or zeolite-like materials
JP2012240867A (en) * 2011-05-17 2012-12-10 Asahi Kasei Chemicals Corp Method for producing zeolite

Also Published As

Publication number Publication date
JP2017128480A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP6651362B2 (en) Zeolite containing metal particles
JP4949594B2 (en) Production of hydrocarbons from synthesis source gases
CN109999902B (en) Packaged platinum group sub-nanometer metal loaded porous titanium-silicon molecular sieve catalyst and preparation and application thereof
JP5434162B2 (en) Propylene oxide production method
JP5628225B2 (en) Metal-containing colloidal particle-supported carrier and method for producing the same
CN107020147A (en) A kind of MFI structure sheet molecular sieve catalyst, the preparation method and the usage of package metals oxide or metal nanoparticle
JP5335505B2 (en) Noble metal support and method for producing carboxylic acid ester using the same as catalyst
JP5336234B2 (en) Composite particle carrier, method for producing the same, and method for producing carboxylic acid ester
JP4646077B2 (en) Nanoparticle catalyst embedded in porous carbon support and method for producing the same
CN108786805B (en) Composite catalyst and preparation method and application thereof
JP5336235B2 (en) Noble metal support and method for producing carboxylic acid ester using the same as catalyst
WO2013187323A1 (en) Gold cluster catalyst and method for producing same
JP5255388B2 (en) Metal particle-supported catalyst and method for producing the same
CN114653370B (en) Metal oxide-based metal monoatomic catalyst, and preparation method and application thereof
JP2006265005A (en) Method for manufacturing activated carbon carrying nano-sized metal or metal oxide with high efficiency
JP2012187565A (en) Core-shell type catalyst and method for producing the same
JP6240153B2 (en) Rhenium recovery from spent reductive amination catalyst
RU2602803C2 (en) Method of fischer-tropsch synthesis cobalt-containing catalyst producing
CN112316985B (en) Catalytic material for preparing methanol by carbon dioxide hydrogenation and preparation method thereof
CN111957311A (en) Preparation method of mesoporous-micro composite titanium-silicon material loaded Au-Pd nano catalyst
JP2020083721A (en) Zeolite including transition metal in the neighborhood of surface and its production method
TW201929958A (en) Process for preparing an epoxidation catalyst
JP2015167882A (en) Photocatalyst production method, photocatalyst, and hydrogen generation method
CN109574033A (en) Molding Titanium Sieve Molecular Sieve containing noble metal and its preparation method and application and the method for producing hydrogen peroxide
JP2007098197A (en) Manufacturing method of photocatalyst material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200122

R150 Certificate of patent or registration of utility model

Ref document number: 6651362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees