Nothing Special   »   [go: up one dir, main page]

JP6519154B2 - Daylighting system - Google Patents

Daylighting system Download PDF

Info

Publication number
JP6519154B2
JP6519154B2 JP2014236918A JP2014236918A JP6519154B2 JP 6519154 B2 JP6519154 B2 JP 6519154B2 JP 2014236918 A JP2014236918 A JP 2014236918A JP 2014236918 A JP2014236918 A JP 2014236918A JP 6519154 B2 JP6519154 B2 JP 6519154B2
Authority
JP
Japan
Prior art keywords
light
face
paraboloid
focal point
elliptical arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014236918A
Other languages
Japanese (ja)
Other versions
JP2016100219A (en
Inventor
口 幸 夫 谷
口 幸 夫 谷
口 竜 二 堀
口 竜 二 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2014236918A priority Critical patent/JP6519154B2/en
Publication of JP2016100219A publication Critical patent/JP2016100219A/en
Application granted granted Critical
Publication of JP6519154B2 publication Critical patent/JP6519154B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)

Description

本発明は、自然光を積極的に採光に利用する採光システムに関する。   The present invention relates to a daylighting system that actively uses natural light for daylighting.

自然光を積極的に採光に利用することで、二酸化炭素の発生量を削減して、省エネルギー化を図る技術が注目を浴びている。
この技術の一つとして、外光を屋内の所定の空間まで導光する光ダクトが知られている。光ダクトは、屋内に設けた光伝搬路内を光が伝搬する際に、次第に光量が減衰するという問題がある。そこで、特許文献1では、光ダクトの曲がり部の形状を工夫させることで、光ダクトの内面での光の反射回数を減らして、光の減衰を抑えるようにしている。
Technologies that aim to save energy by reducing the amount of carbon dioxide generated by actively using natural light for daylighting are drawing attention.
As one of the techniques, an optical duct for guiding external light to a predetermined space indoors is known. The light duct has a problem that the amount of light gradually attenuates when the light propagates in the light propagation path provided indoors. So, in patent document 1, the frequency | count of reflection of the light in the inner surface of an optical duct is reduced by devising the shape of the bending part of an optical duct, and attenuation of light is suppressed.

特開平4−271303号公報JP-A-4-271303

しかしながら、特許文献1の光ダクトは、曲がり部が平面形状になっており、曲がり部で反射された光のほとんどは、光ダクトの内面でさらに反射されることになり、その際に光量が減衰してしまう。   However, in the light duct of Patent Document 1, the bending portion has a planar shape, and most of the light reflected by the bending portion is further reflected by the inner surface of the light duct, and the light quantity is attenuated at that time. Resulting in.

すなわち、特許文献1の光ダクトは、光ダクト内を伝搬する光の反射回数を削減できることはできても、光ダクトの内面で複数回の反射が起きる可能性が高く、光の減衰を抑制できるとは限らない。   That is, although the light duct of Patent Document 1 can reduce the number of reflections of light propagating in the light duct, there is a high possibility that a plurality of reflections may occur on the inner surface of the light duct and can suppress light attenuation. Not necessarily.

本発明が解決しようとする課題は、採り込んだ光の減衰を抑制可能な採光システムを提供することである。   The problem to be solved by the present invention is to provide a daylighting system capable of suppressing the attenuation of the introduced light.

上記の課題を解決するために、本発明の一態様では、光を採り込む採光部と、前記採光部で採り込んだ光を所定方向に伝搬させる第1導光部と、前記採光部で採り込んだ光を所定の空間に導く屈曲部と、を備え、前記屈曲部は、前記採光部で採り込んだ光の進行方向を変化させる曲面反射部を有し、前記曲面反射部は、楕円弧面、または楕円弧面上にそれぞれの端部が位置する複数の折れ面を有し、前記第1導光部は、楕円弧面、または楕円弧面上にそれぞれの端部が位置する複数の折れ面を有する前記曲面反射部を有しておらず、前記楕円弧面の長軸方向と前記屈曲部の、光が出射される側の末端における光の通過領域の断面である出射端面の法線方向との為す角度は、前記第1導光部の、光が出射される側の末端における光の通過領域の断面である出射端面の法線方向と前記屈曲部の出射端面の法線方向との為す角度よりも小さく、前記楕円弧面の長軸上の第1焦点および第2焦点のうち、前記楕円弧面により近い前記第1焦点は、前記第1導光部または前記屈曲部の内部に位置し、かつ、前記第2焦点は、前記屈曲部の出射端面よりも光の進行方向後方に配置される採光システムが提供される。 In order to solve the above-described problems, in one aspect of the present invention, a light receiving unit for introducing light, a first light guide unit for propagating the light introduced by the light receiving unit in a predetermined direction, and the light receiving unit And a bent portion for guiding the light into the predetermined space, wherein the bent portion has a curved reflecting portion for changing the traveling direction of the light taken in by the light collecting portion, and the curved reflecting portion has an elliptical arc surface Or a plurality of broken surfaces whose ends are located on an elliptical arc surface, and the first light guide has an elliptical arc surface, or a plurality of broken surfaces where each end is located on an elliptical arc surface The curved surface reflection portion is not provided, and a long axis direction of the elliptical arc surface and a normal direction of an emission end face which is a cross section of a light passing region at an end on the light emission side of the bent portion angle, said first light guide portion, the light passage area of the light at the end of the side to be emitted Face a is rather smaller than the angle formed between the normal direction of the normal direction and the exit end face of the bent portion of the exit end face, of the first focal point and second focal point on the long axis of the elliptical arc surface, said elliptical arc surface The first focal point closer to the light source is located inside the first light guiding portion or the bending portion, and the second focal point is disposed behind the light emitting facet of the bending portion with respect to the light traveling direction A system is provided.

前記採光部で採り込んだ光を所定方向に伝搬させる第1導光部を備えてもよく、
前記屈曲部は、前記第1導光部の出射端面から出射された光の進行方向を変化させ、
前記楕円弧面の長軸方向と前記屈曲部の出射端面の法線方向との為す角度は、前記第1導光部の出射端面の法線方向と前記屈曲部の出射端面の法線方向との為す角度よりも小さくてもよい。
The first light guiding unit may be provided to propagate the light introduced by the light collecting unit in a predetermined direction,
The bending portion changes the traveling direction of light emitted from the emission end surface of the first light guide portion,
The angle between the major axis direction of the elliptical arc surface and the normal direction of the exit end face of the bent portion is the normal direction of the exit end face of the first light guide portion and the normal direction of the exit end face of the bent portion. It may be smaller than the angle to be made.

前記楕円弧面の長軸上の第1焦点および第2焦点のうち、前記楕円弧面により近い前記第1焦点は、前記第1導光部または前記屈曲部の内部に位置してもよい。   The first focal point closer to the elliptical arc surface among the first focal point and the second focal point on the long axis of the elliptical arc surface may be located inside the first light guiding portion or the bending portion.

前記第1焦点は、前記第1導光部の出射端面上に位置してもよい。   The first focal point may be located on the emission end face of the first light guide.

前記第2焦点は、前記屈曲部の出射端面よりも光の進行方向後方に配置されてもよい。   The second focal point may be disposed rearward of the light emitting surface with respect to the light emitting end surface of the bending portion.

前記楕円弧面は、楕円面の長軸から短軸までの1/4の面積を有し、
前記屈曲部の出射端面は、楕円面の短軸に接する領域であってもよい。
The elliptical arc surface has an area of 1⁄4 from the major axis to the minor axis of the ellipsoid,
The output end face of the bent portion may be a region in contact with the minor axis of the elliptical surface.

前記楕円弧面の短軸に対する長軸の比は√2以上であってもよい。   The ratio of the major axis to the minor axis of the elliptical arc may be √2 or more.

