Nothing Special   »   [go: up one dir, main page]

JP6645351B2 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
JP6645351B2
JP6645351B2 JP2016096461A JP2016096461A JP6645351B2 JP 6645351 B2 JP6645351 B2 JP 6645351B2 JP 2016096461 A JP2016096461 A JP 2016096461A JP 2016096461 A JP2016096461 A JP 2016096461A JP 6645351 B2 JP6645351 B2 JP 6645351B2
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
magnetic flux
stator
electric machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016096461A
Other languages
English (en)
Other versions
JP2017204961A (ja
Inventor
亮介 赤木
亮介 赤木
真大 青山
真大 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2016096461A priority Critical patent/JP6645351B2/ja
Publication of JP2017204961A publication Critical patent/JP2017204961A/ja
Application granted granted Critical
Publication of JP6645351B2 publication Critical patent/JP6645351B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

本発明は、回転電機に関する。
永久磁石の磁束を利用してトルクを出力する回転電機では、永久磁石による有効磁束量を可変することができる回転電機が知られている。例えば、特許文献1には、電機子巻線が巻かれた固定子と、該固定子と空隙を介して回転可能に設けられた回転子を有する回転電機において、固定子が回転軸方向に第1回転子と第2回転子とに二分割され、それぞれに極性の異なる界磁用磁石が回転方向に交互に配置された構造が記載されている。
このような構造から、特許文献1に記載の回転電機は、トルクや回転数の変化に応じて第2回転子を動作させ、第1回転子の永久磁石の極性と第2回転子の永久磁石の極性との位置関係を可変することによって、永久磁石による有効磁束量を調整することができる。このとき、特許文献1に記載の回転電機は、第1回転子の永久磁石の極性と第2回転子の永久磁石の極性との位置関係を可変するにあたって、アクチュエータに入力された制御信号により第2回転子を所定状態に位置させるように制御している。
特開2010−246196号公報
しかしながら、特許文献1に記載の回転電機は、上述したように、第2回転子を所定状態に位置させるため、アクチュエータや該アクチュエータを制御するための制御装置が必要である。また、第1回転子と第2回転子とが所定の位置関係となるように第2回転子を機械的に移動させていることから精密な制御が必要である。このため、低コストな構成で永久磁石の磁束を可変させることができない。
本発明は、上述のような事情に鑑みてなされたもので、低コストな構成で永久磁石の磁束を可変させることができる回転電機を提供することを目的とする。
本発明は、上記目的を達成するため、電機子コイルを有するステータと、永久磁石を有するロータと、を備えた回転電機であって、前記ステータは、前記電機子コイルが集中巻された複数のステータティースを有し、前記ロータは、前記永久磁石が内包された複数のロータティースと、前記永久磁石よりも前記ステータ側で前記ロータティースに巻かれた誘導コイルと、を有し、周方向に隣り合う前記ロータティースの間には、磁路部材が隙間を介して配置されており、前記磁路部材には、前記誘導コイルで発生した誘導電流に基づいて、周方向に隣り合う前記永久磁石間で短絡する磁束の磁束量を調整可能な可変界磁コイルが設けられており、前記ロータティースには、前記永久磁石よりも径方向の外方側に、軸方向に延びる空隙が形成されていることを特徴とする。
本発明によれば、低コストな構成で永久磁石の磁束を可変させることができる回転電機を提供することができる。
図1は、本発明の一実施の形態に係る回転電機を回転軸に直交する平面で切断した断面図である。 図2は、本発明の一実施の形態に係る回転電機において発生する第2次空間高調波の磁束密度及び磁束線を示す図である。 図3は、本発明の一実施の形態に係る回転電機における誘導コイル及び可変界磁コイルとダイオードとの結線を示す模式図である。 図4は、本発明の一実施の形態に係る回転電機のロータが低回転しているときの磁束の経路を示す模式図である。 図5は、本発明の一実施の形態に係る回転電機のロータが低回転しているときの磁束密度及び磁束線を示す図である。 図6は、本発明の一実施の形態に係る回転電機のロータが高回転しているときの磁束の経路を示す模式図である。 図7は、本発明の一実施の形態に係る回転電機のロータが高回転しているときの磁束密度及び磁束線を示す図である。 図8は、ステータティース間で短絡する磁束を示す断面図である。 図9は、本発明の一実施の形態に係る回転電機の変形例を示す断面図である。
以下、図面を参照して、本発明の実施の形態について詳細に説明する。図1から図8は本発明の一実施の形態に係る回転電機を説明する図である。
図1に示すように、回転電機1は、通電により磁束を発生させるW相、V相、U相の三相の電機子コイル11を有するステータ10と、ステータ10で発生した磁束の通過により回転するロータ20と、磁路部材30と、を備えている。
(ステータ)
ステータ10は、図示しないモータケースに固定されている。ステータ10は、高透磁率の磁性材料からなる環状のステータコア12を備えている。ステータコア12には、径方向の内方側に突出したステータティース13が周方向に沿って複数形成されている。
周方向に隣り合うステータティース13の間には、溝状の空間であるスロット14が形成されている。径方向とは、ロータ20の回転軸が延伸する方向と直交する方向を示す。径方向の内方側とは、径方向においてロータ20の回転軸に近い側を示す。径方向の外方側とは、径方向においてロータ20の回転軸から遠い側を示す。周方向とは、ロータ20の回転軸を中心とする円周方向を示す。なお、径方向は、回転軸を中心として放射方向に示される。
ステータコア12の各スロット14には、ステータコア12の周方向に沿ってW相、V相、U相の三相の電機子コイル11がそれぞれ配置されている。W相、V相、U相の各電機子コイル11は、集中巻によりステータティース13に巻き回されている。
このように、ステータ10は、電機子コイル11が集中巻された複数のステータティース13を有している。ステータ10は、電機子コイル11に三相交流が供給されることで、周方向に回転する回転磁界を発生させる。ステータ10で発生した磁束(以下、この磁束を「主磁束」という)は、ロータ20に鎖交するようになっている。これにより、ステータ10は、ロータ20を回転させることができる。
ステータ10は、上述の通り、電機子コイル11がステータティース13に集中巻されている。このため、電機子コイル11に三相交流を供給した場合、ステータ10には、ロータ20の回転と同期して回転する回転磁界の他に、ロータ20の回転と非同期の高調波回転磁界が発生する。この高調波回転磁界には、静止座標系における第2次空間高調波(同期回転座標系における第3次時間高調波)が含まれる。したがって、ステータ10で発生する磁束には、高調波成分が重畳されていることとなる。
(ロータ)
ロータ20は、外周面がステータコア12の内周面と対向するように、ステータコア12の径方向の内方側に配置されている。ロータ20は、環状のロータコア21と、誘導コイル22とを含んで構成されている。
ロータコア21は、高透磁率の磁性材料からなり、ロータ20の回転軸に対して一体回転可能に固定されている。ロータコア21には、ロータコア21から径方向の外方に向けて突出したロータティース23がロータコア21の周方向に沿って所定の間隔をおいて複数形成されている。ロータ20の回転軸は、ロータコア21の内周面に固定され、ロータコア21の径方向と直交する方向に延伸している。以下においては、ロータ20の回転軸が延伸する方向を軸方向という。
ロータティース23は、永久磁石24を備えている。永久磁石24は、例えばネオジウム磁石(Nd−Fe−B磁石)で構成されており、ロータティース23に内包されている。永久磁石24は、磁束の向きが径方向になるようにロータティース23に配置されている。永久磁石24は、周方向に隣り合うロータティース23同士で極性が逆となるように配置されている。永久磁石24としては、一対の永久磁石を1組としてこれを各ロータティース23内にV字状に配置したものを用いてもよい。
誘導コイル22は、永久磁石24よりもステータ10側で各ロータティース23に巻かれている。誘導コイル22は、ロータティース23の先端部23aの側面を囲むように巻かれている。
誘導コイル22は、ステータ10側で発生した磁束に重畳された高調波成分に基づいて誘導電流を発生するようになっている。具体的には、三相交流が電機子コイル11に供給されてステータ10に回転磁界が発生すると、ステータ10側で発生した高調波成分の磁束が誘導コイル22に鎖交する。これにより、誘導コイル22は、誘導電流を誘起させる。
図2は、ステータ10側で発生した第2次空間高調波の磁束密度及び磁束線を示したものである。図2においては、磁束線の間隔が狭い部分ほど磁束密度が高いことを示している。
図2に示すように、ステータ10側で発生した第2次空間高調波の磁束の多くは、ロータティース23の先端部23aに鎖交している。これに伴い、ロータティース23の先端部23aの側面を囲むように巻かれた誘導コイル22にも、より多くの第2次空間高調波の磁束が鎖交している。
ロータティース23には、永久磁石24よりも径方向の外方側に、軸方向に延びる空隙25が形成されている。具体的には、ロータティース23は、径方向の外方側の外周面23cから永久磁石24の径方向の外方側の外周面に向けて溝が切り欠かれている。該溝は、ロータティース23を軸方向に貫通するように形成されている。空隙25は、該溝の周方向に対向する面と、永久磁石24の径方向の外方側の外周面とで画成された空間である。
このように、空隙25は、ロータティース23の径方向の外方側の外周面23cから永久磁石24側に向けて切り欠かれた溝状に形成されている。空隙25は、隣り合うステータティース13間で主磁束が短絡しないように、高磁気抵抗の領域として機能するものである。
空隙25は、径方向の内方側の端が、少なくとも外周面23cと永久磁石24との間の中間位置よりも永久磁石24側に位置するように、径方向の長さが設定されている。本実施の形態では、空隙25の径方向の長さは、空隙25の径方向の内方側の端が永久磁石24に達する長さに設定されている。空隙25の径方向の長さは、空隙25の径方向の内方側の端が永久磁石24に達しない長さに設定されてもよい。
空隙25の周方向の幅は、少なくともステータティース13の内周面とロータティース23の外周面との間の距離以上の幅に設定されている。これにより、ロータ20の回転速度が高いときには、空隙25が高磁気抵抗となって、隣り合うステータティース13間での主磁束の短絡が抑制される。
(磁路部材)
図1に示すように、磁路部材30は、永久磁石24の磁束の一部を、周方向に隣り合うロータティース23の間で短絡させるよう導くものである。具体的には、磁路部材30は、N極に磁化された永久磁石24で発生した磁束の一部を短絡磁束として、S極に磁化された永久磁石24に導くものである。
磁路部材30は、周方向に隣り合うロータティース23の間の各q軸(図3参照)上にそれぞれ配置されている。磁路部材30は、周方向に対向するロータティース23との間に隙間Gを介して配置されている。
磁路部材30は、例えば樹脂等の非磁性体からなるインシュレータ40を介して、周方向に隣り合うロータティース23間に保持されている。これにより、磁路部材30は、ロータ20と一体回転するようになっている。
インシュレータ40は、磁路部材30が収容されているホルダ部41と、ホルダ部41の径方向の外方側に一体形成された鍔部42とを備えている。
隣り合うロータティース23間のロータコア21には、ホルダ部41の径方向の内方側の端部が嵌る凹部21aが形成されている。ロータティース23の先端部23aの周方向の側面には、鍔部42の周方向の端部が嵌る溝23bが軸方向に延びるように形成されている。
インシュレータ40は、ホルダ部41が凹部21aに嵌められ、鍔部42が溝23bに嵌められることによって、隣り合うロータティース23間に保持される。なお、磁路部材30は、インシュレータ40に代えて、樹脂等の非磁性体からなる図示しないブラケットや連結部材等を介してロータ20の回転軸又はロータコア21に保持される構成であってもよい。
非磁性体を用いずに磁路部材30をロータ20の回転軸又はロータコア21に保持させる場合には、磁路部材30とロータ20の回転軸又はロータコア21との磁気的な結合を極力小さくした状態で互いに連結するのが好ましい。
このように、磁路部材30は、ロータコア21のロータティース23と磁気的に遮蔽された状態でq軸上に配置される。これにより、突極比の低下が防止され、リラクタンストルクの低下が防止される。
磁路部材30は、複数の電磁鋼板を軸方向に積層したものからなる。磁路部材30は、強磁性体の微細な粉末が圧縮して固められた圧粉磁心によって形成されたものであってもよい。
磁路部材30には、可変界磁コイル35が軸方向にトロイダル状に集中巻されている。可変界磁コイル35は、誘導コイル22で発生した誘導電流の大きさに応じて、隣接する永久磁石24の間で短絡する短絡磁束の磁束量を調整可能なコイルである。なお、隣接する永久磁石24とは、周方向に隣り合うロータティース23のそれぞれに内包されている永久磁石24のことである。
可変界磁コイル35は、隣接する永久磁石24の間で磁束が短絡する向きの磁極を形成するよう、磁路部材30にトロイダル巻されている。これにより、可変界磁コイル35は、後述する整流回路50で整流された直流電流が供給されると、隣接する永久磁石24の間で磁束が短絡する向きに誘導磁束を発生させ、磁路部材30に磁極を形成させるようになっている。すなわち、磁路部材30は、可変界磁コイル35で発生する誘導磁束の向きに応じて磁化されるようになっている。
具体的には、可変界磁コイル35に直流電流が供給されると、図6に示すように、磁路部材30は、S極の永久磁石24側がN極に磁化され、N極の永久磁石24側がS極に磁化されるようになっている。これにより、N極の永久磁石24の磁束の一部が磁路部材30を介してS極の永久磁石24に短絡する。
可変界磁コイル35が発生させる誘導磁束の磁束量は、可変界磁コイル35に供給される直流電流の大きさに応じて調整される。この誘導磁束の磁束量が調整されることによって、隣接する永久磁石24の間における短絡磁束の磁束量が調整される。
誘導磁束の磁束量は、可変界磁コイル35に供給される直流電流が大きいほど、可変界磁コイル35の巻き数が多いほど大きくなる。可変界磁コイル35の巻き数は、予め実験的に求められた巻き数に設定される。
可変界磁コイル35に供給される直流電流は、誘導コイル22に発生する誘導電流の大きさに応じて調整される。このように、短絡磁束の磁束量は、誘導コイル22に発生する誘導電流の大きさに応じて調整されるようになっている。また、誘導コイル22に発生する誘導電流は、ロータ20の回転速度が上昇するにつれて大きくなる。したがって、短絡磁束の磁束量は、ロータ20の回転速度が上昇するにつれて大きくなる。
磁路部材30とロータティース23との間には、高磁気抵抗の領域として所定の大きさの隙間Gが形成されている。隙間Gは、可変界磁コイル35に直流電流が供給されていないときには、永久磁石24の磁束がロータティース23と磁路部材30との間で流れることがない、又は流れても微量となるような大きさである。また、隙間Gは、可変界磁コイル35に直流電流が供給されているときには、永久磁石24の磁束がロータティース23と磁路部材30との間で流れるような大きさに設定されている。
(整流回路)
回転電機1は、誘導コイル22によって誘起された交流の誘導電流を直流に整流して可変界磁コイル35に供給する整流回路50を備えている。
図3に示すように、整流回路50は、2つのダイオードD1,D2を整流素子として備え、これらダイオードD1,D2と2つの誘導コイル22、及び2つの可変界磁コイル35とを結線した閉回路として構成されている。
ダイオードD1,D2は、例えば図示しないダイオードケースに収納された状態でロータ20に設けられている。ダイオードD1,D2は、ロータ20の内部に実装するようにしてもよい。
整流回路50において、2つの誘導コイル22で発生した交流の誘導電流は、ダイオードD1,D2により整流され、整流後の直流電流は、直列接続されている2つの可変界磁コイル35に界磁電流として供給される。2つの可変界磁コイル35は、直流電流が供給されることにより誘導磁束を発生させる。
(回転電機の作用)
次に、図4、図5、図6及び図7を参照して、本実施の形態に係る回転電機1の作用について説明する。
本実施の形態に係る回転電機1は、以上説明したように、ロータ20に永久磁石24を備え、その永久磁石24の磁束を利用してトルクを出力する永久磁石型同期モータである。
従来の永久磁石型同期モータでは、永久磁石の磁束が一定のため、ロータの回転速度が上昇するにつれて永久磁石の磁束によってステータの電機子コイルに生じる逆起電力が増加する。そして、ロータの回転速度がある回転速度に達すると、電機子コイルに生じた逆起電力が永久磁石型同期モータの電源電圧と等しくなる。これにより、永久磁石型同期モータにはそれ以上電流を流すことができなくなる。この結果、ロータの回転速度を上昇させることができなくなってしまう。
従来、こうした問題を解決するために、ステータの電機子コイルに永久磁石による磁束を打ち消す電流を流すことにより電機子コイルに生じる逆起電力を等価的に低減させる弱め界磁制御が行われていた。
しかしながら、この弱め界磁制御は、永久磁石の磁束を打ち消す方向の磁束を発生させるべく電流を流すことから、トルクに寄与しない磁束を発生させることになるため、出力に対して無駄なエネルギを消費しており、効率の低下を招いていた。
また、弱め界磁制御では、高調波磁束が生じるため、その高調波磁束に起因して永久磁石型同期モータの鉄損や電磁振動が増加するおそれがある。さらに、弱め界磁制御では、永久磁石の磁束に対して逆向きの磁束を発生させて永久磁石の磁束を抑え込むため、永久磁石の不可逆減磁が生じるおそれがある。このため、比較的保磁力の高い永久磁石を用いる必要があり、コストが増加してしまう。
永久磁石としてネオジウム磁石を用いた場合には、弱め界磁制御による外部磁場の変動により永久磁石に渦電流が生じ、永久磁石が発熱する。この発熱によって永久磁石の不可逆減磁が生じるおそれがある。したがって、耐熱性の高いレアアース等の材料を永久磁石に添加する必要がある。しかし、この場合には、添加されたレアアース等の材料が永久磁石にとって不純物となるため、永久磁石本来の性能を発揮させることができないおそれがある。
そこで、本実施の形態に係る回転電機1では、弱め界磁制御を行わずに、上述した磁路部材30及び可変界磁コイル35の作用によって、永久磁石24からステータ10に鎖交する磁束量を調整可能な構成とした。これにより、本実施の形態に係る回転電機1は、上述したような弱め界磁制御による問題を解決することができる。
(ロータ低回転時)
本実施の形態に係る回転電機1においてロータ20の回転速度が低いときは、ステータ10に高調波成分の磁束が発生していないか、あるいは発生していても微量である。このため、可変界磁コイル35は、誘導磁束を発生してないか、あるいは発生していても微量である。
したがって、隙間Gにおいては磁気抵抗が高い状態であり、かつ磁路部材30にN極及びS極の磁極が形成されていない。このため、N極の永久磁石24の磁束が磁路部材30を介してS極の永久磁石24に短絡することがないか、あるいは僅かに短絡するだけである。この結果、ロータ20の回転速度が低いときは、図4及び図5に示すように、永久磁石24の磁束の全て又は大部分がステータ10に鎖交する。
このように、ロータ20の回転速度が低いときは、後述するロータ20の回転速度が高いときと比べて永久磁石24からステータ10に鎖交する磁束の磁束量を増加させることができる。
(ロータ高回転時)
本実施の形態に係る回転電機1においてロータ20の回転速度が高いときは、ステータ10に高調波成分の磁束が発生する。その高調波成分の磁束の磁束量は、ロータ20の回転速度が上昇するにつれて増加する。
この高調波成分の磁束が誘導コイル22に鎖交することにより、ロータ20の誘導コイル22(図1参照)に誘導電流が誘起され、誘起された誘導電流が整流回路50(図3参照)によって整流されて直流電流として可変界磁コイル35に供給される。
直流電流が供給された可変界磁コイル35は、隣接する永久磁石24の間で磁束が短絡するように誘導磁束を発生させる。すなわち、磁路部材30において、隣接する永久磁石24の間で磁束が短絡する位置関係となるように、N極及びS極の磁極が形成される。
この結果、磁路部材30と永久磁石24との間で互いの磁化方向が90°異なるハルバッハ配列が形成される。これに伴い、隙間Gにおける磁気抵抗が低下する。ハルバッハ配列とは、隣り合う磁石間で磁化方向を90°異ならせるように磁石が配置された配列のことをいう。
上述したように隙間Gにおける磁気抵抗が低下すると、図6及び図7に示すように、N極の永久磁石24の磁束の一部が短絡磁束として磁路部材30を介してS極の永久磁石24に短絡する。これにより、永久磁石24の磁束の全磁束量のうち短絡磁束の磁束量を除いた磁束量の磁束がステータ10に鎖交する。すなわち、ロータ20の回転速度が高いときは、ロータ20の回転速度が低いときと比べて、永久磁石24からステータ10に鎖交する磁束の磁束量が抑えられる。
したがって、ロータ20の回転速度が高い場合であっても弱め界磁制御を不要とすることができる。このため、弱め界磁制御により生ずる高調波磁束に起因した鉄損や電磁振動を防止することができる。
また、弱め界磁制御を不要としたので、保磁力の高い永久磁石を用いる必要がなく、耐熱性の高いレアアース等の材料を永久磁石に添加する必要もない。これにより、回転電機1のコストを低減させることができる。
このように、本実施の形態に係る回転電機1では、弱め界磁制御を行わずに永久磁石24からステータ10に鎖交する磁束量を調整可能とした。具体的には、ロータ20の回転速度が高いときには効率の低下を防止することができる。また、ロータ20の回転速度が低いときには出力の向上を図ることができる。
(空隙25の作用)
図8は、空隙25が形成されていない回転電機101を示したものである。この回転電機101は、本実施の形態の回転電機1とは、空隙25が形成されていない点で異なるが、他の構成は回転電機1と同一である。回転電機1と同一の構成については、本実施の形態と同一の符号を用いる。
図8に示すように、電機子コイル11が集中巻されたステータ10では、隣り合うステータティース13の磁極が反対磁極となる。このため、隣り合うステータティース13間で、図8中、矢印Aで示すように、ステータ10で発生した主磁束の一部がロータティース23を介して短絡する。
隣り合うステータティース13間で短絡する磁束量は、ロータ低回転時とロータ高回転時とで異なる。ロータ低回転時は、永久磁石24からステータ10に鎖交する磁束量が多いため、これら永久磁石24の磁束が、隣り合うステータティース13間で短絡する主磁束を打ち消すように作用する。これにより、ロータ低回転時は、隣り合うステータティース13間で短絡する磁束量が抑えられている。
ロータ高回転時は、上述したように、永久磁石24からステータ10に鎖交する磁束量が減少するため、ロータ低回転時と比べて、隣り合うステータティース13間で短絡する磁束量が増加する。
ここで、電機子コイル11には、永久磁石24の磁束と、上述のように隣り合うステータティース13間で短絡する主磁束とが鎖交する。電機子コイル11に生じる誘導起電力は、電機子コイル11に鎖交する磁束量の総数を「Φ」としたとき、該Φを時間微分したものである。すなわち、電機子コイル11に生じる誘導起電力Vは、「V=−dΦ/dt」となる。
このため、永久磁石24の磁束量を減らしているにも関わらず、隣り合うステータティース13間で短絡する磁束量が増加してしまうと、電機子コイル11に鎖交する磁束量の総数を減らすことができなくなる。
この結果、ロータ高回転時は、永久磁石24の磁束量を減らしているにも関わらず、電機子コイル11に生じる誘導起電力が低下しないといったことが生ずる。
本実施の形態に係る回転電機1では、ロータ高回転時に、隣り合うステータティース13間で主磁束が短絡しないように、ロータティース23に上述した溝状の空隙25を形成した。空隙25は、ロータ高回転時に高磁気抵抗の領域として機能することにより、隣り合うステータティース13間で主磁束が短絡することを抑制する。
以上のように、本実施の形態の回転電機1によれば、ステータ10側で発生した磁束に重畳された高調波成分を誘導コイル22に鎖交させることにより誘導電流を発生させ、その誘導電流を整流回路50で整流して可変界磁コイル35に供給する。これにより、周方向に隣り合う永久磁石24の間で短絡する短絡磁束の磁束量を調整することができる。
また、ステータ10側で発生した磁束に重畳される高調波成分は、ステータ10に集中巻された電機子コイル11に三相交流を供給することによって得られる。このため、可変界磁コイル35に供給される直流電流を発生させるために、例えばDC/DCコンバータ等の特別な装置を必要としない。
これによって、本実施の形態の回転電機1は、例えばDC/DCコンバータ等の特別な装置を利用することなく簡易な構成で、永久磁石24からステータ10に鎖交する磁束の磁束量を調整することができる。この結果、本実施の形態の回転電機1は、低コストな構成で永久磁石24の磁束を可変させることができる。
また、本実施の形態の回転電機1は、ロータティース23に溝状の空隙25を形成したので、ロータ高回転時に、隣り合うステータティース13間で主磁束が短絡することを抑制することができる。これにより、ロータ高回転時に電機子コイル11に鎖交する磁束量の総数を減らすことができる。したがって、ロータ高回転時において、電機子コイル11に生じる誘導起電力を低下させることができる。
回転電機1は、例えば車載用の電動機、風力発電用の発電機や工作機械用の電動機として好適に採用することができる。
本実施の形態では、回転電機1をラジアルギャップ型の回転電機に適用したが、アキシャルギャップ型の回転電機に適用してもよい。
本実施の形態の回転電機1は、ステータ10のスロット14の数とロータ20のロータティース23の数との比、すなわちステータ10とロータ20のスロットコンビネーションが「3:2」であれば、スロット14の数とロータティース23の数の組合せがどのような組合せであってもよい。
また、本実施の形態の回転電機1は、図9に示すロータ220を採用してもよい。図9に示すように、ロータ220は、ロータティース23に形成された空隙の形状が本実施の形態と異なる。
ロータ220のロータティース23には、永久磁石24よりも径方向の外方側に、軸方向に延びる空隙225が形成されている。空隙225は、ロータティース23の径方向の外方側から永久磁石24側に向かうにしたがい周方向の幅が小さくなるテーパ形状に形成されている。
図9に示す空隙225は、テーパ形状として三角形状を採用している。テーパ形状としては、三角形状に限らず、例えば台形形状、半円形状及び弾頭形状等、径方向の外方側から内方側に向かうにしたがい周方向の幅が小さくなる形状であれば種々の形状を採用することができる。
また、図9に示す例では、空隙225の径方向の外方側に、ロータティース23の外周部を構成するブリッジ部223cが形成されている。ブリッジ部223cは、ロータティース23の強度を維持するために設けられるが、ロータティース23の強度が十分に確保されている場合には、なくてもよい。
本発明の実施の形態を開示したが、当業者によっては本発明の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正及び等価物が次の請求項に含まれることが意図されている。
1 回転電機
10 ステータ
11 電機子コイル
12 ステータコア
13 ステータティース
14 スロット
20、220 ロータ
21 ロータコア
22 誘導コイル
23 ロータティース
23a 先端部
23c 外周面
24 永久磁石
25、225 空隙
30 磁路部材
35 可変界磁コイル
50 整流回路
D1,D2 ダイオード
G 隙間

Claims (3)

  1. 電機子コイルを有するステータと、永久磁石を有するロータと、を備えた回転電機であって、
    前記ステータは、
    前記電機子コイルが集中巻された複数のステータティースを有し、
    前記ロータは、
    前記永久磁石が内包された複数のロータティースと、
    前記永久磁石よりも前記ステータ側で前記ロータティースに巻かれた誘導コイルと、を有し、
    周方向に隣り合う前記ロータティースの間には、磁路部材が隙間を介して配置されており、
    前記磁路部材には、前記誘導コイルで発生した誘導電流に基づいて、周方向に隣り合う前記永久磁石間で短絡する磁束の磁束量を調整可能な可変界磁コイルが設けられており、
    前記ロータティースには、前記永久磁石よりも径方向の外方側に、軸方向に延びる空隙が形成されていることを特徴とする回転電機。
  2. 前記空隙は、前記ロータティースの径方向の外方側の外周面から前記永久磁石側に向けて切り欠かれた溝状に形成されていることを特徴とする請求項1に記載の回転電機。
  3. 前記空隙は、前記ロータティースの径方向の外方側から前記永久磁石側に向かうにしたがい周方向の幅が小さくなるテーパ形状に形成されていることを特徴とする請求項1又は請求項2に記載の回転電機。
JP2016096461A 2016-05-12 2016-05-12 回転電機 Active JP6645351B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016096461A JP6645351B2 (ja) 2016-05-12 2016-05-12 回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016096461A JP6645351B2 (ja) 2016-05-12 2016-05-12 回転電機

Publications (2)

Publication Number Publication Date
JP2017204961A JP2017204961A (ja) 2017-11-16
JP6645351B2 true JP6645351B2 (ja) 2020-02-14

Family

ID=60322542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016096461A Active JP6645351B2 (ja) 2016-05-12 2016-05-12 回転電機

Country Status (1)

Country Link
JP (1) JP6645351B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111566904B (zh) * 2017-12-28 2023-04-28 株式会社电装 旋转电机
EP4358369A3 (en) * 2018-06-27 2024-06-19 Mitsubishi Electric Corporation Motor, fan, and air conditioner
JP7213965B2 (ja) * 2020-06-19 2023-01-27 三菱電機株式会社 永久磁石式同期電動機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5687417B2 (ja) * 2009-07-08 2015-03-18 トヨタ自動車株式会社 回転電機
JP2013176267A (ja) * 2012-02-27 2013-09-05 Asmo Co Ltd ロータ
JP2014030293A (ja) * 2012-07-31 2014-02-13 Toyota Motor Corp 回転電機のロータ
JP6142601B2 (ja) * 2013-03-19 2017-06-07 スズキ株式会社 リラクタンスモータ
DE102013102900A1 (de) * 2013-03-21 2014-09-25 Feaam Gmbh Synchronmaschine
CN105391265B (zh) * 2015-12-21 2018-02-23 东南大学 一种无刷谐波励磁的混合励磁容错电机系统
JP6589703B2 (ja) * 2016-03-14 2019-10-16 スズキ株式会社 回転電機

Also Published As

Publication number Publication date
JP2017204961A (ja) 2017-11-16

Similar Documents

Publication Publication Date Title
JP5302527B2 (ja) 回転電機及びその駆動制御装置
JP5682600B2 (ja) 回転電機のロータ
JP6668844B2 (ja) 回転電機
US9735637B2 (en) Magnet-type rotating electric machine
JP6589624B2 (ja) モータ
US20130069453A1 (en) Mechanically commutated switched reluctance motor
US20130214623A1 (en) Switched reluctance motor
JP2009136046A (ja) トロイダル巻式回転電機
JP2017169281A (ja) 回転電機
CN110994839B (zh) 电机转子和交替极电机
WO2018051938A1 (ja) 回転電機
JP6645351B2 (ja) 回転電機
JP2017017783A (ja) 可変磁束型回転電機
JP6766575B2 (ja) 回転電機
JP6589703B2 (ja) 回転電機
JP6657928B2 (ja) モータ及びモータの磁束調整方法
JP6645352B2 (ja) 回転電機
JP6895909B2 (ja) ハイブリッド界磁式ダブルギャップ同期機
JP6766574B2 (ja) 回転電機
JP2014030293A (ja) 回転電機のロータ
JP6724362B2 (ja) 回転電機
JP6593163B2 (ja) 回転電機
JP6610357B2 (ja) 回転電機
JP6772492B2 (ja) 回転電機
JP2018148675A (ja) 回転電機のステータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191223

R151 Written notification of patent or utility model registration

Ref document number: 6645351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151