Nothing Special   »   [go: up one dir, main page]

JP6641867B2 - Power consumption prediction method, apparatus and program - Google Patents

Power consumption prediction method, apparatus and program Download PDF

Info

Publication number
JP6641867B2
JP6641867B2 JP2015201116A JP2015201116A JP6641867B2 JP 6641867 B2 JP6641867 B2 JP 6641867B2 JP 2015201116 A JP2015201116 A JP 2015201116A JP 2015201116 A JP2015201116 A JP 2015201116A JP 6641867 B2 JP6641867 B2 JP 6641867B2
Authority
JP
Japan
Prior art keywords
power consumption
rolling
sum
mill
consumption prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015201116A
Other languages
Japanese (ja)
Other versions
JP2017073935A (en
Inventor
政典 塩谷
政典 塩谷
大野 敬司
敬司 大野
尚良 倉原
尚良 倉原
郁夫 横川
郁夫 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015201116A priority Critical patent/JP6641867B2/en
Publication of JP2017073935A publication Critical patent/JP2017073935A/en
Application granted granted Critical
Publication of JP6641867B2 publication Critical patent/JP6641867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Metal Rolling (AREA)

Description

本発明は、熱延工場や冷延工場等の圧延工場における圧延機の電力系統の消費電力量、更には圧延工場の消費電力量を予測するのに利用して好適な消費電力量予測方法、装置及びプログラムに関する。   The present invention is a power consumption amount of a power system of a rolling mill in a rolling mill such as a hot rolling mill or a cold rolling mill, and a power consumption prediction method suitable for use in predicting the power consumption of a rolling mill. It relates to an apparatus and a program.

製鉄所のように大量の電力を消費する事業所では、電力会社と所定時間(例えば30分や60分)当たりの消費電力量の上限値を契約で取り決めている。この上限値は契約電力量と呼ばれ、契約電力量に基づき電気の基本料金(電気の使用量に関わらず支払わなければならない金額)が定まる。もし、消費電力量が現在設定されている契約電力量を上回ってしまった場合、その後1年間、契約電力量はその時の最大消費量となるため、これに連動して基本料金も上がってしまう。
このように、消費電力量が1時間でも契約電力量を超えると、1年間の基本料金が上がってしまうため、製鉄所では全工場の稼働状態を常に観察し、消費電力量を予測して、契約電力量を超えると予想されるときには、一部の工場の生産を一時的に停止する措置が行われる。これを電力制限と呼んでいるが、消費電力量の予測精度が低いと、無駄に工場を止めることになるため、消費電力量を高精度に予測し、必要最低限の時間のみ工場を停止することが望ましい。
製鉄所全体の消費電力のうち、熱延工場や厚板工場等の圧延工場の消費量が大きく、かつ、被圧延材に依って消費量が大きく異なる。したがって、圧延工場の消費電力量を高精度に予測することが、製鉄所全体の消費電力量の把握には重要である。
Business establishments that consume a large amount of power, such as steelworks, have contracts with power companies to determine the upper limit of power consumption per predetermined time (for example, 30 minutes or 60 minutes). This upper limit is called the contracted electric energy, and the basic electricity charge (the amount to be paid regardless of the electricity consumption) is determined based on the contracted electric energy. If the power consumption exceeds the currently set contracted power amount, the contracted power amount becomes the maximum consumption at that time for one year thereafter, and the basic fee increases accordingly.
In this way, if the power consumption exceeds the contracted power even for one hour, the basic fee for one year will increase, so the steelworks will always observe the operating status of all factories and predict the power consumption, When it is expected that the contracted amount of electricity will be exceeded, measures will be taken to temporarily suspend production at some factories. Although this is called power limitation, if the prediction accuracy of the power consumption is low, the factory will be stopped uselessly, so the power consumption is predicted with high accuracy and the factory is stopped only for the minimum necessary time. It is desirable.
Among the power consumption of the entire steelworks, the consumption of the rolling mills such as the hot rolling mill and the plate mill is large, and the consumption differs greatly depending on the material to be rolled. Therefore, it is important to accurately predict the power consumption of the rolling mill in order to grasp the power consumption of the entire steelworks.

この種の技術として、特許文献1には、圧延工程の使用電力予測方法が開示されている。特許文献1では、スラブ1本毎の圧延電力を圧延加工量に基づいて予測し、所定時間内に圧延されるスラブと、このスラブを圧延するのに要する電力とを積算することにより使用電力を予測する。   As this kind of technology, Patent Literature 1 discloses a method of estimating power consumption in a rolling process. In Patent Literature 1, the rolling power for each slab is predicted based on the rolling amount, and the power used is calculated by integrating the slab to be rolled within a predetermined time and the power required for rolling this slab. Predict.

また、特許文献2には、圧延工場における使用電力量の予測方法が開示されている。特許文献2では、予測すべき時間帯における被圧延材を、炭素含有量が0.05%以下、0.06〜0.15%、0.16%以上の3区分に分類し、分類毎に圧延加工予定量を求める。また、予測すべき時間帯における被圧延材の本数、予測すべき時間帯における各プロセス(圧延プロセス、精整プロセス及び酸洗プロセス)の稼動状況に応じた0〜1の数値を求める。そして、これらを入力として、予測すべき時間帯における使用電力量をニューラルネットワークによって算出する。   Patent Literature 2 discloses a method of estimating the amount of electric power used in a rolling mill. In Patent Literature 2, the material to be rolled in the time zone to be predicted is classified into three categories having a carbon content of 0.05% or less, 0.06 to 0.15%, and 0.16% or more. Calculate the expected rolling amount. In addition, a numerical value of 0 to 1 is determined according to the number of materials to be rolled in the time zone to be predicted and the operation status of each process (rolling process, refinement process, and pickling process) in the time zone to be predicted. Then, using these as inputs, the power consumption in the time zone to be predicted is calculated by the neural network.

特開昭64−15201号公報JP-A-64-15201 特開平6−262223号公報JP-A-6-262223

しかしながら、特許文献1の手法は、スラブ1本毎の圧延電力を圧延加工量に基づいて予測するものであり、被圧延材の製造仕様等の情報を考慮していないため、消費電力量の予測精度が低くなる。   However, the method of Patent Document 1 predicts the rolling power for each slab based on the amount of rolling, and does not consider information such as the manufacturing specifications of the material to be rolled. Accuracy is reduced.

また、特許文献2の手法は、炭素含有量に応じて分類した圧延加工予定量等の情報を所定時間単位の値に集約してから所定時間の消費電力量を予測する。ニューラルネットワークは非線形モデルであるが、圧延加工予定量等の情報の総和と消費電力量との非線形しか考慮することができない。そのため、原理的に、被圧延材毎の圧延加工予定量等の情報と消費電力量との間の非線形性の影響を考慮することができず、消費電力量の予測精度が低くなる。例えば圧延加工予定量が20と40の2本スラブと、圧延加工予定量が共に30の2本のスラブとでは、消費電力量の予測値は同じになってしまう。   Further, the method of Patent Document 2 predicts power consumption in a predetermined time after aggregating information such as a scheduled rolling amount classified according to a carbon content into a value in a predetermined time unit. The neural network is a non-linear model, but can only consider the non-linearity of the sum of information such as the expected rolling amount and the power consumption. Therefore, in principle, it is not possible to consider the effect of the non-linearity between the information such as the planned rolling amount for each material to be rolled and the power consumption, and the prediction accuracy of the power consumption is reduced. For example, the predicted value of the power consumption is the same for two slabs whose planned rolling amounts are 20 and 40 and two slabs whose planned rolling amounts are both 30.

本発明は上記のような点に鑑みてなされたものであり、圧延工場における圧延機の電力系統の消費電力量、更には圧延工場の消費電力量を高精度に予測できるようにすることを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to make it possible to accurately predict power consumption of a power system of a rolling mill in a rolling mill, and furthermore, power consumption of the rolling mill. And

上述した課題を解決するための本発明の要旨は、以下のとおりである。
[1] 圧延機の電力系統の消費電力量を予測する消費電力量予測方法であって、
被圧延材毎に、圧延に必要となるミルモータの消費電力量予測値を、圧延後の板厚、圧延後の板幅、成分、制御圧延の有無、重量、及び強度のうち少なくともいずれか一つを含む複数種の情報を説明変数として、非線形モデルであるミルモータ消費電力量予測モデルにより求める第1の消費電力量予測ステップと、
所定時間内に圧延される被圧延材について、前記情報毎の値の総和と、前記第1の消費電力量予測ステップで求めたミルモータの消費電力量予測値の総和とを求める総和算出ステップと、
前記圧延機の電力系統の前記所定時間の消費電力量予測値を、前記総和算出ステップで求めた前記情報毎の値の総和と、前記総和算出ステップで求めたミルモータの消費電力量予測値の総和とを説明変数として、圧延機の電力系統消費電力量予測モデルにより求める第2の消費電力量予測ステップとを有することを特徴とする消費電力量予測方法。
[2] 前記ミルモータ消費電力量予測モデルをランダムフォレストモデルとすることを特徴とする[1]に記載の消費電力量予測方法。
[3] 圧延機と、他の設備とを備える圧延工場の消費電力量を予測する消費電力量予測方法であって、
[1]又は[2]に記載の消費電力量予測方法により求めた前記圧延機の電力系統の前記所定時間の消費電力量予測値と、所定の消費電力量予測方法により求めた前記他の設備の電力系統それぞれの前記所定時間の消費電力量予測値との総和を、前記圧延工場の前記所定時間の消費電力量予測値とすることを特徴とする消費電力量予測方法。
[4] 圧延機の電力系統の消費電力量を予測する消費電力量予測装置であって、
被圧延材毎に、圧延に必要となるミルモータの消費電力量予測値を、圧延後の板厚、圧延後の板幅、成分、制御圧延の有無、重量、及び強度のうち少なくともいずれか一つを含む複数種の情報を説明変数として、非線形モデルであるミルモータ消費電力量予測モデルにより求める第1の消費電力量予測手段と、
所定時間内に圧延される被圧延材について、前記情報毎の値の総和を求める第1の総和算出手段と、
前記所定時間内に圧延される被圧延材について、前記第1の消費電力量予測手段で求めたミルモータの消費電力量予測値の総和を求める第2の総和算出手段と、
前記圧延機の電力系統の前記所定時間の消費電力量予測値を、前記第1の総和算出手段で求めた前記情報毎の値の総和と、前記第2の総和算出手段で求めたミルモータの消費電力量予測値の総和とを説明変数として、圧延機の電力系統消費電力量予測モデルにより求める第2の消費電力量予測手段とを備えたことを特徴とする消費電力量予測装置。
[5] 圧延機の電力系統の消費電力量を予測するためのプログラムであって、
被圧延材毎に、圧延に必要となるミルモータの消費電力量予測値を、圧延後の板厚、圧延後の板幅、成分、制御圧延の有無、重量、及び強度のうち少なくともいずれか一つを含む複数種の情報を説明変数として、非線形モデルであるミルモータ消費電力量予測モデルにより求める第1の消費電力量予測処理と、
所定時間内に圧延される被圧延材について、前記情報毎の値の総和と、前記第1の消費電力量予測処理で求めたミルモータの消費電力量予測値の総和とを求める総和算出処理と、
前記圧延機の電力系統の前記所定時間の消費電力量予測値を、前記総和算出処理で求めた前記情報毎の値の総和と、前記総和算出処理で求めたミルモータの消費電力量予測値の総和とを説明変数として、圧延機の電力系統消費電力量予測モデルにより求める第2の消費電力量予測処理とをコンピュータに実行させるためのプログラム。
The gist of the present invention for solving the above-mentioned problems is as follows.
[1] A power consumption prediction method for predicting power consumption of a power system of a rolling mill,
For each material to be rolled, the estimated power consumption of the mill motor required for rolling, the thickness after rolling, the width after rolling, the component, the presence or absence of controlled rolling, the weight, and at least one of the strengths A plurality of types of information including, as explanatory variables, a first power consumption prediction step obtained by a mill motor power consumption prediction model that is a nonlinear model;
For a material to be rolled within a predetermined time, a sum calculation step of calculating the sum of the values for each piece of information and the sum of the power consumption predicted values of the mill motor obtained in the first power consumption prediction step,
The power consumption predicted value of the power system of the rolling mill during the predetermined time is calculated by summing the values for each piece of information obtained in the sum calculation step and the sum of the power consumption predicted values of the mill motor obtained in the sum calculation step. And a second power consumption prediction step of determining the power consumption of the rolling mill using a power consumption prediction model.
[2] The power consumption prediction method according to [1], wherein the mill motor power consumption prediction model is a random forest model.
[3] A power consumption prediction method for predicting power consumption of a rolling mill including a rolling mill and other equipment,
The power consumption prediction value of the power system of the rolling mill for the predetermined time obtained by the power consumption prediction method according to [1] or [2], and the other equipment obtained by the predetermined power consumption prediction method A power consumption prediction method for the rolling mill, wherein the sum of the power consumption prediction values of the respective power systems for the predetermined time is used as the power consumption prediction value of the rolling mill for the predetermined time.
[4] A power consumption prediction device for predicting power consumption of a power system of a rolling mill,
For each material to be rolled, the estimated power consumption of the mill motor required for rolling, the thickness after rolling, the width after rolling, the component, the presence or absence of controlled rolling, the weight, and at least one of the strengths A first power consumption predicting means obtained by using a mill motor power consumption prediction model, which is a nonlinear model, using a plurality of types of information including
A first sum calculating means for calculating a sum of values for each piece of information for a material to be rolled within a predetermined time;
A second sum calculating means for calculating a sum of power consumption predicted values of the mill motor obtained by the first power consumption predicting means, for a material to be rolled within the predetermined time;
The predicted value of the power consumption of the power system of the rolling mill during the predetermined time is calculated by summing up the values for each piece of information obtained by the first summation means and the consumption of the mill motor obtained by the second summation means. A power consumption predicting apparatus, comprising: a second power consumption predicting unit that obtains a power system power consumption prediction model of a rolling mill using a total of the power consumption predicted values as an explanatory variable .
[5] A program for predicting power consumption of a power system of a rolling mill,
For each material to be rolled, the estimated power consumption of the mill motor required for rolling, the thickness after rolling, the width after rolling, the component, the presence or absence of controlled rolling, the weight, and at least one of the strengths A plurality of types of information including, as explanatory variables, a first power consumption prediction process obtained by a mill motor power consumption prediction model that is a nonlinear model;
For a material to be rolled within a predetermined time, a sum calculation process of calculating a sum of values for each piece of information and a sum of predicted power consumption values of the mill motor obtained in the first power consumption prediction process;
The predicted value of the power consumption of the power system of the rolling mill for the predetermined time is the sum of the values for each piece of information obtained in the sum calculation processing, and the sum of the predicted power consumption of the mill motor obtained in the sum calculation processing. And a second power consumption prediction process that is performed using a power system power consumption prediction model of a rolling mill with the following as explanatory variables .

本発明によれば圧延工場における圧延機の電力系統の消費電力量、更には圧延工場の消費電力量を高精度に予測することができる。 ADVANTAGE OF THE INVENTION According to this invention, the power consumption of the electric power system of a rolling mill in a rolling mill, and also the power consumption of a rolling mill can be predicted with high precision.

実施形態に係る消費電力量予測装置の機能構成を示す図である。FIG. 2 is a diagram illustrating a functional configuration of a power consumption prediction device according to the embodiment. 熱延工場な典型的な設備配置の例を示す図である。It is a figure which shows the example of a typical equipment arrangement | positioning of a hot rolling mill. 鋼材毎の仕上ミルモータの消費電力量予測値を求める際に、線形モデル及び非線形モデルを適用した場合の結果を示す特性図である。FIG. 9 is a characteristic diagram showing a result when a linear model and a non-linear model are applied when obtaining a predicted value of power consumption of a finishing mill motor for each steel material. 仕上ミルモータの1時間の消費電力量を予測する際に、鋼材情報の総和を入力変数とするモデルを用いる場合と、本発明のように仕上ミルモータ消費電力量予測モデルにより鋼材毎の消費電力量予測値を求めて、その総和をとることにより予測する場合との結果を示す特性図である。When estimating the hourly power consumption of the finishing mill motor, a model using the sum of steel material information as an input variable is used, and the power consumption prediction for each steel material is performed using the finishing mill motor power consumption prediction model as in the present invention. FIG. 9 is a characteristic diagram showing a result of a case where a value is obtained and prediction is performed by taking a sum thereof. 実施例における本発明による予測手法での結果と、従来の予測手法での結果とを示す特性図である。FIG. 9 is a characteristic diagram illustrating a result of the prediction method according to the present invention in the example and a result of the conventional prediction method.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。
本実施形態では、圧延工場の中でも特に消費電力の多い熱延工場を対象として説明する。
図2に、熱延工場な典型的な設備配置の例を示す。熱延工場は、スラブと呼ばれる鋼片を被圧延材として、所定の幅及び厚みに加工する工場である。具体的には、スラブを加熱炉1で所定の温度まで加熱し、サイジングプレス2で幅方向に成形する。次に、サイジングプレス2で成形したスラブを粗圧延機3、仕上圧延機4により所定の寸法となるよう圧延する。そして、圧延後の鋼板をROT5と呼ばれる水冷装置により所定の組織となるように制御し、コイラ6と呼ばれる設備でコイル状に巻き取る。また、熱延工場には、鋼板の表面検査等を行う精整設備7も存在する。なお、スラブや鋼板(以下、鋼材と呼ぶ)の表面に発生するスケールが加工により表面に食い込むことを防ぐため、加熱炉1の出側や、粗圧延機3の入側、仕上圧延機4の入側にデスケーラ8と呼ばれるスケールを除去する装置が設置される。
このようにした熱延工場の設備の中で、仕上圧延機4の電力消費量、特にミルモータ(以下、仕上ミルモータと呼ぶ)の電力消費量が最も多く、熱延工場全体の約4割の電力を消費する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
In the present embodiment, a description will be given of a hot rolling mill which consumes much power among rolling mills.
FIG. 2 shows an example of a typical equipment arrangement such as a hot rolling mill. The hot rolling factory is a factory that processes a steel slab called a slab as a material to be rolled into a predetermined width and thickness. Specifically, the slab is heated to a predetermined temperature in the heating furnace 1 and formed in the width direction by the sizing press 2. Next, the slab formed by the sizing press 2 is rolled by a rough rolling mill 3 and a finishing rolling mill 4 to have a predetermined size. Then, the rolled steel sheet is controlled to have a predetermined structure by a water cooling device called ROT 5, and is wound into a coil by a facility called a coiler 6. The hot-rolling plant also has a refining facility 7 for inspecting the surface of the steel sheet. In order to prevent scale generated on the surface of a slab or a steel plate (hereinafter, referred to as a steel material) from cutting into the surface due to processing, the exit side of the heating furnace 1, the entrance side of the rough rolling mill 3, and the finishing mill 4 A device for removing scale called a descaler 8 is installed on the entrance side.
Among the equipment of the hot rolling mill, the power consumption of the finishing mill 4, particularly the power consumption of the mill motor (hereinafter referred to as a finishing mill motor), is the largest, and about 40% of the power consumption of the entire hot rolling mill. Consume.

図1に、本実施形態に係る消費電力量予測装置の機能構成を示す。本実施形態では、図2で説明した熱延工場の所定時間の消費電力量を予測する例を説明する。通常、熱延工場では、設備毎に電力系統を分けて電力が供給される。消費電力量予測装置では、以下に詳述するように、熱延工場の設備の電力系統のそれぞれについて所定時間の消費電力量予測値を求め、その総和を熱延工場の所定時間の消費電力量予測値とする。所定時間は、例えば電力会社と契約している消費電力量の上限値を定める時間(例えば30分や60分)とすればよい。   FIG. 1 shows a functional configuration of a power consumption estimation device according to the present embodiment. In the present embodiment, an example will be described in which the power consumption of the hot rolling mill described in FIG. 2 for a predetermined time is predicted. Normally, in a hot rolling plant, power is supplied by dividing the power system for each facility. As described in detail below, the power consumption prediction device obtains a predicted value of power consumption for a predetermined time for each of the power systems of the facilities of the hot rolling plant, and sums up the sum of the power consumption values for the predetermined time of the hot rolling plant. Assume a predicted value. The predetermined time may be, for example, a time (for example, 30 minutes or 60 minutes) that defines an upper limit of the amount of power consumption contracted with the power company.

100は仕上圧延機の消費電力量予測部であり、仕上圧延機4の電力系統(以下、仕上主機系統とも称する)の所定時間の消費電力量を予測する。
仕上圧延機の消費電力量予測部100は、仕上ミルモータ消費電力量予測部101と、加算器102と、仕上主機系統消費電力量予測部103とを備える。
Reference numeral 100 denotes a power consumption prediction unit of the finishing mill, which predicts the power consumption of the power system of the finishing mill 4 (hereinafter, also referred to as a finishing main machine system) for a predetermined time.
The power consumption predicting unit 100 of the finishing mill includes a finishing mill motor power consumption predicting unit 101, an adder 102, and a finishing main machine power consumption predicting unit 103.

仕上ミルモータ消費電力量予測部101は、被圧延材である鋼材毎に、圧延に必要となる仕上ミルモータの消費電力量予測値waを、式(1a)に示すように、鋼材の製造仕様等の情報(以下、鋼材情報と呼ぶ)を用いて、仕上ミルモータ消費電力量予測モデルにより求める。仕上ミルモータ消費電力量予測部101が、本発明でいう第1の消費電力量予測手段の例である。
仕上ミルモータ消費電力量予測モデルは非線形モデルであり、fa(・)は鋼材情報と仕上ミルモータの消費電力量との関係を表わす非線形関数である。非線形モデルとしては、例えばランダムフォレストモデルが挙げられるが、ニューラルネットワークやカーネル法を適用したものでもよい。
また、本実施形態では、鋼材情報として、サイズ(設定板厚、設定板幅等)、成分(例えばカーボン、シリコン、マンガン等の含有量)、制御圧延の有無を挙げるが、それらに限定されるものではない。例えば鋼材の重量、鋼材の強度等を含めるようにしてもよい。
なお、仕上圧延機が複数のスタンドにより構成される場合、スタンド毎に予測モデルを構築してもよいし、複数スタンドまとめて1つの仕上圧延機とみなして予測モデルを構築してもよい。
仕上ミルモータの消費電力量予測値wa
=fa(サイズ、成分、・・・、制御圧延有無)・・・(1a)
The finishing mill motor power consumption estimating unit 101 calculates, for each steel material to be rolled, a predicted power consumption value w a of the finishing mill motor required for rolling, as shown in equation (1a), as shown in equation (1a). (Hereinafter referred to as steel material information) using a finishing mill motor power consumption prediction model. The finishing mill motor power consumption prediction unit 101 is an example of a first power consumption prediction unit according to the present invention.
The finishing mill motor power consumption prediction model is a non-linear model, and f a (•) is a non-linear function representing the relationship between steel material information and the power consumption of the finishing mill motor. As the nonlinear model, for example, a random forest model can be cited, but a neural network or a kernel method may be applied.
Further, in the present embodiment, the steel material information includes a size (a set plate thickness, a set plate width, and the like), a component (for example, a content of carbon, silicon, manganese, and the like), and the presence or absence of controlled rolling. Not something. For example, the weight of the steel material, the strength of the steel material, and the like may be included.
When the finishing mill is composed of a plurality of stands, a prediction model may be constructed for each stand, or a plurality of stands may be collectively regarded as one finishing mill to construct a prediction model.
Predicted power consumption w a of finishing mill motor
= F a (size, component,..., Controlled rolling presence / absence) (1a)

加算器102は、所定時間内に圧延される鋼材について、式(2a)に示すように、仕上ミルモータ消費電力量予測部101で求めた仕上ミルモータの消費電力量予測値waの総和を求める。加算器102が、本発明でいう第2の総和算出手段の例である。
仕上ミルモータの消費電力量予測値waの総和=Σwa…(2a)
The adder 102 calculates the sum of the predicted power consumption w a of the finishing mill motor, which is obtained by the finishing mill motor power consumption predicting unit 101, as shown in Expression (2a), for the steel material rolled within a predetermined time. The adder 102 is an example of the second sum total calculating means in the present invention.
Sum = Σw a power consumption amount prediction value w a finishing mill motor ... (2a)

ここで、200は加算器であり、所定時間内に圧延される鋼材について、式(3−1)〜(3−m)に示すように、鋼材情報の総和を求める。加算器200が、本発明でいう第1の総和算出手段の例である。
設定板厚の総和=Σ設定板厚…(3−1)
設定板幅の総和=Σ設定板幅…(3−2)
実績X成分の総和=Σ実績X成分…(3−3)
・・・
制御圧延有無の総和=Σ制御圧延有無…(3−m)
Here, reference numeral 200 denotes an adder, which calculates the sum of the steel material information for the steel material rolled within a predetermined time, as shown in equations (3-1) to (3-m). The adder 200 is an example of the first sum total calculating means in the present invention.
Sum of set plate thickness = Σ set plate thickness ... (3-1)
Sum of setting plate width = Σ setting plate width ... (3-2)
Sum of actual X component = actual X component (3-3)
...
Sum of control rolling presence = Σ control rolling presence ... (3-m)

仕上主機系統消費電力量予測部103は、仕上圧延機4の電力系統の所定時間の消費電力量予測値(仕上主機系統の消費電力量予測値)WAを、式(4a)に示すように、加算器200で求めた鋼材情報の総和と、加算器102で求めた仕上ミルモータの消費電力量予測値waの総和とを用いて、仕上主機系統消費電力量予測モデルにより求める。仕上主機系統消費電力量予測部103が、本発明でいう第2の消費電力量予測手段の例である。
なお、仕上主機系統消費電力量予測モデルは重回帰のような線形モデルでも、ニューラルネットワークのような非線形モデルでもよい。本実施形態ではga(・)は非線形関数で表わされる。
仕上主機系統の消費電力量予測値WA
=ga(仕上ミルモータの消費電力量予測値waの総和、設定板厚の総和、設定板幅の総和、実績X成分の総和、・・・、制御圧延有無の総和)・・・(4a)
Finishing main engine system power consumption prediction unit 103, a finishing power consumption prediction value of a predetermined time of the power system of the rolling mill 4 (power consumption amount prediction value of finishing the main machine line) W A, as shown in equation (4a) , the sum of the steel information obtained by the adder 200, with the sum of the power consumption amount predicted value w a of the mill motor finish obtained by the adder 102, determined by the main motor system power consumption prediction model finish. The finish main machine power consumption prediction unit 103 is an example of a second power consumption prediction unit according to the present invention.
It should be noted that the power model for predicting the power consumption of the finished main system may be a linear model such as a multiple regression or a nonlinear model such as a neural network. In the present embodiment, g a (·) is represented by a nonlinear function.
Estimated power consumption value W A of the finishing engine system
= G a (total of power consumption predicted value w a of finishing mill motor, total of set plate thickness, total of set plate width, total of actual X component, ..., total of control rolling presence / absence) ... (4a )

300は粗圧延機の消費電力量予測部であり、粗圧延機3の電力系統(以下、粗主機系統とも称する)の所定時間の消費電力量を予測する。
粗圧延機の消費電力量予測部300は、仕上圧延機の消費電力量予測部100と同様に、粗ミルモータ消費電力量予測部301と、加算器302と、粗主機系統消費電力量予測部303とを備える。
Reference numeral 300 denotes a power consumption prediction unit of the rough rolling mill, which predicts power consumption of a power system of the rough rolling mill 3 (hereinafter, also referred to as a rough main machine system) for a predetermined time.
Like the power consumption prediction unit 100 of the finishing mill, the power consumption prediction unit 300 of the rough rolling mill includes a rough mill motor power consumption prediction unit 301, an adder 302, and a rough main machine power consumption prediction unit 303. And

粗ミルモータ消費電力量予測部301は、鋼材毎に、圧延に必要となる粗ミルモータの消費電力量予測値wbを、式(1b)に示すように、鋼材情報を用いて、粗ミルモータ消費電力量予測モデルにより求める。
粗ミルモータ消費電力量予測モデルは非線形モデルであり、fb(・)は鋼材情報と粗ミルモータの消費電力量との関係を表わす非線形関数である。非線形モデルとしては、例えばランダムフォレストモデルが挙げられるが、ニューラルネットワークやカーネル法を適用したものでもよい。
粗ミルモータの消費電力量予測値wb
=fb(サイズ、成分、・・・、制御圧延有無)・・・(1b)
The crude mill motor power consumption prediction section 301, for each steel, the power consumption prediction value w b of the coarse mill motor required for rolling, as shown in Equation (1b), using a steel information, coarse mill motor power consumption Determined by the quantity prediction model.
The rough mill motor power consumption prediction model is a non-linear model, and f b (·) is a non-linear function representing the relationship between steel material information and the power consumption of the coarse mill motor. As the nonlinear model, for example, a random forest model can be cited, but a neural network or a kernel method may be applied.
Estimated power consumption w b of coarse mill motor
= F b (size, component,..., Controlled rolling presence / absence) (1b)

加算器302は、所定時間内に圧延される鋼材について、式(2b)に示すように、粗ミルモータ消費電力量予測部301で求めた粗ミルモータの消費電力量予測値wbの総和を求める。
粗ミルモータの消費電力量予測値wbの総和=Σwb…(2b)
The adder 302, the steel is rolled in a predetermined time, as shown in equation (2b), obtaining the sum of the power consumption amount predicted value w b of the coarse mill motor determined in crude mill motor power consumption prediction section 301.
Total power consumption amount predicted value w b of the rough mill motor = Σw b ... (2b)

粗主機系統消費電力量予測部303は、粗圧延機3の電力系統の所定時間の消費電力量予測値(粗主機系統の消費電力量予測値)WBを、式(4b)に示すように、加算器200で求めた鋼材情報の総和と、加算器302で求めた粗ミルモータの消費電力量予測値wbの総和とを用いて、粗主機系統消費電力量予測モデルにより求める。
なお、粗主機系統消費電力量予測モデルは重回帰のような線形モデルでも、ニューラルネットワークのような非線形モデルでもよい。本実施形態ではgb(・)は非線形関数で表わされる。
粗主機系統の消費電力量予測値WB
=gb(粗ミルモータの消費電力量予測値wbの総和、設定板厚の総和、設定板幅の総和、実績X成分の総和、・・・、制御圧延有無の総和)・・・(4b)
Crude main engine system power consumption prediction section 303, the power consumption amount prediction value of a predetermined time of the power system of the rough rolling mill 3 (power consumption amount prediction value of the coarse main engine system) W B, as shown in equation (4b) , the sum of the steel information obtained by the adder 200, with the sum of the power consumption amount predicted value w b of the coarse mill motor obtained by the adder 302, determined by the coarse main engine system power consumption prediction model.
The rough main system power consumption prediction model may be a linear model such as a multiple regression or a nonlinear model such as a neural network. In the present embodiment, g b (·) is represented by a non-linear function.
Predicted power consumption value W B of coarse main engine system
= G b (rough mill motor total power consumption amount predicted value w b of the sum of the set plate thickness, the sum of the set plate width, the sum of the actual X-component, ..., controlled rolling whether the sum of) ... (4b )

400は加熱炉の消費電力量予測部であり、加熱炉1の電力系統(以下、加熱炉系統とも称する)の所定時間の消費電力量を予測する。
加熱炉の消費電力量予測部400は、加熱炉系統消費電力量予測部401を備える。
加熱炉系統消費電力量予測部401は、加熱炉1の電力系統の所定時間の消費電力量予測値(加熱炉系統の消費電力量予測値)WCを、式(4c)に示すように、加算器200で求めた鋼材情報の総和を用いて、加熱炉系統消費電力量予測モデルにより求める。
なお、加熱炉系統消費電力量予測モデルは重回帰のような線形モデルでも、ニューラルネットワークのような非線形モデルでもよい。本実施形態ではgc(・)は非線形関数で表わされる。
加熱炉系統の消費電力量予測値WC
=gc(設定板厚の総和、設定板幅の総和、実績X成分の総和、・・・、制御圧延有無の総和)・・・(4c)
Reference numeral 400 denotes a heating furnace power consumption prediction unit that predicts the power consumption of the power system of the heating furnace 1 (hereinafter, also referred to as a heating furnace system) for a predetermined time.
The heating furnace power consumption prediction unit 400 includes a heating furnace system power consumption prediction unit 401.
The heating furnace system power consumption prediction unit 401 calculates the power consumption prediction value (power consumption prediction value of the heating furnace system) W C of the power system of the heating furnace 1 for a predetermined time as shown in Expression (4c). The sum of the steel material information obtained by the adder 200 is used to obtain a heating furnace system power consumption prediction model.
The heating furnace system power consumption prediction model may be a linear model such as a multiple regression or a nonlinear model such as a neural network. In the present embodiment, g c (·) is represented by a non-linear function.
Predicted power consumption W C of heating furnace system
= G c (total of set plate thickness, total of set plate width, total of actual X component,..., Total of presence or absence of controlled rolling) (4c)

サイジングプレス2、ROT5、コイラ6、精整設備7、デスケ8といった他の設備についても消費電力量予測部が構成されており、加熱炉の消費電力量予測部400と同様に、各設備の電力系統の所定時間の消費電力量を予測する。
例えば500は精整系統の消費電力量予測部であり、精整設備7やコイラ6を含む電力系統(以下、精整系統とも称する)の所定時間の消費電力量を予測する。
精整系統の消費電力量予測部500は、精整系統消費電力量予測部501を備える。
精整系統消費電力量予測部501は、精整設備7の電力系統の所定時間の消費電力量予測値(精整系統の消費電力量予測値)WMを、式(4m)に示すように、加算器200で求めた鋼材情報の総和を用いて、精整系統消費電力量予測モデルにより予測する。
なお、精整系統消費電力量予測モデルは重回帰のような線形モデルでも、ニューラルネットワークのような非線形モデルでもよい。本実施形態ではgm(・)は非線形関数で表わされる。
精整系統の消費電力量予測値WM
=gm(設定板厚の総和、設定板幅の総和、実績X成分の総和、・・・、制御圧延有無の総和)・・・(4m)
また、電力系統は熱延工場毎に異なる構成であり、上記以外にも例えばサイジングプレス7等を含む粗補機系統や、ROT5を含む冷却設備系統、デスケ8を含むデスケ系統等が存在し、加熱炉系統消費電力量予測部400や精整系統電力消費量予測部500と同様に、それぞれの電力系統の消費電力予測部を構築することができる。
The other equipment such as the sizing press 2, the ROT 5, the coiler 6, the refining equipment 7, and the desk 8 is also configured with a power consumption prediction unit. The power consumption of the system for a predetermined time is predicted.
For example, reference numeral 500 denotes a power consumption prediction unit for the conditioning system, which predicts the power consumption of a power system including the conditioning equipment 7 and the coiler 6 (hereinafter, also referred to as the conditioning system) for a predetermined time.
The adjustment system power consumption prediction unit 500 includes a adjustment system power consumption prediction unit 501.
The refining system power consumption predicting unit 501 calculates the power consumption predicted value (predicted power consumption value of the refining system) W M of the power system of the refining facility 7 for a predetermined time as shown in Expression (4m). , Using the sum total of the steel material information obtained by the adder 200, and making a prediction using a refined system power consumption prediction model.
It should be noted that the refined system power consumption prediction model may be a linear model such as a multiple regression or a nonlinear model such as a neural network. In the present embodiment, g m (·) is represented by a nonlinear function.
Predicted power consumption value W M of the refining system
= G m (total of set plate thickness, total of set plate width, total of actual X component, ..., total of control rolling presence / absence) ... (4m)
In addition, the power system has a different configuration for each hot rolling plant, and in addition to the above, there are, for example, a rough auxiliary system including the sizing press 7, a cooling facility system including the ROT 5, a desk system including the desk 8 and the like. Similarly to the heating furnace system power consumption prediction unit 400 and the refined system power consumption prediction unit 500, a power consumption prediction unit for each power system can be constructed.

600は加算器であり、各消費電力量予測部100、300、400、・・・で求めた消費電力量予測値の総和を求める。ここで得られる設備毎の消費電力量予測値の総和が、熱延工場の所定時間の消費電力量予測値となる。   Reference numeral 600 denotes an adder, which calculates the total sum of the predicted power consumption values obtained by the power consumption prediction units 100, 300, 400,... The sum of the power consumption predicted values obtained for each facility obtained here becomes the power consumption predicted value of the hot rolling plant for a predetermined time.

以上のように、消費電力の多い仕上圧延機4の所定時間の消費電力量を予測する際に、鋼材一本単位で非線形モデル(仕上ミルモータ消費電力量予測モデル)により仕上ミルモータの消費電力量予測値を求める。そして、所定時間内に圧延される鋼材について、鋼材情報の総和と、鋼材毎の仕上ミルモータの消費電力量予測値の総和とを求め、それらを入力変数として、仕上圧延機4の電力系統の所定時間の消費電力量予測値を求める。粗圧延機3についても同様の手法を用いる。
このように2段階の予測モデルとし、鋼材毎のミルモータの消費電力量予測値の総和を入力変数とすることにより、鋼材毎の鋼材情報とミルモータの消費電力量との非線形関係を反映させることができるので、圧延機の所定時間の消費電力量を高精度に予測することができる。
鋼材毎のミルモータの消費電力量予測値の総和を入力変数としない場合、鋼材個々の鋼材情報が総和として集約された後、圧延機の消費電力量の予測に用いられる。この場合に、鋼材情報とミルモータの消費電力量とに非線形関係があると、その非線形関係が圧延機の消費電力量の予測に反映できない。例えば設定厚みが3mmと5mmの2本の鋼材のミルモータの消費電力量の総和と、設定厚みが共に4mmの2本の鋼材のミルモータの消費電力量の総和とが異なったとしても、設定厚みの総和は共に8mmとなるため、両者が圧延機の消費電力量の予測では区別がつかず、消費電力量予測値が同じになってしまい、予測誤差を生じてしまうことになる。
As described above, when estimating the power consumption of the finishing mill 4 that consumes a large amount of power for a predetermined time, the power consumption of the finishing mill motor is predicted by a non-linear model (finishing mill motor power consumption prediction model) for each steel material. Find the value. Then, for the steel material rolled within a predetermined time, the sum of the steel material information and the sum of the predicted power consumption of the finishing mill motor for each steel material are obtained, and these are used as input variables to determine the predetermined value of the power system of the finishing mill 4. A predicted power consumption value for time is obtained. The same method is used for the rough rolling mill 3.
As described above, the two-stage prediction model is used, and by using the sum of the predicted values of the power consumption of the mill motor for each steel material as an input variable, it is possible to reflect the nonlinear relationship between the steel material information for each steel material and the power consumption of the mill motor. Therefore, the power consumption of the rolling mill for a predetermined time can be predicted with high accuracy.
When the sum of the predicted values of the power consumption of the mill motor for each steel material is not used as an input variable, the information on the steel materials of each steel material is aggregated as a sum and then used for predicting the power consumption of the rolling mill. In this case, if there is a non-linear relationship between the steel material information and the power consumption of the mill motor, the non-linear relationship cannot be reflected in the prediction of the power consumption of the rolling mill. For example, even if the sum of the power consumption of the two steel mill motors with the set thicknesses of 3 mm and 5 mm is different from the sum of the power consumption of the two steel mill motors with both the set thicknesses of 4 mm, Since both the sums are 8 mm, they cannot be distinguished from each other in the prediction of the power consumption of the rolling mill, and the predicted values of the power consumption become the same, resulting in a prediction error.

また、鋼材毎のミルモータの消費電力量予測値の総和を入力変数とすることにより、次の観点からも、圧延機の所定時間の消費電力量を高精度に予測することができる。
例えば仕上主機系統は、仕上ミルモータの消費電力量を含んでおり、また、仕上主機系統に含まれる仕上ミルモータ以外の機器(補機)の消費電力量も、概ね仕上ミルモータの消費電力量と相関していると考えられる。例えば仕上ミルモータの消費電力量は鋼材のサイズや重量に依存して大きくなるが、スタンド間の冷却水の水量は鋼材の断面積に比例するため、冷却水を供給するためのポンプの消費電力量と、仕上ミルモータの消費電力量とには強い相関がある。他の補機も鋼材のサイズや重量に依存して消費電力量が多くなるため、仕上ミルモータの消費電力量との相関が高い。このように補機の消費電力量を予測する際にも、相関の高い仕上ミルモータの消費電力量予測値を入力変数に加えることで、予測精度が向上する。
Further, by using the sum of the predicted values of the power consumption of the mill motor for each steel material as an input variable, the power consumption of the rolling mill for a predetermined time can be predicted with high accuracy also from the following viewpoints.
For example, the finishing main machine system includes the power consumption of the finishing mill motor, and the power consumption of equipment (auxiliary equipment) other than the finishing mill motor included in the finishing main motor system generally correlates with the power consumption of the finishing mill motor. It is thought that it is. For example, the power consumption of a finishing mill motor increases depending on the size and weight of steel, but the amount of cooling water between stands is proportional to the cross-sectional area of the steel, so the power consumption of a pump for supplying cooling water Has a strong correlation with the power consumption of the finishing mill motor. Since the power consumption of other auxiliary machines also increases depending on the size and weight of the steel material, the correlation with the power consumption of the finishing mill motor is high. As described above, when predicting the power consumption of the auxiliary machine, the prediction accuracy is improved by adding the predicted value of the power consumption of the finishing mill motor having a high correlation to the input variable.

なお、図1の例では、鋼材毎の仕上ミルモータの消費電力量予測値waの総和を、仕上主機系統消費電力量予測モデルの入力変数(説明変数)としてのみ用いたが、物理的見地から必要と判断される場合、他の設備の電力系統の消費電力量予測モデルの入力変数として用いるようにしてもよい。鋼材毎の粗ミルモータの消費電力量予測値wbの総和についても同様である。
例えば鋼材毎の仕上ミルモータの消費電力量予測値waの総和を、粗主機系統消費電力量予測モデルの入力変数として用いると、下式(4b)´のようになる。
粗主機系統の消費電力量予測値WB
=gb´(仕上ミルモータの消費電力量予測値waの総和、粗ミルモータの消費電力量予測値wbの総和、設定板厚の総和、設定板幅の総和、実績X成分の総和、・・・、制御圧延有無の総和)・・・(4b)´
また、例えば鋼材毎の仕上ミルモータの消費電力量予測値waの総和、及び鋼材毎の粗ミルモータの消費電力量予測値wbの総和を、加熱炉系統消費電力量予測モデルの入力変数として用いると、下式(4c)´のようになる。
加熱炉系統の消費電力量予測値WC
=gc´(仕上ミルモータの消費電力量予測値waの総和、粗ミルモータの消費電力量予測値wbの総和、設定板厚の総和、設定板幅の総和、実績X成分の総和、・・・、制御圧延有無の総和)・・・(4c)´
ただし、仕上ミルモータや粗ミルモータの消費電力量と相関の低い電力系統(例えば精整系統)において、鋼材毎の仕上ミルモータの消費電力量や粗ミルモータの消費電力量予測値の総和を入力変数に加えても効果は低い。
In the example of FIG. 1, the sum of the predicted power consumption values w a of the finishing mill motor for each steel material is used only as an input variable (explanatory variable) of the power consumption prediction model for the finishing main engine system, but from a physical point of view. If it is determined that it is necessary, it may be used as an input variable of a power consumption prediction model of a power system of another facility. The same applies to the sum of the power consumption amount predicted value w b of the rough mill motor for each steel.
For example the total power consumption amount predicted value w a steel each of the finishing mill motor, when used as input variables of the crude main engine system power consumption prediction model, so that the following formula (4b) '.
Predicted power consumption value W B of coarse main engine system
= G b ′ (total of predicted power consumption w a of finishing mill motor, total of predicted power consumption w b of coarse mill motor, total of set plate thickness, total of set plate width, total of actual X component, .., sum of the presence or absence of controlled rolling) (4b) '
Also, for example, the sum of the predicted power consumption value w a of the finishing mill motor for each steel material and the sum of the predicted power consumption value w b of the coarse mill motor for each steel material are used as input variables of the heating furnace system power consumption prediction model. And the following equation (4c) ′.
Predicted power consumption W C of heating furnace system
= G c ′ (total of predicted power consumption value w a of finishing mill motor, total of predicted power consumption value w b of coarse mill motor, total of set plate thickness, total of set plate width, total of actual X component, .., sum of the presence or absence of controlled rolling) (4c) '
However, in a power system that has a low correlation with the power consumption of the finishing mill motor and the coarse mill motor (for example, a refinement system), the sum of the power consumption of the finishing mill motor and the predicted value of the power consumption of the coarse mill motor for each steel material is added to the input variables. But the effect is low.

図3は、鋼材毎の仕上ミルモータの消費電力量予測値を求める際に、線形モデル及び非線形モデルを適用した場合の結果を示す。
4カ月間の熱延工場の操業実績データ(鋼材64937本)から予測モデルを作成し、2ヶ月間の操業実績データ(鋼材17430本)で精度評価を行った。図3は、2ヶ月間の操業実績データを用いて計算した予測値と実績値とを示す散布図である。
7スタンドからなる仕上圧延機の仕上ミルモータにおいて、鋼材毎の仕上ミルモータの消費電力量予測値を求める際に、図3(a)は仕上ミルモータ消費電力量予測モデルを線形モデル(重回帰モデル)としたケースを示し、図3(b)は仕上ミルモータ消費電力量予測モデルを非線形モデル(ランダムフォレストモデル)としたケースを示す。なお、図3において、仕上ミルモータの消費電力量は1時間当たりの熱延工場の平均電力量を100%としてスケーリングしている。
図3に示すように、線形モデルと非線形モデルとでは予測精度が大きく異なるため、鋼材毎の仕上ミルモータの消費電力量は、非線形モデルで予測すべき対象であることが確認できる。
なお、重回帰モデルとランダムフォレストモデルは、式(5a)、(5b)のように、電力原単位を予測するモデルとした。p(・)は電力原単位を出力する関数であり、重回帰モデルは線形式、ランダムフォレストモデルは500個の決定木から構成されるモデルとした。
電力原単位(kWh/t)=p(設定板厚、設定板幅、設定板長、設定重量、設定引張強度、実績X成分、制御圧延有無)・・・(5a)
仕上ミルモータ消費電力量(kWh)=電力原単位(kWh/t)×設定重量(t)・・・(5b)
FIG. 3 shows a result when a linear model and a non-linear model are applied when obtaining a predicted value of power consumption of a finishing mill motor for each steel material.
A prediction model was created from the operation results data of the hot rolling mill for four months (64937 steel materials), and the accuracy was evaluated using the operation results data for two months (17430 steel materials). FIG. 3 is a scatter diagram showing the predicted values and the actual values calculated using the operation result data for two months.
In the finishing mill motor of the finishing mill consisting of 7 stands, when calculating the predicted value of the power consumption of the finishing mill motor for each steel material, FIG. 3 (a) shows the finished mill motor power consumption prediction model as a linear model (multiple regression model). FIG. 3 (b) shows a case in which the finishing mill motor power consumption prediction model is a nonlinear model (random forest model). In FIG. 3, the power consumption of the finishing mill motor is scaled by setting the average power consumption of the hot rolling mill per hour to 100%.
As shown in FIG. 3, since the prediction accuracy differs greatly between the linear model and the non-linear model, it can be confirmed that the power consumption of the finishing mill motor for each steel material should be predicted by the non-linear model.
Note that the multiple regression model and the random forest model are models for predicting the power consumption unit as shown in equations (5a) and (5b). p (·) is a function for outputting the power consumption unit. The multiple regression model is a linear form, and the random forest model is a model composed of 500 decision trees.
Power consumption unit (kWh / t) = p (set plate thickness, set plate width, set plate length, set weight, set tensile strength, actual X component, presence or absence of controlled rolling) (5a)
Finishing mill motor power consumption (kWh) = Power consumption unit (kWh / t) × Set weight (t) (5b)

図4は、仕上ミルモータの1時間の消費電力量を予測する際に、鋼材情報の総和を入力変数とするモデルを用いる場合と、本発明のように仕上ミルモータ消費電力量予測モデルにより鋼材毎の消費電力量予測値を求めて、その総和をとることにより予測する場合との結果を示す。なお、対象とする仕上圧延機、図4のスケーリング、仕上ミルモータ消費電力量予測モデルとするランダムフォレストモデルについては図3で説明したとおりであり、ここではその説明は省略する。
図4(a)は、式(5a)において、鋼材毎の鋼材情報を入力変数とする代わりに、それぞれの鋼材情報の1時間の総和を入力変数として、1時間内に圧延される鋼材の消費電力量を予測したケースを示す。ここで用いるモデルは、500個の決定木から構成されるランダムフォレストモデルとした。
図4(b)は、同じく式(5a)に示す鋼材情報を入力変数として、本発明のように仕上ミルモータ消費電力量予測モデルにより1時間内に圧延される鋼材毎に消費電力量を予測して、その総和を求めたケースを示す。
図4に示すように、鋼材毎に消費電力量を予測する手法により、仕上ミルモータの1時間の消費電力量の予測精度R2を0.9603%から0.9934%へ向上させることができる。
FIG. 4 shows a case where a model using the total sum of steel material information is used as an input variable when estimating the hourly power consumption of the finishing mill motor, and a case where the finishing mill motor power consumption predicting model is used for each steel material according to the present invention. A result of a case where a predicted value of the power consumption is obtained and the sum is obtained to perform the prediction is shown. Note that the target finishing mill, the scaling in FIG. 4, and the random forest model used as the model for predicting the power consumption of the finishing mill motor are the same as those described in FIG. 3, and the description thereof is omitted here.
FIG. 4 (a) shows that in equation (5a), instead of using the steel material information for each steel material as an input variable, using the one-hour sum of each steel material information as an input variable, the consumption of the steel material rolled in one hour The case where the electric energy is predicted is shown. The model used here was a random forest model composed of 500 decision trees.
FIG. 4B predicts the power consumption for each steel rolled in one hour by using the finishing mill motor power consumption prediction model as in the present invention, using the steel material information shown in the equation (5a) as an input variable. Here is a case where the sum is obtained.
As shown in FIG. 4, by a method of predicting the power consumption amount for each steel, the prediction accuracy R 2 of the power consumption of 1 hour finishing mill motor can be improved from 0.9603% to 0.9934%.

図5に、ある熱延工場の7スタンドからなる仕上主機系統の1時間の消費電力量の予測について、本発明による予測手法の結果と、従来の予測手法の結果を示す。なお、対象とする仕上圧延機、図5のスケーリング、仕上ミルモータ消費電力量予測モデルとするランダムフォレストモデルについては図3で説明したとおりであり、ここではその説明は省略する。
図5(a)は、従来の予測手法、すなわち仕上ミルモータ消費電力量予測モデルを用いずに、鋼材情報の総和を入力変数として、仕上主機系統消費電力量予測モデルを用いて消費電力量を予測したケースを示す。図1を参照していえば、加算器200で求めた鋼材情報の総和だけが、仕上主機系統消費電力量予測部103への入力となるケースである。
図5(b)は、本発明による予測手法、すなわち仕上ミルモータ消費電力量予測モデルを用い、鋼材情報の総和及び鋼材毎の仕上ミルモータの消費電力量の総和を入力変数として、仕上主機系統消費電力量予測モデルを用いて消費電力量を予測したケースを示す。
仕上主機系統消費電力量予測モデルは、式(5a)に示す鋼材情報それぞれの総和を入力変数として、仕上主機系統の所定時間の消費電力量予測値を求める重回帰モデルとし、4カ月間の操業実績データ(2372個)から作成した。
図5は、2ヶ月間の1時間毎の仕上主機系統の消費電力量(638個)に対して、予測値と実績値とを示す散布図である。図5に示すように、本発明による予測方法を用いることで、予測精度R2を0.9642から0.9828へ向上させることができる。
FIG. 5 shows the result of the prediction method according to the present invention and the result of the conventional prediction method for the prediction of the hourly power consumption of the finishing main machine system including the seven stands of a hot rolling mill. Note that the target finishing mill, the scaling in FIG. 5, and the random forest model used as the model for predicting the power consumption of the finishing mill motor are as described in FIG. 3, and the description is omitted here.
FIG. 5 (a) shows a conventional prediction method, that is, the power consumption is predicted using the finishing main system power consumption prediction model using the sum of steel material information as an input variable without using the finishing mill motor power consumption prediction model. Here is the case. Referring to FIG. 1, there is a case where only the sum of the steel material information obtained by the adder 200 is input to the finishing main machine system power consumption prediction unit 103.
FIG. 5B shows the power consumption of the finishing main machine system using the prediction method according to the present invention, that is, using the finishing mill motor power consumption prediction model, and using the total sum of steel material information and the total power consumption of the finishing mill motor for each steel material as input variables. 5 shows a case in which power consumption is predicted using a power prediction model.
The finishing main engine system power consumption prediction model is a multiple regression model for obtaining a predicted value of power consumption of the finishing main engine system for a predetermined period of time using the sum of each piece of steel material information shown in equation (5a) as an input variable and operating for four months. Created from actual data (2372).
FIG. 5 is a scatter diagram showing a predicted value and an actual value with respect to the power consumption (638 pieces) of the finishing main machine system every hour for two months. As shown in FIG. 5, by using the prediction method according to the invention, it is possible to improve the prediction accuracy R 2 from 0.9642 to 0.9828.

以上、本発明を種々の実施形態と共に説明したが、本発明はこれらの実施形態にのみ限定されるものではなく、本発明の範囲内で変更等が可能である。
本発明を適用した消費電力量予測装置は、例えばCPU、ROM、RAM等を備えたコンピュータ装置により実現され、CPUがROMに記憶するプログラムをRAMに展開して実行することにより、図1に示した各部の機能が実現される。
また、本発明は、本発明の消費電力量予測装置としての機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータがプログラムを読み出して実行することによっても実現可能である。
As described above, the present invention has been described with various embodiments. However, the present invention is not limited to these embodiments, and changes and the like can be made within the scope of the present invention.
The power consumption estimation device to which the present invention is applied is realized by a computer device having, for example, a CPU, a ROM, a RAM, and the like. The CPU expands a program stored in the ROM into the RAM and executes the program. The functions of the respective units are realized.
Further, the present invention supplies software (program) for realizing the function as the power consumption estimation device of the present invention to a system or an apparatus via a network or various storage media, and a computer of the system or the apparatus executes the program. It can also be realized by reading and executing.

100:仕上圧延機の消費電力量予測部
101:仕上ミルモータ消費電力量予測部
102:加算器
103:仕上主機系統消費電力量予測部
200:加算器
300:粗圧延機の消費電力量予測部
301:粗ミルモータ消費電力量予測部
302:加算器
303:粗主機系統消費電力量予測部
100: Power consumption prediction unit for finishing mill 101: Finishing mill motor power consumption prediction unit 102: Adder 103: Power consumption prediction unit for finishing main machine 200: Adder 300: Power consumption prediction unit for rough rolling mill 301 : Coarse mill motor power consumption prediction unit 302: Adder 303: Coarse main machine power consumption prediction unit

Claims (5)

圧延機の電力系統の消費電力量を予測する消費電力量予測方法であって、
被圧延材毎に、圧延に必要となるミルモータの消費電力量予測値を、圧延後の板厚、圧延後の板幅、成分、制御圧延の有無、重量、及び強度のうち少なくともいずれか一つを含む複数種の情報を説明変数として、非線形モデルであるミルモータ消費電力量予測モデルにより求める第1の消費電力量予測ステップと、
所定時間内に圧延される被圧延材について、前記情報毎の値の総和と、前記第1の消費電力量予測ステップで求めたミルモータの消費電力量予測値の総和とを求める総和算出ステップと、
前記圧延機の電力系統の前記所定時間の消費電力量予測値を、前記総和算出ステップで求めた前記情報毎の値の総和と、前記総和算出ステップで求めたミルモータの消費電力量予測値の総和とを説明変数として、圧延機の電力系統消費電力量予測モデルにより求める第2の消費電力量予測ステップとを有することを特徴とする消費電力量予測方法。
A power consumption prediction method for predicting power consumption of a power system of a rolling mill,
For each material to be rolled, the estimated power consumption of the mill motor required for rolling, the thickness after rolling, the width after rolling, the component, the presence or absence of controlled rolling, the weight, and at least one of the strengths A plurality of types of information including, as explanatory variables, a first power consumption prediction step obtained by a mill motor power consumption prediction model that is a nonlinear model;
For a material to be rolled within a predetermined time, a sum calculation step of calculating the sum of the values for each piece of information and the sum of the power consumption predicted values of the mill motor obtained in the first power consumption prediction step,
The power consumption predicted value of the power system of the rolling mill during the predetermined time is calculated by summing the values for each piece of information obtained in the sum calculation step and the sum of the power consumption predicted values of the mill motor obtained in the sum calculation step. And a second power consumption prediction step of determining the power consumption of the rolling mill using a power consumption prediction model.
前記ミルモータ消費電力量予測モデルをランダムフォレストモデルとすることを特徴とする請求項1に記載の消費電力量予測方法。   The power consumption prediction method according to claim 1, wherein the mill motor power consumption prediction model is a random forest model. 圧延機と、他の設備とを備える圧延工場の消費電力量を予測する消費電力量予測方法であって、
請求項1又は2に記載の消費電力量予測方法により求めた前記圧延機の電力系統の前記所定時間の消費電力量予測値と、所定の消費電力量予測方法により求めた前記他の設備の電力系統それぞれの前記所定時間の消費電力量予測値との総和を、前記圧延工場の前記所定時間の消費電力量予測値とすることを特徴とする消費電力量予測方法。
Rolling mill, a power consumption prediction method for predicting the power consumption of a rolling mill equipped with other equipment,
A power consumption prediction value of the power system of the rolling mill for the predetermined time obtained by the power consumption prediction method according to claim 1 or 2, and an electric power of the other equipment obtained by a predetermined power consumption prediction method. A power consumption prediction method, wherein the sum of the power consumption prediction values of the respective systems for the predetermined time is used as the power consumption prediction value of the rolling mill for the predetermined time.
圧延機の電力系統の消費電力量を予測する消費電力量予測装置であって、
被圧延材毎に、圧延に必要となるミルモータの消費電力量予測値を、圧延後の板厚、圧延後の板幅、成分、制御圧延の有無、重量、及び強度のうち少なくともいずれか一つを含む複数種の情報を説明変数として、非線形モデルであるミルモータ消費電力量予測モデルにより求める第1の消費電力量予測手段と、
所定時間内に圧延される被圧延材について、前記情報毎の値の総和を求める第1の総和算出手段と、
前記所定時間内に圧延される被圧延材について、前記第1の消費電力量予測手段で求めたミルモータの消費電力量予測値の総和を求める第2の総和算出手段と、
前記圧延機の電力系統の前記所定時間の消費電力量予測値を、前記第1の総和算出手段で求めた前記情報毎の値の総和と、前記第2の総和算出手段で求めたミルモータの消費電力量予測値の総和とを説明変数として、圧延機の電力系統消費電力量予測モデルにより求める第2の消費電力量予測手段とを備えたことを特徴とする消費電力量予測装置。
A power consumption prediction device for predicting power consumption of a power system of a rolling mill,
For each material to be rolled, the estimated power consumption of the mill motor required for rolling, the thickness after rolling, the width after rolling, the component, the presence or absence of controlled rolling, the weight, and at least one of the strengths A first power consumption predicting means obtained by using a mill motor power consumption prediction model, which is a nonlinear model, using a plurality of types of information including
A first sum calculating means for calculating a sum of values for each piece of information for a material to be rolled within a predetermined time;
A second sum calculating means for calculating a sum of power consumption predicted values of the mill motor obtained by the first power consumption predicting means, for a material to be rolled within the predetermined time;
The predicted value of the power consumption of the power system of the rolling mill during the predetermined time is calculated by summing up the values for each piece of information obtained by the first summation means and the consumption of the mill motor obtained by the second summation means. A power consumption predicting apparatus, comprising: a second power consumption predicting unit that obtains a power system power consumption prediction model of a rolling mill using a total of the power consumption predicted values as an explanatory variable .
圧延機の電力系統の消費電力量を予測するためのプログラムであって、
被圧延材毎に、圧延に必要となるミルモータの消費電力量予測値を、圧延後の板厚、圧延後の板幅、成分、制御圧延の有無、重量、及び強度のうち少なくともいずれか一つを含む複数種の情報を説明変数として、非線形モデルであるミルモータ消費電力量予測モデルにより求める第1の消費電力量予測処理と、
所定時間内に圧延される被圧延材について、前記情報毎の値の総和と、前記第1の消費電力量予測処理で求めたミルモータの消費電力量予測値の総和とを求める総和算出処理と、
前記圧延機の電力系統の前記所定時間の消費電力量予測値を、前記総和算出処理で求めた前記情報毎の値の総和と、前記総和算出処理で求めたミルモータの消費電力量予測値の総和とを説明変数として、圧延機の電力系統消費電力量予測モデルにより求める第2の消費電力量予測処理とをコンピュータに実行させるためのプログラム。
A program for predicting the power consumption of a power system of a rolling mill,
For each material to be rolled, the estimated power consumption of the mill motor required for rolling, the thickness after rolling, the width after rolling, the component, the presence or absence of controlled rolling, the weight, and at least one of the strengths A plurality of types of information including, as explanatory variables, a first power consumption prediction process obtained by a mill motor power consumption prediction model that is a nonlinear model;
For a material to be rolled within a predetermined time, a sum calculation process of calculating a sum of values for each piece of information and a sum of predicted power consumption values of the mill motor obtained in the first power consumption prediction process;
The predicted value of the power consumption of the power system of the rolling mill for the predetermined time is the sum of the values for each piece of information obtained in the sum calculation processing, and the sum of the predicted power consumption of the mill motor obtained in the sum calculation processing. And a second power consumption prediction process that is performed using a power system power consumption prediction model of a rolling mill with the following as explanatory variables .
JP2015201116A 2015-10-09 2015-10-09 Power consumption prediction method, apparatus and program Active JP6641867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015201116A JP6641867B2 (en) 2015-10-09 2015-10-09 Power consumption prediction method, apparatus and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015201116A JP6641867B2 (en) 2015-10-09 2015-10-09 Power consumption prediction method, apparatus and program

Publications (2)

Publication Number Publication Date
JP2017073935A JP2017073935A (en) 2017-04-13
JP6641867B2 true JP6641867B2 (en) 2020-02-05

Family

ID=58537708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015201116A Active JP6641867B2 (en) 2015-10-09 2015-10-09 Power consumption prediction method, apparatus and program

Country Status (1)

Country Link
JP (1) JP6641867B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7316816B2 (en) * 2019-03-26 2023-07-28 株式会社日本総合研究所 Information processing device and program
JP7295676B2 (en) * 2019-03-26 2023-06-21 株式会社日本総合研究所 Information processing device and program
JP7381874B2 (en) * 2020-01-16 2023-11-16 日本製鉄株式会社 Power demand control method, power demand control device and program
CN112287604B (en) * 2020-11-02 2024-07-16 湖南华菱涟源钢铁有限公司 Hot rolling production electricity consumption level prediction method, device and system
CN112845610B (en) * 2020-12-31 2023-03-14 中冶赛迪信息技术(重庆)有限公司 Steel rolling power consumption parameter recommendation method and system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469219A (en) * 1987-09-07 1989-03-15 Sumitomo Metal Ind Operation and control of power
JPH06262223A (en) * 1993-01-14 1994-09-20 Sumitomo Metal Ind Ltd Prediction method of power consumption in rolling mill
JPH06277732A (en) * 1993-03-30 1994-10-04 Sumitomo Metal Ind Ltd Rolling control method in reeler
JP4448226B2 (en) * 2000-03-07 2010-04-07 新日本製鐵株式会社 Demand prediction apparatus, method, and computer-readable storage medium
JP2004129322A (en) * 2002-09-30 2004-04-22 Nippon Steel Corp Power demand forecasting control system
JP2009183077A (en) * 2008-01-31 2009-08-13 Jfe Steel Corp Generated power adjusting method of manufacture plant power generation facility
JP5347474B2 (en) * 2008-12-17 2013-11-20 Jfeスチール株式会社 Method for adjusting generated power of manufacturing plant power generation equipment
US20120004757A1 (en) * 2009-03-13 2012-01-05 Toshiba Mitsubishi-Electric Indus. Sys. Corp. Optimization device
JP5666338B2 (en) * 2011-02-18 2015-02-12 東芝三菱電機産業システム株式会社 Energy consumption prediction device
JP5988419B2 (en) * 2012-01-11 2016-09-07 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Prediction method, prediction system, and program
JPWO2013121514A1 (en) * 2012-02-14 2015-05-11 東芝三菱電機産業システム株式会社 Electric power leveling device
KR101461734B1 (en) * 2012-12-21 2014-11-14 주식회사 포스코 Width control apparatus and method in endless rolling process line
US9639642B2 (en) * 2013-10-09 2017-05-02 Fujitsu Limited Time series forecasting ensemble
KR101782281B1 (en) * 2014-01-24 2017-09-26 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Energy consumption predicting device for rolling line

Also Published As

Publication number Publication date
JP2017073935A (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6641867B2 (en) Power consumption prediction method, apparatus and program
CN101590489B (en) Board width controller of hot rolling mill and control method thereof
JP6922675B2 (en) Manufacturing process state predictors, methods and programs, and manufacturing process control systems
Bambach et al. On instabilities of force and grain size predictions in the simulation of multi-pass hot rolling processes
CN105478490A (en) Control device of tandem rolling mill and control method
Wang et al. Adaptive calculation of deformation resistance model of online process control in tandem cold mill
JP6641849B2 (en) Power prediction method
JP2021098213A (en) Warpage prediction method in hot rolling, warpage control method, manufacturing method for hot-rolled steel plate, method for creating warpage prediction model and hot-rolling facility
Hu et al. Enhanced predictive modeling of hot rolling work roll wear using TCN-LSTM-Attention
Thakur et al. Application of machine learning methods for the prediction of roll force and torque during plate rolling of micro-alloyed steel
JPH0747171B2 (en) Rolling mill setting method and device
Yamada et al. Hot strip mill mathematical models and set-up calculation
JP5673567B2 (en) Manufacturing process efficiency prediction method, apparatus and program
Attanasio et al. Numerical and analytical estimation of rolling force and torque in hot strip rolling
JP2022508735A (en) How to make metal workpieces
SZEMMELVEISZ et al. Energy efficiency enhancement in the Hot Rolling Mill
JP5380199B2 (en) Method of controlling tension in rolling device and rolling device
JP6015033B2 (en) Mill pacing control device and mill pacing control method
Kukhar et al. Improving of preventive management for flat rolling products quality indices
Zheng et al. An approach to model building for accelerated cooling process using instance-based learning
JP2013226596A (en) Learning control device and method for rolling load, and method for manufacturing metal plate using the same
Sikdar et al. A holistic framework for multiple response optimization of hot strip rolling process
JP4047875B2 (en) Method for determining optimum values of design parameters and method for determining rolling pass schedule using this method
JP2011143447A (en) Method of determining control gain in rolling mill and rolling mill
WO2012111151A1 (en) Rolling control device and rolling control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R151 Written notification of patent or utility model registration

Ref document number: 6641867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151