本発明の他の一態様では、光を採り込む採光部と、前記採光部で採り込んだ光を所定の空間に導く屈曲部と、を備え、前記採光部は、光が入射される側に設けられた入光側面と、光が出射される側に設けられた出光側面と、を有する採光パネルを備え、前記採光パネルを断面視したときに、前記入光側面は第1面と、当該第1面と非平行な第2面とが交互に並ぶことにより形成されており、前記屈曲部は、前記採光部で採り込んだ光の進行方向を変化させる曲面反射部を有し、前記曲面反射部は、放物面、または放物面上にそれぞれの端部が位置する複数の折れ面を有し、前記放物面の軸線方向と前記屈曲部の、光が出射される側の末端における光の通過領域の断面である出射端面の法線方向との為す角度は、放物面、または放物面上にそれぞれの端部が位置する複数の折れ面を有する反射部を有しない領域と前記屈曲部との境界面である、前記屈曲部の光が入射される側の末端における光の通過領域の断面の法線方向と前記屈曲部の出射端面の法線方向との為す角度よりも小さい採光システムが提供される。また、本発明の他の一態様では、光を採り込む採光部と、 前記採光部で採り込んだ光を所定の空間に導く屈曲部と、を備え、前記採光部は、光透過性をもつ透光性基材と、当該透光性基材内に設けられた複数の反射材と、を有する採光パネルを備え、前記採光パネルを断面視したときに、複数の前記反射材は、透光性基材の光が出射される側の側面に平行な面内を延びる一軸方向に沿って配列され、かつ、それぞれが前記一軸方向とは異なる向きに傾斜しており、前記屈曲部は、前記採光部で採り込んだ光の進行方向を変化させる曲面反射部を有し、前記曲面反射部は、放物面、または放物面上にそれぞれの端部が位置する複数の折れ面を有し、前記放物面の軸線方向と前記屈曲部の、光が出射される側の末端における光の通過領域の断面である出射端面の法線方向との為す角度は、放物面、または放物面上にそれぞれの端部が位置する複数の折れ面を有する反射部を有しない領域と前記屈曲部との境界面である、前記屈曲部の光が入射される側の末端における光の通過領域の断面の法線方向と前記屈曲部の出射端面の法線方向との為す角度よりも小さい採光システムが提供される。 According to another aspect of the present invention, there is provided a light collecting unit for introducing light, and a bending unit for guiding the light collected by the light collecting unit to a predetermined space, and the light collecting unit is provided on the light incident side. A light receiving panel having a light incident side surface provided and a light emitting side surface provided on a side from which light is emitted, wherein the light incident side surface is a first surface when the light incident panel is viewed in cross section The curved surface is formed by alternately arranging the first surface and the non-parallel second surface, and the bent portion has a curved surface reflecting portion for changing the traveling direction of light taken in by the light collecting portion, and the curved surface The reflecting portion has a paraboloid surface or a plurality of bent surfaces on which the respective end portions are located on the paraboloid surface, and an end of the axis direction of the paraboloid surface and the bent portion on the side where light is emitted. the angle formed between the normal direction of the exit end face is a cross-section of the passing area of light in, it parabolic or paraboloidal on Is a boundary surface between the bent portion and having no region reflecting portion having a plurality of segmental surfaces which the end of the record is located, the light of the bent portion of the cross section of the passage area of the light at the end of the side incident A daylighting system is provided that is smaller than the angle between the normal direction and the normal direction of the exit end face of the bend. Further, according to another aspect of the present invention, there is provided a light collecting unit for taking in light, and a bending unit for guiding the light taken in at the light collecting unit to a predetermined space, and the light collecting unit has light transparency. A lighting panel comprising: a translucent substrate; and a plurality of reflectors provided in the translucent substrate, wherein the plurality of reflectors are translucent when the daylighting panel is viewed in cross section Are arranged along a uniaxial direction extending in a plane parallel to the side surface of the light emitting substrate from which light is emitted, and each is inclined in a direction different from the uniaxial direction, and the bent portion is The curved surface reflecting portion has a curved surface reflecting portion for changing the traveling direction of light taken in by the light collecting portion, and the curved surface reflecting portion has a plurality of bending surfaces in which each end is located on a paraboloid or paraboloid. The axial direction of the paraboloid and the cross section of the light passage area at the end of the bending portion on the side where the light is emitted The angle between the light emitting end face and the normal direction of the light emitting end face is a paraboloid or an interface between a region without a reflecting portion having a plurality of broken surfaces on which respective ends are located and the bent portion. A light collecting system is provided which is smaller than the angle between the normal direction of the cross section of the light passage region at the end of the side where the light of the bent portion is incident and the normal direction of the light emitting end face of the bent portion. .

前記採光部で採り込んだ光を所定方向に伝搬させる第1導光部を備え、
前記屈曲部は、前記第1導光部の出射端面から出射された光の進行方向を変化させ、
前記放物面の軸線方向と前記屈曲部の出射端面の法線方向との為す角度は、前記第1導光部の出射端面の法線方向と前記屈曲部の出射端面の法線方向との為す角度よりも小さくてもよい。
It has a first light guiding portion for propagating the light introduced by the light collecting portion in a predetermined direction,
The bending portion changes the traveling direction of light emitted from the emission end surface of the first light guide portion,
The angle between the axial direction of the paraboloid and the normal direction of the exit end face of the bent portion is the normal direction of the exit end face of the first light guide portion and the normal direction of the exit end face of the bent portion. It may be smaller than the angle to be made.

前記放物面の焦点は、前記第1導光部または前記屈曲部の内部に位置してもよい。   The focal point of the paraboloid may be located inside the first light guide or the bend.

前記放物面の焦点は、前記第1導光部の出射端面上に位置してもよい。   The focal point of the paraboloid may be located on the exit end face of the first light guide.

前記屈曲部の出射端面から出射された光を所定方向に導光する第2導光部を備えてもよい。   You may provide the 2nd light guide part which light-guides the light radiate | emitted from the output end surface of the said bending part to predetermined direction.

前記採光部は、光を採り込む入射面を有し、
前記曲面反射部は、前記屈曲部における前記入射面側の面の内側に設けられてもよい。
The lighting unit has an entrance surface for taking in light,
The curved surface reflection portion may be provided inside a surface on the incident surface side in the bending portion.

本発明によれば、採り込んだ光の減衰を効率よく抑制できる。   According to the present invention, attenuation of introduced light can be efficiently suppressed.

採光システムが取り付けられた建物を模式的に示す縦断面図。The longitudinal cross-sectional view which shows typically the building to which the daylighting system was attached. 図1の採光システムの要部を示す断面図。Sectional drawing which shows the principal part of the lighting system of FIG. 第2導光部を設けた採光システムを備えた建物を模式的に示す縦断面図。The longitudinal cross-sectional view which shows typically the building provided with the lighting system which provided the 2nd light guide part. 楕円面の1/4の長さの楕円弧面を有する例を示す図。The figure which shows the example which has an elliptical arc surface of 1/4 length of an elliptical surface. 採光パネルの内部構造の一例を示す断面図。Sectional drawing which shows an example of the internal structure of a daylighting panel. 採光パネルの内部構造の他の一例を示す断面図。Sectional drawing which shows another example of the internal structure of a daylighting panel. 第2の実施形態による屈曲部の断面形状を示す図。The figure which shows the cross-sectional shape of the bending part by 2nd Embodiment. 屈曲部の曲面反射部を曲がりがほとんどない傾斜面とした一比較例の採光システム1を示す図。The figure which shows the daylighting system 1 of one comparative example which made the curved surface reflection part of a bending part the inclined surface which hardly bends. (a)〜(d)はシミュレーション結果を示す図。(A)-(d) is a figure which shows a simulation result.

以下、図面を参照して本発明の一実施の形態について説明する。なお、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。図1〜図9は、本発明による一実施の形態を説明するための図である。このうち、図1は採光システム1が取り付けられた建物2を模式的に示す縦断面図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings attached to the present specification, for the sake of easy illustration and understanding, the scale, the dimensional ratio in the vertical and horizontal directions, etc. are appropriately changed from those of the actual one and exaggerated. 1 to 9 are diagrams for explaining an embodiment according to the present invention. Among these, FIG. 1 is a longitudinal cross-sectional view which shows typically the building 2 to which the daylighting system 1 was attached.

なお、本明細書において、「パネル」、「板」、「シート」、「フィルム」等の用語は、呼称の違いのみに基づいて、それぞれ区別されるものではない。したがって、例えば、「パネル」は板、シート、フィルムとも呼ばれ得るような部材も含む概念である。一具体例として、「採光パネル」には、「採光板」、「採光シート」、「採光フィルム」等と呼ばれる部材も含まれる。   In the present specification, the terms "panel", "plate", "sheet", "film" and the like are not distinguished from each other based on only the difference in designation. Thus, for example, "panel" is a concept including members such as plates, sheets, and films. As one specific example, the “light collecting panel” includes members called “light collecting plate”, “light collecting sheet”, “light collecting film” and the like.

図1の採光システム1は、建物2の建設時、あるいは建設後に取り付けられるものであって、光を取り込んで所定の空間、例えば建物2内の部屋に導くためのものである。   The lighting system 1 of FIG. 1 is attached at the time of construction of the building 2 or after construction, and is for taking in light and guiding it to a predetermined space, for example, a room in the building 2.

図1の採光システム1は、光を採り込む採光部3と、採光部3から出射された光を所定方向に伝搬させる第1導光部4と、第1導光部4から出射された光の進行方向を変化させる屈曲部5と、を備えている。図1の例では、建物2の外壁に沿って、採光部3と第1導光部4が配置され、第1導光部4の出射端面に屈曲部5が接続され、屈曲部5の出射端面5aは拡散部材6を介して、あるいは介さずに建物2の外壁に接合されている。そして、採光部3で採光された光は、第1導光部4と屈曲部5を介して、建物2内の例えば部屋に導かれるようになっている。   The daylighting system 1 of FIG. 1 includes a daylighting unit 3 for taking in light, a first light guiding unit 4 for propagating light emitted from the daylighting unit 3 in a predetermined direction, and light emitted from the first light guiding unit 4 And a bending portion 5 for changing the traveling direction of In the example of FIG. 1, the daylighting unit 3 and the first light guiding unit 4 are disposed along the outer wall of the building 2, the bending unit 5 is connected to the light emitting end surface of the first light guiding unit 4, and the light emission of the bending unit 5 The end face 5 a is joined to the outer wall of the building 2 with or without the diffusion member 6. The light collected by the light collecting unit 3 is guided to, for example, a room in the building 2 through the first light guide 4 and the bending portion 5.

図1の採光システム1は、採光部3で採光した光を、例えば室内照明光として用いることができる。すなわち、図1の採光システム1を用いることにより、省エネルギー化を図ることができ、二酸化炭素の削減にも貢献しうる。   The light collection system 1 of FIG. 1 can use the light collected by the light collection unit 3 as, for example, indoor illumination light. That is, by using the daylighting system 1 of FIG. 1, energy saving can be achieved, which can also contribute to the reduction of carbon dioxide.

図2は図1の採光システム1の要部を示す断面図であり、第1導光部4と屈曲部5の光伝搬方向に沿った断面構造を示している。第1導光部4と屈曲部5はいずれも、中空の筒状部材であり、第1導光部4と屈曲部5の中空部分を光が伝搬するようにしている。光の伝搬途中で光が過度に減衰しないように、第1導光部4と屈曲部5の内面は、反射率の高い材料で形成されている。第1導光部4と屈曲部5の中空部分の断面形状は特に制限はなく、例えば矩形でも円形でもよいし、その他の形状でもよい。   FIG. 2 is a cross-sectional view showing the main part of the light collecting system 1 of FIG. 1, and shows a cross-sectional structure along the light propagation direction of the first light guiding part 4 and the bending part 5. Each of the first light guide 4 and the bending portion 5 is a hollow cylindrical member, and light is allowed to propagate through the hollow portions of the first light guiding portion 4 and the bending portion 5. The inner surfaces of the first light guide portion 4 and the bending portion 5 are formed of a material having a high reflectance so that light is not excessively attenuated during propagation of the light. The cross-sectional shape of the hollow portion of the first light guide 4 and the bending portion 5 is not particularly limited, and may be, for example, rectangular or circular, or another shape.

採光部3は、季節や時間帯に応じて入射方向が変動する光を安定して採り込むために設けられている。採光部3は、光、特に外光を採り込むための採光パネル21を有する。採光パネル21で取り込まれる光は、異なる波長帯域に属する複数の成分を含む光であり、典型的には太陽光に代表される自然光である。第1導光部4と屈曲部5は、中空の光ダクトを構成しており、屈曲部5の出射端面5a側は、建物2の外壁に設けられた孔に隙間なく接合されている。なお、屈曲部5の出射端面5aを建物2の内壁面に面一に配置してもよいし、内壁面よりも室内側に設けてもよい。この場合、光ダクトの一部が室内に配置されることになる。   The daylighting unit 3 is provided to stably take in light whose incident direction changes according to the season or time zone. The daylighting unit 3 has a daylighting panel 21 for taking in light, particularly ambient light. The light taken in by the daylighting panel 21 is light including a plurality of components belonging to different wavelength bands, and is typically natural light represented by sunlight. The first light guiding portion 4 and the bending portion 5 constitute a hollow light duct, and the emission end face 5 a side of the bending portion 5 is joined to the hole provided in the outer wall of the building 2 without a gap. The emission end face 5 a of the bending portion 5 may be flush with the inner wall surface of the building 2 or may be provided indoors more than the inner wall surface. In this case, a part of the light duct will be disposed in the room.

図2の例では、屈曲部5の出射端面5aに拡散部材6を配置して、屈曲部5の出射端面5aから出射された光を拡散させるようにしているが、拡散部材6は必須の構成ではなく、第1導光部4の出射端面から出射した光を直接室内に射出してもよいし、拡散部材6以外の光学部材を介して室内に光を射出してもよい。ただし、屈曲部5の出射端面5aが露出していると、空中の浮遊物等の異物が屈曲部5の内部に入り込み、採光性能を劣化させる要因になりうる。よって、拡散部材6や、透明基材により、屈曲部5の出射端面5aを封止するのが望ましい。   In the example of FIG. 2, the diffusion member 6 is disposed at the emission end face 5 a of the bending portion 5 so as to diffuse the light emitted from the emission end face 5 a of the bending portion 5. Instead, the light emitted from the emission end face of the first light guide 4 may be directly emitted into the room, or the light may be emitted into the room via an optical member other than the diffusion member 6. However, when the emitting end face 5a of the bending portion 5 is exposed, foreign matter such as floating matter in the air may enter the inside of the bending portion 5 and cause deterioration of the light collecting performance. Therefore, it is desirable to seal the emitting end face 5 a of the bending portion 5 by the diffusion member 6 or the transparent base material.

本実施形態による採光システム1における屈曲部5の出射端面5aは、建物1の外壁だけでなく、窓に取り付けることも可能である。これにより、窓の一部を通して、室内の所定の方向に外光を導くことができる。特に、北側の窓の場合、太陽光が直接入射されず、外光を取り込める量が限られているため、本実施形態による採光システム1を北側の窓に設けることで、より多くの光量を取り込めるようになる。   It is also possible to attach not only the outer wall of the building 1 but also the window to the output end face 5a of the bending portion 5 in the light collecting system 1 according to the present embodiment. Thus, ambient light can be guided in a predetermined direction in the room through a part of the window. In particular, in the case of the window on the north side, sunlight is not directly incident, and the amount capable of taking in external light is limited. Therefore, providing the daylighting system 1 according to this embodiment to the window on the north side can capture more light. It will be.

図1および図2では、第1導光部4からの光が屈曲部5に入射される例を示しているが、第1導光部4と屈曲部5は一体的に成形してもよい。すなわち、屈曲部5の採光部3側が一方向に延びて採光部3に接続されていてもよい。このように、第1導光部4という用語は機能的に表現したものであり、必ずしも第1導光部4と採光部3が別体で配置されているとは限らない。   Although the example from which the light from the 1st light guide part 4 injects into the bending part 5 is shown in FIG. 1 and FIG. 2, the 1st light guide part 4 and the bending part 5 may be shape | molded integrally. . That is, the light receiving portion 3 side of the bending portion 5 may extend in one direction and be connected to the light receiving portion 3. As described above, the term first light guide 4 is functionally expressed, and the first light guide 4 and the light collecting unit 3 may not necessarily be separately provided.

図2の採光システム1の特徴の一つは、屈曲部5の構造である。屈曲部5は、採光部3の採光パネル21側の面の内側に曲面反射部7を有する。すなわち、曲面反射部7は、建物2から遠い側の屈曲部5の湾曲した面の内側の面に設けられている。この曲面反射部7は、楕円弧面、または楕円弧面にそれぞれの端部が位置する複数の折れ面を有する。曲面反射部7は、採光部3からの光を正反射すなわち鏡面反射する面である。この面を複数の折れ面で形成する場合も、近似的に楕円弧面と見なせるため、以下では、総称して、楕円弧面あるいは楕円弧鏡面と呼ぶ。   One of the features of the lighting system 1 of FIG. 2 is the structure of the bending portion 5. The bending portion 5 has a curved surface reflection portion 7 on the inside of the surface of the light collection portion 3 on the light collection panel 21 side. That is, the curved surface reflection part 7 is provided in the surface inside the curved surface of the bending part 5 of the side far from the building 2. The curved reflecting portion 7 has an elliptical arc surface or a plurality of broken surfaces whose ends are located on the elliptical arc surface. The curved surface reflection unit 7 is a surface that specularly reflects the light from the light reception unit 3. Even when this surface is formed of a plurality of broken surfaces, it can be regarded as an approximately elliptical arc surface, so hereinafter, it will be generically called an elliptical arc surface or an elliptical arc mirror surface.

図2は、楕円面を長軸8と短軸9を通る面で切断して得られる楕円10を図示している。屈曲部5の楕円弧面の断面は、図2に破線で示す楕円10の一部(例えば、楕円10の1/4の楕円弧10a)である。楕円10は、図2に示すように、長軸8上に位置する2つの焦点を有する。以下では、これら焦点を第1焦点11および第2焦点12と呼ぶ。   FIG. 2 illustrates an ellipse 10 obtained by cutting an ellipsoid with a plane passing through the major axis 8 and the minor axis 9. The cross section of the elliptical arc of the bending portion 5 is a part of the ellipse 10 shown by a broken line in FIG. 2 (e.g., an elliptic arc 10a of 1⁄4 of the ellipse 10). The ellipse 10 has two foci located on the major axis 8 as shown in FIG. Hereinafter, these foci are referred to as a first foci 11 and a second foci 12.

図2に矢印線で示すように、楕円10の第1焦点11を通過する光は、楕円弧10a上で反射されて、第2焦点12を通過するという性質がある。よって、楕円10の短軸9に対する長軸8の比で表される楕円率を十分に長くすれば、第1焦点11を通過して楕円弧10a上で反射された光は、ほぼ平行光としてみなすことができる。すなわち、図2では、矢印線y1〜y3は平行光ではないが、楕円率が十分に大きければ、矢印線y1〜y3はほぼ平行光になる。   As indicated by arrow lines in FIG. 2, light passing through the first focal point 11 of the ellipse 10 has the property of being reflected on the elliptic arc 10 a and passing through the second focal point 12. Therefore, if the ellipticity represented by the ratio of the major axis 8 to the minor axis 9 of the ellipse 10 is made sufficiently long, the light passing through the first focal point 11 and reflected on the elliptical arc 10a is regarded as substantially parallel light be able to. That is, in FIG. 2, the arrow lines y1 to y3 are not parallel light, but if the ellipticity is sufficiently large, the arrow lines y1 to y3 become substantially parallel light.

本実施形態は、屈曲部5の出射端面5aから出射される光が平行光に近づくように、屈曲部5の曲面反射部7の断面を楕円弧10aまたは楕円弧10aに近似される形状にしている。楕円弧10aに近似される形状とは、屈曲部5の断面を、複数の折れ線をつなぎ合わせて構成し、各折れ線の角部が楕円弧10a状に位置するようにした形状である。   In the present embodiment, the cross section of the curved surface reflection portion 7 of the bending portion 5 is shaped to approximate the elliptical arc 10 a or the elliptic arc 10 a so that the light emitted from the emission end face 5 a of the bending portion 5 approaches parallel light. The shape approximate to the elliptic arc 10a is a shape in which the cross section of the bending portion 5 is formed by connecting a plurality of broken lines, and the corner of each broken line is positioned in the shape of the elliptic arc 10a.

なお、曲面反射部7の全体が楕円弧面である必要はなく、曲面反射部7の一部のみが楕円弧面であってもよい。ただし、以下では、説明の簡略化のために、曲面反射部7の全体が楕円弧10a形状である例を説明する。   In addition, the whole curved surface reflection part 7 does not need to be an elliptical arc surface, and only a part of curved surface reflection part 7 may be an elliptical arc surface. However, in the following, in order to simplify the description, an example in which the entire curved surface reflection portion 7 has an elliptical arc 10a shape will be described.

図2に示すように、第1焦点11を通過して楕円弧10aで反射された光は第2焦点12を通過するが、第2焦点12を通過する光は、完全な平行光ではない。そこで、本実施形態では、楕円弧10aの長軸8の方向と屈曲部5の出射端面5aの法線方向との為す角度が、第1導光部4の出射端面の法線方向と屈曲部5の出射端面5aの法線方向との為す角度よりも小さいという条件を満たすようにしている。この条件を満たせば、楕円弧10aで反射された光は、より平行光に近い方向に伝搬して屈曲部5の出射端面5aから出射されることになる。   As shown in FIG. 2, the light passing through the first focal point 11 and reflected by the elliptic arc 10a passes through the second focal point 12, but the light passing through the second focal point 12 is not a perfect parallel beam. Therefore, in the present embodiment, the angle between the direction of the major axis 8 of the elliptical arc 10a and the normal direction of the emitting end face 5a of the bending portion 5 is the normal direction of the emitting end face of the first light guide 4 and the bending portion 5 It satisfies the condition of being smaller than the angle made with the normal direction of the emitting end face 5a. If this condition is satisfied, the light reflected by the elliptic arc 10a propagates in a direction closer to parallel light and is emitted from the emission end face 5a of the bending portion 5.

本実施形態では、第1焦点11を第1導光部4または屈曲部5の内部に設けている。この場合、屈曲部5の曲面反射部7が理想的な楕円弧面であれば、第1焦点11を通過した光は、楕円弧面で反射されて第2焦点12を通過する。よって、楕円弧10aの短軸9に対する長軸8の比が十分に大きければ、屈曲部5の出射端面5aから出射される光はほぼ平行光になる。これにより、屈曲部5の出射端面5aを建物の外壁や窓に設けた場合には、屋内の奥の方まで外光を届かせることができる。また、出射端面5aの法線方向を予め定めた方向に向けることで、屋内の狙った方向を外光にて選択的に照明することもできる。   In the present embodiment, the first focal point 11 is provided inside the first light guiding portion 4 or the bending portion 5. In this case, if the curved surface reflection portion 7 of the bending portion 5 is an ideal elliptical arc surface, the light passing through the first focal point 11 is reflected by the elliptical arc surface and passes through the second focal point 12. Therefore, if the ratio of the major axis 8 to the minor axis 9 of the elliptic arc 10a is sufficiently large, the light emitted from the emission end face 5a of the bending portion 5 becomes substantially parallel light. Thereby, when the outgoing end face 5a of the bending part 5 is provided in the outer wall or window of a building, external light can be made to reach the back of indoors. In addition, by directing the normal direction of the emission end face 5a to a predetermined direction, it is possible to selectively illuminate the indoor target direction with the outside light.

屈曲部5の楕円弧面で反射された光がほぼ平行光となるということは、屈曲部5の楕円弧面で反射された光がさらに反射せずに屈曲部5から出射される可能性が高いことを意味する。例えば、図2において、第2焦点12が屈曲部5の出射端面5aを通過した先にあれば、楕円弧面で反射された光は、第2焦点12に向かって進行するため、屈曲部5の内面に反射することなく、屈曲部5から出射する。これにより、本実施形態による屈曲部5によれば、光の反射回数を削減でき、屈曲部5の内面での反射による光の減衰を最小限に抑えることができる。   The fact that the light reflected by the elliptical arc of the bending portion 5 is substantially parallel light means that the light reflected by the elliptical arc of the bending portion 5 is likely to be emitted from the bending portion 5 without being further reflected. Means For example, in FIG. 2, if the second focal point 12 is ahead of the exit end face 5 a of the bending portion 5, the light reflected by the elliptical arc surface travels toward the second focal point 12. The light is emitted from the bending portion 5 without being reflected on the inner surface. Thereby, according to the bending part 5 by this embodiment, the frequency | count of reflection of light can be reduced and attenuation of the light by the reflection in the inner surface of the bending part 5 can be minimized.

第1導光部4の出射端面から出射される光は、必ずしも第1焦点11を通過するとは限らない。第1焦点11を通過せずに楕円弧面に到達した光は、第2焦点12を通過しないことになり、屈曲部5から出射される光の平行化を妨げる要因となりうる。ただし、第1焦点11を第1導光部4または屈曲部5の内部に設定しておけば、第1導光部4の出射端面から出射される光はいずれも、多少の差はあっても第1焦点11の近傍を通過することになり、楕円弧面で反射された後に、第2焦点12の近傍を通過する。よって、屈曲部5から出射される光はおおむね平行光となる。   The light emitted from the emission end face of the first light guide 4 does not necessarily pass through the first focal point 11. The light that has reached the elliptical arc surface without passing through the first focal point 11 will not pass through the second focal point 12 and may be a factor that hinders the collimation of the light emitted from the bending portion 5. However, if the first focal point 11 is set inside the first light guiding portion 4 or the bending portion 5, there is a slight difference in all the light emitted from the light emitting end face of the first light guiding portion 4. Also pass near the first focal point 11 and pass near the second focal point 12 after being reflected by the elliptical arc surface. Therefore, the light emitted from the bending portion 5 is substantially parallel light.

一方、第2焦点12は、屈曲部5の内部に設けてもよいし、屈曲部5の出射端面5aより光の進行方向後方側に設けてもよい。第2焦点12が第1焦点11よりも遠い場所にある程、屈曲部5から出射される光をより平行化させることが可能となるが、その反面、楕円弧面のサイズが大きくなるため、屈曲部5から出射させる光をどの程度平行化する必要があるかというニーズと、楕円弧面のサイズとのトレードオフにて、第2焦点12の位置を設定すればよい。   On the other hand, the second focal point 12 may be provided inside the bending portion 5 or may be provided on the rear side in the traveling direction of light from the output end face 5 a of the bending portion 5. As the second focal point 12 is farther from the first focal point 11, the light emitted from the bending portion 5 can be made more parallel, but on the other hand, the size of the elliptical arc increases, so The position of the second focal point 12 may be set by the trade-off between the size of the elliptical arc surface and the need for how much the light emitted from the unit 5 needs to be collimated.

上述したように、曲面反射部7は、屈曲部5の採光パネル21側の面の内側に設けられる。この曲面反射部7に対向配置される屈曲部5の内面は、湾曲した反射面である。曲面反射部7の楕円弧面と、対向配置される反射面とは、直接連なるか、あるいは他の反射面を介して連なり、屈曲部5の内面を形成している。より具体的には、屈曲部5を光の進行方向に直交する方向で切断した場合の断面形状が矩形の場合、採光パネル21に連なる面が楕円弧面で、それ以外の3面は何らかの形状の反射面である。また、屈曲部5を光の進行方向に直交する方向で切断した場合の断面形状が円形の場合、楕円弧面と、対向配置される反射面とは連続的に連なるため、楕円弧面と反射面との境界は明確ではなくなる。このように、曲面反射部7の境界線が存在するとは限らない。本実施形態では、屈曲部5の採光パネル21側の面の内側の面を曲面反射部7としているが、屈曲部5の曲面反射部7以外の面をどのような曲面形状にするかは任意である。   As described above, the curved reflecting portion 7 is provided inside the surface of the bending portion 5 on the side of the daylighting panel 21. The inner surface of the bending portion 5 disposed to face the curved reflecting portion 7 is a curved reflecting surface. The elliptical arc surface of the curved reflecting portion 7 and the oppositely disposed reflecting surface are in direct contact with each other or are connected via another reflecting surface to form the inner surface of the bending portion 5. More specifically, in the case where the cross-sectional shape in the case where the bending portion 5 is cut in the direction orthogonal to the traveling direction of light is rectangular, the surface connected to the daylighting panel 21 is an elliptical arc surface, and the other three surfaces have some shape It is a reflective surface. When the cross-sectional shape of the bent portion 5 is cut in a direction perpendicular to the traveling direction of light is circular, the elliptical arc surface and the reflecting surface disposed opposite to each other are continuously connected, and therefore the elliptical arc surface and the reflecting surface The boundaries of are no longer clear. Thus, the boundary of the curved reflecting portion 7 does not necessarily exist. In the present embodiment, the inner surface of the surface on the lighting panel 21 side of the bending portion 5 is the curved surface reflection portion 7, but any surface shape other than the curved surface reflection portion 7 of the bending portion 5 is arbitrary. It is.

曲面反射部7を含めた屈曲部5の内面と、第1導光部4の内面とは、例えば、銀やアルミニウム、誘電体多層膜等の高反射率材料を第1導光部4および屈曲部5の筒状基材の内面にコーティングすることにより形成される。例えば、屈曲部5の光の伝搬方向に直交する方向の断面が矩形状の場合は、樹脂や金属材料などからなる4枚の薄板基材を用意し、各薄板基材の一主面に高反射率材料をコーティングし、そのうちの1枚の薄板基材をプレス処理等により楕円弧面に変形させて、楕円弧面を有する薄板基材を形成する。同様に、反射面を有する薄板基材も形成して、4枚の薄板基材の各長手方向端面を溶接して屈曲部5を形成する。   The inner surface of the bending portion 5 including the curved surface reflection portion 7 and the inner surface of the first light guide portion 4 are made of, for example, silver, aluminum, a high reflectivity material such as a dielectric multilayer film, and the like. It forms by coating on the inner surface of the cylindrical base material of the part 5. FIG. For example, in the case where the cross section in the direction orthogonal to the light propagation direction of the bending portion 5 is rectangular, prepare four thin plate base materials made of resin, metal material, etc. A reflectance material is coated, and one of the thin plate substrates is deformed into an elliptical arc surface by pressing or the like to form a thin plate substrate having an elliptical arc surface. Similarly, a thin plate substrate having a reflective surface is also formed, and the longitudinal end faces of the four thin plate substrates are welded to form the bent portion 5.

図1では、屈曲部5の出射端面5aを採光システム1の出射口としているが、図3の採光システム1に示すように、屈曲部5の出射端面5aに接続される第2導光部13を設けて、第2導光部13の出射端面を採光システム1の出射口としてもよい。   In FIG. 1, although the output end face 5a of the bending part 5 is used as the output port of the light collecting system 1, as shown in the light collecting system 1 of FIG. 3, the second light guide part 13 connected to the output end face 5a of the bending part 5 The light emission end face of the second light guide 13 may be used as the light emission port of the lighting system 1.

図3の第2導光部13は、屈曲部5の出射端面5aの法線方向に沿って延びており、第2導光部13の出射端面の法線方向と屈曲部5の出射端面5aの法線方向とは平行である。これにより、屈曲部5の出射端面5aから出射した光は、略平行状態を維持したまま、第2導光部13を伝搬して、第2導光部13から出射する。   The second light guide portion 13 of FIG. 3 extends along the normal direction of the emission end face 5 a of the bending portion 5, and the normal direction of the emission end face of the second light guide portion 13 and the emission end face 5 a of the bending portion 5. Is parallel to the normal direction of. Thereby, the light emitted from the emission end face 5 a of the bending portion 5 propagates through the second light guide portion 13 and is emitted from the second light guide portion 13 while maintaining the substantially parallel state.

図3のように第2導光部13を設ける場合、屈曲部5の楕円弧面における第2焦点12は、例えば第2導光部13の内部に設けられる。例えば、図2の破線で示す第2導光部13が存在する場合、第2焦点12は第2導光部13の上面の所定位置に設けられている。この場合、図2の矢印線に示すように、第1焦点11を通過して、屈曲部5の楕円弧面で反射された光は、第2焦点12を通過することになる。第2焦点12が屈曲部5の出射端面5aを超えて、第2導光部13の内部の奥深くに設けられていれば、楕円弧面との距離が離れるため、楕円弧面で反射された光をより平行化させることができる。これにより、第2導光部13での光の反射回数を少なくでき、第2導光部13を通過する間での光の減衰を抑制できる。   When the second light guide 13 is provided as shown in FIG. 3, the second focal point 12 in the elliptical arc plane of the bending portion 5 is provided, for example, inside the second light guide 13. For example, in the case where the second light guiding portion 13 indicated by the broken line in FIG. 2 is present, the second focal point 12 is provided at a predetermined position on the upper surface of the second light guiding portion 13. In this case, as shown by the arrow line in FIG. 2, the light passing through the first focal point 11 and reflected by the elliptical arc surface of the bending portion 5 passes through the second focal point 12. If the second focal point 12 is provided deep beyond the emission end face 5a of the bending portion 5 and deep inside the second light guide portion 13, the light reflected by the elliptical arc surface is separated because the distance with the elliptical arc surface is separated. It can be made more parallel. Thereby, the frequency | count of reflection of the light in the 2nd light guide part 13 can be decreased, and attenuation | damping of the light while passing the 2nd light guide part 13 can be suppressed.

図2では、第2焦点12を第2導光部13の上面側の内面に設ける例を示しているが、第2焦点12を第2導光部13の径方向の中央部付近に設ければ、第2導光部13の内面で光を反射させることなく、第2導光部13から光を出射させることもできる。   Although FIG. 2 shows an example in which the second focal point 12 is provided on the inner surface on the upper surface side of the second light guiding part 13, the second focal point 12 is provided near the center of the second light guiding part 13 in the radial direction. For example, the light can be emitted from the second light guide 13 without the light being reflected by the inner surface of the second light guide 13.

次に、屈曲部5の曲面反射部7における楕円弧面の断面が理想的な楕円弧10aである場合、楕円弧10aの長軸8の長さである長径aを短軸9の長さである短径bで割った値である楕円率a/bの範囲について説明する。図4は、屈曲部5の出射端面5aに第2導光部13が接続されており、屈曲部5の楕円弧面の断面が理想的な楕円面の一部であり、より詳細には楕円面の1/4の長さの楕円弧面である例を示している。屈曲部5の出射端面5aは、楕円面の1/4の長さの楕円弧面の端部であり、第2導光部13の入射端面の方向は楕円面の短軸9方向に一致している。   Next, when the section of the elliptic arc in the curved surface reflection part 7 of the bending part 5 is the ideal elliptic arc 10a, the major axis a which is the length of the major axis 8 of the elliptical arc 10a is the minor axis which is the length of the minor axis 9 The range of the ellipticity a / b which is a value divided by b will be described. In FIG. 4, the second light guide portion 13 is connected to the emission end face 5 a of the bending portion 5, and the cross section of the elliptic arc surface of the bending portion 5 is a part of an ideal elliptical surface. An example is shown which is an elliptical arc surface of 1/4 length of. The emission end face 5a of the bending portion 5 is an end of an elliptical arc having a length of 1⁄4 of the elliptic face, and the direction of the incident end face of the second light guide portion 13 coincides with the minor axis 9 direction of the elliptic face There is.

楕円面が正反射するものとすると、楕円面の第1焦点11を通過した光は、楕円面で反射後に第2焦点12を通過する。上述したように、本実施形態においては、楕円面で反射されて第2導光部13に入射される光線は、第2導光部13の入射面の法線方向に対して平行に近い方が望ましい。平行に近づけるには、楕円面で反射後に第2焦点12を通過する光の角度範囲(図4のθ)はできるだけ小さい方が望ましい。上述したように、実際には、第1焦点11を通過せずに、楕円面に到達する光も存在するが、これらの光も第1焦点11の近傍を通過することになり、結果として、楕円面で反射された後に、第2焦点12の近傍を通過するため、ここでは、第1焦点11を通過する光のみを考える。   Assuming that the ellipsoidal surface is specularly reflected, the light passing through the first focal point 11 of the ellipsoidal surface passes through the second focal point 12 after being reflected by the ellipsoidal surface. As described above, in the present embodiment, the light beam reflected by the elliptical surface and incident on the second light guide portion 13 is close to parallel to the normal direction of the incident surface of the second light guide portion 13 Is desirable. In order to approach parallel, it is desirable that the angular range (θ in FIG. 4) of light passing through the second focal point 12 after being reflected by the ellipsoidal surface be as small as possible. As described above, in fact, there are also lights that reach the elliptical surface without passing through the first focus 11, but these lights also pass near the first focus 11, and as a result, In order to pass through the vicinity of the second focal point 12 after being reflected by the ellipsoidal plane, only light passing through the first focal point 11 is considered here.

図4の角度範囲θが最大になるのは、屈曲部5の出射端面5a位置に光線が入射された場合である。この場合の角度をθmaxとする。角度θmaxは、屈曲部5の出射端面5aで反射されて第2焦点12に向かう光の第2導光部13の長手方向に対する角度である。   The angle range θ in FIG. 4 is maximized when the light beam is incident on the position of the output end face 5 a of the bending portion 5. The angle in this case is assumed to be θmax. The angle θmax is an angle with respect to the longitudinal direction of the second light guide portion 13 of the light reflected by the output end face 5 a of the bending portion 5 and directed to the second focal point 12.

角度θmaxは、楕円率a/bが大きくなるほど、すなわち、楕円10が長軸8に沿って細長くなるほど、小さくなる。角度θmaxが45°以下であれば、屈曲部5の楕円弧面で反射された光は、平行とは言えないまでも、平行に近い方向に進んでいると言える。そこで、屈曲部5の楕円弧面の楕円率を規定するにあたって、角度θmaxは45°以下とする。   The angle θmax decreases as the ellipticity a / b increases, that is, as the ellipse 10 narrows along the major axis 8. If the angle θmax is 45 ° or less, it can be said that the light reflected by the elliptic arc surface of the bending portion 5 travels in a direction close to parallel, even if not parallel. Therefore, in defining the ellipticity of the elliptic arc surface of the bending portion 5, the angle θmax is set to 45 ° or less.

角度θmax=45°になる条件は、楕円面の断面である楕円10の中心から焦点までの距離kが短径bと等しくなるときであり、以下の(1)式で表される。
The condition for the angle θmax = 45 ° is when the distance k from the center of the ellipse 10 which is the cross section of the ellipsoid to the focal point becomes equal to the minor axis b, and is expressed by the following equation (1).

この(1)式を変形すると、
よって、角度θmax≦45°になるようにするには、
とする必要がある。
When this equation (1) is transformed,
Therefore, to make the angle θmax ≦ 45 °,
You need to

次に、採光部3の構成について説明する。採光部3は、図2に示すように、光が入射される採光パネル21と、採光パネル21に対向して配置される対向パネル31とを有する。対向パネル31の反射面と採光パネル21の出光側面との間の間隔Sは、一軸方向d1に沿った位置に応じて徐々に広がっている。   Next, the configuration of the daylighting unit 3 will be described. As illustrated in FIG. 2, the light collecting unit 3 includes a light collecting panel 21 on which light is incident, and an opposing panel 31 disposed to face the light collecting panel 21. The distance S between the reflective surface of the opposing panel 31 and the light emitting side surface of the light collecting panel 21 gradually widens in accordance with the position along the uniaxial direction d1.

採光パネル21及び対向パネル31の両側方に、側方パネルがそれぞれ設けられている。各側方パネルは、一軸方向d1及び採光パネル21の法線方向の両方に直交する方向、すなわち図2における紙面の奥行方向に沿った採光パネル21及び対向パネル31の縁部に接続している。側方パネルの内面は、対向パネル31と同様に、反射面が形成されている。   Side panels are respectively provided on both sides of the daylighting panel 21 and the facing panel 31. Each side panel is connected to an edge of the daylighting panel 21 and the opposite panel 31 along a direction orthogonal to both the uniaxial direction d1 and the normal direction of the daylighting panel 21, that is, the depth direction of the paper surface in FIG. . The inner surface of the side panel is formed with a reflective surface, like the opposite panel 31.

採光パネル21、対向パネル31及び両側方パネルは、一軸方向d1における一側に開口を形成しており、この開口が採光部3の出射端面3aであり、この出射端面3aに第1導光部4が接続されている。   The daylighting panel 21, the facing panel 31 and both side panels form an opening on one side in the uniaxial direction d 1, and this opening is the emitting end face 3 a of the daylighting part 3, and the light emitting end face 3 a is the first light guiding part 4 are connected.

図5は採光パネル21の内部構造の一例を示す断面図である。図5の採光パネル21は、互いに非平行な第1面および第2面が交互に並んで配置された入光面を有する。第1面22aは、採光パネル21の出光側面23に一致する鉛直方向に対して傾斜している。第1面22aは、上方を向くように鉛直方向に対して傾斜している。一方、各第2面22bは、出光側面23に対して第1面22aとは逆側に傾斜し又は出光側面23と直交している。図示された例において、第2面22bは、下方を向くように鉛直方向に対して傾斜している。   FIG. 5 is a cross-sectional view showing an example of the internal structure of the daylighting panel 21. As shown in FIG. The daylighting panel 21 of FIG. 5 has a light entrance surface in which first and second surfaces, which are not parallel to each other, are alternately arranged. The first surface 22 a is inclined with respect to the vertical direction that coincides with the light emitting side surface 23 of the light collecting panel 21. The first surface 22 a is inclined with respect to the vertical direction to face upward. On the other hand, each second surface 22 b is inclined to the side opposite to the first surface 22 a with respect to the light output side surface 23 or is orthogonal to the light output side surface 23. In the illustrated example, the second surface 22b is inclined relative to the vertical direction to face downward.

したがって、図3に示すように、鉛直方向における上方からの光L31,L32の多くは、入光側面22のうちの第1面22aへ入射されて屈折された後、鉛直方向と平行に延びる出光側面23でさらに屈折されて、採光部3の内部に入る。これにより、鉛直方向において上方から下方に採光パネル21を透過する光は、鉛直方向に対する傾斜角度が小さくなるよう、進行方向を偏向されるようになり、第1導光部4の方向に伝搬する。   Therefore, as shown in FIG. 3, most of the light L31 and L32 from above in the vertical direction is incident on the first surface 22a of the light incident side 22 and is refracted, and then the light output extending parallel to the vertical direction The light is further refracted at the side surface 23 and enters the inside of the light collecting unit 3. Thereby, the light transmitted through the daylighting panel 21 in the vertical direction from the upper side to the lower side is deflected in the traveling direction so that the inclination angle with respect to the vertical direction becomes smaller, and propagates in the direction of the first light guide 4 .

採光パネル21の内部構造は、図5に示したものに限定されない。例えば、図6は採光パネル21の内部構造の他の一例を示す断面図である。図6の採光パネル21は、支持板22と、接合層23と、光透過性をもつ透光性基材24と、成形基材26とを、入光側から出光側に向かって順に積層した構造である。支持板22として、例えばガラス板やアクリル板、を用いることができる。接合層23としては、それ自体既知の接合材料を用いることができる。なお、成形基材26は、後述するように、採光パネル21を製造するために必要となる基材である。   The internal structure of the daylighting panel 21 is not limited to that shown in FIG. For example, FIG. 6 is a cross-sectional view showing another example of the internal structure of the daylighting panel 21. As shown in FIG. In the daylighting panel 21 of FIG. 6, the support plate 22, the bonding layer 23, the light transmitting base material 24 having light transmittance, and the molding base material 26 are laminated in order from the light entrance side to the light exit side. It is a structure. For example, a glass plate or an acrylic plate can be used as the support plate 22. As the bonding layer 23, a bonding material known per se can be used. The molding base 26 is a base required to manufacture the daylighting panel 21 as described later.

透光性基材24内には、第1面24aに平行な面内を延びる一軸方向d1に沿って配列された複数の反射材25が設けられている。各反射材25は、第1面24a側から第2面24b側に向かって、水平方向ndに対して鉛直方向d1における下方に傾斜している。反射材25が法線方向ndに対して下方に傾斜する角度θは、進行方向を変更することが意図された光P1、P2の入射方向に応じて決定される。例えば、冬季や朝や夕方の時間帯のような比較的高度の低い太陽からの光P1の進行方向を、反射材25にてより下方に向かうように変更させ、夏季の日中の時間帯のような比較的高度の高い太陽からの光P2を進行方向を維持したままで透過させることが意図されている。   In the translucent base material 24, a plurality of reflectors 25 arranged along a uniaxial direction d1 extending in a plane parallel to the first surface 24a are provided. Each of the reflective members 25 is inclined downward in the vertical direction d1 with respect to the horizontal direction nd from the first surface 24a side to the second surface 24b side. The angle θ at which the reflective material 25 inclines downward with respect to the normal direction nd is determined according to the incident direction of the light P1, P2 intended to change the traveling direction. For example, the traveling direction of light P1 from a relatively low altitude sun, such as winter, morning, and evening hours, is changed downward by the reflector 25, and It is intended to transmit light P2 from such a relatively high altitude sun while maintaining its traveling direction.

なお、採光パネル21の内部構造は、図5または図6に示したものに限定されない。採光部3に入射された光を効率的に導光部に伝搬できる構造であれば、どのような構造でもよい。   In addition, the internal structure of the daylighting panel 21 is not limited to what was shown in FIG. 5 or FIG. Any structure may be used as long as the light incident on the light collecting unit 3 can be efficiently transmitted to the light guiding unit.

このように、第1の実施形態では、採光部3の採光パネル21側に設けられる屈曲部5の曲面反射部7を楕円弧面とし、楕円弧面の長軸8の方向と屈曲部5の出射端面5aの法線方向との為す角度を、第1導光部4の出射端面の法線方向と屈曲部5の出射端面5aの法線方向との為す角度よりも小さくするため、屈曲部5の楕円弧面で反射される光を平行化することができる。これにより、屈曲部5の楕円弧面で反射された後の光が屈曲部5の内面で反射される回数を減らすことができ、屈曲部5の出射端面5aから出射される光の減衰を抑制できる。したがって、採光システム1に入射された光を効率よく、所定の空間に導くことができ、自然光を有効に利用した照明が可能となる。よって、二酸化炭素の排出量を削減でき、省エネルギー化が図れる。特に、本実施形態によれば、屈曲部5の出射端面5aから出射される光を平行化させることができるため、屋内の奥の方まで外光を届かせることができるとともに、屋内の狙った方向を選択的に外光にて照明することも可能となる。   As described above, in the first embodiment, the curved surface reflection portion 7 of the bending portion 5 provided on the light collecting panel 21 side of the lighting portion 3 is an elliptical arc surface, and the direction of the major axis 8 of the elliptic arc surface and the emission end surface of the bending portion 5 In order to make the angle with the normal direction of 5 a be smaller than the angle between the normal direction of the emitting end face of the first light guide 4 and the normal direction of the emitting end face 5 a of the bending portion 5, The light reflected by the elliptical arc can be collimated. Thereby, it is possible to reduce the number of times light reflected by the elliptical arc surface of the bending portion 5 is reflected by the inner surface of the bending portion 5 and to suppress attenuation of light emitted from the emission end face 5 a of the bending portion 5 . Therefore, the light which injected into the daylighting system 1 can be efficiently guide | induced to predetermined space, and the illumination which used natural light effectively is attained. Therefore, the emission of carbon dioxide can be reduced and energy saving can be achieved. In particular, according to the present embodiment, the light emitted from the output end face 5a of the bending portion 5 can be collimated, so that it is possible to let outside light reach the interior of the room and aim at the interior of the room. It is also possible to selectively illuminate the direction with ambient light.

(第2の実施形態)
第2の実施形態は、屈曲部5の曲面反射部7の少なくとも一部を放物面にするものである。これ以外は、第1の実施形態と同様に構成されるため、以下では、第1の実施形態との相違点を中心に説明する。
Second Embodiment
In the second embodiment, at least a part of the curved reflecting portion 7 of the bending portion 5 is a paraboloid. Except for this point, the configuration is the same as that of the first embodiment, and therefore, differences from the first embodiment will be mainly described below.

図7は第2の実施形態による屈曲部5の断面形状を示す図である。第2の実施形態による屈曲部5の曲面反射部7は、放物面、または放物面上にそれぞれの端部が位置する複数の折れ面を有する。放物面または複数の折れ面を有する放物面は、第1導光部4からの光を正反射すなわち鏡面反射する面である。   FIG. 7 is a view showing the cross-sectional shape of the bending portion 5 according to the second embodiment. The curved reflecting portion 7 of the bending portion 5 according to the second embodiment has a paraboloid or a plurality of bending surfaces on which respective ends are located on the paraboloid. A paraboloid or a paraboloid having a plurality of broken surfaces is a surface that specularly reflects, ie, specularly reflects the light from the first light guide 4.

放物面は、二次関数からなる放物線の軸線の周りに放物線を回転させることにより得られる。本明細書では、放物面を生成するのに用いた放物線の軸線を、放物面の軸線と呼ぶ。また、放物面は、放物線をその法線方向に掃引して生成した形状でもよい。   The paraboloid is obtained by rotating the parabola about the axis of the parabola which is a quadratic function. The axis of the parabola used to generate the paraboloid is referred to herein as the axis of the paraboloid. Also, the paraboloid may have a shape generated by sweeping a parabola in the direction of its normal.

放物面の軸線は、屈曲部5の出射端面5aの法線方向に平行に延びている。図7では、屈曲部5の出射端面5aに第2導光部13が接続されている例を示しているが、第2導光部13は省略してもよい。第2導光部13がない場合は、屈曲部5の出射端面5aに拡散部材6などの他の光学部材を配置してもよいし、屈曲部5の出射端面5aを採光システム1の出射口としてもよい。   The axis of the paraboloid extends parallel to the normal direction of the output end face 5 a of the bending portion 5. Although FIG. 7 shows an example in which the second light guide portion 13 is connected to the emission end face 5 a of the bending portion 5, the second light guide portion 13 may be omitted. When the second light guide portion 13 is not provided, another optical member such as the diffusion member 6 may be disposed on the output end face 5a of the bending portion 5, and the output end face 5a of the bending portion 5 It may be

放物面の焦点14は、軸線15上に設けられる。この焦点14を通過した光は、放物面上で反射されて、対称軸に略平行な方向に進行する。よって、放物面の軸線15に平行な方向に屈曲部5の出射端面5aの法線方向を配置すれば、放物面からなる曲面反射部7で反射された光は屈曲部5の出射端面5aの法線方向に進行することになる。これにより、少なくとも焦点14を通過した光については、放物面で反射された後に、屈曲部5の内面で反射されずに屈曲部5から出射され、光の反射による減衰を抑制できる。   A parabolic focal point 14 is provided on the axis 15. The light passing through the focal point 14 is reflected on the paraboloid and travels in a direction substantially parallel to the symmetry axis. Therefore, if the normal direction of the emitting end face 5a of the bending portion 5 is arranged in the direction parallel to the axis 15 of the paraboloid, the light reflected by the curved reflecting portion 7 consisting of the paraboloid is the emitting end face of the bending portion 5 It will advance in the normal direction of 5a. As a result, at least the light that has passed through the focal point 14 is reflected by the paraboloid, is not reflected by the inner surface of the bending portion 5, and is emitted from the bending portion 5, thereby suppressing attenuation of the light due to reflection.

屈曲部5の曲面反射部7の少なくとも一部を放物面にした場合、その放物面の焦点14は、採光部3または屈曲部5の内部に設けられる。この場合、第1導光部4の出射端面から出射される光がすべて焦点14を通過するわけではないが、いずれの光も焦点14の近傍を通過するため、放物面で反射された後に、対称軸の方向に近い方向に伝搬することになり、屈曲部5の出射端面5aからは、平行に近い光が出射される。   When at least a part of the curved surface reflection portion 7 of the bending portion 5 is a paraboloid, the focal point 14 of the paraboloid is provided inside the light collecting portion 3 or the bending portion 5. In this case, not all the light emitted from the output end face of the first light guide 4 passes through the focal point 14, but any light also passes in the vicinity of the focal point 14, so after being reflected by the paraboloid The light propagates in a direction close to the direction of the symmetry axis, and light close to parallel light is emitted from the emission end face 5 a of the bending portion 5.

屈曲部5の出射端面5aから出射される光をより平行に近づけるには、屈曲部5の曲面反射部7の少なくとも一部を放物面にすることに加えて、放物面の軸線方向と屈曲部5の出射端面5aの法線方向との為す角度が、採光部3の出射端面の法線方向と屈曲部5の出射端面5aの法線方向との為す角度よりも小さいという条件を満たす必要がある。この条件を満たすことで、放物面で反射された光は、屈曲部5の出射端面5aの法線方向に近い方向に伝搬することになる。   In order to make the light emitted from the emission end face 5a of the bending portion 5 closer to parallel, in addition to making at least a part of the curved surface reflection portion 7 of the bending portion 5 a paraboloid, the axial direction of the paraboloid and The condition that the angle between the bending portion 5 and the normal direction of the light emitting end face 5a is smaller than the angle between the normal direction of the light emitting end face of the light collecting portion 3 and the normal direction of the light emitting end surface 5a of the bending portion 5 is satisfied. There is a need. By satisfying this condition, the light reflected by the paraboloid propagates in a direction close to the normal direction of the emitting end face 5 a of the bending portion 5.

なお、第1の実施形態と第2の実施形態を組み合わせて実施してもよい。すなわち、屈曲部5の曲面反射部7の一部は楕円弧面で、残りの少なくとも一部は放物面にしてもよい。例えば、採光部3に近い側は放物面にし、屈曲部5の出射端面5aに近い側は楕円弧面にしてもよい。放物面は、放物面での反射光を平行化する作用を行うため、光線の平行化の観点では、楕円弧面よりも放物面の方が優れているのに対し、対称軸から離れても、対称軸からの距離が一定にならず、第2導光部13との接続部分が滑らかな形状にならないため、屈曲部5の出射端面5a付近は楕円弧面の方がよい。   The first embodiment and the second embodiment may be implemented in combination. That is, a part of the curved surface reflection part 7 of the bending part 5 may be an elliptical arc surface, and at least a part of the remaining part may be a paraboloid surface. For example, the side closer to the light collecting unit 3 may be a paraboloid, and the side closer to the output end face 5 a of the bending unit 5 may be an elliptical arc surface. Since the paraboloid acts to collimate the light reflected on the paraboloid, it is far from the symmetry axis while the paraboloid is superior to the elliptic arc surface in terms of collimation of light rays. However, since the distance from the symmetry axis is not constant and the connection portion with the second light guide 13 does not have a smooth shape, an elliptical arc surface is preferable in the vicinity of the emission end face 5 a of the bending portion 5.

このように、第2の実施形態では、屈曲部5の曲面反射部7の少なくとも一部を、放物面、または放物面上にそれぞれの端部が位置する複数の折れ面形状にし、かつ放物面の長軸8方向と屈曲部5の出射端面5aの法線方向との為す角度を、採光部3の出射端面の法線方向と屈曲部5の出射端面5aの法線方向との為す角度よりも小さくするため、屈曲部5の楕円弧面で反射される光を平行化することができる。これにより、第1の実施形態と同様に、屈曲部5の出射端面5aから出射される光の減衰を抑制できるとともに、採光システム1に入射された光を効率よく、所定の空間に導くことができ、自然光を有効に利用した照明が可能となる。よって、二酸化炭素の排出量を削減でき、省エネルギー化が図れる。   As described above, in the second embodiment, at least a part of the curved surface reflection portion 7 of the bending portion 5 is formed into a paraboloid or a plurality of bent surfaces in which respective end portions are positioned on the paraboloid, and The angle between the long axis 8 direction of the paraboloid and the normal direction of the emitting end face 5a of the bending portion 5 is the normal direction of the emitting end face of the light collecting portion 3 and the normal direction of the emitting end face 5a of the bending portion 5 In order to make it smaller than the angle to be made, the light reflected by the elliptic arc surface of the bending portion 5 can be collimated. Thus, similarly to the first embodiment, the attenuation of the light emitted from the output end face 5a of the bending portion 5 can be suppressed, and the light incident on the light collection system 1 can be efficiently guided to a predetermined space. It is possible to do lighting that effectively uses natural light. Therefore, the emission of carbon dioxide can be reduced and energy saving can be achieved.

本発明者は、第1の実施形態と同様に、屈曲部5の曲面反射部7を楕円弧面とした一実施例の採光システム1と、図8に示すように、屈曲部5の曲面反射部7を曲がりがほとんどない傾斜面とした一比較例の採光システム1とについて、光の伝搬方向をシミュレーションにより図式化した。   As shown in FIG. 8, the inventor of the present invention has, as in the first embodiment, a daylighting system 1 according to an embodiment in which the curved reflecting portion 7 of the bending portion 5 has an elliptical arc surface, and the curved reflecting portion of the bending portion 5. The propagation direction of the light was schematically illustrated by simulation for the daylighting system 1 of a comparative example in which 7 was an inclined surface with few bends.

第1導光部4を伝搬する光の伝搬角度が相対的に大きい場合と、相対的に小さい場合とについて、一実施例と一比較例とを対比させた。   One example and one comparative example were compared about the case where the propagation angle of the light which propagates the 1st light guide part 4 is relatively large, and the case where it is relatively small.

図9はシミュレーション結果を示す図である。図9(a)と図9(b)はそれぞれ、光の伝搬角度が大きい場合の一実施例と一比較例のシミュレーション結果を示している。また、図9(c)と図9(d)はそれぞれ、光の伝搬角度が小さい場合の一実施例と一比較例のシミュレーション結果を示している。   FIG. 9 is a diagram showing simulation results. FIGS. 9A and 9B respectively show simulation results of an example and a comparative example in the case where the light propagation angle is large. Moreover, FIG.9 (c) and FIG.9 (d) have respectively shown the simulation result of one Example and one comparative example in case the propagation angle of light is small.

図9(b)に対して図9(a)では、光の伝送効率が約2%向上し、図9(d)に対して図9(c)では、光の伝送効率が約18%向上した。また同時に、図9(b)よりも図9(a)の方が、図9(d)より図9(c)の方が、出射光がより平行光に近かった。   The transmission efficiency of light is improved by about 2% in FIG. 9A compared to FIG. 9B, and the transmission efficiency of light is improved about 18% in FIG. 9C compared to FIG. did. At the same time, the emitted light in FIG. 9A is closer to parallel light in FIG. 9A than in FIG. 9B and in FIG. 9C than in FIG. 9D.

これにより、本実施形態のように、屈曲部5の曲面反射部7を楕円弧面にすることで、光の伝送効率が向上することが確認できた。   Thereby, it was confirmed that the light transmission efficiency is improved by making the curved surface reflecting portion 7 of the bending portion 5 an elliptical arc as in the present embodiment.

本発明の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本発明の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。   The aspects of the present invention are not limited to the above-described individual embodiments, but include various modifications that those skilled in the art can conceive, and the effects of the present invention are not limited to the contents described above. That is, various additions, modifications and partial deletions can be made without departing from the conceptual idea and spirit of the present invention derived from the contents defined in the claims and the equivalents thereof.

1 採光システム、2 建物、3 採光部、4 第1導光部、5 屈曲部、6 拡散部材、7 曲面反射部、8 長軸、9 短軸、10 楕円、10a 楕円弧、11 第1焦点、12 第2焦点、13 第2導光部、21 採光パネル、31 対向パネル     DESCRIPTION OF SYMBOLS 1 Daylighting system, 2 buildings, 3 Daylighting parts, 4 1st light guide part, 5 bending parts, 6 diffusion members, 7 curved surface reflecting parts, 8 major axes, 9 minor axes, 10 ellipses, 10a elliptical arcs, 11 first focus, 12 2nd focus, 13 2nd light guide part, 21 Daylighting panel, 31 Opposite panel

Claims (9)

光を採り込む採光部と、
前記採光部で採り込んだ光を所定方向に伝搬させる第1導光部と、
前記採光部で採り込んだ光を所定の空間に導く屈曲部と、を備え、
前記屈曲部は、前記採光部で採り込んだ光の進行方向を変化させる曲面反射部を有し、
前記曲面反射部は、楕円弧面、または楕円弧面上にそれぞれの端部が位置する複数の折れ面を有し、
前記第1導光部は、楕円弧面、または楕円弧面上にそれぞれの端部が位置する複数の折れ面を有する前記曲面反射部を有しておらず、
前記楕円弧面の長軸方向と前記屈曲部の、光が出射される側の末端における光の通過領域の断面である出射端面の法線方向との為す角度は、前記第1導光部の、光が出射される側の末端における光の通過領域の断面である出射端面の法線方向と前記屈曲部の出射端面の法線方向との為す角度よりも小さく、
前記楕円弧面の長軸上の第1焦点および第2焦点のうち、前記楕円弧面により近い前記第1焦点は、前記第1導光部または前記屈曲部の内部に位置し、かつ、前記第2焦点は、前記屈曲部の出射端面よりも光の進行方向後方に配置される採光システム。
The daylighting section that takes in light,
A first light guide portion for propagating the light introduced by the light collecting portion in a predetermined direction;
And a bent portion for guiding the light introduced by the light receiving portion to a predetermined space,
The bent portion has a curved surface reflecting portion that changes the traveling direction of light taken in by the light collecting portion,
The curved reflecting portion has an elliptical arc surface or a plurality of broken surfaces whose ends are located on the elliptical arc surface,
The first light guiding portion does not have the curved surface reflecting portion having an elliptical arc surface or a plurality of bending surfaces on which the respective end portions are positioned on the elliptical arc surface,
The angle between the major axis direction of the elliptical arc surface and the normal direction of the light emitting end face, which is a cross section of the light passing area at the end of the light emitting side of the bent portion, is The angle between the normal direction of the output end face, which is the cross section of the light passage area at the end where light is output, and the normal direction of the output end face of the bent portion,
The first focal point closer to the elliptical arc surface among the first focal point and the second focal point on the long axis of the elliptical arc surface is located inside the first light guiding portion or the bending portion, and the second focal point is A light collecting system, wherein a focal point is disposed behind the light emitting end surface of the bending portion in the light traveling direction.
前記楕円弧面は、楕円面の長軸から短軸までの1/4の面積を有し、
前記屈曲部の出射端面は、楕円面の短軸に接する領域である請求項1に記載の採光システム。
The elliptical arc surface has an area of 1⁄4 from the major axis to the minor axis of the ellipsoid,
The lighting system according to claim 1, wherein the output end face of the bent portion is a region in contact with the minor axis of the elliptical surface.
前記楕円弧面の短軸に対する長軸の比は√2以上である請求項1または2に記載の採光システム。   The lighting system according to claim 1, wherein a ratio of a major axis to a minor axis of the elliptical arc surface is √2 or more. 光を採り込む採光部と、
前記採光部で採り込んだ光を所定の空間に導く屈曲部と、を備え、
前記採光部は、光透過性をもつ透光性基材と、当該透光性基材内に設けられた複数の反射材と、を有する採光パネルを備え、
前記採光パネルを断面視したときに、複数の前記反射材は、透光性基材の光が出射される側の側面に平行な面内を延びる一軸方向に沿って配列され、かつ、それぞれが前記一軸方向とは異なる向きに傾斜しており、
前記屈曲部は、前記採光部で採り込んだ光の進行方向を変化させる曲面反射部を有し、
前記曲面反射部は、放物面、または放物面上にそれぞれの端部が位置する複数の折れ面を有し、
前記放物面の軸線方向と前記屈曲部の、光が出射される側の末端における光の通過領域の断面である出射端面の法線方向との為す角度は、放物面、または放物面上にそれぞれの端部が位置する複数の折れ面を有する反射部を有しない領域と前記屈曲部との境界面である、前記屈曲部の光が入射される側の末端における光の通過領域の断面の法線方向と前記屈曲部の出射端面の法線方向との為す角度よりも小さい採光システム。
The daylighting section that takes in light,
And a bent portion for guiding the light introduced by the light receiving portion to a predetermined space,
The light collecting unit includes a light collecting panel having a light transmitting base material having a light transmitting property, and a plurality of reflectors provided in the light transmitting base material.
When the daylighting panel is viewed in cross section, the plurality of reflectors are arranged along a uniaxial direction extending in a plane parallel to the side surface of the light-transmissive substrate on which the light is emitted, and It is inclined in a direction different from the uniaxial direction,
The bent portion has a curved surface reflecting portion that changes the traveling direction of light taken in by the light collecting portion,
The curved reflecting portion has a paraboloid, or a plurality of folds whose ends are located on the paraboloid,
The angle between the axial direction of the paraboloid and the normal direction of the light emitting end face, which is a cross section of the light passing region at the end of the light emitting side of the bent portion, is a paraboloid or a paraboloid A light passing region at the end of the bent portion on which light is incident, which is a boundary surface between the bent portion and a region having no reflecting portion having a plurality of bent surfaces on which the respective end portions are positioned A daylighting system smaller than an angle between a normal direction of a cross section and a normal direction of an output end face of the bent portion.
前記採光部で採り込んだ光を所定方向に伝搬させる第1導光部を備え、
前記屈曲部は、前記第1導光部の出射端面から出射された光の進行方向を変化させ、
前記放物面の軸線方向と前記屈曲部の出射端面の法線方向との為す角度は、前記第1導光部の出射端面の法線方向と前記屈曲部の出射端面の法線方向との為す角度よりも小さい請求項4に記載の採光システム。
It has a first light guiding portion for propagating the light introduced by the light collecting portion in a predetermined direction,
The bending portion changes the traveling direction of light emitted from the emission end surface of the first light guide portion,
The angle between the axial direction of the paraboloid and the normal direction of the exit end face of the bent portion is the normal direction of the exit end face of the first light guide portion and the normal direction of the exit end face of the bent portion. The lighting system according to claim 4, which is smaller than the angle to be made.
前記放物面の焦点は、前記第1導光部または前記屈曲部の内部に位置する請求項に記載の採光システム。 The lighting system according to claim 5 , wherein the focal point of the paraboloid is located inside the first light guide or the bending portion. 前記放物面の焦点は、前記第1導光部の出射端面上に位置する請求項に記載の採光システム。 The light collecting system according to claim 6 , wherein the focal point of the paraboloid is located on the output end face of the first light guide. 前記屈曲部の出射端面から出射された光を所定方向に導光する第2導光部を備える請求項1乃至のいずれかに記載の採光システム。 The light collecting system according to any one of claims 1 to 7, further comprising a second light guide unit configured to guide light emitted from the output end surface of the bent portion in a predetermined direction. 前記採光部は、光を採り込む入射面を有し、
前記曲面反射部は、前記採光部の光が出射される側に設けられた出光側面、または前記採光部の光が出射される側に設けられた側面を、延長した平面と、前記屈曲部との距離が最も近い箇所を含むように設けられる請求項1乃至のいずれかに記載の採光システム。

The lighting unit has an entrance surface for taking in light,
The curved reflection portion is a light emission side provided on the side from which light of the light collection portion is emitted, or a flat surface extending the side provided on the side from which light of the light collection portion is emitted, and the bending portion The lighting system according to any one of claims 1 to 8 , wherein the lighting system is provided so as to include the closest point of the distance.

JP2014236918A 2014-11-21 2014-11-21 Daylighting system Expired - Fee Related JP6519154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014236918A JP6519154B2 (en) 2014-11-21 2014-11-21 Daylighting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014236918A JP6519154B2 (en) 2014-11-21 2014-11-21 Daylighting system

Publications (2)

Publication Number Publication Date
JP2016100219A JP2016100219A (en) 2016-05-30
JP6519154B2 true JP6519154B2 (en) 2019-05-29

Family

ID=56077958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014236918A Expired - Fee Related JP6519154B2 (en) 2014-11-21 2014-11-21 Daylighting system

Country Status (1)

Country Link
JP (1) JP6519154B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156553A (en) * 1978-05-30 1979-12-10 Takashi Mori Sash window for collecting solar light
JPH10112208A (en) * 1996-08-09 1998-04-28 Matsushita Electric Works Ltd Sunlight daylighting system
JP2001216821A (en) * 2000-01-31 2001-08-10 Matsushita Electric Works Ltd Light introducing unit for light guide duct
CH694470A5 (en) * 2000-04-11 2005-01-31 Heliobus Ag Arrangement for illuminating rooms in buildings.
JP2003203512A (en) * 2001-12-28 2003-07-18 Ohbayashi Corp Daylight intake device of void shaft
US8098433B2 (en) * 2009-12-11 2012-01-17 Solatube International, Inc. Direct and indirect light diffusing devices and methods
JP6139828B2 (en) * 2012-05-28 2017-05-31 旭化成ホームズ株式会社 Daylighting equipment
JP5716733B2 (en) * 2012-12-19 2015-05-13 大日本印刷株式会社 Daylighting sheet, daylighting device, and building
JP2014209423A (en) * 2013-03-29 2014-11-06 大日本印刷株式会社 Solar lighting system
JP2016024861A (en) * 2014-07-16 2016-02-08 大日本印刷株式会社 Daylighting system

Also Published As

Publication number Publication date
JP2016100219A (en) 2016-05-30

Similar Documents

Publication Publication Date Title
US7322729B2 (en) Light guiding unit, light guiding unit assembly, and lighting device including the same
US8498505B2 (en) Dimpled light collection and concentration system, components thereof, and methods
US9372298B2 (en) Luminaire
US8073303B2 (en) Light-concentrating panel
US9246038B2 (en) Light collecting and emitting apparatus, method, and applications
TWI542903B (en) Light duct tee splitter
US9353930B2 (en) Light duct tee extractor
WO2012094292A1 (en) Off-axis illumination led luminaire
JP3885374B2 (en) Light guide bend structure
JPH09274807A (en) Back light for liquid crystal
JP2012529737A (en) Lighting device
JP5212719B2 (en) Vehicle lighting
JP6519154B2 (en) Daylighting system
US10907774B2 (en) Light source unit
JP5556938B1 (en) Solar lighting system
JP6519156B2 (en) Daylighting system
JP2013243298A (en) Solar cell module
NL2007701C2 (en) Beacon light optic.
JP2017139095A (en) Light collection system
JP6233565B2 (en) Horizontal light duct
JP2016048618A (en) Daylighting system
JP2016131126A (en) Daylighting system
JP5587839B2 (en) Lighting unit
WO2018207765A1 (en) Optical element and optical system device
JP2020143450A (en) Louver structure and architectural structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190125

A603 Late request for extension of time limit during examination

Free format text: JAPANESE INTERMEDIATE CODE: A603

Effective date: 20190125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R150 Certificate of patent or registration of utility model

Ref document number: 6519154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees