JP6532125B2 - Polyethylene-based crosslinked shrink film - Google Patents
Polyethylene-based crosslinked shrink film Download PDFInfo
- Publication number
- JP6532125B2 JP6532125B2 JP2015102426A JP2015102426A JP6532125B2 JP 6532125 B2 JP6532125 B2 JP 6532125B2 JP 2015102426 A JP2015102426 A JP 2015102426A JP 2015102426 A JP2015102426 A JP 2015102426A JP 6532125 B2 JP6532125 B2 JP 6532125B2
- Authority
- JP
- Japan
- Prior art keywords
- polyethylene
- film
- weight
- parts
- density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- -1 Polyethylene Polymers 0.000 title claims description 57
- 239000004698 Polyethylene Substances 0.000 title claims description 55
- 229920000573 polyethylene Polymers 0.000 title claims description 55
- 229920006300 shrink film Polymers 0.000 title claims description 36
- 239000011342 resin composition Substances 0.000 claims description 37
- 229920001971 elastomer Polymers 0.000 claims description 36
- 239000000806 elastomer Substances 0.000 claims description 36
- 239000012792 core layer Substances 0.000 claims description 34
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 24
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 24
- 239000002344 surface layer Substances 0.000 claims description 24
- 239000010410 layer Substances 0.000 claims description 23
- 238000004519 manufacturing process Methods 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 17
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 16
- 238000010894 electron beam technology Methods 0.000 claims description 13
- 229920000092 linear low density polyethylene Polymers 0.000 claims description 13
- 239000004707 linear low-density polyethylene Substances 0.000 claims description 13
- 238000004132 cross linking Methods 0.000 claims description 12
- 229920001862 ultra low molecular weight polyethylene Polymers 0.000 claims description 11
- 239000000155 melt Substances 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 238000004806 packaging method and process Methods 0.000 description 22
- 230000037303 wrinkles Effects 0.000 description 14
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000001125 extrusion Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000002537 cosmetic Substances 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 4
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 229920001684 low density polyethylene Polymers 0.000 description 4
- 239000004702 low-density polyethylene Substances 0.000 description 4
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000005022 packaging material Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 229920003020 cross-linked polyethylene Polymers 0.000 description 2
- 239000004703 cross-linked polyethylene Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QYMGIIIPAFAFRX-UHFFFAOYSA-N butyl prop-2-enoate;ethene Chemical compound C=C.CCCCOC(=O)C=C QYMGIIIPAFAFRX-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920006245 ethylene-butyl acrylate Polymers 0.000 description 1
- 229920006225 ethylene-methyl acrylate Polymers 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
Landscapes
- Wrappers (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、収縮包装材料に使用される、収縮包装仕上がり性に優れたポリエチレン系架橋シュリンクフィルムに関する。 The present invention relates to a polyethylene-based crosslinked shrink film excellent in shrink wrap finish, which is used for shrink wrap materials.
従来、熱収縮性包装材料としては、ポリ塩化ビニル系シュリンクフィルム、ポリプロピレン系シュリンクフィルム、ポリエチレン系未架橋シュリンクフィルム、ポリエチレン系架橋シュリンクフィルム等が知られている。 Heretofore, polyvinyl chloride-based shrink films, polypropylene-based shrink films, polyethylene-based non-crosslinked shrink films, polyethylene-based crosslinked shrink films and the like have been known as heat-shrinkable packaging materials.
その中で、ポリエチレン系架橋シュリンクフィルムは、ポリ塩化ビニル系シュリンクフィルムのように包装作業時や廃棄焼却時に有害な塩化水素ガスを発生することもなく、また、ポリプロピレン系シュリンクフィルム、ポリエチレン系未架橋シュリンクフィルムに比べ、収縮包装仕上がり性に優れるという特徴を有していることから、食品、化粧品、薬品、文房具等の収縮包装に広く用いられている。しかしながら、開示されている特許文献1〜4記載のフィルムでは、静電シール包装機で小型容器を包装する時など、包装機の製袋条件の制限で製袋の余裕率を通常よりも大きくしなければならない場合や、コーナーシワを極力無くす目的で製袋の余裕率を通常よりも大きくする場合などに、収縮包装体がタイトに仕上がらず、収縮したフィルムと被包装物とのフィット感が不足したり、収縮包装体の天面部分に収縮不足による波状シワが発生し、十分な収縮包装仕上がり性が得られないという課題を有していた。ここでいう製袋の余裕率とは、(製袋フィルム周長−被包装物の周長)/被包装物の周長×100(%)で表されるものであり、通常は10〜20%程度であるが、30〜70%程度に比較的大きく設定する場合に、前記の様な収縮包装仕上がり性不良が見られていた。 Among them, polyethylene-based crosslinked shrink film does not generate harmful hydrogen chloride gas at the time of packaging work or waste incineration like polyvinyl chloride-based shrink film, and polypropylene-based shrink film, polyethylene-based uncrosslinked It is widely used for shrink packaging such as food, cosmetics, medicine, stationery, etc. because it has the feature of being superior in shrink packaging finish compared with shrink film. However, with the films described in Patent Documents 1 to 4 disclosed, the margin ratio of bag making is made larger than usual due to the bag making conditions of the packaging machine such as when packaging a small container with an electrostatic seal packaging machine. If the bag has to be made larger than usual in order to eliminate corner wrinkles as much as possible, the shrink wrap does not finish tight, and the fit between the shrinked film and the package is insufficient. In addition, there has been a problem that wavelike wrinkles are generated on the top surface portion of the shrink package due to insufficient shrinkage, and sufficient shrink package finish can not be obtained. The margin ratio of bag making as referred to herein is represented by (bag film circumferential length-circumferential length of package) / peripheral length of package x 100 (%), and is usually 10 to 20. Although it is about%, when set relatively large to about 30 to 70%, the above-described poor shrink wrap finish was observed.
前記の製袋高余裕率時の収縮仕上がり性を改善すべく、特定の低密度ポリエチレンを含有した特許文献5記載のフィルムが開示されているが、特許文献1記載のフィルムよりは格段に優れた収縮仕上がり性を発現できるものの、化粧品や薬品等の高級商品を包装する場合の厳しい収縮包装仕上がり要求に対しては、依然、満足できるものでは無かった。 Although the film described in Patent Document 5 containing a specific low density polyethylene is disclosed in order to improve the shrinkage finish at the above-mentioned high bag manufacturing margin, the film described in Patent Document 1 is significantly superior to the film described in Patent Document 1. Although it can exhibit shrink finish, it has not been able to satisfy the severe shrink package finish requirements when packaging high-grade products such as cosmetics and drugs.
特許文献6で開示されているフィルムは、化粧品や薬品等の高級商品を包装する場合の厳しい収縮包装仕上がり要求を満足させようとすると、生産安定性を損なう懸念を有していた。具体的には、EVAと低密度ポリエチレンの芯層原料系では、高度な包装仕上がり要求を満足させるには、高酢酸ビニル含量(15重量%超)のEVAが必要となり、生産での押出成形加工工程で、高酢酸ビニル含量EVAの熱劣化により、ゲル化物が頻発し、延伸安定性の阻害原因となる。熱劣化し難い低酢酸ビニル含量(15重量%以下)のEVAを使用し、且つ、高度な包装仕上がり要求を満足させるには、エチレン−アクリル酸メチル共重合体または、エチレン−アクリル酸ブチル共重合体の配合が必要となるが、この場合、同じ生産機で、原料系の異なる多品種を生産する際に、原料の置き換わりに時間がかかり、生産ロスによる歩留まり低下の要因となる懸念を有していた。また、EVAを使用しないと、厳しい収縮包装仕上がり要求を満足することが困難であった。 The film disclosed in Patent Document 6 has a concern that production stability may be impaired if it is intended to satisfy the strict shrink-wrapping finish requirements when packaging high-class products such as cosmetics and medicines. Specifically, in the core layer material system of EVA and low density polyethylene, EVA having a high vinyl acetate content (more than 15% by weight) is required to satisfy high packaging finish requirements, and extrusion molding processing in production In the process, the thermal degradation of the high vinyl acetate content EVA causes frequent occurrence of gelation, which causes the inhibition of the stretching stability. In order to use EVA having a low vinyl acetate content (less than 15% by weight) which is resistant to heat degradation and to meet high packaging finishing requirements, ethylene-methyl acrylate copolymer or ethylene-butyl acrylate co-weight is used Although it is necessary to combine the combination, in this case, it takes a long time to replace the raw materials when producing many varieties of different raw material systems with the same production machine, and there is a concern that it causes the yield loss due to production loss. It was In addition, it was difficult to meet the strict shrink-wrapping finish requirements without using EVA.
本発明は、化粧品や薬品等の高級商品を包装する場合の厳しい収縮包装仕上がり要求を満足することが可能で、且つ、生産性を損なうことの無い、ポリエチレン系架橋シュリンクフィルムを提供することを課題とするものである。 An object of the present invention is to provide a polyethylene-based crosslinked shrink film capable of satisfying the strict shrink-wrapping finish requirements for packaging high-class products such as cosmetics and drugs, and which does not impair the productivity. It is said that.
本発明者らは、かかる課題を解決すべく鋭意検討した結果、本発明に到達したものである。
すなわち、本発明は、酢酸ビニル含量5〜15重量%、MI0.3〜3.0g/10分であるEVA(以下、EVA(A)と記す)35〜70重量部、密度0.865〜0.885g/cm3、MI0.5〜4.0g/10分であるポリエチレン系エラストマー(以下、ポリエチレン系エラストマー(B)と記す)25〜65重量部、密度0.895〜0.910g/cm3、MI0.5〜4.0g/10分である超低密度ポリエチレン(以下、超低密度ポリエチレン(C)と記す)0〜40重量部からなる樹脂組成物を主成分とする芯層、及び、密度0.915〜0.930g/cm3、MI1.0〜3.0g/10分である直鎖状低密度ポリエチレン(以下、直鎖状低密度ポリエチレン(D)と記す)80〜95重量部、密度0.865〜0.885g/cm3、MI0.5〜4.0g/10分であるポリエチレン系エラストマー(以下、ポリエチレン系エラストマー(E)と記す)5〜20重量部からなる樹脂組成物を主成分とする両表面層を有する少なくとも3層以上の構成であり、20〜60kGyの電子線照射により架橋せしめ、縦横同時に3〜6倍の延伸加工を行うことによって得られるポリエチレン系架橋シュリンクフィルムを提供し、好ましくは、芯層主成分中のポリエチレン系エラストマー(B)、及び、両表面層主成分中のポリエチレンエラストマー(E)の密度が0.865〜0.879g/cm3であり、35〜45kGyの電子線照射により架橋せしめ、250℃、21.6kg荷重条件でのMFRが7〜25g/10分である事を特徴とするポリエチレン系架橋シュリンクフィルムを提供するものである。
また、本発明は、下記[1]乃至[4]の製造方法を提供するものである。
[1]下記(a)組成物を主成分とする芯層、及び下記(b)組成物を主成分とする両表面層を有する少なくとも3層以上の積層構成を有する、ポリエチレン系架橋シュリンクフィルムの製造方法であって、
溶融共押出により、(a)組成物を主成分とする芯層及び(b)組成物を主成分とする両表面層を有する少なくとも3層以上の積層構成をなす未延伸フィルムを得る工程、
該未延伸フィルムに20〜60kGyの電子線を照射して、架橋未延伸フィルムを得る工程、及び
該架橋未延伸フィルムを縦横それぞれ3〜6倍の延伸倍率で同時二軸延伸する工程を含む、製造方法。
(a)酢酸ビニル含量5〜15重量%、メルトインデックス(以下、MIと記す)0.3〜3.0g/10分であるエチレン−酢酸ビニル共重合体(以下、EVAと記す)35〜70重量部、密度0.865〜0.885g/cm 3 、MI0.5〜4.0g/10分であるポリエチレン系エラストマー25〜65重量部、密度0.895〜0.910g/cm 3 、及びMI0.5〜4.0g/10分である超低密度ポリエチレン0〜40重量部からなる樹脂組成物
(b)密度0.915〜0.930g/cm 3 、MI1.0〜3.0g/10分である直鎖状低密度ポリエチレン80〜95重量部、及び密度0.865〜0.885g/cm 3 、MI0.5〜4.0g/10分であるポリエチレン系エラストマー5〜20重量部からなる樹脂組成物
[2]前記(a)の組成物及び(b)の組成物中のポリエチレン系エラストマーの密度が0.865〜0.879g/cm 3 であることを特徴とする、[1]記載のポリエチレン系架橋シュリンクフィルムの製造方法。
[3]前記架橋未延伸フィルムを得る工程において、35〜45kGyの電子線を照射する事を特徴とする、[2]記載のポリエチレン系架橋シュリンクフィルムの製造方法。
[4]前記ポリエチレン系架橋シュリンクフィルムの、250℃、21.6kg荷重条件でのメルトフローレートが、7〜25g/10分である事を特徴とする、[2]記載のポリエチレン系架橋シュリンクフィルムの製造方法。
The present inventors arrived at the present invention as a result of earnest studies to solve such problems.
That is, the present invention provides 35 to 70 parts by weight of EVA (hereinafter referred to as EVA (A)) having a vinyl acetate content of 5 to 15% by weight and an MI of 0.3 to 3.0 g / 10 min, and a density of 0.865 to 0 25 to 65 parts by weight of a polyethylene-based elastomer (hereinafter referred to as a polyethylene-based elastomer (B)) having an .885 g / cm 3 MI and 0.5 to 4.0 g / 10 min, and a density of 0.895 to 0.910 g / cm 3 A core layer mainly composed of a resin composition comprising 0 to 40 parts by weight of ultra low density polyethylene (hereinafter referred to as ultra low density polyethylene (C)) having a MI of 0.5 to 4.0 g / 10 min, 80 to 95 parts by weight of linear low density polyethylene (hereinafter referred to as linear low density polyethylene (D)) having a density of 0.915 to 0.930 g / cm 3 and an MI of 1.0 to 3.0 g / 10 min , Density 0.8 5~0.885g / cm 3, a polyethylene-based elastomer is a MI0.5~4.0g / 10 min (hereinafter referred to as polyethylene-based elastomer (E)) and the main component a resin composition comprising 5 to 20 parts by weight Providing a polyethylene-based crosslinked shrink film obtained by cross-linking by electron beam irradiation of 20 to 60 kGy and performing stretching processing 3 to 6 times simultaneously in both longitudinal and transverse directions; Preferably, the density of the polyethylene elastomer (B) in the core layer main component and the polyethylene elastomer (E) in both surface layer main components is 0.865 to 0.879 g / cm 3 , 35 to 45 kGy It is cross-linked by electron beam irradiation, and it is characterized by having an MFR of 7 to 25 g / 10 min under a load condition of 250 ° C. and 21.6 kg. There is provided a Riechiren based crosslinking shrink film.
Furthermore, the present invention provides the following methods [1] to [4].
[1] A polyethylene-based crosslinked shrink film having a laminated structure of at least three or more layers having a core layer mainly composed of the following (a) composition and both surface layers mainly composed of the following (b) composition: A manufacturing method,
A step of obtaining an unstretched film having a laminated constitution of at least three or more layers having (a) a core layer containing the composition as a main component and (b) both surface layers containing the composition as a main component by melt coextrusion;
Irradiating the unstretched film with an electron beam of 20 to 60 kGy to obtain a crosslinked unstretched film;
A production method comprising the step of simultaneously biaxially stretching the crosslinked unstretched film at a stretch ratio of 3 to 6 times in each of the longitudinal and lateral directions .
(A) Ethylene-vinyl acetate copolymer (hereinafter referred to as EVA) 35 to 70 having a vinyl acetate content of 5 to 15% by weight and a melt index (hereinafter referred to as MI) of 0.3 to 3.0 g / 10 min. Parts by weight, density 0.865 to 0.885 g / cm 3 , MI 0.5 to 4.0 g / 10 min 25 to 65 parts by weight of a polyethylene elastomer, density 0.895 to 0.910 g / cm 3 , and MI 0 Resin composition comprising 0 to 40 parts by weight of ultra-low density polyethylene of 0.5 to 4.0 g / 10 min
(B) 80 to 95 parts by weight of linear low density polyethylene having a density of 0.915 to 0.930 g / cm 3 , an MI of 1.0 to 3.0 g / 10 min, and a density of 0.865 to 0.885 g / cm 3. A resin composition comprising 5 to 20 parts by weight of a polyethylene elastomer having an MI of 0.5 to 4.0 g / 10 min.
[2] The polyethylene-based polymer according to [1], wherein the density of the polyethylene-based elastomer in the composition of (a) and the composition of (b) is 0.865 to 0.879 g / cm 3 Method of producing a crosslinked shrink film.
[3] The method for producing a polyethylene-based crosslinked shrink film according to [2], wherein an electron beam of 35 to 45 kGy is irradiated in the step of obtaining the crosslinked unstretched film.
[4] The polyethylene-based crosslinked shrink film according to [2], wherein the melt-flow rate of the crosslinked polyethylene-based shrink film under a load condition of 250 ° C. and 21.6 kg is 7 to 25 g / 10 min. Manufacturing method.
本発明のポリエチレン系架橋シュリンクフィルムは、高度な収縮仕上がり性に必要な異形追随性に優れた特定のEVAと、低温収縮性、耐引裂性に優れた特定のポリエチレン系エラストマーと、必要に応じて耐引裂性、延伸安定性に優れた超低密度ポリエチレンを配合した樹脂組成物を主成分とする層を芯層、透明性、滑り性、耐熱性に優れた特定の直鎖状低密度ポリエチレンと、低温収縮性に優れた特定のポリエチレン系エラストマーからなる樹脂組成物を主成分とする層を両表面層として積層、電子線照射、延伸することで、生産性を損なうこと無く、厳しい収縮包装仕上がり要求を満足できる、という効果を奏する。 The cross-linked polyethylene-based shrink film of the present invention is optionally made of a specific EVA having excellent conformability required for high shrinkage finish, a specific polyethylene-based elastomer excellent in low-temperature shrinkage and tear resistance, and as required. A core layer comprising a resin composition containing an ultra low density polyethylene excellent in tear resistance and stretch stability as a core layer, and a specific linear low density polyethylene excellent in transparency, slipperiness and heat resistance, , A layer consisting mainly of a resin composition consisting of a specific polyethylene-based elastomer excellent in low-temperature shrinkability is laminated as both surface layers, electron beam irradiation, stretching, so that severe shrink-wrapping finish without impairing productivity The effect of satisfying the demand is achieved.
以下、本発明を詳細に説明する。
本発明において、芯層の主成分に用いられる樹脂組成物の内、EVA(A)は、酢酸ビニル含量5〜15重量%、MI0.3〜3.0g/10分の範囲のもので、エチレンと酢酸ビニルとの共重合体からなり、芯層主成分の樹脂組成として35〜70重量部配合する。主に、高度な収縮仕上がり性に要求される異形追随性に優れた特徴を付与する作用を成すため、当該範囲のものを配合することが好ましい。
Hereinafter, the present invention will be described in detail.
Of the resin compositions used as the main component of the core layer in the present invention, EVA (A) has a vinyl acetate content of 5 to 15% by weight, and an MI of 0.3 to 3.0 g / 10 min. And 35 to 70 parts by weight as a resin composition of the core layer main component. It is preferable to blend those in the above-mentioned range in order to function mainly to impart features excellent in conformity to the irregular shape required for high shrinkage finish.
EVA(A)の酢酸ビニル含量が5%未満のものは、高度な収縮仕上がり性に要求される異形追随性が不十分となり、また、15%を超えると、溶融押出加工工程での熱劣化によるゲル化物の発生を誘発し、延伸安定性を低下させるため、好ましくない。MIが0.3g/10分未満のものは、押出時のモーター負荷が増大するため好ましくなく、3.0g/10分を超えると延伸加工性や耐熱性の低下や、溶断シール時にピンホールやシール開きが発生するため好ましくない。また、芯層主成分に用いられる樹脂組成物中の組成として、35重量部未満になると高度な収縮仕上がり性に要求される異形追随性が不十分となり、70重量部を超えると、低温収縮性、耐引裂性が不十分となるため、好ましくない。 If the vinyl acetate content of EVA (A) is less than 5%, the conformability required for high shrinkage finish is insufficient, and if it exceeds 15%, thermal degradation in the melt extrusion process is caused. It is not preferable because it induces the generation of a gel and lowers the stretching stability. If the MI is less than 0.3 g / 10 min, it is not preferable because the motor load at the time of extrusion increases, and if it exceeds 3.0 g / 10 min, the drawability and heat resistance decrease, and the pinholes and the It is not preferable because seal opening occurs. In addition, if the composition in the resin composition used as the main component of the core layer is less than 35 parts by weight, the conformity to the atypical shape required for high shrinkage finish becomes insufficient, and if it exceeds 70 parts by weight, low temperature shrinkability It is not preferable because the tear resistance is insufficient.
本発明の芯層主成分に用いられる樹脂組成物の内、ポリエチレン系エラストマー(B)は、密度0.865〜0.885g/cm3、MI0.5〜4.0g/10分の範囲のもので、ブテン−1、ペンテンー1、ヘキセン−1、ヘプテン−1、オクテン−1、4−メチルペンテン−1から成る群から選ばれた1種又は2種以上のα−オレフィンとエチレンとの共重合体からなり、芯層主成分の樹脂組成として25〜65重量部配合され、主に、低温収縮性、耐引裂性を付与する作用を成すため、当該樹脂及び範囲のものを配合することが好ましい。 Among the resin compositions used as the main component of the core layer of the present invention, the polyethylene elastomer (B) has a density of 0.865 to 0.885 g / cm 3 and an MI of 0.5 to 4.0 g / 10 min. And copolymerization weight of ethylene with one or more α-olefins selected from the group consisting of butene-1, pentene-1, hexene-1, heptene-1, octene-1, 4-methylpentene-1. It is composed of unity and is compounded in 25 to 65 parts by weight as a resin composition of the core layer main component, and mainly functions to impart low temperature shrinkability and tear resistance, so it is preferable to blend the resin and the range resin .
ポリエチレン系エラストマー(B)の密度が0.865g/cm3未満のものは、フィルムの引張弾性率が低くなり、包装機での走行性が低下するので好ましくなく、0.885g/cm3を超えると低温収縮性が不十分となるため、好ましくない。MIが0.5g/10分未満のものは、押出時のモーター負荷が増大するため好ましくなく、4.0g/10分を超えると延伸加工性、耐熱性の低下や、溶断シール時にピンホールやシール開きが発生するため好ましくない。芯層主成分に用いられる樹脂組成物中の組成として、25重量部未満になると、低温収縮性や引裂強度が低下するので好ましくなく、65重量部を超えると、収縮トンネル内でのフィルムの耐熱性が低下するので好ましくない。 A polyethylene-based elastomer (B) having a density of less than 0.865 g / cm 3 is not preferable because the tensile modulus of the film is lowered and the running property on the packaging machine is lowered, and it exceeds 0.885 g / cm 3 And low temperature shrinkage, which is not preferable. If the MI is less than 0.5 g / 10 min, it is not preferable because the motor load at the time of extrusion increases, and if it exceeds 4.0 g / 10 min, the stretching processability and the heat resistance decrease, and the pinholes and the It is not preferable because seal opening occurs. Less than 25 parts by weight as the composition in the resin composition used as the main component of the core layer is not preferable because low temperature shrinkage and tear strength decrease, and it is not preferable when it exceeds 65 parts by weight, the heat resistance of the film in the shrinking tunnel. It is not preferable because the nature is reduced.
本発明の芯層主成分に用いられる樹脂組成物の内、超低密度ポリエチレン(C)は、密度0.895〜0.910g/cm3、MI0.5〜4.0g/10分の範囲のもので、ブテン−1、ペンテンー1、ヘキセン−1、ヘプテン−1、オクテン−1、4−メチルペンテン−1から成る群から選ばれた1種又は2種以上のα−オレフィンとエチレンとの共重合体からなり、芯層主成分の樹脂組成として0〜40重量部配合され、主に、耐引裂性、延伸安定性を補強する作用を成すため、当該範囲のものを配合することが好ましい。 Among the resin compositions used as the main component of the core layer of the present invention, ultra low density polyethylene (C) has a density of 0.895 to 0.910 g / cm 3 and an MI of 0.5 to 4.0 g / 10 min. A co-polymer of ethylene with one or more α-olefins selected from the group consisting of butene-1, pentene-1, hexene-1, heptene-1, octene-1, 4-methylpentene-1; It is composed of a polymer and is blended in an amount of 0 to 40 parts by weight as the resin composition of the core layer main component, and mainly functions to reinforce tear resistance and stretch stability, so it is preferable to blend one in the above range.
超低密度ポリエチレン(C)の密度0.895g/cm3未満のものは、フィルムの引張弾性率が低くなり、包装機での走行性が低下の要因となるので好ましくなく、0.885g/cm3を超えると低温収縮性を阻害するため、好ましくない。MIが0.5g/10分未満のものは、押出時のモーター負荷が増大するため好ましくなく、4.0g/10分を超えると延伸加工性、耐熱性の低下や、溶断シール時にピンホールやシール開きが発生するため好ましくない。芯層主成分に用いられる樹脂組成物中の組成として、40重量部を超えると、低温収縮性を阻害するため、好ましくない。 Ultra low density polyethylene (C) having a density of less than 0.895 g / cm 3 is not preferable because the tensile modulus of the film becomes low and the running property on the packaging machine becomes a factor of reduction, and 0.885 g / cm When it exceeds 3 , it is not preferable because it inhibits low temperature shrinkability. If the MI is less than 0.5 g / 10 min, it is not preferable because the motor load at the time of extrusion increases, and if it exceeds 4.0 g / 10 min, the stretching processability and the heat resistance decrease, and the pinholes and the It is not preferable because seal opening occurs. If it exceeds 40 parts by weight as the composition in the resin composition used as the main component of the core layer, it is not preferable because the low temperature shrinkage is inhibited.
本発明の両表面層の主成分に用いられる樹脂組成物の内、直鎖状低密度ポリエチレン(D)は、密度0.915〜0.930g/cm3、MI1.0〜3.0g/10分の範囲のものであり、ブテン−1、ペンテンー1、ヘキセン−1、ヘプテン−1、オクテン−1、4−メチルペンテン−1から成る群から選ばれた1種又は2種以上のα−オレフィンとエチレンとの共重合体からなり、両表面層主成分の樹脂組成として80〜95重量部配合され、主に滑り性、耐熱性、透明性を付与する作用を成すため、当該範囲のものを配合することが好ましい。 Among the resin compositions used as the main component of both surface layers of the present invention, linear low density polyethylene (D) has a density of 0.915 to 0.930 g / cm 3 and an MI of 1.0 to 3.0 g / 10. And one or more .alpha.-olefins selected from the group consisting of butene-1, pentene-1, hexene-1, heptene-1, octene-1, 4-methylpentene-1. Containing 80 to 95 parts by weight as a resin composition of both surface layers as the main component of the resin and mainly imparts slipperiness, heat resistance and transparency, It is preferable to mix | blend.
直鎖状低密度ポリエチレン(D)の密度が0.915g/cm3未満のものは滑り性が低下するため好ましくなく、0.930g/cm3 を超えるとヒートシール性が低下するため好ましくない。MIが1.0g/10分未満の場合や、3.0g/10分を超える場合には、透明性が低下するので好ましくない。両表面層主成分の樹脂組成として、80重量部未満では、収縮トンネル内での耐熱性が低下し、95重量部を超えると、低温収縮性が低下するため好ましくない。 A linear low density polyethylene (D) having a density of less than 0.915 g / cm 3 is not preferable because the slipperiness decreases, and it is not preferable because it exceeds the heat sealability if it exceeds 0.930 g / cm 3 . If the MI is less than 1.0 g / 10 min or more than 3.0 g / 10 min, the transparency is unfavorably reduced. If it is less than 80 parts by weight as the resin composition of the main component of both surface layers, the heat resistance in the shrinking tunnel is lowered, and if it exceeds 95 parts by weight, the low temperature shrinkability is unfavorably lowered.
本発明の両表面層の主成分に用いられる樹脂組成物の内、ポリエチレン系エラストマー(E)は、密度0.865〜0.885g/cm3、MI0.5〜4.0g/10分の範囲のもので、ブテン−1、ペンテンー1、ヘキセン−1、ヘプテン−1、オクテン−1、4−メチルペンテン−1から成る群から選ばれた1種又は2種以上のα−オレフィンとエチレンとの共重合体からなり、両表面層主成分の樹脂組成として5〜20重量部配合され、主に低温収縮性を付与する作用を成すため、当該範囲のものを配合することが好ましい。 Among the resin compositions used as the main components of both surface layers of the present invention, the polyethylene elastomer (E) has a density of 0.865 to 0.885 g / cm 3 and a MI of 0.5 to 4.0 g / 10 min. And one or more α-olefins selected from the group consisting of butene-1, pentene-1, hexene-1, heptene-1, octene-1, 4-methylpentene-1 with ethylene. It is preferably composed of a copolymer and is blended in an amount of 5 to 20 parts by weight as the resin composition of both surface layer main components, and mainly functions to impart low temperature shrinkage, so that it is preferable to blend those within the above range.
ポリエチレン系エラストマー(B)の密度が0.865g/cm3未満のものは、滑り性が低下するので好ましくなく、0.885g/cm3を超えると低温収縮性が不十分となるため、好ましくない。MIが0.5g/10分未満の場合や、4.0g/10分を超える場合には、透明性が低下するので好ましくない。両表面層主成分に用いられる樹脂組成物中の組成として、5重量部未満になると、低温収縮性が低下するので好ましくなく、20重量部を超えると、滑り性が低下するので好ましくない。 A polyethylene-based elastomer (B) having a density of less than 0.865 g / cm 3 is not preferable because the slipperiness is reduced, and when it exceeds 0.885 g / cm 3 , the low-temperature shrinkability is not preferable. . When MI is less than 0.5 g / 10 min or more than 4.0 g / 10 min, the transparency is unfavorably reduced. Less than 5 parts by weight as the composition in the resin composition used as the main component of both surface layers is not preferable because low temperature shrinkability is reduced, and more than 20 parts by weight is not preferable because slipperiness is reduced.
両表面層及び/又は芯層は、本発明の目的に支障をきたさない範囲であれば、両表面層には芯層主成分樹脂組成物を混合して、また、芯層には両表面層主成分樹脂組成物を混合して用いる事が出来る。これにより、要求される特性に応じて諸物性の調整を行う事が出来、またトリムや格外品等の再利用樹脂を混合使用する事も出来る。 If both surface layers and / or core layers are in a range that does not interfere with the object of the present invention, the core layer main component resin composition is mixed in both surface layers, and both surface layers are mixed in the core layer. The main component resin composition can be mixed and used. By this, various physical properties can be adjusted according to the required characteristics, and it is also possible to mix and use recycled resins such as trims and extras.
本発明の層構成は、少なくとも3層以上の層構成であり、例えばB/A/B、B/A+B/Bの3層構成、B/A+B/A/A+B/B、B/A/A+B/A/B等の5層構成が挙げられる。中でも、A+B層を設けた層構成は、諸物性の調整や再利用樹脂の混合使用がやりやすくなり、好適である。芯層、両表面層以外の層については本発明の目的に支障をきたさない範囲であれば、特に制限はない。 The layer structure of the present invention is a layer structure of at least three layers, for example, B / A / B, B / A + B / B three-layer structure, B / A + B / A / A + B / B, B / A / A + B / A five-layer configuration such as A / B etc. may be mentioned. Among them, the layer configuration provided with the A + B layer is suitable because it is easy to adjust various physical properties and to mix and use the recycled resin. The layers other than the core layer and both surface layers are not particularly limited as long as the objects of the present invention are not impaired.
本発明の各層の厚み構成比については特に限定されないが、芯層の厚み比率が全体厚みに対し40〜80%の範囲内であることが好ましい。芯層の厚み比率が40%未満では高度な収縮包装仕上がり性のパフォーマンスが低下するので好ましくなく、80%を超えると、フィルムの引張弾性率が低くなり、包装機での走行性が低下し易くなるので好ましくない。フィルムの全体厚みも特に限定されないが、熱収縮性包装材料用途としては7〜35μmであることが好ましい。 The thickness ratio of each layer of the present invention is not particularly limited, but the thickness ratio of the core layer is preferably in the range of 40 to 80% with respect to the total thickness. If the thickness ratio of the core layer is less than 40%, the performance of highly shrink-wrapping finish is deteriorated, and it is not preferable. If it exceeds 80%, the tensile elastic modulus of the film is lowered, and the runnability in the packaging machine is easily reduced It is not preferable because The total thickness of the film is also not particularly limited, but is preferably 7 to 35 μm for heat-shrinkable packaging material applications.
本発明の目的に支障をきたさない範囲であれば、滑剤、ブロッキング防止剤、帯電防止剤、防曇剤、酸化防止剤等の添加剤がそれぞれの有効な作用を具備させる目的で適宜使用することができる。 Additives such as lubricants, antiblocking agents, antistatic agents, antifogging agents, antioxidants, etc. should be suitably used for the purpose of providing their respective effective actions, as long as the objects of the present invention are not impaired. Can.
本発明における架橋処理としては、20〜60kGyの範囲の電子線をフィルムに照射することにより成されるものであり、更には35〜45kGyの範囲が好ましい。20kGy未満では、耐熱性、延伸加工性の低下や、溶断シール時にピンホールやシール開きが発生するため好ましくなく、60kGyを超えると溶断カット性が低下するので好ましくない。 The crosslinking treatment in the present invention is performed by irradiating the film with an electron beam in the range of 20 to 60 kGy, and more preferably in the range of 35 to 45 kGy. If it is less than 20 kGy, it is not preferable because heat resistance and stretching processability decrease and pinholes and seal opening occur at the time of fusion seal, and if it exceeds 60 kGy, fusion cutting property is unfavorably lowered.
本発明において、20〜60kGyの範囲の電子線架橋処理後、延伸して得られるフィルムの250℃、21.6kg荷重条件でのMFR(以下、MFRHと記す)は、7〜25g/10分の範囲であることが好ましい。MFRHは、原料種や線量の組み合わせによって変化するが、7g/10分未満では溶断カット性が低下し易くなるため好ましくなく、25g/10分を超えると、熱収縮トンネル内での耐熱性や、嵩高な被包装物を高速で包装するような条件での溶断シール性が低下し易くなるため好ましくない。 In the present invention, after electron beam crosslinking treatment in the range of 20 to 60 kGy, MFR (hereinafter referred to as MFR H ) under load conditions of 250 ° C. and 21.6 kg of the film obtained by stretching is 7 to 25 g / 10 min. It is preferable to be in the range of MFR H changes depending on the combination of the raw material type and the dose, but if it is less than 7 g / 10 min, it is not preferable because the melt cutting property tends to decrease, and if it exceeds 25 g / 10 min, the heat resistance and heat resistance in the heat-shrink tunnel This is not preferable because the melt-cut sealability is likely to be reduced under the condition that high-speed packaging of a bulky package.
本発明において、架橋処理によって得られる各層の架橋度については、各層ともに同等であることが好ましい。各層の架橋度や溶融粘度が違いすぎると、透明性が低下し易く、好ましくない。
各層の架橋度を合わせる目的での、架橋助剤、架橋抑制剤等の添加や、加速電圧の調整等については、本発明の目的に支障をきたさない範囲であれば、行っても何ら問題ない。
In the present invention, the crosslinking degree of each layer obtained by the crosslinking treatment is preferably equivalent to each other. If the degree of crosslinking and the melt viscosity of each layer are too different, the transparency tends to be reduced, which is not preferable.
The addition of a cross-linking aid, cross-linking inhibitor, etc., adjustment of acceleration voltage, etc. for the purpose of matching the degree of cross-linking of each layer may be carried out without any problem as long as the purpose of the present invention is not impaired. .
次に、本発明のフィルムの製造方法を示す。前記の樹脂を用いて本発明のフィルムを製造する方法は、公知の縦横同時2軸延伸方法で行うことができ、延伸倍率は縦横とも3〜6倍が好ましい。3倍未満では、モジュラスが低下して収縮トンネル内での製袋フィルムの膨らみが大きいことによる耐熱性不良や、収縮包装後に見られる縦筋状の外観不良が発生するため好ましくなく、6倍を超えると、引裂強度が低下し好ましくない。
以下、3層積層環状製膜延伸の場合を例に挙げ、具体的に説明する。 まず、EVA(A)、ポリエチレン系エラストマー(B)と必要に応じて超低密度ポリエチレン(C)を配合した樹脂組成物を主体とする層を芯層、直鎖状低密度ポリエチレン(D)、ポリエチレン系エラストマー(E)からなる樹脂組成物を主体とする層を両表面層となるように、3台の押出機により溶融混練し、3層環状ダイより環状に共押出し、延伸することなく一旦急冷固化してチューブ状未延伸フィルムを作製する。次いで、電子線照射装置にて、20〜60kGyの照射条件にて、チューブ状未延伸フィルムの両面に電子線を照射し、架橋チューブ状未延伸フィルムを作製する。得られた架橋チューブ状未延伸フィルムを、チューブラー延伸装置に供給し、高度の配向可能な温度範囲、例えば芯層樹脂の融点以下10℃よりも低い温度で、好ましくは融点以下15℃よりも低い温度でチューブ内部にガス圧を適用して膨張延伸により、縦横とも延伸倍率3〜6倍で同時二軸配向を起こさせる。延伸装置から取り出したフィルムは、希望により熱処理やアニーリングすることができ、これにより保存中の自然収縮を抑制することができる。
Next, the method for producing the film of the present invention is shown. The method for producing the film of the present invention using the above-mentioned resin can be carried out by a known method of simultaneous biaxial stretching in the longitudinal and transverse directions, and the stretching ratio is preferably 3 to 6 in both longitudinal and transverse directions. If it is less than 3 times, it is not preferable because the heat resistance failure due to the decrease of the modulus and the expansion of the formed film in the contraction tunnel is large, and the appearance defect of the vertical streaks seen after the contraction packaging occurs. When it exceeds, tear strength will fall and it is unpreferable.
Hereinafter, the case of three-layer lamination annular film formation stretching is taken as an example, and will be specifically described. First, a layer mainly composed of a resin composition containing EVA (A), polyethylene-based elastomer (B) and, if necessary, ultra low density polyethylene (C) as core layer, linear low density polyethylene (D), Melt-kneading with an extruder of 3 units so that a layer composed mainly of a resin composition consisting of a polyethylene-based elastomer (E) will be both surface layers, co-extrusion cyclically from a three-layer annular die, once without stretching The solution is quenched and solidified to produce a tubular unstretched film. Subsequently, the electron beam is irradiated to the both sides of a tube-like unstretched film by irradiation conditions of 20-60 kGy with an electron beam irradiation apparatus, and a crosslinked tube-like unstretched film is produced. The obtained crosslinked tubular unstretched film is supplied to a tubular stretching device, and is highly orientable in a temperature range, for example, a temperature lower than 10 ° C. below the melting point of the core layer resin, preferably 15 ° C. below the melting point A gas pressure is applied to the inside of the tube at a low temperature to cause simultaneous biaxial orientation at a stretching ratio of 3 to 6 times in both longitudinal and lateral directions by expansion and stretching. The film removed from the stretching apparatus can be heat treated or annealed as desired, which can suppress natural shrinkage during storage.
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定される
ものではない。
なお、実施例及び比較例おける測定及び評価の方法は、以下に示す通りに行った。
1.フィルム厚み:JIS−Z1709に準じて測定した。
2.厚み比:フィルムの断面を顕微鏡で観察することにより測定した。 3.ヘイズ:JIS−K7105に準じて測定した。
4.MI:JIS−K7210に準じて、190℃、2.16kg荷重条件で測定した。
5.MFRH:JIS−K7210に準じて、250℃、21.6kg荷重条件で測定した。
6.引張弾性率:JIS−Z7127に準じて測定した。
7.100℃熱収縮率:縦横それぞれ100mmの正方形に切り取ったフィルムを100℃のグリセリン浴中に10秒間浸漬した後、水中で急冷し、縦横それぞれの長さを測定し、数1によりMD、TDの熱収縮率を算出した。
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
The methods of measurement and evaluation in Examples and Comparative Examples were performed as follows.
1. Film thickness: It measured according to JIS-Z1709.
2. Thickness ratio: It measured by observing the cross section of a film with a microscope. 3. Haze: Measured according to JIS-K7105.
4. MI: It measured on 190 degreeC and 2.16 kg load conditions according to JIS-K7210.
5. MFR H : It measured on 250 degreeC and 21.6 kg load conditions according to JIS-K7210.
6. Tensile modulus of elasticity: Measured according to JIS-Z7127.
7. 100 ° C. heat shrinkage rate: After immersing a film cut into a square of 100 mm in length and width in a glycerin bath at 100 ° C. for 10 seconds, the film is quenched in water, and the length in each direction is measured. The thermal contraction rate of TD was calculated.
(数1)
熱収縮率 (%)=100−A
(但し、Aは、急冷後の縦、又は横の長さ (mm)を示す。)
(1)
Thermal contraction rate (%) = 100-A
(However, A indicates the longitudinal or transverse length (mm) after quenching.)
8.収縮包装仕上がり性:インターナショナル三興(株)製のL型シール式半折自動包装
機(型式:ASL-260)にて、市販の化粧水ポンプ容器を縦30%、横100%の製袋余裕率条件で予備包装し、フィルムの耐熱限界5℃手前に設定した収縮トンネル内を10秒滞留させ、トンネル通過後の包装サンプルの中から無作為に5つを選び、以下の基準で評価
した。
<評価基準>
○:収縮フィルムと被包装物とのタイト感は十分あり、また包装サンプルの四隅の角立ちや、小ジワが殆ど無い。
△:収縮フィルムと被包装物とのタイト感は十分あるが、包装サンプルの四隅の角立ちや小ジワが若干目立つ。
×:収縮フィルムと被包装物とのタイト感が不十分、もしくは、包装サンプルの四隅の角立ちや小ジワが明らかに目立つ。または、包装時にフィルムが走行不良を起こし、傷などが入って外観を損ねる。
9.溶断シール性、静電シール性:(株)ハナガタ製のオーバーラップ自動包装機(型式:HP-20SA)にて、一辺15cmの立方体の箱を40個/分の包装速度で包装し、フィルムの耐熱限界5℃手前に設定した収縮トンネル内を5秒間滞留させ、トンネル通過後の包装サンプルの中から無作為に10個を選び、横シールの溶断シール性と縦シールの静電シール性を以下の基準にて評価した。
<溶断シール性−評価基準>
○:包装サンプルの溶断シール部に、ピンホールやシール開きが見られない。
×:包装サンプルの溶断シール部に、ピンホールやシール開きが見られる。または、230℃以上にシール温度を上げないと溶断出来ない。
<静電シール性−評価基準>
○:包装サンプルの静電シール部が開かず、綺麗にシールされている。
×:包装サンプルの静電シール部に開きが見られる。
8. Shrink-packing finish: 30% vertical and 100% horizontal bag room for commercial lotion pump container with L-type sealed half-cut automatic packing machine (model: ASL-260) manufactured by International Sanko Co., Ltd. The film was prepackaged at a rate condition and retained for 10 seconds in a shrink tunnel set to a temperature limit of 5 ° C. of the film, and five samples were randomly selected from package samples after passing through the tunnel and evaluated according to the following criteria.
<Evaluation criteria>
:: There is sufficient tightness between the shrink film and the package, and there are almost no corners of the package sample or small wrinkles.
Δ: The shrink film and the package have a tight feeling, but the corners of the package sample and the small wrinkles are slightly noticeable.
X: The feeling of tightness between the shrink film and the package is insufficient, or the corner corners of the package sample and small wrinkles are clearly noticeable. Alternatively, the film may run poorly at the time of packaging, causing damage to the appearance and the like.
9. Melt-off sealability, electrostatic sealability: A box of 15 cm sides is packaged at a packaging speed of 40 pcs / min with an overlap automatic packaging machine (model: HP-20SA) manufactured by Hanagata Co., Ltd. Hold for 5 seconds in the shrinking tunnel set to a temperature limit of 5 ° C, randomly select 10 pieces from the package sample after passing through the tunnel, and cut the sealability of the horizontal seal and the electrostatic sealability of the vertical seal below It was evaluated on the basis of
<Fusing sealability-Evaluation criteria>
○: No pinhole or seal opening was observed in the fused seal portion of the package sample.
X: Pin holes or seal opening can be observed in the fused and sealed portion of the package sample. Alternatively, melting can not be performed unless the seal temperature is raised to 230 ° C. or higher.
<Electrostatic sealability-Evaluation criteria>
○: The electrostatic seal portion of the package sample is not opened but is sealed cleanly.
X: Opening is seen in the electrostatic seal part of a package sample.
実施例1
表1に示すように、酢酸ビニル含量10重量%、MI2.0g/10分のEVA(A1)65重量部、密度0.870g/cm3、MI1.0g/10分のポリエチレン系エラストマー(B1)35重量部からなる樹脂組成物を芯層とし、密度0.920g/cm3、MI1.0g/10分である直鎖状低密度ポリエチレン(D1)90重量部、密度0.870g/cm3、MI1.0g/10分のポリエチレン系エラストマー(E1)10重量部を両表面層とし、3台の押出機で溶融混練した後、厚み比が1/5/1になるように各押出機の押出量を設定し、3層環状ダイスにより下向きに共押出した。形成された3層構成チューブを、内側は冷却水が循環している円筒状冷却マンドレルの外表面を摺動させながら、外側は水槽を通すことにより冷却して引き取り、未延伸フィルムを得た。このチューブ状未延伸フィルムの両面に、日新ハイボルテージ社製の電子線照射装置を用いて、38kGyの照射条件で電子線照射を行った後、架橋チューブ状未延伸フィルムをチューブラー二軸延伸装置に導き、90〜110℃で縦横それぞれ5倍に延伸し、フィルム厚み15μmの積層二軸延伸フィルムを得た。
生産時のトラブルは特になく、また、得られたフィルムは、高度な収縮包装仕上がり性に優れるもので、収縮フィルムと被包装物とのタイト感は十分あり、四隅の角やコーナーシワが殆ど無い外観美麗な収縮包装体が得られた。その他、ヘイズ、引張弾性率、100℃熱収縮率、溶断シール性、静電シール等の特性も良好であった。
Example 1
As shown in Table 1, a vinyl acetate content of 10% by weight, 65 parts by weight of EVA (A1) with an MI of 2.0 g / 10 min, a density of 0.870 g / cm 3 , a polyethylene based elastomer with an MI of 1.0 g / 10 min (B1) the resin composition consisting of 35 parts by weight as a core layer, density 0.920g / cm 3, MI1.0g / 10 min linear low density polyethylene (D1) 90 parts by weight, density 0.870 g / cm 3, 10 parts by weight of a polyethylene-based elastomer (E1) having a MI of 1.0 g / 10 min is used as both surface layers, and after melt-kneading with three extruders, extrusion of each extruder so that the thickness ratio becomes 1/5/1 The amount was set and co-extruded downward with a 3-layer annular die. While sliding the outer surface of the cylindrical cooling mandrel inside of which the cooling water was circulating, the outside was cooled and pulled through a water tank to obtain an unstretched film, while the formed three-layer tube was slid on the inside. Electron beam irradiation is performed on both sides of this tube-shaped unstretched film under an irradiation condition of 38 kGy using an electron beam irradiation apparatus manufactured by Nisshin High Voltages, and then a crosslinked tube-like unstretched film is tubular biaxially stretched It introduce | transduced into the apparatus and it extended | stretched 5 times in length and width each at 90-110 degreeC, and obtained the lamination | stacking biaxial stretching film of film thickness 15 micrometers.
There is no trouble at the time of production, and the obtained film is excellent in high shrink-wrapping finish, and the tightness between the shrink-film and the package is sufficient, and there are almost no corners or corner wrinkles at the four corners A beautiful shrink wrap was obtained. In addition, the properties such as haze, tensile modulus, heat shrinkage at 100 ° C., melt-cut sealability, and electrostatic seal were also good.
実施例2
表1に示すように、酢酸ビニル含量15重量%、MI1.0g/10分のEVA(A2)50重量部、密度0.870g/cm3、MI1.0g/10分のポリエチレン系エラストマー(B1)25重量部、密度0.905g/cm3、MI0.8g/10分の超低密度ポリエチレン(C1)25重量部からなる樹脂組成物を芯層とし、照射線量を40kGy、延伸倍率を縦横4倍とした以外は、実施例1と同様の方法で、フィルム厚み15μmの積層二軸延伸フィルムを得た。
生産時のトラブルは特になく、また、得られたフィルムは、高度な収縮包装仕上がり性に優れるもので、収縮フィルムと被包装物とのタイト感は十分あり、四隅の角やコーナーシワが殆ど無い外観美麗な収縮包装体が得られた。その他、ヘイズ、引張弾性率、100℃熱収縮率、溶断シール性、静電シール等の特性も良好であった。
Example 2
As shown in Table 1, a vinyl acetate content of 15% by weight, 50 parts by weight of EVA (A2) with an MI of 1.0 g / 10 min, a density of 0.870 g / cm 3 , a polyethylene based elastomer with an MI of 1.0 g / 10 min (B1) Resin composition consisting of 25 parts by weight of ultra low density polyethylene (C1) 25 parts by weight with a density of 0.905 g / cm 3 and MI 0.8 g / 10 min is used as a core layer, irradiation dose is 40 kGy, draw ratio is 4 times in length and width A laminated biaxially stretched film with a film thickness of 15 μm was obtained in the same manner as in Example 1 except for using the above.
There is no trouble at the time of production, and the obtained film is excellent in high shrink-wrapping finish, and the tightness between the shrink-film and the package is sufficient, and there are almost no corners or corner wrinkles at the four corners A beautiful shrink wrap was obtained. In addition, the properties such as haze, tensile modulus, heat shrinkage at 100 ° C., melt-cut sealability, and electrostatic seal were also good.
実施例3
表1に示すように、酢酸ビニル含量6重量%、MI0.3g/10分のEVA(A3)45重量部、密度0.875g/cm3、MI3.0g/10分のポリエチレン系エラストマー(B2)55重量部からなる樹脂組成物を芯層とし、密度0.920g/cm3、MI1.0g/10分である直鎖状低密度ポリエチレン(D1)90重量部、密度0.875g/cm3、MI3.0g/10分のポリエチレン系エラストマー(E2)10重量部を両表面層とし、厚み比を1/6/1、照射線量を35kGy、延伸倍率を縦横4倍とした以外は、実施例1と同様の方法で、フィルム厚み15μmの積層二軸延伸フィルムを得た。
生産時のトラブルは特になく、また、得られたフィルムは、高度な収縮包装仕上がり性に優れるもので、収縮フィルムと被包装物とのタイト感は十分あり、四隅の角やコーナーシワが殆ど無い外観美麗な収縮包装体が得られた。その他、ヘイズ、引張弾性率、100℃熱収縮率、溶断シール性、静電シール等の特性も良好であった。
Example 3
As shown in Table 1, a vinyl acetate content of 6% by weight, 45 parts by weight of EVA (A3) having a MI of 0.3 g / 10 min, a density of 0.875 g / cm 3 , and a polyethylene-based elastomer having a MI of 3.0 g / 10 min (B2) A resin composition comprising 55 parts by weight is used as a core layer, and the density is 0.920 g / cm 3 , 90 parts by weight of linear low density polyethylene (D1) having a MI of 1.0 g / 10 min, and the density is 0.875 g / cm 3 Example 1 except that 10 parts by weight of a polyethylene-based elastomer (E2) having a MI of 3.0 g / 10 min was used as both surface layers, the thickness ratio was 1/6/1, the irradiation dose was 35 kGy, and the draw ratio was 4 times in length and width. A laminated biaxially stretched film with a film thickness of 15 μm was obtained in the same manner as in the above.
There is no trouble at the time of production, and the obtained film is excellent in high shrink-wrapping finish, and the tightness between the shrink-film and the package is sufficient, and there are almost no corners or corner wrinkles at the four corners A beautiful shrink wrap was obtained. In addition, the properties such as haze, tensile modulus, heat shrinkage at 100 ° C., melt-cut sealability, and electrostatic seal were also good.
実施例4
表1に示すように、酢酸ビニル含量15重量%、MI1.0g/10分のEVA(A2)50重量部、密度0.885g/cm3、MI1.0g/10分のポリエチレン系エラストマー(B3)50重量部からなる樹脂組成物を芯層とし、密度0.920g/cm3、MI1.0g/10分である直鎖状低密度ポリエチレン(D1)85重量部、密度0.885g/cm3、MI1.0g/10分のポリエチレン系エラストマー(E3)15重量部を両表面層とし、厚み比を1/4/1、照射線量を35kGyとした以外は、実施例1と同様の方法で、フィルム厚み15μmの積層二軸延伸フィルムを得た。
生産時のトラブルは特になく、また、得られたフィルムは、高度な収縮包装仕上がり性に優れるもので、収縮フィルムと被包装物とのタイト感は十分あり、四隅の角やコーナーシワが殆ど無い外観美麗な収縮包装体が得られた。その他、ヘイズ、引張弾性率、100℃熱収縮率、溶断シール性、静電シール等の特性も良好であった。
Example 4
As shown in Table 1, a vinyl acetate content of 15% by weight, an EVA (A2) of 50 parts by weight with an MI of 1.0 g / 10 min, a density of 0.885 g / cm 3 , and an MI of 1.0 g / 10 min of a polyethylene-based elastomer (B3) A resin composition consisting of 50 parts by weight is used as a core layer, and the density is 0.920 g / cm 3 , 85 parts by weight of linear low density polyethylene (D1) having a MI of 1.0 g / 10 min, the density 0.885 g / cm 3 A film was prepared in the same manner as in Example 1, except that 15 parts by weight of a polyethylene elastomer (E3) having a MI of 1.0 g / 10 min was used as both surface layers, the thickness ratio was 1/4/1, and the irradiation dose was 35 kGy. A laminated biaxially stretched film with a thickness of 15 μm was obtained.
There is no trouble at the time of production, and the obtained film is excellent in high shrink-wrapping finish, and the tightness between the shrink-film and the package is sufficient, and there are almost no corners or corner wrinkles at the four corners A beautiful shrink wrap was obtained. In addition, the properties such as haze, tensile modulus, heat shrinkage at 100 ° C., melt-cut sealability, and electrostatic seal were also good.
実施例5
表1に示すように、酢酸ビニル含量15重量%、MI1.0g/10分のEVA(A2)35重量部、密度0.875g/cm3、MI3.0g/10分のポリエチレン系エラストマー(B2)35重量部、密度0.905g/cm3、MI0.8g/10分の超低密度ポリエチレン(C1)30重量部からなる樹脂組成物を芯層とし、密度0.920g/cm3、MI1.0g/10分である直鎖状低密度ポリエチレン(D1)90重量部、密度0.875g/cm3、MI3.0g/10分のポリエチレン系エラストマー(E2)10重量部を両表面層とし、厚み比を1/4/1、照射線量を45kGy、延伸倍率を縦横4倍とした以外は、実施例1と同様の方法で、フィルム厚み15μmの積層二軸延伸フィルムを得た。
生産時のトラブルは特になく、また、得られたフィルムは、高度な収縮包装仕上がり性に優れるもので、収縮フィルムと被包装物とのタイト感は十分あり、四隅の角やコーナーシワが殆ど無い外観美麗な収縮包装体が得られた。その他、ヘイズ、引張弾性率、100℃熱収縮率、溶断シール性、静電シール等の特性も良好であった。
Example 5
As shown in Table 1, a vinyl acetate content of 15% by weight, 35 parts by weight of EVA (A2) of 1.0 g / 10 min MI, a density of 0.875 g / cm 3 , a polyethylene-based elastomer of MI 3.0 g / 10 min (B2) A resin composition consisting of 35 parts by weight, a density of 0.905 g / cm 3 and an MI of 0.8 g / 10 min, and 30 parts by weight of ultra low density polyethylene (C1) as a core layer, a density of 0.920 g / cm 3 and an MI of 1.0 g 90 parts by weight of linear low density polyethylene (D1) which is 10 minutes, a density of 0.875 g / cm 3 , 10 parts by weight of polyethylene elastomer (E2) of MI 3.0 g / 10 minutes as both surface layers, and the thickness ratio A laminated biaxially stretched film with a film thickness of 15 μm was obtained in the same manner as in Example 1 except that the irradiation dose was 45 kGy, and the draw ratio was 4 × 4.
There is no trouble at the time of production, and the obtained film is excellent in high shrink-wrapping finish, and the tightness between the shrink-film and the package is sufficient, and there are almost no corners or corner wrinkles at the four corners A beautiful shrink wrap was obtained. In addition, the properties such as haze, tensile modulus, heat shrinkage at 100 ° C., melt-cut sealability, and electrostatic seal were also good.
比較例1
表2に示すように、密度0.920g/cm3、MI0.3g/10分である高圧法により製造される長鎖分岐を有する低密度ポリエチレン(F1)35重量部、密度0.885g/cm3、MI1.0g/10分であるポリエチレン系エラストマー(B3)65重量部からなる樹脂組成物を芯層とし、密度0.920g/cm3、MI1.0g/10分である直鎖状低密度ポリエチレン(D1)を両表面層とし、厚み比を1/4/1、照射線量を40kGy、延伸倍率を縦横4倍とした以外は、実施例1と同様の方法で、フィルム厚み15μmの積層二軸延伸フィルムを得た。
生産時のトラブルは特になく、また、得られたフィルムは、収縮フィルムと被包装物とのタイト感は十分であったが、四隅の角やコーナーシワがやや目立ち、収縮仕上がり性としては不十分なものであった。
Comparative Example 1
As shown in Table 2, 35 parts by weight of low density polyethylene (F1) having long chain branching manufactured by a high pressure method having a density of 0.920 g / cm 3 and an MI of 0.3 g / 10 min, a density of 0.885 g / cm 3 A linear low density resin having a density of 0.920 g / cm 3 and an MI of 1.0 g / 10 min, with a resin composition consisting of 65 parts by weight of a polyethylene elastomer (B3) having an MI of 1.0 g / 10 min. A laminated film having a film thickness of 15 μm was prepared in the same manner as in Example 1 except that polyethylene (D1) was used as both surface layers, the thickness ratio was 1/4/1, the irradiation dose was 40 kGy, and the draw ratio was 4 times. An axial stretched film was obtained.
There were no troubles during production, and the obtained film had sufficient tightness between the shrink film and the package, but the corners and corner wrinkles of the four corners were slightly noticeable, and the shrink finish was insufficient. It was a thing.
比較例2
表2に示すように、密度0.920g/cm3、MI0.3g/10分である高圧法により製造される長鎖分岐を有する低密度ポリエチレン(F1)40重量部、密度0.885g/cm3、MI1.0g/10分であるポリエチレン系エラストマー(B3)60重量部からなる樹脂組成物を芯層とし、密度0.920g/cm3、MI1.0g/10分である直鎖状低密度ポリエチレン(D1)85重量部、密度0.885g/cm3、MI1.0g/10分のポリエチレン系エラストマー(E3)15重量部を両表面層とし、照射線量を40kGy、延伸倍率を縦横4倍とした以外は、実施例1と同様の方法で、フィルム厚み15μmの積層二軸延伸フィルムを得た。
生産時のトラブルは特になく、また、得られたフィルムは、収縮フィルムと被包装物とのタイト感は十分であったが、四隅の角やコーナーシワがやや目立ち、収縮仕上がり性としては不十分なものであった。
Comparative example 2
As shown in Table 2, 40 parts by weight of low density polyethylene (F1) having long chain branching manufactured by a high pressure method having a density of 0.920 g / cm 3 and an MI of 0.3 g / 10 min, a density of 0.885 g / cm 3 A linear low density resin having a density of 0.920 g / cm 3 and an MI of 1.0 g / 10 min, with a resin composition comprising 60 parts by weight of a polyethylene elastomer (B3) having an MI of 1.0 g / 10 min. 85 parts by weight of polyethylene (D1), density 0.885 g / cm 3 , 15 parts by weight of polyethylene elastomer (E3) with MI 1.0 g / 10 min are used as both surface layers, irradiation dose is 40 kGy, draw ratio is 4 times A laminated biaxially stretched film with a film thickness of 15 μm was obtained in the same manner as in Example 1 except for the above.
There were no troubles during production, and the obtained film had sufficient tightness between the shrink film and the package, but the corners and corner wrinkles of the four corners were slightly noticeable, and the shrink finish was insufficient. It was a thing.
比較例3
表2に示すように、酢酸ビニル含量21%、MI2.5g/10分のEVA(A4)70重量部、密度0.870g/cm3、MI1.0g/10分のポリエチレン系エラストマー(B1)30重量部からなる樹脂組成物を芯層とし、厚み比を1/6/1、照射線量を40kGy、延伸倍率を縦横4倍とした以外は、実施例1と同様の方法で、フィルム厚み15μmの積層二軸延伸フィルムを得た。
得られたフィルムは、高度な収縮包装仕上がり性に優れるもので、収縮フィルムと被包装物とのタイト感は十分あり、四隅の角やコーナーシワが殆ど無いものであった。一方で、生産時にEVAの熱劣化ブツにより、延伸バブルのパンクが頻発し、延伸安定性が不足するものであった。
Comparative example 3
As shown in Table 2, a vinyl acetate content of 21%, 70 parts by weight of EVA (A4) with MI 2.5 g / 10 min, a density of 0.870 g / cm 3 , a polyethylene-based elastomer (B1) 30 with MI 1.0 g / 10 min. The film thickness is 15 μm in the same manner as in Example 1 except that the resin composition consisting of parts by weight is used as a core layer, the thickness ratio is 1/6/1, the irradiation dose is 40 kGy, and the draw ratio is 4 × 4. A laminated biaxially stretched film was obtained.
The obtained film was excellent in high shrink-wrapping finish, had a sufficient tightness between the shrink-film and the package, and had almost no corners or corner wrinkles at the four corners. On the other hand, due to the heat deterioration of EVA during production, punctures of stretch bubbles frequently occur, and the stretch stability is insufficient.
比較例4
表2に示すように、酢酸ビニル含量15重量%、MI1.0g/10分のEVA(A2)50重量部、密度0.875g/cm3、MI3.0g/10分のポリエチレン系エラストマー(B2)35重量部、密度0.905g/cm3、MI0.8g/10分の超低密度ポリエチレン(C1)15重量部からなる樹脂組成物を芯層とし、密度0.920g/cm3、MI1.0g/10分である直鎖状低密度ポリエチレン(D1)70重量部、密度0.875g/cm3、MI3.0g/10分のポリエチレン系エラストマー(E2)30重量部を両表面層とし、照射線量を65kGyとした以外は、実施例1と同様の方法で、フィルム厚み15μmの積層二軸延伸フィルムを得た。
得られたフィルムは、包装時にフィルムが走行不良を起こし、傷などが入って外観を損ね、また、230℃以上にシール温度を上げないと溶断出来ず、易溶断シール性にも劣るものであった。
Comparative example 4
As shown in Table 2, a vinyl acetate content of 15% by weight, 50 parts by weight of EVA (A2) with an MI of 1.0 g / 10 min, a density of 0.875 g / cm 3 , a polyethylene based elastomer with an MI of 3.0 g / 10 min (B2) A resin composition consisting of 35 parts by weight, a density of 0.905 g / cm 3 , and an MI of 0.8 g / 10 min. 15 parts by weight of ultra low density polyethylene (C1) is used as a core layer, and a density of 0.920 g / cm 3 , MI 1.0 g 70 parts by weight of linear low density polyethylene (D1) which is 10 min, density 0.875 g / cm 3 , 30 parts by weight of polyethylene elastomer (E2) with MI 3.0 g / 10 min as both surface layers, and irradiation dose A laminated biaxially stretched film with a film thickness of 15 μm was obtained in the same manner as in Example 1 except that 65 kGy was used.
The obtained film has poor running during packaging, and scratches and the like enter to damage the appearance, and it can not be melted unless the sealing temperature is raised to 230 ° C. or higher, and the easily melted sealability is also inferior. The
比較例5
表2に示すように、酢酸ビニル含量6重量%、MI0.3g/10分のEVA(A3)80重量部、密度0.870g/cm3、MI1.0g/10分のポリエチレン系エラストマー(B1)20重量部からなる樹脂組成物を芯層とし、照射線量を35kGy、延伸倍率を縦横4倍とした以外は、実施例1と同様の方法で、フィルム厚み15μmの積層二軸延伸フィルムを得た。
得られたフィルムは、低温収縮性が劣るため、収縮フィルムと被包装物とのタイト感は十分であるものの、四隅の角やコーナーシワがやや目立ち、収縮仕上がり性としては不十分なものであり、また、耐引裂性が劣るため、収縮トンネル内で製袋内エア抜けの為の針孔部からフィルムが裂ける包装不良が頻発した。
Comparative example 5
As shown in Table 2, a vinyl acetate content of 6% by weight, 80 parts by weight of EVA (A3) with an MI of 0.3 g / 10 min, a density of 0.870 g / cm 3 , a polyethylene-based elastomer with an MI of 1.0 g / 10 min (B1) A laminated biaxially stretched film with a film thickness of 15 μm was obtained in the same manner as in Example 1 except that the resin composition consisting of 20 parts by weight was used as a core layer, the irradiation dose was 35 kGy, and the draw ratio was 4 × 4. .
The obtained film is poor in low temperature shrinkability, so the tightness between the shrink film and the package is sufficient, but the corners and corner wrinkles of the four corners are slightly noticeable, and the shrink finish is insufficient. In addition, since the tear resistance is poor, packaging defects in which the film tears from the needle hole for removing air in the bag in the shrinkage tunnel frequently occur.
本発明の熱収縮性包装材料は、化粧品や薬品等の高級商品を包装する場合の厳しい収縮包装仕上がり要求を満足することが可能で、且つ、生産性を損なうことの無い、ポリエチレン系架橋シュリンクフィルムとして好適に用いることができる。 The heat-shrinkable packaging material of the present invention is a polyethylene-based crosslinked shrink film capable of satisfying the strict shrink-wrapping finish requirements for packaging high-grade products such as cosmetics and drugs, and which does not impair productivity. It can be suitably used as
Claims (4)
溶融共押出により、(a)組成物を主成分とする芯層及び(b)組成物を主成分とする両表面層を有する少なくとも3層以上の積層構成をなす未延伸フィルムを得る工程、
該未延伸フィルムに20〜60kGyの電子線を照射して、架橋未延伸フィルムを得る工程、及び
該架橋未延伸フィルムを縦横それぞれ3〜6倍の延伸倍率で同時二軸延伸する工程を含む、製造方法。
(a)酢酸ビニル含量5〜15重量%、メルトインデックス(以下、MIと記す)0.3〜3.0g/10分であるエチレン−酢酸ビニル共重合体(以下、EVAと記す)35〜70重量部、密度0.865〜0.885g/cm 3 、MI0.5〜4.0g/10分であるポリエチレン系エラストマー25〜65重量部、密度0.895〜0.910g/cm 3 、及びMI0.5〜4.0g/10分である超低密度ポリエチレン0〜40重量部からなる樹脂組成物
(b)密度0.915〜0.930g/cm 3 、MI1.0〜3.0g/10分である直鎖状低密度ポリエチレン80〜95重量部、及び密度0.865〜0.885g/cm 3 、MI0.5〜4.0g/10分であるポリエチレン系エラストマー5〜20重量部からなる樹脂組成物 Following (a) a core layer mainly composed of the composition, and (b) below composition having at least three or more layers structure having both surface layers mainly composed of, method of manufacturing the port Riechiren based crosslinking shrink film And
A step of obtaining an unstretched film having a laminated constitution of at least three or more layers having (a) a core layer containing the composition as a main component and (b) both surface layers containing the composition as a main component by melt coextrusion;
Irradiating the unstretched film with an electron beam of 20 to 60 kGy to obtain a crosslinked unstretched film;
A production method comprising the step of simultaneously biaxially stretching the crosslinked unstretched film at a stretch ratio of 3 to 6 times in each of the longitudinal and lateral directions .
(A) Ethylene-vinyl acetate copolymer (hereinafter referred to as EVA) 35 to 70 having a vinyl acetate content of 5 to 15% by weight and a melt index (hereinafter referred to as MI) of 0.3 to 3.0 g / 10 min. Parts by weight, density 0.865 to 0.885 g / cm 3 , MI 0.5 to 4.0 g / 10 min 25 to 65 parts by weight of a polyethylene elastomer, density 0.895 to 0.910 g / cm 3 , and MI 0 Resin composition comprising 0 to 40 parts by weight of ultra-low density polyethylene of 0.5 to 4.0 g / 10 min
(B) 80 to 95 parts by weight of linear low density polyethylene having a density of 0.915 to 0.930 g / cm 3 , an MI of 1.0 to 3.0 g / 10 min, and a density of 0.865 to 0.885 g / cm 3. A resin composition comprising 5 to 20 parts by weight of a polyethylene elastomer having an MI of 0.5 to 4.0 g / 10 min.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015102426A JP6532125B2 (en) | 2015-05-20 | 2015-05-20 | Polyethylene-based crosslinked shrink film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015102426A JP6532125B2 (en) | 2015-05-20 | 2015-05-20 | Polyethylene-based crosslinked shrink film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016215480A JP2016215480A (en) | 2016-12-22 |
JP6532125B2 true JP6532125B2 (en) | 2019-06-19 |
Family
ID=57579246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015102426A Active JP6532125B2 (en) | 2015-05-20 | 2015-05-20 | Polyethylene-based crosslinked shrink film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6532125B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3732042A4 (en) * | 2017-12-29 | 2021-08-25 | Bemis Company, Inc. | Recyclable films for product packaging |
US20210339925A1 (en) * | 2018-11-30 | 2021-11-04 | Bemis Company, Inc. | High-barrier recyclable film |
KR102157101B1 (en) * | 2020-03-24 | 2020-09-17 | (주)거성피엔피 | Multilayer polyethylen and method of manufacturing the same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5023143A (en) * | 1989-03-14 | 1991-06-11 | W. R. Grace & Co.-Conn. | Low shrink force shrink film |
JP3146321B2 (en) * | 1991-11-27 | 2001-03-12 | 三菱樹脂株式会社 | Stretch packaging film |
JPH08230121A (en) * | 1995-02-28 | 1996-09-10 | Mitsui Petrochem Ind Ltd | Packaging multilayer film |
JP2000272063A (en) * | 1999-03-23 | 2000-10-03 | Asahi Chem Ind Co Ltd | Multilayered stretched film |
JP2006256336A (en) * | 2006-05-08 | 2006-09-28 | Mitsubishi Plastics Ind Ltd | Shrinkable sheet material |
JP5601804B2 (en) * | 2008-12-22 | 2014-10-08 | 興人フィルム&ケミカルズ株式会社 | Polyethylene-based crosslinked shrink film |
US8936152B2 (en) * | 2010-09-21 | 2015-01-20 | Signode Industrial Group Llc | Condensation control film |
-
2015
- 2015-05-20 JP JP2015102426A patent/JP6532125B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016215480A (en) | 2016-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5893091B2 (en) | Polyethylene-based crosslinked shrink film | |
JP4848020B2 (en) | Stretched laminated film and bag | |
US10611132B2 (en) | Polyethylene sealant film having high strength and package using the same | |
JP4915749B2 (en) | Polyolefin multilayer shrink film | |
JP6532125B2 (en) | Polyethylene-based crosslinked shrink film | |
JP2001001468A (en) | Heat-shrinkable multilayered film | |
JP2011104816A (en) | Heat-shrinkable polyolefinic film | |
JP5722081B2 (en) | Polyethylene-based crosslinked shrink film with excellent shrink finish | |
JP5399048B2 (en) | Polyethylene-based crosslinked shrink film | |
JP5587136B2 (en) | Polyolefin heat shrinkable film with excellent shrink finish | |
JP7018781B2 (en) | Heat shrinkable laminated film | |
JP2005144725A (en) | Polyolefinic multilayered shrink film | |
JP5545627B2 (en) | Polyolefin thin film multilayer shrink film | |
JP5660852B2 (en) | Polyolefin heat shrinkable film with excellent shrink finish | |
JP4919620B2 (en) | 3-layer crosslinked film | |
JP3004314B2 (en) | Polyethylene heat-shrinkable laminated film | |
JP2003145695A (en) | Method for manufacturing polyethylenic heat-shrinkable film | |
JP2011240619A (en) | Styrene heat-shrinkable film for over-wrap packing | |
JP2001151915A (en) | Polyolefinic, biaxially stretched, heat-shrinkable film | |
JP6604835B2 (en) | Polyolefin heat shrinkable film | |
JP2010234656A (en) | Polypropylene and polyolefin multilayer shrink film with light shielding property | |
JP3068920B2 (en) | Polyethylene heat-shrinkable laminated film | |
JPH09239926A (en) | Heat shrinkable laminated polyolefin film | |
JP2011126581A (en) | Polyolefin-based heat shrinkable film excellent in fusion cut sealability | |
JP5476533B2 (en) | Heat shrinkable film for polyolefin sleeve packaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20170130 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180301 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181031 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181114 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190515 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190517 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6532125 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |