JP6647898B2 - UV reflective film and sputtering target - Google Patents
UV reflective film and sputtering target Download PDFInfo
- Publication number
- JP6647898B2 JP6647898B2 JP2016021086A JP2016021086A JP6647898B2 JP 6647898 B2 JP6647898 B2 JP 6647898B2 JP 2016021086 A JP2016021086 A JP 2016021086A JP 2016021086 A JP2016021086 A JP 2016021086A JP 6647898 B2 JP6647898 B2 JP 6647898B2
- Authority
- JP
- Japan
- Prior art keywords
- ultraviolet
- reflectance
- reflective film
- rare earth
- earth element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Physical Vapour Deposition (AREA)
- Optical Elements Other Than Lenses (AREA)
Description
本発明は、紫外線反射膜およびスパッタリングターゲットに関する。 The present invention relates to an ultraviolet reflective film and a sputtering target.
紫外線反射膜は、紫外線滅菌装置または紫外線硬化性樹脂を硬化させるための樹脂硬化装置等の機器、および紫外線発光素子または装置等を含む照明具等の用途に用いられている。紫外線を効率良く反射することは、エネルギー効率またはコスト等の観点から重要であり、特許文献1、3および4では、金属からなる紫外線反射膜が検討されている。 The ultraviolet reflective film is used for devices such as an ultraviolet sterilizer or a resin curing device for curing an ultraviolet curable resin, and an illumination device including an ultraviolet light emitting element or device. It is important to efficiently reflect ultraviolet rays from the viewpoint of energy efficiency, cost, and the like, and Patent Documents 1, 3, and 4 discuss ultraviolet reflecting films made of metal.
このような装置に使用される紫外線光源としては、例えば、低圧水銀ランプ、高圧水銀ランプまたは超高圧水銀ランプ等が挙げられ、それぞれが特有のピーク波長および強度を有しており、使用目的に応じて適切な光源が選択される。その中でも、254nmに強いピークを有する低圧水銀ランプは、例えば、滅菌や表面改質等の様々な用途に適しており、広く用いられている。従って、254nmの紫外線を効率良く反射することができる紫外線反射膜が求められている。 Examples of the ultraviolet light source used in such an apparatus include a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, and the like, each having a specific peak wavelength and intensity, and depending on the purpose of use. And an appropriate light source is selected. Among them, a low-pressure mercury lamp having a strong peak at 254 nm is suitable for various uses such as sterilization and surface modification, and is widely used. Therefore, there is a need for an ultraviolet reflecting film capable of efficiently reflecting ultraviolet light of 254 nm.
しかしながら、紫外光領域の反射に関しては、十分な検討がなされていない。例えば、特許文献1には、紫外半導体発光素子に用いる反射膜として、Al、Rh、Siおよびそれらの合金が挙げられているが、実施例がなく、紫外光領域の反射率に関して十分に検討されていない。 However, the reflection in the ultraviolet light region has not been sufficiently studied. For example, Patent Literature 1 discloses Al, Rh, Si and alloys thereof as a reflection film used for an ultraviolet semiconductor light emitting element. However, there is no example, and the reflectance in the ultraviolet light region is sufficiently studied. Not.
特許文献2には、高反射率および高耐久性を有する反射膜として、Ag合金が提案されているが、可視光領域における検討のみであり、紫外光領域の反射率については検討されていない。また、特許文献3には、Ag合金の表面の粗さを制御することにより、400nm以下の領域で高反射率を得ることが検討されているが、375nm以下の実施例がなく、254nmの紫外線の反射率については検討されていない。さらに、一般的に、可視光領域において、AgまたはAg合金が高反射率であるが、380nm以下の紫外光領域では急激に反射率が低下し、254nmでは反射率が25%程度である。 Patent Document 2 proposes an Ag alloy as a reflective film having high reflectivity and high durability. However, it is only a study in the visible light region, and does not examine a reflectivity in the ultraviolet light region. Patent Document 3 discusses obtaining a high reflectance in a region of 400 nm or less by controlling the surface roughness of the Ag alloy. However, there is no example of 375 nm or less, and there is no example of 254 nm ultraviolet light. Is not considered. Further, in general, Ag or an Ag alloy has high reflectance in the visible light region, but the reflectance sharply decreases in the ultraviolet light region of 380 nm or less, and the reflectance is approximately 25% at 254 nm.
特許文献5には、Alの合金化による可視光領域の反射率の向上について記載されているが、紫外光領域の反射率についての言及はない。 Patent Literature 5 describes an improvement in the reflectance in the visible light region due to alloying of Al, but does not mention the reflectance in the ultraviolet light region.
本発明は、上記の問題点に着目してなされたものであって、その目的は、紫外線反射膜を構成する希土類元素、Cuおよび残部のAlの量、並びに希土類元素とCuとの比率を所定の範囲に制御することにより、波長254nmの紫外線の反射率が85%以上の紫外線反射膜を提供することである。また、そのような組成を有するスパッタリングターゲットを提供することも目的とする。 The present invention has been made in view of the above problems, and has as its object to determine the amount of the rare earth element, Cu and the balance of Al constituting the ultraviolet reflection film, and the ratio of the rare earth element to Cu. Is to provide an ultraviolet reflecting film having a reflectance of 85% or more for ultraviolet light having a wavelength of 254 nm. Another object is to provide a sputtering target having such a composition.
本発明に係る紫外線反射膜は、1または2種以上の希土類元素:0.2at%以上、3.0at%以下、およびCu:0.2at%以上、6.0at%以下の少なくとも一方を含み、残部がAlおよび不可避不純物からなり、下記(1)式を満足し、波長254nmの紫外線の反射率が85%以上である。
X+0.5Y<3.5 ・・・(1)
ここで、Xは希土類元素の量[at%]であり、YはCuの量[at%]である。
The ultraviolet reflective film according to the present invention includes at least one of one or more rare earth elements: 0.2 at% or more and 3.0 at% or less, and Cu: 0.2 at% or more and 6.0 at% or less, The balance consists of Al and unavoidable impurities, and satisfies the following expression (1), and has a reflectance of 85% or more for ultraviolet rays having a wavelength of 254 nm.
X + 0.5Y <3.5 (1)
Here, X is the amount [at%] of the rare earth element, and Y is the amount [at%] of Cu.
紫外線反射膜に用いられる前記希土類元素は、Sc、Nd、Gd、La、Y、Ce、PrおよびDyからなる群から選択される1つ以上の元素であってよい。 The rare earth element used for the ultraviolet reflecting film may be one or more elements selected from the group consisting of Sc, Nd, Gd, La, Y, Ce, Pr, and Dy.
紫外線反射膜の膜は、50nm以上、2000nm以下であってよい。 The thickness of the ultraviolet reflective film may be 50 nm or more and 2000 nm or less.
本発明に係るスパッタリングターゲットは、1または2種以上の希土類元素:0.2at%以上、3.0at%以下、およびCu:0.2at%以上、6.0at%以下の少なくとも一方を含み、残部がAlおよび不可避不純物からなり、下記(2)式を満足する。
X+0.5Y<3.5 ・・・(2)
ここで、Xは希土類元素の量[at%]であり、YはCuの量[at%]である。
The sputtering target according to the present invention includes at least one of one or more rare earth elements: 0.2 at% or more and 3.0 at% or less, and Cu: 0.2 at% or more and 6.0 at% or less, with the balance being the balance. Is composed of Al and inevitable impurities, and satisfies the following expression (2).
X + 0.5Y <3.5 (2)
Here, X is the amount [at%] of the rare earth element, and Y is the amount [at%] of Cu.
スパッタリングターゲットに用いられる前記希土類元素は、Sc、Nd、Gd、La、Y、Ce、PrおよびDyからなる群から選択される1つ以上の元素であってよい。 The rare earth element used for the sputtering target may be one or more elements selected from the group consisting of Sc, Nd, Gd, La, Y, Ce, Pr, and Dy.
本発明に係る紫外線反射膜は、紫外線反射膜を構成する希土類元素、Cuおよび残部のAlの量、並びに希土類元素とCuとの比率が所定の範囲に制御されることにより、波長254nmの紫外線の反射率が85%以上であり、優れた反射率を有する。また、本発明に係るスパッタリングターゲットは、このように反射率に優れた紫外線反射膜を成膜することができる。 The ultraviolet reflective film according to the present invention, the rare-earth element constituting the ultraviolet-reflective film, the amount of Cu and the remaining Al, and the ratio of rare earth element to Cu is controlled to a predetermined range, the ultraviolet light of wavelength 254nm The reflectance is 85% or more, and has excellent reflectance. Further, the sputtering target according to the present invention can form an ultraviolet reflective film having excellent reflectance in this manner.
以下に、本発明の紫外線反射膜およびスパッタリングターゲットの詳細を説明する。 Hereinafter, the details of the ultraviolet reflective film and the sputtering target of the present invention will be described.
<紫外線反射膜>
[1.紫外線反射膜の組成]
本発明に係る紫外線反射膜は、1または2種以上の希土類元素:0.2at%以上、3.0at%以下、およびCu:0.2at%以上、6.0at%以下の少なくとも一方を含み、残部がAlおよび不可避不純物からなり、下記(1)式を満足し、波長254nmの紫外線の反射率が85%以上である。
X+0.5Y<3.5 ・・・(1)
ここで、Xは希土類元素の量[at%]であり、YはCuの量[at%]である。
<Ultraviolet reflective film>
[1. Composition of UV Reflecting Film]
The ultraviolet reflective film according to the present invention includes at least one of one or more rare earth elements: 0.2 at% or more and 3.0 at% or less, and Cu: 0.2 at% or more and 6.0 at% or less, The balance consists of Al and unavoidable impurities, and satisfies the following expression (1), and has a reflectance of 85% or more for ultraviolet rays having a wavelength of 254 nm.
X + 0.5Y <3.5 (1)
Here, X is the amount [at%] of the rare earth element, and Y is the amount [at%] of Cu.
また、前記希土類元素は、Sc、Nd、Gd、La、Y、Ce、PrおよびDyからなる群から選択される1つ以上の元素であってよい。
以下に各元素および式(1)について詳述する。
Further, the rare earth element may be one or more elements selected from the group consisting of Sc, Nd, Gd, La, Y, Ce, Pr and Dy.
Hereinafter, each element and the formula (1) will be described in detail.
(1)希土類元素およびCuの機能
本発明に係る紫外線反射膜は、1または2種以上の希土類元素およびCuの少なくとも一方を所定量含有する。
Alをスパッタリング法で成膜する場合、Alは表面が粗い膜となり、反射率が低下する。しかし、希土類元素またはCuを添加すると、希土類元素またはCuは基板上で表面拡散しにくいため、基板上でAlの核生成サイトとなり、Alの核生成密度が相加する。その結果、微細な結晶粒が増加して組織が微細化するため、表面の粗さが小さくなる。
このように、希土類元素またはCuを含有することにより、紫外線反射膜の表面を比較的平坦にすることができるため、スパッタリング法で成膜する場合でも、反射率低下が抑制されて高い反射率が得られる。
(1) Function of rare earth element and Cu The ultraviolet reflective film according to the present invention contains at least one of one or more rare earth elements and Cu in a predetermined amount.
When Al is formed by a sputtering method, Al becomes a film having a rough surface, and the reflectance is reduced. However, when a rare earth element or Cu is added, the rare earth element or Cu hardly diffuses on the substrate, so that it becomes an Al nucleation site on the substrate, and the nucleation density of Al increases. As a result, fine crystal grains increase and the structure becomes finer, so that the surface roughness becomes smaller.
As described above, since the surface of the ultraviolet reflective film can be made relatively flat by containing the rare earth element or Cu, even when the film is formed by the sputtering method, a decrease in the reflectance is suppressed and a high reflectance is obtained. can get.
(2)1または2種以上の希土類元素:0.2at%以上、3.0at%以下
本発明に係る紫外線反射膜は、1または2種以上の希土類元素を0.2at%以上、3.0at%以下含有することにより、紫外線反射膜の表面の粗さを小さくすることができ、254nmの紫外線の反射率が85%以上となり、優れた反射率を有する。希土類元素が0.2at%未満の場合、結晶粒が微細化しにくく表面の粗さを小さくする効果が弱くなり、85%の反射率を得ることができない。また、希土類元素が3.0at%を超える場合、希土類元素の低い反射率が紫外線反射膜の反射率に影響を及ぼして、反射率を低下させるため、85%の反射率を得ることができない。
紫外線のさらに良好な反射率を得る観点から、希土類元素の含有量の好ましい上限は1at%、より好ましくは2at%である。
また、紫外線のさらに良好な反射率を得る観点から、希土類元素は、Sc、Nd、Gd、La、Y、Ce、PrおよびDyからなる群から選択される1つ以上の元素であることが好ましい。
(2) One or more rare earth elements: 0.2 at% or more and 3.0 at% or less The ultraviolet reflecting film according to the present invention comprises one or more rare earth elements at 0.2 at% or more and 3.0 at%. %, The roughness of the surface of the ultraviolet reflective film can be reduced, and the reflectance of the ultraviolet ray of 254 nm becomes 85% or more, and the film has excellent reflectance. When the amount of the rare earth element is less than 0.2 at%, the effect of making the crystal grains hard to be finely reduced and the effect of reducing the surface roughness is weakened, and a reflectance of 85% cannot be obtained. Further, when the rare earth element exceeds 3.0 at%, the reflectance of the rare earth element affects the reflectance of the ultraviolet reflection film and lowers the reflectance, so that a reflectance of 85% cannot be obtained.
From the viewpoint of obtaining even better reflectance of ultraviolet rays, the preferable upper limit of the content of the rare earth element is 1 at%, more preferably 2 at%.
Further, from the viewpoint of obtaining a better reflectance of ultraviolet light, the rare earth element is preferably at least one element selected from the group consisting of Sc, Nd, Gd, La, Y, Ce, Pr and Dy. .
(3)Cu:0.2at%以上、6.0at%以下
本発明に係る紫外線反射膜は、Cuを0.2at%以上、6.0at%以下含有することにより、紫外線反射膜の表面の粗さを小さくすることができると考えられ、254nmの紫外線の反射率が85%以上となり、優れた反射率を有する。Cuが0.2at%未満の場合、結晶粒が微細化しにくく表面の粗さを小さくする効果が弱くなると考えられ、85%の反射率を得ることができない。また、Cuが6.0at%を超える場合、Cuの低い反射率が紫外線反射膜の反射率に影響を及ぼして、反射率を低下させるため、85%の反射率を得ることができない。
紫外線のさらに良好な反射率を得る観点から、Cuの含有量の好ましい下限は0.5at%、より好ましくは1at%であり、好ましい上限は5at%、より好ましくは4at%である。
(3) Cu: 0.2 at% or more and 6.0 at% or less The ultraviolet reflective film according to the present invention contains Cu at 0.2 at% or more and 6.0 at% or less, so that the surface of the ultraviolet reflective film has a rough surface. It is thought that the reflectance of ultraviolet light of 254 nm becomes 85% or more, and thus the film has an excellent reflectance. When the Cu content is less than 0.2 at%, it is considered that the crystal grains are not easily refined and the effect of reducing the surface roughness is weakened, so that a reflectance of 85% cannot be obtained. When Cu exceeds 6.0 at%, the low reflectance of Cu affects the reflectance of the ultraviolet reflective film and lowers the reflectance, so that a reflectance of 85% cannot be obtained.
From the viewpoint of obtaining even better reflectance of ultraviolet rays, the lower limit of the Cu content is preferably 0.5 at%, more preferably 1 at%, and the upper limit is preferably 5 at%, more preferably 4 at%.
(4)希土類元素の量X[at%]とCuの量Y[at%]との関係((1)式)
上記のように、希土類元素およびCuは共に、表面の粗さを小さくする効果があると考えられ、その結果、優れた紫外線の反射率を得ることができると考えられる。
一方で、上記のように、希土類元素およびCuには、過剰な添加により、反射率を低下させるという不都合がある。従って、両者が併用する場合には、所定の関係式を満足する範囲内で、両者を含有することにより、優れた反射率を有する紫外線反射膜を得ることができる。すなわち、希土類元素の量X[at%]およびCuの量Y[at%]は、下記(1)式を満足する。
X+0.5Y<3.5 ・・・(1)
紫外線のさらに良好な反射率を得る観点から、Xと0.5Yとの和の好ましい上限は3.0、より好ましくは2.5である。
( 4 ) Relationship between the amount X [at%] of the rare earth element and the amount Y [at%] of Cu (formula (1))
As described above, it is considered that both the rare earth element and Cu have an effect of reducing the surface roughness, and as a result, it is considered that excellent ultraviolet reflectance can be obtained.
On the other hand, as described above, the rare earth element and Cu have a disadvantage that the reflectance is reduced by excessive addition. Therefore, when both are used together, an ultraviolet reflective film having excellent reflectance can be obtained by containing both within a range satisfying a predetermined relational expression. That is, the amount X [at%] of the rare earth element and the amount Y [at%] of Cu satisfy the following expression (1).
X + 0.5Y <3.5 (1)
From the viewpoint of obtaining a better reflectance of ultraviolet rays, the preferable upper limit of the sum of X and 0.5Y is 3.0, more preferably 2.5.
(5)Alおよび不可避不純物(残部)
本発明に係る紫外線反射膜は、希土類元素およびCuの他に、残部のAlおよび不可避不純物を含み、原料、資材または製造設備等の状況によって持ち込まれ得る。不可避的不純物としては、例えば、Fe、In、Sn、Ni、Ti、Mg、CrおよびZr等が挙げられる。不可避的不純物の含有量の好ましい上限は0.03wt%である。
( 5 ) Al and unavoidable impurities (remainder)
The ultraviolet reflecting film according to the present invention contains the remaining Al and unavoidable impurities in addition to the rare earth element and Cu, and can be brought in depending on the conditions of raw materials, materials, manufacturing facilities, and the like. Examples of the unavoidable impurities include Fe, In, Sn, Ni, Ti, Mg, Cr, and Zr. A preferable upper limit of the content of the unavoidable impurities is 0.03 wt%.
[2.紫外線反射膜の反射率]
本明細書において、紫外線反射膜の反射率とは、紫外分光光度計を用いて分光反射率を測定した値であり、基準ミラーの反射光強度に対する紫外線反射膜の反射光強度の比率である。紫外分光光度計としては、例えば、可視・紫外分光光度計「V−570」(日本分光株式会社製)が挙げられる。
本発明に係る紫外線反射膜は、254nmの紫外線の反射率が85%以上である。反射率の好ましい下限は87%、より好ましくは89%である。
[2. Reflectivity of UV reflective film]
In this specification, the reflectance of the ultraviolet reflective film is a value obtained by measuring the spectral reflectance using an ultraviolet spectrophotometer, and is a ratio of the reflected light intensity of the ultraviolet reflective film to the reflected light intensity of the reference mirror. Examples of the ultraviolet spectrophotometer include a visible / ultraviolet spectrophotometer “V-570” (manufactured by JASCO Corporation).
The ultraviolet reflective film according to the present invention has a reflectance of 254 nm ultraviolet light of 85% or more. A preferred lower limit of the reflectance is 87%, more preferably 89%.
[3.紫外線反射膜の透過率]
紫外線反射膜の紫外線の透過率が高い場合、紫外線反射膜の近傍の材料(樹脂等)に紫外線が照射され、当該材料が劣化する原因となることがあるため、紫外線の透過率が低いことが好ましい。本願発明の紫外線反射膜は、膜厚50nm以上のAl基合金であるため、低い透過率を有する。
本明細書において、紫外線反射膜の透過率とは、紫外分光光度計を用いて分光反射率を測定した値であり、基準ミラーの透過光強度に対する紫外線反射膜の透過光強度の比率である。紫外分光光度計としては、例えば、可視・紫外分光光度計「V−570」(日本分光株式会社製)が挙げられる。
本発明に係る紫外線反射膜の紫外線の透過率の好ましい上限は0.1%である。
[3. Transmittance of UV reflective film]
When the ultraviolet transmittance of the ultraviolet reflective film is high, a material (resin or the like) in the vicinity of the ultraviolet reflective film is irradiated with ultraviolet light, which may cause deterioration of the material. preferable. The ultraviolet reflective film of the present invention is an Al-based alloy having a thickness of 50 nm or more, and thus has a low transmittance.
In the present specification, the transmittance of the ultraviolet reflective film is a value obtained by measuring the spectral reflectance using an ultraviolet spectrophotometer, and is a ratio of the transmitted light intensity of the ultraviolet reflective film to the transmitted light intensity of the reference mirror. Examples of the ultraviolet spectrophotometer include a visible / ultraviolet spectrophotometer “V-570” (manufactured by JASCO Corporation).
The preferable upper limit of the transmittance of ultraviolet light of the ultraviolet reflective film according to the present invention is 0.1%.
[4.紫外線反射膜の膜厚]
本明細書において、紫外線反射膜の膜厚とは、段差計を用いて測定した値である。段差計としては、例えば、KLA Tencor社製「Alpha−Step」が挙げられる。
本発明に係る紫外線反射膜の膜厚の好ましい下限は50nm、より好ましくは100nmであり、紫外線の反射率がより良好になる。また、好ましい上限は2000nm、より好ましくは1000nmであり、紫外線の反射率がより良好になる。
[4. UV reflective film thickness]
In the present specification, the thickness of the ultraviolet reflective film is a value measured using a step meter. As the step gauge, for example, “Alpha-Step” manufactured by KLA Tencor is mentioned.
The preferable lower limit of the thickness of the ultraviolet reflective film according to the present invention is 50 nm, more preferably 100 nm, and the reflectance of ultraviolet light is further improved. The preferable upper limit is 2,000 nm, more preferably 1,000 nm, and the reflectance of ultraviolet rays becomes better.
[5.紫外線反射膜の製造方法]
本発明に係る紫外線反射膜は、公知のスパッタリング法、例えばマグネトロンスパッタリング法により製造することができる。
添加した希土類元素またはCuが基板上で拡散するためのエネルギーが十分にある場合は、Alの核生成サイトが減少し、反射率を低下させることがある。具体的には、成膜時のパワーを上げることにより、または基板とターゲット距離とを狭めることにより、スパッタ粒子のエネルギーが増加し、その結果、表面の粗さが増加して反射率が低下することがある。従って、成膜条件は、使用する装置に応じて変更してよい。
[5. Manufacturing method of ultraviolet reflective film]
The ultraviolet reflective film according to the present invention can be manufactured by a known sputtering method, for example, a magnetron sputtering method.
If there is sufficient energy for the added rare earth element or Cu to diffuse on the substrate, the number of Al nucleation sites may decrease and reflectivity may decrease. Specifically, by increasing the power at the time of film formation, or by reducing the distance between the substrate and the target, the energy of the sputtered particles increases, and as a result, the surface roughness increases and the reflectance decreases. Sometimes. Therefore, the film forming conditions may be changed according to the equipment used.
<スパッタリングターゲット>
[1.スパッタリングターゲットの組成]
本発明に係るスパッタリングターゲットは、1または2種以上の希土類元素:0.2at%以上、3.0at%以下、およびCu:0.2at%以上、6.0at%以下のいずれか一方を含み、残部がAlおよび不可避不純物からなり、前記希土類元素の量X[at%]およびCuの量Y[at%]が、下記(2)式を満足する。
X+0.5Y<3.5 ・・・(2)
<Sputtering target>
[1. Composition of sputtering target]
The sputtering target according to the present invention includes one or more rare earth elements: 0.2 at% or more and 3.0 at% or less, and Cu: any one of 0.2 at% or more and 6.0 at% or less, The balance consists of Al and unavoidable impurities, and the amount X [at%] of the rare earth element and the amount Y [at%] of Cu satisfy the following expression (2).
X + 0.5Y <3.5 (2)
本発明に係るスパッタリングターゲットを用いることにより、上述のような紫外線反射膜を成膜することができる。 By using the sputtering target according to the present invention, the above-described ultraviolet reflective film can be formed.
[2.スパッタリングターゲットの製造方法]
スパッタリングターゲットの製造方法としては、特には限定されず、種々の方法を適用することができるが、スプレイフォーミング法を適用することが望ましい。スプレイフォーミング法により製造されたスパッタリングターゲットは、成分組織の均一性に優れており、それにより成分組織の均一な紫外線反射膜を形成することができるからである。
[2. Manufacturing method of sputtering target]
The method for manufacturing the sputtering target is not particularly limited, and various methods can be applied. However, it is preferable to apply a spray forming method. This is because the sputtering target manufactured by the spray forming method is excellent in the uniformity of the component structure, and thus, can form an ultraviolet reflective film having a uniform component structure.
<紫外線反射膜の成膜>
表1の実施例1に記載の組成を有する直径4インチの円盤型スパッタリングターゲットをULVAC社製DCマグネトロンスパッタリング装置「CS−200」のチャンバー内の電極に取り付けた後、チャンバー内の圧力を3×10−6Torrに調整した。次に、Arガス(ガス流量:19sccm)をチャンバー内に導入し、チャンバー内の圧力を2mTorrに調整した。その後、室温で、スパッタリングターゲットに500Wのスパッタパワーを印加し、無アルカリガラス板(板厚0.7mm、直径4インチ)上に、表1の実施例1に記載の組成を有する膜厚100nmの紫外線反射膜を成膜した。
表1の実施例1〜19および比較例1〜9についても、上記と同様にして膜厚100nmの紫外線反射膜を成膜した。
表2の実施例20〜23については、成膜時間を変更することにより、表2に記載の膜厚を有する紫外線反射膜を成膜した。
<Deposition of UV reflective film>
After attaching a 4-inch diameter disk-shaped sputtering target having the composition described in Example 1 of Table 1 to an electrode in a chamber of a DC magnetron sputtering apparatus “CS-200” manufactured by ULVAC, the pressure in the chamber was reduced to 3 ×. It was adjusted to 10 −6 Torr. Next, Ar gas (gas flow rate: 19 sccm) was introduced into the chamber, and the pressure in the chamber was adjusted to 2 mTorr. Thereafter, a sputtering power of 500 W was applied to the sputtering target at room temperature, and a 100 nm-thick film having the composition described in Example 1 of Table 1 was placed on an alkali-free glass plate (plate thickness 0.7 mm, diameter 4 inches). An ultraviolet reflective film was formed.
In Examples 1 to 19 and Comparative Examples 1 to 9 in Table 1, ultraviolet reflective films having a thickness of 100 nm were formed in the same manner as described above.
In Examples 20 to 23 in Table 2, an ultraviolet reflecting film having a film thickness shown in Table 2 was formed by changing the film forming time.
得られた紫外線反射膜について、下記の方法で組成分析、反射率測定および透過率測定を行った。評価結果を表1および2に示す。なお、表1および2に記載の元素および数値のうち、下線が付されたものは本発明の規定から外れていることを意味する。 The obtained ultraviolet reflective film was subjected to composition analysis, reflectance measurement and transmittance measurement by the following methods. The evaluation results are shown in Tables 1 and 2. In addition, among the elements and numerical values described in Tables 1 and 2, underlined ones denote that they are out of the range of the present invention.
<組成分析>
ICP発光分析法により、紫外線反射膜の組成(at%)を算出した。
<Composition analysis>
The composition (at%) of the ultraviolet reflective film was calculated by ICP emission analysis.
<反射率測定>
日本分光株式会社製可視・紫外分光光度計「V−570」を用いて、無アルカリガラス板上に成膜した紫外線反射膜について、850〜250nmの範囲の分光反射率を測定した。254nmの紫外線の反射率を下記評価基準で判定した。○および△は、紫外線反射膜が実用可能な水準であることを示す。なお、375nmの紫外線の反射率を参考値として示す。
[評価基準]
○:87%以上
△:85以上、87%未満
×:85%未満
<Reflectance measurement>
Using a visible / ultraviolet spectrophotometer “V-570” manufactured by JASCO Corporation, the spectral reflectance in the range of 850 to 250 nm was measured for the ultraviolet reflective film formed on the alkali-free glass plate. The reflectance of 254 nm ultraviolet light was determined according to the following evaluation criteria. ○ and △ indicate that the ultraviolet reflective film is at a practical level. In addition, the reflectance of 375 nm ultraviolet light is shown as a reference value.
[Evaluation criteria]
:: 87% or more △: 85 or more, less than 87% ×: less than 85%
<透過率測定>
日本分光株式会社製可視・紫外分光光度計「V−570」を用いて、無アルカリガラス板上に成膜した紫外線反射膜について、850〜250nmの範囲の分光透過率を測定した。254nmの紫外線の透過率を表2に示す。
<Transmission measurement>
Using a visible / ultraviolet spectrophotometer “V-570” manufactured by JASCO Corporation, a spectral transmittance in a range of 850 to 250 nm was measured for an ultraviolet reflective film formed on an alkali-free glass plate. Table 2 shows the transmittance of 254 nm ultraviolet light.
実施例1〜23の紫外線反射膜は全て、1または2種以上の希土類元素:0.2at%以上、3.0at%以下、およびCu:0.2at%以上、6.0at%以下の少なくとも一方を含み、残部がAlおよび不可避不純物からなり、上述の(1)式を満足するため、表面の粗さが小さくなると考えられ、波長254nmの紫外線の反射率が85%以上と優れた反射率を有していた。
また、実施例20〜23の紫外線反射膜は全て、254nmの紫外線の透過率が0.01%未満と低く、紫外線の遮断性に優れていた。
All of the ultraviolet reflective films of Examples 1 to 23 are at least one of one or more rare earth elements: 0.2 at% or more and 3.0 at% or less, and Cu: 0.2 at% or more and 6.0 at% or less. And the balance consists of Al and unavoidable impurities, and satisfies the above equation (1). Therefore, it is considered that the surface roughness is reduced, and the reflectance of ultraviolet rays having a wavelength of 254 nm of 85% or more is excellent. Had.
In addition, all of the ultraviolet reflective films of Examples 20 to 23 had a low transmittance of ultraviolet light of 254 nm of less than 0.01%, and were excellent in blocking ultraviolet light.
一方、比較例1の紫外線反射膜はAlのみで成膜されているため、表面の粗さを小さくする効果を得ることができないと考えられ、波長254nmの紫外線の反射率が83.6%と低く、評価基準を満たさなかった。 On the other hand, since the ultraviolet reflecting film of Comparative Example 1 is formed only of Al, it is considered that the effect of reducing the surface roughness cannot be obtained, and the reflectance of the ultraviolet light having a wavelength of 254 nm is 83.6%. It was low and did not meet the evaluation criteria.
比較例1〜5の紫外線反射膜は、Alと希土類元素以外の元素(In、Zn、SnまたはBi)とから成膜されているため、表面の粗さを小さくする効果を得ることができないと考えられ、波長254nmの紫外線の反射率が72.4〜84.2%と低く、評価基準を満たさなかった。比較例1〜4の紫外線反射膜にそれぞれ含まれるIn、ZnまたはSnは、表面の粗さを小さくすることができないと考えられ、その結果、これらの紫外線反射膜の反射率は低かったと考えられる。また、比較例5の紫外線反射膜に含まれるBiは、紫外線反射膜の表面に析出することにより、当該反射膜の反射率を低下させたと考えられる。 Since the ultraviolet reflecting films of Comparative Examples 1 to 5 are formed from Al and an element (In, Zn, Sn or Bi) other than the rare earth element, it is not possible to obtain the effect of reducing the surface roughness. It is considered that the reflectance of ultraviolet rays having a wavelength of 254 nm was as low as 72.4 to 84.2%, and did not satisfy the evaluation criteria. It is considered that In, Zn, or Sn contained in each of the ultraviolet reflective films of Comparative Examples 1 to 4 cannot reduce the surface roughness, and as a result, it is considered that the reflectance of these ultraviolet reflective films was low. . Further, it is considered that Bi contained in the ultraviolet reflective film of Comparative Example 5 was deposited on the surface of the ultraviolet reflective film, thereby lowering the reflectance of the reflective film.
比較例7の紫外線反射膜は、Alと希土類元素Ndとから成膜されているが、Ndの含有量が4.0at%と規定量より多いため、含有するNdの低い反射率が当該紫外線反射膜の反射率に影響を及ぼし、波長254nmの紫外線の反射率が84.8%と低く、評価基準を満たさなかった。 The ultraviolet reflective film of Comparative Example 7 was formed from Al and the rare-earth element Nd. However, since the content of Nd was 4.0 at%, which was larger than the specified amount, the low reflectance of the contained Nd caused the ultraviolet reflection. The reflectance of the film was affected, and the reflectance of ultraviolet light having a wavelength of 254 nm was as low as 84.8%, which did not satisfy the evaluation criteria.
比較例8の紫外線反射膜は、AlとCuとから成膜されているが、Cuの含有量が7.0at%と規定量より多いため、含有するCuの低い反射率が当該紫外線反射膜の反射率に影響を及ぼし、波長254nmの紫外線の反射率が84.4%と低く、評価基準を満たさなかった。 The ultraviolet reflective film of Comparative Example 8 was formed from Al and Cu. However, since the Cu content was 7.0 at%, which is larger than the specified amount, the low reflectance of the contained Cu caused the ultraviolet reflective film to have a low reflectance. The reflectivity was affected, and the reflectivity of ultraviolet rays having a wavelength of 254 nm was as low as 84.4%, which did not satisfy the evaluation criteria.
比較例9の紫外線反射膜は、Alと希土類元素NdとCuとから成膜されているが、上述の式(1)を満足しないため、含有する希土類元素NdおよびCuの低い反射率が当該紫外線反射膜の反射率に影響を及ぼし、波長254nmの紫外線の反射率が84.9%と低く、評価基準を満たさなかった。 Although the ultraviolet reflective film of Comparative Example 9 is formed from Al, the rare-earth elements Nd and Cu, the above-mentioned formula (1) is not satisfied. This affected the reflectance of the reflective film, and the reflectance of ultraviolet light having a wavelength of 254 nm was as low as 84.9%, which did not satisfy the evaluation criteria.
Claims (3)
Cu:0.2at%以上、6.0at%以下
の少なくとも一方を含み、残部がAlおよび不可避不純物からなり、
下記(1)式を満足し、
波長254nmの紫外線の反射率が85%以上である、紫外線反射膜。
X+0.5Y<3.5 ・・・(1)
ここで、Xは希土類元素の量[at%]であり、YはCuの量[at%]である。 One or more rare earth elements: 0.2 at% or more and 3.0 at% or less, and Cu: at least one of 0.2 at% or more and 6.0 at% or less, with the balance being Al and unavoidable impurities,
Satisfies the following equation (1),
An ultraviolet reflective film having a reflectance of 85% or more of ultraviolet light having a wavelength of 254 nm.
X + 0.5Y <3.5 (1)
Here, X is the amount [at%] of the rare earth element, and Y is the amount [at%] of Cu.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016021086A JP6647898B2 (en) | 2016-02-05 | 2016-02-05 | UV reflective film and sputtering target |
KR1020187021150A KR20180097697A (en) | 2016-02-05 | 2016-10-28 | UV reflective film and sputtering target |
PCT/JP2016/082071 WO2017134879A1 (en) | 2016-02-05 | 2016-10-28 | Uv reflective film and sputtering target |
CN201680069937.1A CN108431291A (en) | 2016-02-05 | 2016-10-28 | Ultraviolet reflecting film and sputtering target |
TW105140188A TWI621716B (en) | 2016-02-05 | 2016-12-06 | UV reflective film and sputtering target |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016021086A JP6647898B2 (en) | 2016-02-05 | 2016-02-05 | UV reflective film and sputtering target |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017137549A JP2017137549A (en) | 2017-08-10 |
JP6647898B2 true JP6647898B2 (en) | 2020-02-14 |
Family
ID=59499568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016021086A Expired - Fee Related JP6647898B2 (en) | 2016-02-05 | 2016-02-05 | UV reflective film and sputtering target |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6647898B2 (en) |
KR (1) | KR20180097697A (en) |
CN (1) | CN108431291A (en) |
TW (1) | TWI621716B (en) |
WO (1) | WO2017134879A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019039051A (en) * | 2017-08-28 | 2019-03-14 | 株式会社コベルコ科研 | Al ALLOY THIN FILM ELECTRODE, LIGHT EMITTER AND SPUTTERING TARGET |
CN109626500A (en) * | 2018-12-20 | 2019-04-16 | 余姚市荣大塑业有限公司 | A kind of drinking water sterilizing device and sterilization supervisory systems |
TWI842574B (en) * | 2023-06-20 | 2024-05-11 | 國立成功大學 | Multicomponent-alloy film, reflective layer and stacked structure |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3792639A (en) | 1972-11-20 | 1974-02-19 | Cole National Corp | Key machine drive |
JPS61148883A (en) | 1984-12-22 | 1986-07-07 | Toshiba Corp | Lead frame for optical semiconductor device |
JPH07301705A (en) * | 1994-05-10 | 1995-11-14 | Kobe Steel Ltd | Al alloy thin film and sputtering target for formation of al alloy thin film |
JP2002069626A (en) * | 2000-09-06 | 2002-03-08 | Sumitomo Metal Mining Co Ltd | Sputtering target and its production method |
JP4047591B2 (en) | 2001-02-21 | 2008-02-13 | 株式会社神戸製鋼所 | Light reflection film, reflection type liquid crystal display element, and sputtering target for light reflection film |
JP3940385B2 (en) * | 2002-12-19 | 2007-07-04 | 株式会社神戸製鋼所 | Display device and manufacturing method thereof |
CN100482853C (en) * | 2002-12-19 | 2009-04-29 | 株式会社神户制钢所 | Sputtering target |
JP2007066417A (en) * | 2005-08-31 | 2007-03-15 | Mitsubishi Materials Corp | Aluminum alloy reflection film for optical recording medium having excellent corrosion resistance and surface smoothness and sputtering target for forming the reflection film |
JP4912002B2 (en) * | 2006-03-16 | 2012-04-04 | 株式会社コベルコ科研 | Method for producing aluminum-based alloy preform and method for producing aluminum-based alloy dense body |
JP2010204291A (en) * | 2009-03-02 | 2010-09-16 | Kobe Steel Ltd | Aluminum alloy reflection film, lighting fixture for automobile, illuminator, ornamental part and aluminum alloy sputtering target |
TW201112244A (en) * | 2009-04-14 | 2011-04-01 | Kobe Steel Ltd | Optical information recording medium and sputtering target |
JP2011021275A (en) | 2009-06-15 | 2011-02-03 | Kobe Steel Ltd | Reflective film of al alloy, stacked reflective film, automotive lighting device, lighting equipment, and sputtering target of al alloy |
JP2012243742A (en) * | 2011-05-24 | 2012-12-10 | Kobe Steel Ltd | Wiring structure including organic el display reflective anode electrode |
JP2015043468A (en) | 2014-12-02 | 2015-03-05 | パナソニック株式会社 | Ultraviolet semiconductor light-emitting element |
-
2016
- 2016-02-05 JP JP2016021086A patent/JP6647898B2/en not_active Expired - Fee Related
- 2016-10-28 KR KR1020187021150A patent/KR20180097697A/en not_active Application Discontinuation
- 2016-10-28 CN CN201680069937.1A patent/CN108431291A/en active Pending
- 2016-10-28 WO PCT/JP2016/082071 patent/WO2017134879A1/en active Application Filing
- 2016-12-06 TW TW105140188A patent/TWI621716B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
WO2017134879A1 (en) | 2017-08-10 |
TWI621716B (en) | 2018-04-21 |
JP2017137549A (en) | 2017-08-10 |
KR20180097697A (en) | 2018-08-31 |
CN108431291A (en) | 2018-08-21 |
TW201728765A (en) | 2017-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100614736B1 (en) | REFLECTIVE Ag ALLOY FILM FOR REFLECTORS AND REFLECTOR PROVIDED WITH THE SAME | |
KR100644006B1 (en) | Reflective ag alloy film for reflectors and reflector provided with the same | |
JP6647898B2 (en) | UV reflective film and sputtering target | |
TWI239938B (en) | Conductive transparent layers and method for their production | |
KR100491931B1 (en) | Reflective film, reflection type liquid crystal display, and sputtering target for forming the reflective film | |
JPWO2006132414A1 (en) | Silver alloy with excellent reflectivity and transmittance maintenance characteristics | |
JP2005008983A (en) | Silver-base alloy and its use for forming reflective layer, sputtering material and vapor deposition material | |
JPWO2006132415A1 (en) | Silver alloy with excellent reflectivity and transmittance maintenance characteristics | |
TW201341551A (en) | Ag ALLOY FILM FOR REFLECTIVE ELECTRODES, AND REFLECTIVE ELECTRODE | |
EP2530495A1 (en) | Reflective film laminate | |
JP4757635B2 (en) | Silver alloy, its sputtering target material and its thin film | |
JP2006037169A (en) | Silver alloy, sputtering target thereof and thin film thereby | |
JP2009163057A (en) | Conductive diffusion reflecting film and its manufacturing method | |
JP2022008503A (en) | Laminated film and Ag alloy sputtering target | |
WO2006132417A1 (en) | Silver alloy excellent in reflectance/transmittance maintaining characteristics | |
JP2004126497A (en) | Light reflection film, liquid crystal display element using the same, and sputtering target for light reflection film | |
WO2006132416A1 (en) | Silver alloy excellent in reflectance/transmittance maintaining characteristics | |
JP2007066417A (en) | Aluminum alloy reflection film for optical recording medium having excellent corrosion resistance and surface smoothness and sputtering target for forming the reflection film | |
JP2011021275A (en) | Reflective film of al alloy, stacked reflective film, automotive lighting device, lighting equipment, and sputtering target of al alloy | |
JP2018036604A (en) | Light reflection film and backlight unit for liquid crystal display device | |
JP2005264329A (en) | Ag alloy film and method for manufacturing the same | |
JP2006337770A (en) | Surface mirror | |
WO2019044285A1 (en) | Al ALLOY THIN FILM, LIGHT EMITTING ELEMENT AND SPUTTERING TARGET | |
CA1127701A (en) | Fluorescent lamp | |
JP4062599B2 (en) | Ag alloy film for display device, flat display device, and sputtering target material for forming Ag alloy film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190702 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190809 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200115 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6647898 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |