Nothing Special   »   [go: up one dir, main page]

JP6530164B2 - Nanocrystalline soft magnetic alloy powder and dust core using the same - Google Patents

Nanocrystalline soft magnetic alloy powder and dust core using the same Download PDF

Info

Publication number
JP6530164B2
JP6530164B2 JP2014041422A JP2014041422A JP6530164B2 JP 6530164 B2 JP6530164 B2 JP 6530164B2 JP 2014041422 A JP2014041422 A JP 2014041422A JP 2014041422 A JP2014041422 A JP 2014041422A JP 6530164 B2 JP6530164 B2 JP 6530164B2
Authority
JP
Japan
Prior art keywords
soft magnetic
alloy powder
magnetic alloy
crystal phase
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014041422A
Other languages
Japanese (ja)
Other versions
JP2015167183A (en
Inventor
美帆 千葉
美帆 千葉
悠 金森
悠 金森
浦田 顕理
顕理 浦田
芳 佐竹
芳 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2014041422A priority Critical patent/JP6530164B2/en
Publication of JP2015167183A publication Critical patent/JP2015167183A/en
Application granted granted Critical
Publication of JP6530164B2 publication Critical patent/JP6530164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、トランス、チョークコイル、リアクトル等のインダクタに用いられるナノ結晶軟磁性合金粉末とその製造方法、およびナノ結晶軟磁性合金粉末を用いた圧粉磁芯に関する。   The present invention relates to a nanocrystalline soft magnetic alloy powder used for an inductor such as a transformer, a choke coil, and a reactor, a method of producing the same, and a dust core using the nanocrystalline soft magnetic alloy powder.

アモルファス相中に微小なαFe(−Si)結晶相が析出したナノ結晶軟磁性合金は、高飽和磁束密度と低磁歪の両立が可能なため、トランスなどのコアとして用いた場合、コア損失を低減できる優れた軟磁性材料である。   A nanocrystalline soft magnetic alloy in which a minute α-Fe (-Si) crystal phase is precipitated in an amorphous phase can achieve both high saturation magnetic flux density and low magnetostriction, so core loss is reduced when it is used as a core of a transformer etc. It is an excellent soft magnetic material that can

また、近年の電子機器の小型化や高周波化の要求に対応し、チョークコイルやリアクトルなどのコアに使用することを目的として、ナノ結晶軟磁性合金粉末と絶縁性の良い樹脂バインダを混合して成形した圧粉磁芯が開発されている。   In addition, in response to the recent demand for miniaturization and high frequency of electronic devices, it is mixed with nanocrystalline soft magnetic alloy powder and resin binder with good insulation for the purpose of using it as core for choke coil, reactor etc. Molded dust cores have been developed.

例えば、特許文献1には、ナノ結晶組織を有するナノ結晶磁性粉末、または熱処理によりナノ結晶組織を発現可能な組成の非晶質軟磁性粉末のいずれかに、バインダーとガラス粉末を添加して加圧成形し、ガラスの軟化点以上600℃以下で熱処理して得られる圧粉磁芯およびその製造方法が開示されている。   For example, in Patent Document 1, a binder and a glass powder are added to either a nanocrystalline magnetic powder having a nanocrystalline structure or an amorphous soft magnetic powder having a composition capable of expressing a nanocrystalline structure by heat treatment. The powder magnetic core obtained by pressure-forming and heat-processing above 600 degreeC of softening points of glass, and its manufacturing method are disclosed.

特開2004−349585号公報Unexamined-Japanese-Patent No. 2004-349585

αFe(−Si)結晶相を析出させたナノ結晶軟磁性合金粉末を加圧成形した圧粉磁芯は、加圧成形時に粉末粒子に歪みを生じさせる。この歪みは、Fe−BやFe−Pなどの化合物相が析出しない温度領域では十分に除去ができないため、コア損失が大きくなり、良好な軟磁気特性が得られない問題がある。   A powder magnetic core obtained by pressure-molding a nanocrystalline soft magnetic alloy powder in which an α-Fe (-Si) crystal phase is precipitated causes distortion in powder particles during pressure-molding. This distortion can not be sufficiently removed in a temperature range in which compound phases such as Fe-B and Fe-P do not precipitate, so the core loss becomes large and there is a problem that good soft magnetic characteristics can not be obtained.

また、アモルファス相の軟磁性合金粉末を、加圧成形して圧粉体を作製後、αFe(−Si)結晶相を析出させる熱処理を行うと、αFe(−Si)結晶相の析出による発熱によって熱暴走を起こしやすく、Fe−BやFe−Pなどの化合物相が析出して比透磁率が低下し、圧粉磁芯として良好な軟磁気特性が得られない問題がある。   In addition, when the soft magnetic alloy powder of the amorphous phase is pressure-formed to produce a green compact, heat treatment is performed to precipitate the α-Fe (-Si) crystal phase, which generates heat due to the precipitation of the α-Fe (-Si) crystal phase. There is a problem that thermal runaway is likely to occur, compound phases such as Fe-B and Fe-P precipitate and the relative permeability decreases, and good soft magnetic characteristics can not be obtained as a dust core.

本発明の課題は、上記従来技術による圧粉磁芯の軟磁気特性を改善することを目的とし、優れた軟磁気特性が得られるナノ結晶軟磁性合金粉末とそれを用いた圧粉磁芯を提供することである。   An object of the present invention is to improve the soft magnetic properties of a powder magnetic core according to the above-mentioned prior art, and to provide a nanocrystalline soft magnetic alloy powder capable of obtaining excellent soft magnetic characteristics and a powder magnetic core using the same. It is to provide.

上記の目的を達成するため、本発明は、αFe(−Si)結晶相がアモルファス相中に析出したナノ結晶軟磁性合金粉末において、前記αFe(−Si)結晶相の結晶化度が4%以上70%以下であることを特徴とする。   In order to achieve the above object, according to the present invention, in the nanocrystalline soft magnetic alloy powder in which the αFe (-Si) crystal phase is precipitated in the amorphous phase, the crystallinity of the αFe (-Si) crystal phase is 4% or more It is characterized by 70% or less.

本発明では、前記ナノ結晶軟磁性合金粉末の組成が、組成式 FeSiCuで表され、79.0≦a≦86.0、5.0≦b≦13.0、0.0≦c≦8.0、1.0≦x≦10.0、0.0≦y≦5.0、0.4≦z≦1.4および0.06≦z/x≦1.20で、、Feの一部をTi、Zr、Hf、Nb,Ta、Mo、W、Cr、Co、Ni、Al、Mn、Zn、S、Sn、As、Sb、Bi、N、O、Ca、V、Mgおよび希土類元素、貴金属元素のうち1種類以上の元素で、組成全体の3at%以下を置換し、Feとの合計が79.0at%以上、86.0at%以下であることが望ましい。 In the present invention, the composition of the nanocrystalline soft magnetic alloy powder is represented by a composition formula Fe a B b Si c P x C y Cu z, 79.0 ≦ a ≦ 86.0,5.0 ≦ b ≦ 13 .0, 0.0 ≦ c ≦ 8.0, 1.0 ≦ x ≦ 10.0, 0.0 ≦ y ≦ 5.0, 0.4 ≦ z ≦ 1.4 and 0.06 ≦ z / x ≦ 1.20, part of Fe is Ti, Zr, Hf, Nb, Ta, Mo, W, Cr, Co, Ni, Al, Mn, Zn, S, Sn, As, Sb, Bi, N, 3 at% or less of the whole composition is replaced with one or more elements of O, Ca, V, Mg and rare earth elements and noble metal elements, and the total with Fe is 79.0 at% or more and 86.0 at% or less Is desirable.

また、前記ナノ結晶軟磁性合金粉末の粒子のアスペクト比が、1.0を超え2.6以下であることが望ましい。   Further, the aspect ratio of the particles of the nanocrystalline soft magnetic alloy powder is preferably more than 1.0 and 2.6 or less.

本発明では、アモルファス相の合金組成物を熱処理してαFe(−Si)結晶相を析出させ、αFe(−Si)結晶相の結晶化度を4%以上70%以下とし、その後に前記合金組成物を粉砕することによって粉末化することを特徴とするナノ結晶軟磁性合金粉末の製造方法が得られる。   In the present invention, the alloy composition of the amorphous phase is heat-treated to precipitate the α-Fe (-Si) crystal phase, and the α-Fe (-Si) crystal phase is made to have a crystallinity of 4% to 70%. A method for producing a nanocrystalline soft magnetic alloy powder is provided, which is characterized by pulverizing a substance.

また、前記合金組成物が、薄帯であることが望ましい。   Moreover, it is desirable that the said alloy composition is a thin strip.

さらに本発明では、ナノ結晶軟磁性合金粉末とバインダとを混合したものを、加圧成形した後、熱処理を行ってαFe(−Si)結晶相を追加析出させたことを特徴とする圧粉磁芯が得られる。   Furthermore, in the present invention, a mixture of nanocrystalline soft magnetic alloy powder and a binder is pressure-formed and then heat-treated to additionally precipitate an α-Fe (-Si) crystal phase. A core is obtained.

本発明のナノ結晶軟磁性合金粉末は、αFe(−Si)結晶相を部分的に析出させたもので、αFe(−Si)結晶相の結晶化度を4%以上とすることで、圧粉磁芯の作製における熱処理時に、追加析出するαFe(−Si)結晶相の析出量を減少させることができる。したがって、αFe(−Si)結晶相の析出によって放出される熱量を低減し、熱処理時の熱暴走を防ぐことが可能となる。これによりFe−BやFe−Pなどの化合物相の析出を抑制し、比透磁率に優れた良好な軟磁気特性を有する圧粉磁芯が実現できる。   The nanocrystalline soft magnetic alloy powder of the present invention is obtained by partially precipitating the αFe (-Si) crystal phase, and the green compact is obtained by setting the crystallinity of the αFe (-Si) crystal phase to 4% or more. At the time of heat treatment in the preparation of the magnetic core, the amount of precipitation of the additionally precipitated α-Fe (-Si) crystal phase can be reduced. Therefore, it is possible to reduce the amount of heat released by the precipitation of the α-Fe (-Si) crystal phase, and to prevent the thermal runaway during the heat treatment. Thereby, precipitation of a compound phase such as Fe-B or Fe-P can be suppressed, and a dust core having excellent soft magnetic properties and excellent in relative magnetic permeability can be realized.

また、αFe(−Si)結晶相の結晶化度を70%以下とすることで、圧粉磁芯の作製で行う熱処理時に、αFe(−Si)結晶相が追加析出できる余地を残すことができる。このためαFe(−Si)結晶粒子の成長に伴って、加圧成形時にナノ結晶軟磁性合金粉末粒子に生じた歪みを緩和することが可能となる。これによりコア損失が小さい良好な軟磁気特性を有する圧粉磁芯が実現できる。   Further, by setting the crystallinity of the αFe (-Si) crystal phase to 70% or less, it is possible to leave room for additional precipitation of the αFe (-Si) crystal phase during the heat treatment performed in the production of the dust core. . Therefore, along with the growth of the α-Fe (—Si) crystal particles, it is possible to relieve the strain generated in the nanocrystalline soft magnetic alloy powder particles during pressure forming. As a result, a dust core having good soft magnetic characteristics with small core loss can be realized.

以上述べた様に、本発明のナノ結晶軟磁性合金粉末を使用することにより、比透磁率が高くコア損失の小さい優れた軟磁気特性を有する圧粉磁芯を得ることができる。   As described above, by using the nanocrystalline soft magnetic alloy powder of the present invention, it is possible to obtain a dust core having excellent soft magnetic characteristics, which has a high relative magnetic permeability and a small core loss.

本発明のナノ結晶軟磁性合金粉末の製造方法は、以下の通りである。まず、αFe(−Si)結晶相の微細結晶を析出する合金組成物を、高周波加熱などによって融解し、液体急冷法でアモルファス相の薄帯または薄片を作製する。次に、このアモルファス相の薄帯または薄片を、熱処理(以下、この熱処理を、1次熱処理と言う。)してαFe(−Si)結晶相を部分的に析出させる。その後、αFe(−Si)結晶相が部分的に析出した薄帯または薄片を粉砕して粉末化する。   The method for producing the nanocrystalline soft magnetic alloy powder of the present invention is as follows. First, an alloy composition for precipitating fine crystals of an α-Fe (-Si) crystal phase is melted by high frequency heating or the like, and a ribbon or a thin piece of an amorphous phase is produced by a liquid quenching method. Next, the amorphous phase ribbon or flake is heat-treated (hereinafter, this heat treatment is referred to as primary heat treatment) to partially precipitate an α-Fe (-Si) crystal phase. Thereafter, the ribbon or flake in which the αFe (-Si) crystal phase is partially precipitated is pulverized into powder.

アモルファス相の薄帯を作製する液体急冷法としては、Fe基アモルファス薄帯の製造などに使用される単ロール式のアモルファス製造装置や、双ロール式のアモルファス製造装置を使用することができる。   As a liquid quenching method for producing an amorphous phase ribbon, a single roll type amorphous production apparatus or a twin roll type amorphous production apparatus used for production of an Fe-based amorphous ribbon or the like can be used.

1次熱処理の方法は、汎用的な手法を適用することができる。例えば、抵抗加熱、赤外線加熱、溶融塩などへの浸漬、加熱された金属やセラミックスなどの固体に直接接触させる方法、レーザー光を照射する方法などがある。   A general-purpose method can be applied to the method of the primary heat treatment. For example, there are methods such as resistance heating, infrared heating, immersion in molten salt, direct contact with heated solids such as metals and ceramics, and laser light irradiation.

1次熱処理において、熱処理温度と熱処理時間を調整することで、αFe(−Si)結晶相を部分的に析出させ、目的とする結晶化度を有するナノ結晶軟磁性合金粉末を得ることができる。   In the primary heat treatment, by adjusting the heat treatment temperature and the heat treatment time, it is possible to partially precipitate the α-Fe (-Si) crystal phase, and to obtain a nanocrystalline soft magnetic alloy powder having a desired degree of crystallinity.

本発明によるナノ結晶軟磁性合金粉末は、αFe(−Si)結晶相の結晶化度が4%以上70%以下であることにより、圧粉磁芯の作製時における熱処理(以下、この熱処理を2次熱処理と言う。)において、熱暴走に起因する化合物相の析出を抑制し、かつ圧粉磁芯の作製時の加圧成形において生じた粉末粒子の歪みを緩和することができる。   The nanocrystalline soft magnetic alloy powder according to the present invention has a crystallinity of 4% to 70% of the αFe (-Si) crystal phase, so that the heat treatment at the time of producing the dust core (hereinafter, this heat treatment In the next heat treatment, precipitation of a compound phase caused by thermal runaway can be suppressed, and distortion of powder particles generated in pressure forming at the time of production of a dust core can be alleviated.

αFe(−Si)結晶相の結晶化度が14%以上であれば、2次熱処理におけるαFe(−Si)結晶相の析出による発熱はさらに減少する。このため熱暴走が起こる可能性はほとんど無くなり、熱処理温度が適切で有れば、化合物相の析出をほとんど抑止することができるのでより好ましい。またαFe(−Si)結晶相の結晶化度が50%未満であれば、2次熱処理におけるαFe(−Si)結晶相の析出余地が十分に確保されるので、加圧成形において粉末粒子に生じる歪みをより効果的に緩和することができるのでより好ましい。   If the crystallinity of the αFe (-Si) crystal phase is 14% or more, the heat generation due to the precipitation of the αFe (-Si) crystal phase in the secondary heat treatment is further reduced. For this reason, the possibility of thermal runaway is almost eliminated, and if the heat treatment temperature is appropriate, it is more preferable because the precipitation of the compound phase can be almost suppressed. In addition, if the crystallinity of the αFe (-Si) crystal phase is less than 50%, room for the precipitation of the αFe (-Si) crystal phase in the secondary heat treatment is sufficiently ensured, so that powder particles are generated during pressure forming. It is more preferable because distortion can be alleviated more effectively.

さらに、αFe(−Si)結晶相の結晶化度が14%以上30%未満であるのが最も好ましく、高い比透磁率と、小さなコア損失を有する圧粉磁芯を得ることができる。   Furthermore, it is most preferable that the crystallinity of the α-Fe (-Si) crystal phase is 14% or more and less than 30%, and a dust core having high relative magnetic permeability and small core loss can be obtained.

ナノ結晶軟磁性合金粉末におけるαFe(−Si)結晶相の結晶化度は、粉末X線回折によって求めることができる。具体的には、X線回折装置(XRD)によって得られた粉末試料のX線回折パターンから、バックグラウンドと装置に起因する回折の非対称性を補正した後、αFe(−Si)結晶相の回折パターンと、アモルファス相に特有のブロードな回折パターンを分離し、それぞれの回折強度を求めた後、全回折強度に対するαFe(−Si)結晶相の回折強度の比を計算することによって得られる。   The crystallinity of the α-Fe (-Si) crystal phase in the nanocrystalline soft magnetic alloy powder can be determined by powder X-ray diffraction. Specifically, from the X-ray diffraction pattern of the powder sample obtained by the X-ray diffractometer (XRD), after correcting the asymmetry of the diffraction caused by the background and the instrument, the diffraction of the αFe (-Si) crystal phase It is obtained by separating the pattern and a broad diffraction pattern peculiar to the amorphous phase, determining the respective diffraction intensities, and calculating the ratio of the diffraction intensity of the α-Fe (-Si) crystal phase to the total diffraction intensity.

αFe(−Si)結晶相が部分的に析出した薄帯または薄片の粉砕は、一般的な粉砕装置を使用できる。例えば、ボールミル、スタンプミル、遊星ミル、サイクロンミル、ジェットミルなどが使用できる。   The grinding of the ribbon or flakes in which the αFe (-Si) crystal phase is partially precipitated can be performed using a common grinding device. For example, a ball mill, a stamp mill, a planetary mill, a cyclone mill, a jet mill and the like can be used.

また、粉砕して得られた粉末をふるいを用いて分級することにより、所望のアスペクト比の粒子を有するナノ結晶軟磁性合金粉末が得られる。   Also, by classifying the powder obtained by grinding using a sieve, a nanocrystalline soft magnetic alloy powder having particles of a desired aspect ratio can be obtained.

本発明によるナノ結晶軟磁性合金粉末では、粒子のアスペクト比を1.0を超え2.6以下とすることにより、特に高周波領域における渦電流損失の増加が抑制されるのでコア損失の低減に効果がある。   In the nanocrystalline soft magnetic alloy powder according to the present invention, by setting the aspect ratio of the particles to 1.0 or more and 2.6 or less, an increase in eddy current loss particularly in a high frequency region is suppressed, which is effective in reducing core loss. There is.

αFe(−Si)結晶相の結晶化度が4%未満では、2次熱処理でのαFe(−Si)結晶相の析出による発熱量が大きく、熱暴走による化合物相が析出する可能性が大きくなるので望ましくない。さらに粉砕による粉末化が著しく困難になる問題がある。この場合、仮に時間をかけて粉砕したとしても、ほとんどの粒子がアスペクト比で2.6を超えるため好ましくない。   If the crystallinity of the αFe (-Si) crystal phase is less than 4%, the calorific value due to the precipitation of the αFe (-Si) crystal phase in the secondary heat treatment is large, and the possibility of precipitation of the compound phase due to thermal runaway increases. So undesirable. Furthermore, there is a problem that pulverization by grinding becomes extremely difficult. In this case, even if it takes a long time to grind, it is not preferable because most particles have an aspect ratio of more than 2.6.

ナノ結晶軟磁性合金粉末の組成としては、組成式FeSiCuで表され、79.0≦a≦86.0、5≦b≦13、0≦c≦8、1≦x≦10、0≦y≦5、0.4≦z≦1.4および0.06≦z/x≦1.20である組成が適用できる。 The composition of nanocrystalline soft magnetic alloy powder, the composition formula Fe a B b Si c P x C y is represented by Cu z, 79.0 ≦ a ≦ 86.0,5 ≦ b ≦ 13,0 ≦ c ≦ 8 The compositions can be applied where 1 ≦ x ≦ 10, 0 ≦ y ≦ 5, 0.4 ≦ z ≦ 1.4 and 0.06 ≦ z / x ≦ 1.20.

Fe元素は、磁性を担う主たる元素であるので、その含有量は飽和磁束密度向上のためには多い方が好ましく、特に81at%以上で有ることが望ましい。しかしながら86at%を超えると、アモルファス相の形成能が低下するので好ましくない。   Since the Fe element is a main element responsible for magnetism, its content is preferably as large as possible in order to improve the saturation magnetic flux density, and in particular, it is desirable to be 81 at% or more. However, if it exceeds 86 at%, the ability to form an amorphous phase is reduced, which is not preferable.

また、耐食性の改善や電気抵抗の調整などを目的として、Feの一部をTi、Zr、Hf、Nb,Ta、Mo、W、Cr、Co、Ni、Al、Mn、Zn、S、Sn、As、Sb、Bi、N、O、Ca、V、Mgおよび希土類元素、貴金属元素のうち1種類以上の元素で、組成全体の3at%以下を置換し、Feとの合計が79.0at%以上、86.0at%以下としても良い。   In addition, for the purpose of improving the corrosion resistance and adjusting the electrical resistance, etc., part of Fe is Ti, Zr, Hf, Nb, Ta, Mo, W, Cr, Co, Ni, Al, Mn, Zn, S, Sn, As, Sb, Bi, N, O, Ca, V, Mg and one or more of rare earth elements and noble metal elements, 3 at% or less of the whole composition is replaced, and the total with Fe is 79.0 at% or more And may be 86.0 at% or less.

本発明によるナノ結晶軟磁性合金粉末の製造方法としては、上述の方法以外に、ガスアトマイズ法あるいは水アトマイズ法などで、アモルファス相の粉末を作製し、1次熱処理を行ってαFe(−Si)結晶相を部分的に析出させ、目的とする結晶化度を有するナノ結晶軟磁性合金粉末を得ることもできる。   As a method of producing a nanocrystalline soft magnetic alloy powder according to the present invention, in addition to the above-mentioned method, powder of an amorphous phase is produced by gas atomization method or water atomization method, etc., and primary heat treatment is performed to obtain αFe (-Si) crystal. It is also possible to partially precipitate the phase to obtain a nanocrystalline soft magnetic alloy powder having a desired degree of crystallinity.

この場合の熱処理も、アモルファス相の薄帯を1次熱処理する場合と同様に、熱処理温度と熱処理時間を調整することでαFe(−Si)結晶相の結晶化度が4%以上70%以下であるナノ結晶軟磁性合金粉末を得ることができる。   Also in this case, the heat treatment temperature and the heat treatment time are adjusted in the same manner as in the primary heat treatment of the thin ribbon of the amorphous phase, and the crystallinity of the αFe (-Si) crystal phase is 4% or more and 70% or less A nanocrystalline soft magnetic alloy powder can be obtained.

本発明における圧粉磁芯の作製は、2次熱処理工程を除いては、一般的な方法を採用することができる。例えば、αFe(−Si)結晶相が部分的に析出したナノ結晶軟磁性合金粉末と、フェノール樹脂やシリコーン樹脂などの絶縁性が良好で耐熱性が高いバインダーとを混合して造粒粉を作製する。次に造粒粉を所望の形状を有する金型に充填し、加圧成形して圧粉体を得る。その後、圧粉体を2次熱処理してαFe(−Si)結晶相を追加析出させる。2次熱処理では、バインダーの加熱硬化も同時に行う。   The production of the powder magnetic core in the present invention can adopt a general method except for the secondary heat treatment step. For example, a granulated soft magnetic alloy powder is prepared by mixing a nanocrystalline soft magnetic alloy powder in which an α-Fe (-Si) crystal phase is partially precipitated with a binder having good insulation and high heat resistance such as phenol resin or silicone resin. Do. Next, the granulated powder is filled in a mold having a desired shape and pressed to obtain a green compact. Thereafter, the green compact is subjected to secondary heat treatment to additionally precipitate the αFe (-Si) crystal phase. In the secondary heat treatment, the binder is simultaneously heated and cured.

2次熱処理におけるαFe(−Si)結晶相の析出量は、従来のアモルファス相から析出させる場合と比較して、1次熱処理で析出した分だけ減少しているので、αFe(−Si)結晶相析出に伴う発熱による熱暴走は抑制される。2次熱処理において、熱処理温度は、αFe(−Si)結晶相の析出が進行し、かつFe−B、Fe−Pなどの化合物相が析出しない温度範囲を設定すれば良い。また熱処理時間は、αFe(−Si)結晶相が十分に析出できる時間を設定すれば良い。   The amount of precipitation of the α-Fe (-Si) crystal phase in the secondary heat treatment is reduced by the amount deposited in the first heat treatment as compared to the case of precipitation from the conventional amorphous phase, so the α-Fe (-Si) crystal phase Thermal runaway due to heat generation accompanying precipitation is suppressed. In the secondary heat treatment, the heat treatment temperature may be set to a temperature range in which the precipitation of the α-Fe (-Si) crystal phase proceeds and the compound phase such as Fe-B or Fe-P does not precipitate. Moreover, what is necessary is just to set the heat processing time as the time which can fully precipitate the (alpha) Fe (-Si) crystal phase.

圧粉磁芯の作製方法としては、加圧成形と2次熱処理を同時に行えるホットプレス等でも良い。またバインダーと混合した後に、射出成形などの方法で圧粉体を作製し、その後2次熱処理を行っても良い。   As a method of producing a dust core, a hot press or the like which can simultaneously perform pressure molding and secondary heat treatment may be used. Alternatively, after being mixed with a binder, a green compact may be produced by a method such as injection molding, and then secondary heat treatment may be performed.

(第1の実施例)
原料としてFe、Fe−B、Fe−P、Cuを用い、組成式でFe84.36.09.0Cu0.7となるように秤量し、高周波加熱炉で融解して合金組成物を得た。その後、単ロール型の液体急冷装置にてアモルファス相の薄帯を作製した。作製した薄帯の厚さは約25μm、幅は約15mmである。
(First embodiment)
Using Fe, Fe-B, Fe-P, and Cu as raw materials, measure so as to be Fe 84.3 B 6.0 P 9.0 Cu 0.7 according to the composition formula, and melt in a high frequency heating furnace to obtain an alloy The composition was obtained. Thereafter, a thin ribbon of an amorphous phase was produced by a single roll type liquid quenching apparatus. The produced ribbon has a thickness of about 25 μm and a width of about 15 mm.

次に、得られた薄帯を、抵抗加熱型の熱処理炉に投入し、アルゴン雰囲気中で1次熱処理を行い、αFe(−Si)結晶相を部分的に析出させた。熱処理温度は、実施例1から実施例8では420℃から460℃とし、熱処理時間は40秒である。また、1次熱処理を行わない場合を、比較例1とした。比較例2から4では、熱処理温度はそれぞれ400℃、410℃、475℃とし、熱処理時間はそれぞれ60秒、40秒、40秒である。   Next, the obtained thin ribbon was put into a resistance heating type heat treatment furnace, and was subjected to primary heat treatment in an argon atmosphere to partially precipitate an αFe (-Si) crystal phase. The heat treatment temperature is set to 420 ° C. to 460 ° C. in Examples 1 to 8 and the heat treatment time is 40 seconds. Moreover, the case where primary heat treatment was not performed was set as Comparative Example 1. In Comparative Examples 2 to 4, the heat treatment temperatures are 400 ° C., 410 ° C., and 475 ° C., respectively, and the heat treatment times are 60 seconds, 40 seconds, and 40 seconds, respectively.

上述の1次熱処理を行った薄帯をステンレス製のポットミルを用いて粉砕し、αFe(−Si)結晶相が部分的に析出したナノ結晶軟磁性合金粉末を得た。なお実施例1から実施例8では、薄帯の粉砕による粉末化は容易であったが、比較例1および比較例2の薄帯は、粉末化することができなかった。   The ribbon subjected to the above-mentioned primary heat treatment was crushed using a stainless steel pot mill to obtain a nanocrystalline soft magnetic alloy powder in which an αFe (-Si) crystal phase was partially precipitated. In Examples 1 to 8, although pulverization of the ribbon by pulverization was easy, the ribbons of Comparative Example 1 and Comparative Example 2 could not be powdered.

得られたナノ結晶軟磁性合金粉末は、X線回折装置(XRD)を用いて結晶化度の測定を行った。粉砕することができなかった比較例1と比較例2の薄帯は、薄帯の状態で結晶化度の測定を行った。   The degree of crystallinity of the obtained nanocrystalline soft magnetic alloy powder was measured using an X-ray diffractometer (XRD). The ribbons of Comparative Example 1 and Comparative Example 2 which could not be ground were subjected to measurement of the degree of crystallinity in the state of ribbons.

得られたナノ結晶軟磁性合金粉末に対して、重量比で3%の熱硬化性シリコーン樹脂をバインダーとして混合し、造粒を行い造粒粉を作製した。次に、造粒粉を金型に投入し、980MPaで加圧成形を行って圧粉体を作製した。圧粉体の寸法は、外径20mm、内径13mm、厚さ8mmである。   With respect to the obtained nanocrystalline soft magnetic alloy powder, 3% by weight of a thermosetting silicone resin was mixed as a binder, and the mixture was granulated to prepare granulated powder. Next, the granulated powder was put into a mold and pressure-molded at 980 MPa to produce a green compact. The dimensions of the green compact are an outer diameter of 20 mm, an inner diameter of 13 mm, and a thickness of 8 mm.

作製した圧粉体を、赤外線加熱装置を用いて、熱処理温度425℃、熱処理時間20分で2次熱処理を行い、αFe(−Si)結晶相の追加析出と熱硬化性シリコーン樹脂の硬化を行い圧粉磁芯を得た。   The compacts thus prepared are subjected to secondary heat treatment at a heat treatment temperature of 425 ° C. and a heat treatment time of 20 minutes using an infrared heating device to carry out additional precipitation of the αFe (-Si) crystal phase and curing of the thermosetting silicone resin. A dust core was obtained.

作製した圧粉磁芯に巻線を行い、磁気特性を測定した。比透磁率μの測定は、インピーダンスアナライザーを用い、周波数20kHzで行った。またB−Hアナライザーを用いて周波数20kHz、磁束密度100mTにおけるコア損失を測定した。   Winding was performed on the produced dust core, and the magnetic characteristics were measured. The relative permeability μ was measured using an impedance analyzer at a frequency of 20 kHz. Also, core loss at a frequency of 20 kHz and a magnetic flux density of 100 mT was measured using a BH analyzer.

表1に、第1の実施例におけるナノ結晶軟磁性合金粉末の結晶化度と圧粉磁芯の軟磁気特性を、比較例と共に示す。表1より、αFe(−Si)結晶相の結晶化度が4%以上70%以下のナノ結晶軟磁性合金粉末を用いた圧粉磁芯は、比透磁率が20kHzで30以上を有し、コア損失が20kHz、100mTで500mW/cm 未満の良好な軟磁気特性を持つことが判る。なお比較例1と比較例2は、先に述べた様に粉末化ができなかったので、圧粉磁芯の作製と磁気特性の測定は実施できなかった。 In Table 1, the crystallinity degree of the nanocrystalline soft magnetic alloy powder in the first example and the soft magnetic properties of the dust core are shown together with the comparative example. From Table 1, the powder magnetic core using the nanocrystalline soft magnetic alloy powder having a crystallinity of 4% to 70% of the αFe (-Si) crystal phase has a relative permeability of 30 or more at 20 kHz, It can be seen that the core loss has good soft magnetic properties of less than 500 mW / cm 3 at 20 kHz and 100 mT. As Comparative Examples 1 and 2 could not be powdered as described above, the production of the dust core and the measurement of the magnetic characteristics could not be carried out.

Figure 0006530164
Figure 0006530164

(第2の実施例)
第1の実施例と同様にして、組成式がFe84.36.09.0Cu0.7であるアモルファス相の薄帯を作製し、1次熱処理を行ってαFe(−Si)結晶相を部分的に析出させた。熱処理温度は425℃、熱処理時間は40秒である。
Second Embodiment
In the same manner as in the first embodiment, a thin ribbon of an amorphous phase having a composition formula of Fe 84.3 B 6.0 P 9.0 Cu 0.7 is prepared, and subjected to primary heat treatment to form αFe (-Si ) Crystalline phase was partially precipitated. The heat treatment temperature is 425 ° C., and the heat treatment time is 40 seconds.

上述の1次熱処理を行った薄帯をステンレス製のポットミルを用いて粉砕し、αFe(−Si)結晶相が部分的に析出したナノ結晶軟磁性合金粉末を得た。   The ribbon subjected to the above-mentioned primary heat treatment was crushed using a stainless steel pot mill to obtain a nanocrystalline soft magnetic alloy powder in which an αFe (-Si) crystal phase was partially precipitated.

得られたナノ結晶軟磁性合金粉末は、X線回折装置(XRD)を用いて結晶化度の測定を行った。本実施例のαFe(−Si)結晶相の結晶化度は、10%であった。   The degree of crystallinity of the obtained nanocrystalline soft magnetic alloy powder was measured using an X-ray diffractometer (XRD). The crystallinity of the αFe (-Si) crystal phase of this example was 10%.

次に、得られたナノ結晶軟磁性合金粉末を、目開き150μm、90μm、45μmのふるいを重ねた多段ふるいに通した。目開き150μmのふるいを通り、目開き90μmのふるいを通らなかった粉末を比較例5とし、同様に90μmを通り45μmを通らなかった粉末を実施例9、45μmを通った粉末を実施例10とした。   Next, the obtained nanocrystalline soft magnetic alloy powder was passed through a multistage sieve in which sieves with openings of 150 μm, 90 μm and 45 μm were stacked. The powder which passed through a 150 μm sieve and which did not pass through a 90 μm sieve was regarded as Comparative Example 5, and the powder which passed through 90 μm and did not pass 45 μm was similarly Example 9; did.

粉末粒子のアスペクト比は走査型電子顕微鏡(SEM)を用いて観察した。任意の30個の粒子について、短径の長径に対する比を測定し、30個の粒子の平均値を求めてアスペクト比とした。   The aspect ratio of the powder particles was observed using a scanning electron microscope (SEM). The ratio of the minor axis to the major axis was measured for any 30 particles, and the average value of the 30 particles was determined as the aspect ratio.

第1の実施例と同様に、圧粉磁芯を作製した後に巻線を行い、磁気特性を測定した。比透磁率の測定は、周波数1MHzで行った。またコア損失は、周波数300kHz、磁束密度50mTで行った。   As in the first embodiment, a powder magnetic core was produced and then wound, and magnetic characteristics were measured. The relative permeability was measured at a frequency of 1 MHz. The core loss was performed at a frequency of 300 kHz and a magnetic flux density of 50 mT.

Figure 0006530164
Figure 0006530164

表2に、第2の実施例におけるナノ結晶軟磁性合金粉末の結晶化度とアスペクト比および圧粉磁芯の比透磁率とコア損失を、比較例と共に示す。表2より、本発明による、粒子のアスペクト比が1.0を超え2.6以下であるナノ結晶軟磁性合金粉末を使用した圧粉磁芯は、アスペクト比が4.8である比較例と比べてコア損失が小さく、300kHzの高周波領域で良好な軟磁気特性を有していることが判る。   Table 2 shows the crystallinity and the aspect ratio of the nanocrystalline soft magnetic alloy powder in the second example, and the relative permeability and core loss of the dust core, together with the comparative example. From Table 2, according to the present invention, a powder magnetic core using a nanocrystalline soft magnetic alloy powder having an aspect ratio of particles of more than 1.0 and 2.6 or less and a comparative example having an aspect ratio of 4.8 and In comparison, core loss is small, and it can be seen that it has good soft magnetic characteristics in a high frequency region of 300 kHz.

以上述べたように、本発明は、αFe(−Si)結晶相の結晶化度を4%以上70%以下であるナノ結晶軟磁性合金粉末を使用することにより、比透磁率が高くコア損失が小さい優れた軟磁気特性を有する圧粉磁芯を得ることができる。   As described above, according to the present invention, the relative magnetic permeability is high and the core loss is high by using the nanocrystalline soft magnetic alloy powder having the crystallinity of the αFe (-Si) crystal phase of 4% or more and 70% or less. A dust core having small and excellent soft magnetic properties can be obtained.

本発明は、以上説明した実施例に限定されるものではなく、本発明の技術的思想内で当分野において通常の知識を有する者により多くの変形が可能である。   The present invention is not limited to the embodiments described above, and many modifications can be made by those skilled in the art within the technical concept of the present invention.

Claims (3)

液体急冷法により得られたアモルファス相の合金組成物を熱処理してαFe(−Si)結晶相を析出させ、αFe(−Si)結晶相の結晶化度を4%以上70%以下とし、その後に前記合金組成物を粉砕することによって粉末化し、前記粉末の粒子のアスペクト比を、1.0を超え2.6以下とすることを特徴とするナノ結晶軟磁性合金粉末の製造方法。 The alloy composition of the amorphous phase obtained by the liquid quenching method is heat-treated to precipitate the αFe (-Si) crystal phase, and the crystallinity of the αFe (-Si) crystal phase is made 4% to 70% or less. A method of producing a nanocrystalline soft magnetic alloy powder, wherein the alloy composition is pulverized by grinding, and the aspect ratio of particles of the powder is made more than 1.0 and 2.6 or less. 前記合金組成物の組成が、組成式FeSiCuで表され、
79.0≦a≦86.0、5.0≦b≦13.0、0.0≦c≦8.0、1.0≦x≦10.0、0.0≦y≦5.0、0.4≦z≦1.4および0.06≦z/x≦1.20で、
Feの一部をTi、Zr、Hf、Nb,Ta、Mo、W、Cr、Co、Ni、Al、Mn、Zn、S、Sn、As、Sb、Bi、N、O、Ca、V、Mgおよび希土類元素、貴金属元素のうち1種類以上の元素で、組成全体の3at%以下を置換し、Feとの合計が79.0at%以上、86.0at%以下である請求項に記載のナノ結晶軟磁性合金粉末の製造方法。
The composition of the alloy composition is represented by a composition formula Fe a B b Si c P x C y Cu z,
79.0 ≦ a ≦ 86.0, 5.0 ≦ b ≦ 13.0, 0.0 ≦ c ≦ 8.0, 1.0 ≦ x ≦ 10.0, 0.0 ≦ y ≦ 5.0, 0.4 ≦ z ≦ 1.4 and 0.06 ≦ z / x ≦ 1.20
A part of Fe is Ti, Zr, Hf, Nb, Ta, Mo, W, Cr, Co, Ni, Al, Mn, Zn, S, Sn, As, Sb, Bi, N, O, Ca, V, Mg and rare earth elements, at least one element among the noble metal elements, replace following 3at% of the total composition, the sum of Fe is 79.0At% or more, the nano according to claim 1 or less 86.0At% Method for producing crystalline soft magnetic alloy powder.
前記合金組成物が、薄帯であることを特徴とする請求項1または2に記載のナノ結晶軟磁性合金粉末の製造方法。 Wherein the alloy composition, the production method of the nanocrystalline soft magnetic alloy powder according to claim 1 or 2, characterized in that a ribbon.
JP2014041422A 2014-03-04 2014-03-04 Nanocrystalline soft magnetic alloy powder and dust core using the same Active JP6530164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014041422A JP6530164B2 (en) 2014-03-04 2014-03-04 Nanocrystalline soft magnetic alloy powder and dust core using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014041422A JP6530164B2 (en) 2014-03-04 2014-03-04 Nanocrystalline soft magnetic alloy powder and dust core using the same

Publications (2)

Publication Number Publication Date
JP2015167183A JP2015167183A (en) 2015-09-24
JP6530164B2 true JP6530164B2 (en) 2019-06-12

Family

ID=54257937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014041422A Active JP6530164B2 (en) 2014-03-04 2014-03-04 Nanocrystalline soft magnetic alloy powder and dust core using the same

Country Status (1)

Country Link
JP (1) JP6530164B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791679C1 (en) * 2022-06-30 2023-03-13 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Amorphous magnetic alloy based on the iron-silicon system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018167298A (en) * 2017-03-30 2018-11-01 Bizyme有限会社 METHOD FOR PRODUCING Fe-Si-B-BASED NANOCRYSTAL ALLOY
JP6460276B1 (en) * 2017-08-07 2019-01-30 Tdk株式会社 Soft magnetic alloys and magnetic parts
JP6439884B6 (en) 2018-01-10 2019-01-30 Tdk株式会社 Soft magnetic alloys and magnetic parts
CN111971761A (en) * 2018-03-29 2020-11-20 新东工业株式会社 Iron-based soft magnetic powder and method for producing same, and article comprising iron-based soft magnetic alloy powder and method for producing same
CN109576608B (en) * 2018-11-14 2020-11-10 江苏科技大学 In-situ generated cladding structure iron-based block amorphous alloy composition and preparation method thereof
CN109295401A (en) * 2018-12-11 2019-02-01 广东工业大学 A kind of new iron-based amorphous and nanocrystalline soft magnetic alloy and preparation method thereof
CN109825781B (en) * 2019-04-08 2021-02-05 东北大学 Method for continuously preparing iron-based amorphous thin strip
JP7419127B2 (en) * 2020-03-23 2024-01-22 株式会社トーキン Powder magnetic core and its manufacturing method
JP7424164B2 (en) * 2020-03-30 2024-01-30 Tdk株式会社 Soft magnetic alloys, magnetic cores, magnetic components and electronic equipment
JP7207551B2 (en) 2020-06-19 2023-01-18 Jfeスチール株式会社 Iron-based powder for dust core, dust core, and method for producing dust core
CN115961203B (en) * 2022-12-31 2024-05-24 创明(韶关)绿色能源材料技术研究院有限公司 Ultralow-aluminum nanocrystalline master alloy and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213331A (en) * 2002-01-25 2003-07-30 Alps Electric Co Ltd METHOD FOR MANUFACTURING SOFT MAGNETIC Fe ALLOY, AND SOFT MAGNETIC Fe ALLOY
JP4638310B2 (en) * 2005-09-16 2011-02-23 Necトーキン株式会社 Amorphous soft magnetic alloy pulverized powder manufacturing method, amorphous soft magnetic alloy pulverized powder, and compacted magnetic core
JP5445888B2 (en) * 2005-09-16 2014-03-19 日立金属株式会社 Soft magnetic alloy, method for producing the same, and magnetic component
WO2008133302A1 (en) * 2007-04-25 2008-11-06 Hitachi Metals, Ltd. Soft magnetic thin strip, process for production of the same, magnetic parts, and amorphous thin strip
JP5305126B2 (en) * 2007-04-25 2013-10-02 日立金属株式会社 Soft magnetic powder, method of manufacturing a dust core, dust core, and magnetic component
WO2010095496A1 (en) * 2009-02-20 2010-08-26 アルプス・グリーンデバイス株式会社 Compressed powder core
WO2011122589A1 (en) * 2010-03-29 2011-10-06 日立金属株式会社 Initial ultrafine crystal alloy, nanocrystal soft magnetic alloy and method for producing same, and magnetic component formed from nanocrystal soft magnetic alloy
TWI441929B (en) * 2011-01-17 2014-06-21 Alps Green Devices Co Ltd Fe-based amorphous alloy powder, and a powder core portion using the Fe-based amorphous alloy, and a powder core
JP6041207B2 (en) * 2012-12-27 2016-12-07 日立金属株式会社 Nanocrystalline soft magnetic alloy and magnetic component using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791679C1 (en) * 2022-06-30 2023-03-13 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Amorphous magnetic alloy based on the iron-silicon system

Also Published As

Publication number Publication date
JP2015167183A (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP6530164B2 (en) Nanocrystalline soft magnetic alloy powder and dust core using the same
JP6662436B2 (en) Manufacturing method of dust core
JP5537534B2 (en) Fe-based nanocrystalline alloy powder and manufacturing method thereof, and dust core and manufacturing method thereof
JP7132231B2 (en) Powder magnetic core manufacturing method, powder magnetic core and inductor
CN111446057B (en) Soft magnetic material and method for producing same
JP5333794B2 (en) Fe-based soft magnetic alloy and dust core using the Fe-based soft magnetic alloy
KR101470513B1 (en) Soft Magnetic Cores Having Excellent DC Biased Characteristics in High Current and Core Loss Characteristics, and Manufacturing Methods thereof
TWI680192B (en) Soft magnetic alloy and magnetic parts
JP6088192B2 (en) Manufacturing method of dust core
CN108376598B (en) Soft magnetic alloy and magnetic component
JP6101034B2 (en) Manufacturing method of dust core
JP6842824B2 (en) Manufacturing method of metal soft magnetic alloy and magnetic core
WO2011016275A1 (en) Fe-based amorphous alloy, dust core formed using the fe-based amorphous alloy, and dust core with embedded coil
KR102031183B1 (en) Soft magnetic alloy and magnetic device
CN111093860B (en) Fe-based nanocrystalline alloy powder, method for producing same, Fe-based amorphous alloy powder, and magnetic core
JP2016003366A (en) Soft magnetic alloy powder, dust magnetic core using the powder and production method of the magnetic core
JPS63304603A (en) Green compact of fe soft-magnetic alloy and manufacture thereof
TW201827620A (en) Soft magnetic alloy and magnetic device
JP6314020B2 (en) Powder magnetic core using nanocrystalline soft magnetic alloy powder and manufacturing method thereof
CN109628845B (en) Soft magnetic alloy and magnetic component
JP6898057B2 (en) Powder magnetic core
JP2009147252A (en) Compound magnetic material and method of manufacturing thereof
JP7148876B2 (en) Amorphous alloy ribbon, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
JP6168382B2 (en) Manufacturing method of dust core
JP7524664B2 (en) Fe-based alloy composition, powder and magnetic core of the Fe-based alloy composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170209

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190516

R150 Certificate of patent or registration of utility model

Ref document number: 6530164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250