Nothing Special   »   [go: up one dir, main page]

JP6513010B2 - Cooling system using a snow room - Google Patents

Cooling system using a snow room Download PDF

Info

Publication number
JP6513010B2
JP6513010B2 JP2015195245A JP2015195245A JP6513010B2 JP 6513010 B2 JP6513010 B2 JP 6513010B2 JP 2015195245 A JP2015195245 A JP 2015195245A JP 2015195245 A JP2015195245 A JP 2015195245A JP 6513010 B2 JP6513010 B2 JP 6513010B2
Authority
JP
Japan
Prior art keywords
snow
water
radial
outlet
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015195245A
Other languages
Japanese (ja)
Other versions
JP2017067395A (en
Inventor
幹太 福森
幹太 福森
賢知 佐々木
賢知 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2015195245A priority Critical patent/JP6513010B2/en
Publication of JP2017067395A publication Critical patent/JP2017067395A/en
Application granted granted Critical
Publication of JP6513010B2 publication Critical patent/JP6513010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

本発明は、冬期に貯蔵した雪を、夏期に冷熱源として利用する冷房設備に関し、大きな冷熱出力で安定した冷熱供給機能を有する雪室を用いた冷房設備に関する。   The present invention relates to a cooling system using snow stored in winter as a cold source in summer, and to a cooling system using a snow room having a function of supplying cold heat stably with a large cold output.

従来より、冬期に降った雪を雪室内に貯蔵し、夏期に雪から融解潜熱を取り出し冷熱源として水と熱交換して、該熱交換した水を冷熱需要施設の空調等に利用するという冷房方法が採用されている。
この方法における雪と水との熱交換は、雪室の床面を貯水ピットとし、雪が堆積している該床面に水を流し、雪と接触した水が雪を融解し雪の冷熱を吸収することで行われている。
そして、この熱交換により低温度となった冷水が、空調システム等へ送られて利用され、該空調システム等で利用されて温まって戻された水を、雪室の床面に送り、再び雪室内の雪と熱交換するというものである。
例えば、雪室の上流側の壁面に沿ってヘッダを設け、そのヘッダから延びる複数の供給口から空調戻り冷水を送水し各供給口から送水される水量を均等にするため、供給口にバルブを設けることで横方向において均等な水量で送水し雪の融解速度の横方向のばらつきを抑えて、冷熱出力を安定させている(特許文献1)。
また、雪室の下流側の床面にピットや堰を施工し、そのピットや堰から低温化した冷水を取出している(特許文献2)。
しかし、この従来技術では、空調戻り冷水を送水するのに、冷熱出力を安定化させるため、ヘッダやバルブを設けたり、低温化した冷水を取出すのに、ピットや堰を施工する必要があるなど、施工費がかかるという問題がある。
また、雪室の貯水ピットに送水すると、貯蔵されている雪の外縁や内部に水路が形成され、融解の進行とともに前記水路が拡大し、特に雪室の床面のコーナー領域で雪と接触せず熱交換に寄与しない水の割合(死水域)が増えてしまい、一定の熱交換がなされず熱交換率や冷熱出力が低下するという問題がある。
加えて、上流側の雪と冷水の温度差が、下流側の雪と冷水の温度差よりも大となり、上流側の雪と熱交換される熱出力が、下流側の雪と熱交換される熱出力よりも大となるため、上流側の雪の融解速度が、下流側の雪の融解速度よりも大となる。その結果、冷房終期には下流側のみ雪が残り、冷熱出力が不安定になるという問題がある。
そこで、この問題を解決するために、雪室の貯水ピットの床面に複数の溝を施工し、複数の水路を形成させることで、雪と水の接触面積(熱交換面積)を確保して、高い冷熱出力の維持を図ること雪冷蓄熱槽が存在する(特許文献3)。
しかし、これらの従来技術では、ヘッダやバルブを設けたり、ピットや堰を施工し、複数の溝を施工するのに施工費がかさんだり、冷房終期には下流側のみ雪が残り、冷熱出力が不安定になるという課題が残っている。
Conventionally, cooling that stores snow that fell in winter in a snow room, takes out latent heat of melting from snow in summer, exchanges heat with water as a cold source, and uses the heat-exchanged water for air conditioning of cold demand facilities etc. The method is adopted.
In this method, heat exchange between snow and water takes the floor surface of the snow chamber as a water storage pit, flows the water to the floor surface where snow is deposited, and the water in contact with the snow melts the snow and absorbs the cold heat of the snow It is done by doing.
Then, the cold water, which has become a low temperature by this heat exchange, is sent to the air conditioning system etc. to be used, and the water returned by being used by the air conditioning system etc. to warm and return is sent to the floor surface of the snow room. It exchanges heat with indoor snow.
For example, a header is provided along the wall surface on the upstream side of the snow chamber, and air conditioning return chilled water is supplied from a plurality of supply ports extending from the header, and valves are provided at the supply ports to equalize the amount of water supplied from each supply port. By providing the water, the water supply is carried out with a uniform amount of water in the lateral direction, and the variation in the melting rate of the snow in the lateral direction is suppressed, and the cold heat output is stabilized (Patent Document 1).
In addition, pits and weirs are constructed on the floor surface on the downstream side of the snow room, and cold water cooled at low temperature is taken out from the pits and weirs (Patent Document 2).
However, in this prior art, it is necessary to install a header or a valve to construct a cold energy output to feed cold water with air conditioning return water, or to construct a pit or a weir to take out cold water having a low temperature. There is a problem that it costs construction cost.
In addition, when water is supplied to the water storage pit of the snow chamber, a water channel is formed at the outer edge or inside of the stored snow, and the water channel expands as the melting progresses, especially contacting the snow in the corner area of the floor of the snow chamber. As a result, the proportion of water not contributing to heat exchange (dead water area) increases, and there is a problem that a constant heat exchange is not performed and the heat exchange rate and the cold heat output decrease.
In addition, the temperature difference between the upstream snow and the cold water is larger than the temperature difference between the downstream snow and the cold water, and the heat output exchanged with the upstream snow is exchanged with the downstream snow. Because it is greater than the heat output, the upstream snow melt rate is greater than the downstream snow melt rate. As a result, there is a problem that snow remains only at the downstream side at the end of cooling, and the cold heat output becomes unstable.
Therefore, in order to solve this problem, a plurality of grooves are constructed on the floor surface of the water storage pit in the snow room to form a plurality of water channels, thereby securing the contact area (heat exchange area) of snow and water. A snow cold heat storage tank exists to maintain high cold heat output (Patent Document 3).
However, with these conventional techniques, it is necessary to provide a header or a valve, to construct a pit or a ridge, to construct a plurality of grooves, and the construction cost is high. There remains a problem of becoming unstable.

特開2015−132423号公報JP, 2015-132423, A 特許第4650857号公報Patent 4650857 gazette 特許第4577705号公報Patent No. 4577705 gazette

本発明は、上記問題点を解決することを目的とするものであり、冬期に貯蔵した雪を、夏期に冷熱源として水熱交換して利用し、高冷熱出力で安定した冷熱供給機能を有する雪室を用いた冷房設備を提供することを目的とし、施工費のかかる空調戻り冷水を送水するのに、冷熱出力を安定化させるため、ヘッダやバルブを設けたり、低温化した冷水を取出すのに、ピットや堰を施工する必要がない、雪室を用いた冷房設備を提供することを目的とする。
また、雪を貯蔵する雪室の床面に多数の流路を強制的に形成することによって、伝熱面積の拡大と融解速度の安定化を実現し、冷熱出力の向上と安定化を可能とする雪室を用いた冷房設備を提供することを目的とする。
The present invention is intended to solve the above-mentioned problems, and uses snow stored in winter as a cold heat source for water heat exchange in summer, and has a stable cold heat supply function with high cold heat output. The purpose is to provide cooling equipment using a snow room, and to supply cooling water with air conditioning return cost which is expensive to install, in order to stabilize the cold energy output, a header or a valve is provided, or cold water which has a low temperature is taken out. It is an object of the present invention to provide a cooling system using a snow room that does not require the construction of pits or weirs.
In addition, by forcibly forming a large number of flow channels on the floor surface of the snow chamber storing snow, expansion of the heat transfer area and stabilization of the melting rate are realized, and improvement and stabilization of cold heat output are possible. It is an object of the present invention to provide a cooling system using a snow room.

本発明者らは上記課題を下記の手段により解決した。
(1)上流側に還り水の供給口を少なくとも一箇所備えるとともに、この供給口から対角線上の位置に下流側に熱交換されて冷却された冷水の取出口を少なくとも一箇所備えた雪室を用いた冷房設備において、
前記供給口から前記取出口に至る雪室床面に、供給口から取出口に向かって流れる水との接触によって、上流側に形成される雪島と下流側に形成される雪島との融解時間が同じとなるように取出口を中心として該取出口から供給口に向かう放射状の水路を設けたこと特徴とする雪室を用いた冷房設備。
(2)上流側に還り水の供給口を少なくとも一箇所備えるとともに、この供給口から対角線上の位置に下流側に熱交換されて冷却された冷水の取出口を少なくとも一箇所備えた雪室を用いた冷房設備において、
前記供給口から前記取出口に至る雪室床面に、供給口から取出口に向かって流れる水との接触によって、上流側に形成される雪島と下流側に形成される雪島との融解時間が同じとなるように取出口を中心として該取出口から供給口に向かう放射状の水路網を設けたこと特徴とする雪室を用いた冷房設備。
(3)前記水路網が、取出口を中心として該取出口から供給口に向かう複数の放射状の径方向の水路と、該径方向の水路に交差する複数の周方向の水路とからなることを特徴とする前記(2)に記載の雪室を用いた冷房設備。
(4)前記水路網を構成する取出口を中心として該取出口から供給口に向かう複数の放射状の径方向の水路と、該径方向の水路に交差する複数の周方向の水路とにより分断されて形成される雪島の底面積が取出口に向かって小さくなるように構成されたことを特徴とする前記(2)に記載の雪室を用いた冷房設備。
(5)前記水路網が、金属製棒体を雪室床面に敷設することによって生じる空間により水路が形成されるとともに、該金属製棒体に雪が接触し融解されて水路が形成されてなることを特徴とする前記(2)〜(4)のいずれか1に記載の雪室を用いた冷房設備。
The present inventors solved the above-mentioned subject by the following means.
(1) A snow chamber provided with at least one return water supply port on the upstream side, and at least one cold water outlet that is cooled by heat exchange on the downstream side to a position diagonally from this supply port In the cooling system used,
On the snow room floor surface extending from the supply port to the outlet, contact is made with water flowing from the supply port toward the outlet to melt the snow island formed on the upstream side and the snow island formed on the downstream side A cooling system using a snow chamber characterized by providing a radial water channel from the outlet to the supply port centering on the outlet so that the time is the same.
(2) A snow chamber provided with at least one return water supply port on the upstream side, and at least one cold water outlet which is cooled by heat exchange on the downstream side at a position diagonally from this supply port In the cooling system used,
On the snow room floor surface extending from the supply port to the outlet, contact is made with water flowing from the supply port toward the outlet to melt the snow island formed on the upstream side and the snow island formed on the downstream side A cooling system using a snow room characterized by providing a radial water channel network from the outlet to the supply port centering on the outlet so that the time is the same.
(3) The water channel network is composed of a plurality of radial radial channels going from the outlet to the supply port centering on the outlet and a plurality of circumferential channels crossing the radial channel. The cooling installation using the snow room according to the above (2), which is characterized by the above.
(4) Divided by a plurality of radial radial channels going from the outlet to the supply port centering on the outlet constituting the channel network, and a plurality of circumferential channels intersecting the radial channel The cooling installation using the snow room according to the above (2), wherein the bottom area of the formed snow island is reduced toward the outlet.
(5) The water channel network is formed of a space formed by laying a metal rod on the floor surface of a snow chamber and a water channel is formed, and snow is brought into contact with the metal rod and melted to form a water channel A cooling installation using the snow chamber according to any one of the above (2) to (4), characterized in that

(6)前記水路網を構成する取出口を中心として該取出口から供給口に向かう複数の放射状の径方向の水路の本数mを、冷房設備に使用する雪室の床面積、貯蔵する雪の高さ、雪室床面の上流側から供給する還り水の温度と取り出す温度に基づき求めるため、
雪室床面の形状に合わせて、径方向の水路をm本とし、該径方向の水路と交差する周方向の水路n本を決め、また径方向の水路の幅の角度Φと、隣り合う径方向の水路がなす角度θ、水路の幅dを決めるステップ1と、
前記周方向の水路間の距離を最上流の幅広の円弧状の水路から下流側の円弧状の水路に向かってL(円弧状の水路nとnの間隔)、L(円弧状の水路nとnの間隔)・・Ln−1(円弧状の水路n−1とn間隔)とし、前記各水路間の距離を同一として、必要な径方向の水路の本数mを式(1)から(3)により求めるステップ2と、
円弧状の水路間のL、L・・Ln−1の距離を異ならせ各雪島の融解時間が同じようになるように最適な各水路間の距離を式(4)及び式(5)から求めるステップ3と、
上記のより、求めた最適化した円弧状の水路間の間隔(L、L、・・Ln−1)を使い、前記式(3)の条件を満たしているか否かを検証し同式(3)の条件が満たされていれば円弧状の水路間の間隔を確定し、前記式(3)の条件が満たされていないときは、径方向の水路の本数mを増やし、円弧状の水路間の距離を最適化し、前記式(3)の条件が満たされているか検証し、前記式(3)の条件が満たされるまで繰り返すことにより、上流側の雪島と下流側の雪島との融解時間差が小さくなるよう径方向の水路の最小本数と各周方向の水路の間隔(L、L・・Ln−1)を求めるステップ4と
から求められた径方向の水路と周方向の水路とからなる水路網であることを特徴とする前記(2)〜(5)のいずれか1に記載の雪室を用いた冷房設備。

Figure 0006513010
Figure 0006513010
Figure 0006513010
Figure 0006513010
Figure 0006513010
(7)上流側に還り水の供給口を少なくとも一箇所備えるとともに、この供給口から対角線上の位置に下流側に熱交換されて冷却された冷水の取出口を少なくとも一箇所備えた雪室を用いた冷房設備において、
前記供給口から前記取出口に至る雪室床面に、供給口から取出口に向かって流れる水との接触によって、取出口を中心として該取出口から供給口に向かう放射状の水路を設け、下記の条件式(6)及び式(7)を満足する最小のmを、放射状の径方向の水路の本数mとしたことを特徴とする雪室を用いた冷房設備。
Figure 0006513010
Figure 0006513010
(6) The floor area of the snow room used for cooling equipment, the number of meters of a plurality of radial radial channels going from the outlet to the supply port centering on the outlet constituting the water channel network, of the snow to be stored In order to obtain based on the height and the temperature of the return water supplied from the upstream side of the snow floor and the temperature to be taken out,
In accordance with the shape of the floor of the snow chamber, m radial channels are defined, and n circumferential channels crossing the radial channel are determined, and the radial channel angle Φ and adjacent channels Step 1 of determining the angle θ formed by the radial water channel and the width d of the water channel;
The distance between the water channels in the circumferential direction is L 1 (the distance between the water channels n 1 and n 2 in the arc shape), L 2 (arc shape) from the widest circular arc channel on the most upstream to the downstream circular arc channel spacing waterways n 2 and n 3) and · · L n-1 (arc-shaped waterway n-1 and n intervals), as the same distance between the respective water channel, the necessary radial the number m of the channel Step 2 determined by the equations (1) to (3);
The distance between each water channel which is optimal so that the distance between L 1 and L 2 · · L n-1 between arc shaped water channels is made different so that the melting time of each snow island is the same can be expressed by Step 3 to obtain from 5),
From the above, using the spacing (L 1 , L 2 ,... L n-1 ) between the optimized arc-shaped water channels thus determined, it is verified whether the condition of the above equation (3) is satisfied or not If the condition of the equation (3) is satisfied, the interval between the arc-like water channels is determined, and if the condition of the equation (3) is not satisfied, the number m of water channels in the radial direction is increased By optimizing the distance between the waterways of the above and verifying that the condition of the above equation (3) is satisfied, it is repeated until the condition of the above equation (3) is satisfied. Calculating the minimum number of water channels in the radial direction and the distance between the water channels in each circumferential direction (L 1 , L 2 · · · L n -1 ) so as to reduce the melting time difference between It is a water channel network which consists of a water channel of a circumferential direction, Any one of the said (2)-(5) characterized by the above-mentioned. Cooling equipment with Snow.
Figure 0006513010
Figure 0006513010
Figure 0006513010
Figure 0006513010
Figure 0006513010
(7) A snow chamber provided with at least one return water supply port on the upstream side, and at least one cold water outlet that is cooled by heat exchange on the downstream side at a position diagonally from this supply port In the cooling system used,
A radial channel extending from the outlet to the outlet is provided on the floor of the snow chamber from the inlet to the outlet by contact with water flowing from the outlet to the outlet, A cooling installation using a snow chamber, wherein the minimum m satisfying the conditional expressions (6) and (7) is the number m of radial radial water channels.
Figure 0006513010
Figure 0006513010

本発明によれば、上流側に還り水の供給口を少なくとも一箇所備えるとともに、この供給口から対角線上の位置に下流側に熱交換されて冷却された冷水の取出口を少なくとも一箇所備えた雪室を用いた冷房設備において、
前記供給口から前記取出口に至る雪室床面に、供給口から取出口に向かって流れる水との接触によって、上流側に形成される雪島と下流側に形成される雪島との融解時間が同じとなるように、取出口を中心として該取出口から供給口に向かう複数の放射状の水路や水路網を設けたので、伝熱面積の拡大と融解速度の安定化を実現し、冷熱出力の向上と安定化を可能とする雪室を用いた冷房設備を提供することができる。
また、前記水路網が、取出口を中心として該取出口から供給口に向かう複数の放射状の径方向の水路と、該径方向の水路に交差する複数の周方向の水路とから構成されているので、供給口から供給される水路網を流れる冷水によって、雪室内の雪島が扇状となると水路幅が拡大し水位差がほとんどなくなり冷水の速度は緩やかになる。そして、扇の円弧部分において、冷水と雪の温度差もそれほど変わらなくなるので、雪の融解速度の周方向のばらつきを抑えて、冷熱出力の向上と安定化を可能とする雪室を用いた冷房設備を提供することができる。
また、前記水路網が、金属製棒体を雪室の床面に敷設することによって生じる空間により水路が形成されるとともに、該金属製棒体に雪が接触し融解されて水路が形成されるので、大がかりな工事や設計変更等が不要で、新規の雪室はもちろん、既存の雪室にも容易に、かつ安価に配設することができる
さらに、出口管の開口を一方の隅部に臨ませ、入口管の開口を他方の隅部に臨ませるだけのシンプルな構成で済むので、ヘッダやバルブやピットや堰などの施工が不要な雪室を用いた冷房設備を提供することができる。
According to the present invention, at least one return water supply port is provided on the upstream side, and at least one cold water extraction port cooled and heat-exchanged downstream on the diagonal side from the supply port is provided. In the cooling system using a snow room,
On the snow room floor surface extending from the supply port to the outlet, contact is made with water flowing from the supply port toward the outlet to melt the snow island formed on the upstream side and the snow island formed on the downstream side A plurality of radial channels and channel networks from the outlet to the outlet are provided around the outlet so that the time is the same, so expansion of the heat transfer area and stabilization of the melting rate are realized, and the cooling energy is achieved. It is possible to provide a cooling system using a snow room that can improve and stabilize the output.
In addition, the water channel network is composed of a plurality of radial radial channels going from the outlet to the supply port centering on the outlet and a plurality of circumferential channels intersecting the radial channel. Because of the cold water flowing through the waterway network supplied from the supply port, when the snow island in the snow room becomes fan-shaped, the waterway width widens and the water level difference almost disappears, and the speed of the cold water becomes moderate. And, since the temperature difference between the cold water and the snow does not change so much in the arc part of the fan, the cooling using the snow room which makes it possible to improve and stabilize the cold heat output by suppressing the circumferential variation of the melting speed of snow. Equipment can be provided.
Moreover, while the water channel is formed by the space formed by laying the metal rod on the floor surface of the snow chamber, the water channel is formed, and snow is brought into contact with the metal rod and melted to form the water channel. No need for extensive construction work or design changes, and it can be easily and inexpensively installed in existing snow rooms as well as in new snow rooms. Furthermore, the opening of the outlet pipe is exposed in one corner. In addition, since a simple configuration is sufficient to allow the opening of the inlet pipe to face the other corner, it is possible to provide a cooling system using a snow room that does not require the construction of a header, a valve, a pit or a weir.

本発明の雪室を用いた冷房設備の構成を示す概略図である。It is the schematic which shows the structure of the cooling installation using the snow room of this invention. 本発明における冷房設備の雪室床面に放射状の水路を形成する1例を示す平面図である。It is a top view which shows one example which forms a radial water channel in the snow room floor surface of the cooling installation in this invention. 本発明における雪室内の冷房負荷と必要とする冷房負荷の雪の貯蔵期間中の変化を示す図である。It is a figure which shows the change over the storage period of the cooling load in the snow room in this invention, and the required cooling load of the snow. 雪室の熱負荷積算、冷房負荷積算、及び負荷トータルの冷房設備雪の貯蔵期間中の積算量の変化を示す図である。It is a figure which shows the change of the thermal load integration of a snow room, cooling load integration, and the accumulation amount in the storage period of cooling installation snow of load total. 本発明における雪島と従来の雪島の熱交換能力の差異を説明するための平面図である。It is a top view for demonstrating the difference in the heat exchange capacity of the snowy island in this invention, and the conventional snowy island. 本発明における雪島と従来の雪島の熱交換能力の差異を説明するための立面図である。It is an elevation for demonstrating the difference of the heat exchange capacity of the snowy island in this invention, and the conventional snowy island. 本発明における水路網により形成される雪島の例を示す平面図である。It is a top view which shows the example of the snowy island formed of the waterway network in this invention. 本発明における水路網により形成される一つの雪島の例を示す斜視図である。It is a perspective view which shows the example of one snow island formed of the waterway network in this invention. 本発明における水路網により形成される雪島の例における冷房開始初期と冷房負荷最大期の雪島の融解を示す平面図である。It is a top view which shows melting of the snow island of the cooling start initial stage and cooling load maximum stage in the example of the snow island formed of the waterway network in this invention. 本発明における水路網により形成される雪島を流れる水の温度変化を表す図である。It is a figure showing the temperature change of the water which flows through the snowy island formed of the waterway network in this invention. 本発明の雪室床面に格子状の水路網を形成する場合の横方向の水路の数と縦方向の水路間の間隔を求める説明図である。It is explanatory drawing which calculates | requires the number of the water channels of the horizontal direction, and the space | interval between water channels of the vertical direction in the case of forming a grid-like water channel network on the snow room floor surface of this invention.

図1は本発明の雪室を用いた冷房設備の構成を示す概略図である。
同図において、1は冬期に降った雪を貯蔵する雪室、2は雪室の床面、3は熱交換器からの還り水の供給口、4は供給され雪室1内で冷却された水の取出口で、供給口3から対角線上の位置に設けられている。
本発明にかかる雪室を用いた冷房設備の基本構成は、図1に示すように、雪室1の上流側に設けられた供給口3から供給された還り水が、雪室1内の雪との熱交換により冷却され冷水となって下流側に設けられた取出口4から取り出される。前記取出口4から取り出された冷水は、熱交換器に送られ、冷熱需要施設の空調システム等の冷媒との間で熱交換され、冷熱需要施設の冷房等冷熱源として活用される。
そして、前記熱交換器での熱交換によって温められた水は、還り水として雪室1の供給口3へ送られ、雪室1内で再び雪との熱交換によって冷却され、取出口4から取り出される水の循環で冷房する機構となっている。
図1に示す例においては、雪室1の供給口3から供給された水が、雪との熱交換により5℃に冷やされて熱交換器に送られ、熱交換器で熱交換された7℃の冷媒が冷熱需要施設の空調システム等に供給される。そして、該空調システム等で使用されて温度が12℃となった冷媒が熱交換器に送られる。
その後、熱交換器によって10℃に調整された還り水は、雪室1の供給口3から雪室1に供給され、この還り水が雪と接触することで雪が融解され、該還り水は雪の冷熱を吸収して冷やされ、5℃程度の冷水となる。そして、この冷水は取出口4から取り出され、再び熱交換器に送られるという構成となっている。
FIG. 1 is a schematic view showing the configuration of a cooling system using a snow chamber of the present invention.
In the figure, 1 is a snow room for storing snow which fell in winter, 2 is a floor surface of the snow room, 3 is a supply port of return water from the heat exchanger, 4 is supplied and cooled in the snow room 1 It is provided at a diagonal position from the supply port 3 at the water outlet.
The basic configuration of a cooling system using a snow chamber according to the present invention is, as shown in FIG. 1, that the return water supplied from the supply port 3 provided on the upstream side of the snow chamber 1 is snow within the snow chamber 1. After being cooled by heat exchange with the above, it turns into cold water and is taken out from the outlet 4 provided on the downstream side. The cold water extracted from the outlet 4 is sent to a heat exchanger, and is heat-exchanged with a refrigerant such as an air conditioning system of a cold energy demand facility to be utilized as a cold heat source such as cooling of the cold energy demand facility.
Then, the water warmed by the heat exchange in the heat exchanger is sent as the return water to the supply port 3 of the snow chamber 1, and is cooled again by the heat exchange with the snow in the snow chamber 1. It becomes a mechanism which cools by circulation of the water taken out.
In the example shown in FIG. 1, the water supplied from the supply port 3 of the snow chamber 1 is cooled to 5 ° C. by heat exchange with the snow, sent to the heat exchanger, and heat-exchanged in the heat exchanger 7 The refrigerant of ° C. is supplied to the air conditioning system of the cold energy demand facility and the like. And the refrigerant | coolant used by this air-conditioning system etc. and temperature became 12 degreeC is sent to a heat exchanger.
Thereafter, the return water adjusted to 10 ° C. by the heat exchanger is supplied from the supply port 3 of the snow chamber 1 to the snow chamber 1, and the return water contacts the snow to melt the snow, and the return water is snow It absorbs the cold heat and is cooled, and it becomes cold water of about 5 ° C. Then, the cold water is taken out from the outlet 4 and sent to the heat exchanger again.

図2は本発明における冷房設備の雪室床面に放射状の水路を形成する1例を示す平面図である。
図において、5は放射状に形成された水路網、5’は水路網を形成する水路網構成体、6は取出口4を中心として該取出口4から供給口3に向かう放射状の径方向の水路、7は該径方向の水路6に交差する周方向の水路である。
また、8は放射状の水路網5を構成する径方向に配置された棒、9は前記径方向に配置された棒8に交差する周方向に配置された棒である。
本発明の雪室を用いた冷房設備は、図2(a)に示すように、雪室の床面に水路網5が取出口4から供給口3に向かって放射状に形成される。
本発明における水路網5は、水の偏流によって雪が不規則に融解するのを防止し水の流れを誘導して、所定位置の雪の融解を促進し、水と雪の熱交換を一定に安定して実施させるために設けられるものである。
すなわち水路網5は、水の流れを誘導できるものであればよく、雪室の床面2にあらかじめ凹状に水路を形成して構成したり、熱伝導率の高い棒体を敷設して形成することが考えられる。
図2(b)は、金属製の放射状に径方向に配置された棒8と、該径方向に配置された棒8に交差する周方向に配置された棒9から形成された水路構成体5’である。
本例においては、水路網5の形成する水路網構成体5’は、金属製棒体を雪室の床面2に敷設して構成されている。金属製棒体を雪室床面に敷設することによって生じる空間により水路が形成されるとともに、該金属製棒体に雪が接触して融解されることにより、金属製棒体を中心に水路が形成され、水路網5が形成される。これは、金属製棒体は、熱伝導性に優れていることから雪の融解を促進しやすく水路の形成に好適なためであるが、同様の効果を期待できるものであれば、これに限定されるものではない。
この放射状に形成された水路網構成体5’を雪室の床面に配置することで、各棒8、9に接する雪が優先的に溶け、棒体を中心に水路が形成され、各水路間に残る雪が雪島を形成することで、雪室の床面2に放射状に配列した複数の雪島が形成される。
そして、各雪島の縁部に位置する各棒に沿って水路6、7が形成され水路網5ができる構成となっている。
なお、図2(b)に示すように、雪室の床面2に水路網5を形成するために配置する放射状の径方向の棒体(棒8)は、雪室の床面2の周囲は省略することができる。
これは、雪室の床面2の周囲は壁に面しており、該壁からの潜熱により周囲に水路が構成されるからであるが、壁面からの潜熱が期待できないような場合には、床面2の周囲に棒体を配設することが望ましい。
また、本実施例においては、径方向の水路6、棒8は同じ角度で配置、構成され、周方向の水路7、棒9は各径方向の配置間隔が異なって配置、構成されている。
これにより後述するように、雪室1に貯蔵されている雪が底面積の異なる複数の雪島を形成し、かつ、その底面積が供給口3から取出口4に向かって小さくなるので、供給口3から取出口4へ流れる間に変化する水の温度変化により変動する冷熱出力を安定させることができ、複数の雪島を平均して融解することができ、また融解部分が供給口3に偏って伝熱面積が減少することなく、全体の伝熱面積は拡大される。
FIG. 2 is a plan view showing an example in which radial water channels are formed on the snow room floor of the cooling system in the present invention.
In the figure, 5 is a waterway network formed radially, 5 'is a waterway network structure forming the waterway network, 6 is a radial radial waterway from the outlet 4 toward the supply port 3 around the outlet 4 , 7 is a circumferential water channel that intersects the radial water channel 6.
Further, reference numeral 8 denotes radially disposed rods constituting the radial water channel network 5, and reference numeral 9 denotes circumferentially disposed rods intersecting the radially disposed rods 8.
In the cooling system using the snow chamber of the present invention, as shown in FIG. 2A, the water channel network 5 is radially formed from the outlet 4 toward the supply port 3 on the floor surface of the snow chamber.
In the present invention, the waterway network 5 prevents irregular melting of snow by drifting water, induces the flow of water, promotes melting of snow at a predetermined position, and stabilizes heat exchange between water and snow. In order to be implemented.
That is, the water channel network 5 may be any type that can guide the flow of water, and is formed by forming a water channel concavely in advance on the floor surface 2 of the snow chamber, or by laying a rod having a high thermal conductivity. It is conceivable.
FIG. 2 (b) shows a water channel structure 5 formed of metal radial radially arranged rods 8 and circumferentially arranged rods 9 intersecting the radially arranged rods 8 '.
In the present embodiment, the water channel network construction 5 'formed by the water channel network 5 is configured by laying a metal rod on the floor surface 2 of the snow chamber. A water channel is formed by the space created by laying a metal rod on the floor of a snow chamber, and snow is brought into contact with the metal rod and melted to form a water channel around the metal rod. And the water channel network 5 is formed. This is because the metal rod easily promotes the melting of the snow because it is excellent in thermal conductivity, and is suitable for the formation of the water channel, but the same effect can be expected if it can be expected. It is not something to be done.
By arranging the radially formed water channel network structure 5 'on the floor surface of the snow chamber, the snow in contact with the rods 8 and 9 preferentially melts, and a water channel is formed around the rod body. The remaining snow forms a snow island, whereby a plurality of snow islands are formed radially arranged on the floor surface 2 of the snow chamber.
And the water channels 6 and 7 are formed along each stick | rod located in the edge part of each snow island, and it is the structure which the water channel network 5 can be made.
As shown in FIG. 2 (b), radial radial rods (bars 8) arranged to form the water channel network 5 on the floor surface 2 of the snow chamber are around the floor surface 2 of the snow chamber. Can be omitted.
This is because the circumference of the floor 2 of the snow chamber faces the wall, and the latent heat from the wall constitutes a water channel, but if the latent heat from the wall can not be expected, It is desirable to arrange a rod around the floor 2.
Further, in the present embodiment, the water channels 6 and the rods 8 in the radial direction are arranged and configured at the same angle, and the water channels 7 and the rods 9 in the circumferential direction are arranged and configured with different arrangement intervals in each radial direction.
Thereby, as described later, the snow stored in the snow chamber 1 forms a plurality of snow islands having different bottom areas, and the bottom areas thereof decrease from the supply port 3 toward the outlet 4 so that the supply ports The cold heat output fluctuating due to the temperature change of water changing from 3 to the outlet 4 can be stabilized, a plurality of snow islands can be averaged and melted, and the melting portion is biased to the supply port 3 As a result, the entire heat transfer area is expanded without reducing the heat transfer area.

図3は本発明における雪室1内の冷房負荷と必要とする冷房負荷の雪の貯蔵期間中の変化を示す図である。
同図において、横軸は雪の貯蔵期間、縦軸は熱負荷q(J/s)である。
qLは熱負荷で、例えば、雪室1の外から熱が貫流して入るため、その負荷は4月頃から発生しピークが8月頃になり、10月頃まで発生する。
これに対してqcは冷房負荷で、冷房の需要量を示している。冷房需要は例えば、6月頃から発生し、外気温が高くなるにつれて大きくなっていくという性質がある。そしてピーク値qc-maxは8月中旬頃となる。
したがって、このピーク値qc-maxに対応可能なように雪室1の床面積を設定し、必要量の雪を貯蔵する必要がある。
図4は、雪室の熱負荷積算、冷房負荷積算、及び負荷トータルの冷房設備雪の貯蔵期間中の積算量の変化を示す図である。
同図において、横軸は雪の貯蔵期間、縦軸は積算熱量Q(J)を示す。
QL、Qc、Qsumはそれぞれ図3に示した、熱負荷qL、冷房負荷qc、及び負荷トータルqL+qcの積算値を示したもので、QLは雪室の冷房熱負荷の積算値で4月からゆっくりと上がっている。Qcは冷房負荷の積算値で6月から急伸し後半はゆっくりと上がっている。
Qsum(点線)は、QLとQcを合算したもので雪室1に対する熱負荷の合計である。したがって、このQsumに対応できるように貯蔵する雪の量(Ms)が決められ、例えば、Qsum(熱負荷の合計)の1.2〜1.3倍の蓄積冷熱Qが確保される雪の量が貯蔵できるように雪室1を設計する。
FIG. 3 is a view showing the change of the cooling load in the snow room 1 and the required cooling load during storage of snow according to the present invention.
In the figure, the horizontal axis is the storage period of snow, and the vertical axis is the heat load q (J / s).
Since qL is a heat load, for example, heat flows from the outside of the snow chamber 1 and flows through it, the load is generated from about April, and the peak becomes about August and occurs until about October.
On the other hand, qc is a cooling load, which indicates the amount of demand for cooling. The cooling demand, for example, occurs from around June, and has the property of increasing as the outside air temperature rises. The peak value qc-max is around mid August.
Therefore, it is necessary to set the floor area of the snow chamber 1 so as to correspond to the peak value qc-max and store the necessary amount of snow.
FIG. 4 is a diagram showing changes in the thermal load integration of the snow room, the cooling load integration, and the integrated amount during storage period of the cooling facility snow of the total load.
In the figure, the horizontal axis indicates the storage period of snow, and the vertical axis indicates the integrated heat quantity Q (J).
QL, Qc, and Qsum show the integrated values of thermal load qL, cooling load qc, and total load qL + qc shown in FIG. 3, respectively. QL is the integrated value of cooling heat load in the snow room. Slowly from April Is rising. Qc is the integrated value of the cooling load, which suddenly increases from June and rises slowly in the second half.
Qsum (dotted line) is the sum of QL and Qc, and is the total of the heat load on the snow chamber 1. Therefore, the amount (Ms) of snow to be stored is determined so as to correspond to this Qsum, for example, the amount of snow where 1.2 to 1.3 times as much accumulated cold energy Q as Qsum (total heat load) is secured. Design the snow chamber 1 so that it can be stored.

図5は本発明における雪島と従来の雪島の熱交換能力の差異を説明するための平面図、 そして図6は本発明における雪島と従来の雪島の熱交換能力の差異を説明するための立面図である。
図5、図6において、(a)は本発明における放射状の水路網を雪室の床面2に配設した場合に形成される雪島21の形状の例であり、(b)は従来の雪室における雪島22の典型的な形状を示している。雪島21、22はいずれも図6に示す雪島の下部の水に浸っている部分が伝熱面積10(熱交換面積)であり、熱交換能力の大小にかかわる。
図5(b)、図6(b)に示すように従来の雪島22は一つの大きな塊として形成されており、水に浸かった部分の面積は狭い。
これに対して、図5(a)、図6(a)に示すように本発明における雪島21は、複数の径方向の放射状の水路6とこれに直交する複数の周方向の水路7とで分割されて形成されている。したがって、これら複数の雪島21の外周の下部の水に浸っている部分のすべてが伝熱面積10であり、従来の雪島22の伝熱面積に比べて広く、雪室1全体の熱交換能力を大きくしている。
FIG. 5 is a plan view for explaining the difference in heat exchange capacity between the snowy island of the present invention and the conventional snowy island, and FIG. 6 explains the difference between the heat exchange capabilities of the snowy island and the conventional snowy island according to the present invention. Is an elevation view of
In FIGS. 5 and 6, (a) is an example of the shape of the snow island 21 formed when the radial water channel network in the present invention is disposed on the floor surface 2 of the snow chamber, and (b) is a conventional example. The typical shape of the snow island 22 in a snow room is shown. In each of the snow islands 21 and 22, the portion immersed in water at the lower part of the snow island shown in FIG. 6 is a heat transfer area 10 (heat exchange area), which is related to the magnitude of heat exchange capacity.
As shown in FIGS. 5 (b) and 6 (b), the conventional snow island 22 is formed as one large block, and the area of the portion immersed in water is narrow.
On the other hand, as shown in FIGS. 5 (a) and 6 (a), the snow island 21 according to the present invention includes a plurality of radial radial water channels 6 and a plurality of circumferential water channels 7 orthogonal thereto. It is divided and formed. Therefore, all the parts immersed in water in the lower part of the outer periphery of the plurality of snow islands 21 have a heat transfer area 10, which is wider than the heat transfer area of the conventional snow island 22 and the heat exchange of the entire snow room 1 I am increasing my ability.

図7、図8は本発明における水路網により形成される雪島21の配列を示す平面図、及び一つの雪島の形状を示す斜視図である。
図7(a)に示すように、雪室の床面2に幅の角度Φからなる径方向の水路6を4本(m、m、m、m)と、同じく幅dからなる周方向の水路7を3本(上流側からn、n、n)、前記周方向の水路7においては、nとnとの間隔をL1、n2とn3との間隔をL2、n3と取出口4との間隔をL3として敷設すると、径方向の水路6のmとm、mとm、mとmが、周方向の水路n、n、nとによって区切られ、径方向に3列、周方向に3行の領域が形成される。
図7(b)は上記図7(a)における、径方向の水路6のmとmとによって形成される雪島を表す図である。
同図示のように上流側からA、A、Aで示す3個の雪島が径方向一列に形成される。そしてそれぞれの雪島の面積は雪島Aがa、雪島Aがa、雪島Aがaと異なって構成される。
ここで雪島A〜Aの幅の角度をθ、放射状の水路6の幅の角度をΦ、円弧状の水路7の幅をdとすると、放射状の水路6のmとmの隣り合う水路6の中心線の為す角度(θ+Φ)は、90/(m−1)となる。ここでm=4本だと該隣り合う水路6の中心線の為す角度(θ+Φ)は30°である。
ここで、W1aを雪島Aの上流側の奥行き、W1bを雪島Aの下流側の奥行き、W2aを雪島Aの上流側の奥行き、W2bを雪島Aの下流側の奥行き、W3aを雪島Aの上流側の奥行き、W3bを雪島Aの下流側の奥行き、Lを水路nとnとの間隔、Lを水路nとnとの間隔、Lを水路nと取出口4との間隔、L’を雪島Aの径方向の幅、L’を雪島Aの径方向の幅、L’を雪島Aの径方向の幅、αwを雪島A〜Aの径方向の熱伝導率、αLを雪島A〜Aの周方向の熱伝導率、H’を雪島A〜Aの高さ、hを雪島A〜Aの下部の水に浸った部分の高さとする。
7 and 8 are a plan view showing the arrangement of the snow islands 21 formed by the water channel network in the present invention, and a perspective view showing the shape of one snow island.
As shown in FIG. 7 (a), four radial channels 6 (m 1 , m 2 , m 3 , m 4 ) with a width angle Φ on the floor surface 2 of the snow chamber are similarly set from the width d Three water channels 7 in the circumferential direction (from the upstream side, n 1 , n 2 , n 3 ), and in the water channels 7 in the circumferential direction, the distance between n 1 and n 2 is L 1, the distance between n 2 and n 3 L2, and the distance between n3 and outlet 4 for laying as L3, m 1 and m 2, m 2 and m 3 in the radial direction of the channel 6, m 3 and m 4 are the circumferential direction of the channel n 1, n 2 , N 3 to form three columns in the radial direction and three rows in the circumferential direction.
7 (b) is a diagram showing a Yukishima formed by the FIG 7 (a), and m 1 and m 2 in the radial direction of the water channel 6.
As shown in the drawing, three snow islands indicated by A 1 , A 2 and A 3 are formed in a line in the radial direction from the upstream side. The area of each snow island is different from that of snow island A 1 from a 1 , from snow island A 2 to a 2 , and from snow island A 3 to a 3 .
Assuming that the angle of the width of the snow island A 1 to A 3 is θ, the angle of the width of the radial water channel 6 is Φ, and the width of the arcuate water channel 7 is d, m 1 and m 2 of the radial water channel 6 The angle (θ + Φ) between the center lines of the adjacent water channels 6 is 90 / (m−1). Here, if m = 4, the angle (θ + Φ) between the center lines of the adjacent water channels 6 is 30 °.
Here, the upstream side in the depth of Yukishima A 1 to W1a, downstream side in the depth of Yukishima the W1b A 1, the upstream side in the depth of the W2a Yukishima A 2, the depth of the downstream side of Yukishima A 2 and W2b , upstream of the depth of Yukishima a 3 and W3a, distance downstream side in the depth of Yukishima a 3 and W3b, spacing of L 1 and waterways n 1 and n 2, the L 2 and waterways n 2 and n 3 , L 3 distance between the channel n 3 and the outlet 4, L 1 'the radial width of Snow Island A 1 , L 2 ' the radial width of Snow Island A 2 , L 3 'Snow Island A 3 radial width, the radial thermal conductivity of Yukishima a 1 to a 3 to .alpha.w, circumferential direction of the heat conductivity of Yukishima a 1 to a 3 to .alpha.L, Yukishima a 1 to a to H ' 3 of height, the height of the portion immersed the h at the bottom of the water Yukishima a 1 to a 3.

なお、径方向の水路の幅や周方向の水路の幅は、外気温が高くなる時期には雪島の融解が進み拡大するが、実際の構成のための計算では、ピーク時に冷房需要を満たせばよいと考えて、ピーク時における水路の幅について計算すれば良い。
該ピーク時までの熱負荷の合計をQsum-tとし、雪島のほぼ全てが融解するのに必要な熱負荷の合計をQsumとすると、Qsum-t:Qsum=ピーク時における既に融けた雪の面積:雪室の床面の面積となる。この比例関係よりΦやdを求める。上記のように、水路の幅は径方向でも周方向でもさほど変わらないので、径方向の水路の幅の平均と周方向の水路の幅がほぼ同じになるようにすればよい。
図9は本発明における水路網により形成される雪島の例における冷房開始初期と冷房負荷最大期の雪島の融解を示す平面図で、同図(a)冷房開始初期の上流側から下流側への冷水が流れる図で、同図(b)は冷房負荷最大期の上流側から下流側への冷水が流れる図である。
同図においてa〜eは放射状の径方向の水路6と該径方向の水路と交差する周方向の水路7とによって形成された雪島であり、Fは前記雪島と還り水の供給口との間に形成された雪島である。
同図(a)に示すように冷房運転開始初期は冷水が流れる空隙が狭く流速が速く熱伝達率が特に大きい。また、冷水が分配されるより上流に位置している雪島Fは、周囲の流速が相対的に速いこともあり、初期に融解が進む。
そして同図(b)示すように冷房負荷が最大となる中期には雪島Fは消失している。また、この時期には水路6、7が十分拡大しており、流速が特に小さく自然対流の影響が大きく雪島と水の熱伝達率は全体に一定的になっている。
そして図10は、図7に示す条件での雪室の床面2を上流の供給口3から下流の取出口4に向かって流れていく水の温度変化を表したものであり、横軸は上流側から下流側までの距離、縦軸は水の温度を示し、T1は供給口3に供給される還り水の温度、T2は雪島AとAとの間を流れた水の温度、T3は雪島AとAとの間を流れた水の温度、T4は取出口4から取り出される水の温度、Tsは雪の温度である。
同図において、供給口3に供給される還り水の温度が10℃の時、雪室の床面2を流れる水は雪との熱交換によってその温度が指数関数的に徐々に下がり、取出口4で5℃位になることがわかる。
この供給口3から取出口4へ流れる水の温度は、下記の式(1)により算出できる。

Figure 0006513010
In addition, although the width of the water channel in the radial direction and the width of the water channel in the circumferential direction expand and melt the snow island at the time when the outside air temperature becomes high, the calculation for the actual configuration meets the cooling demand at the peak It is sufficient to calculate the width of the water channel at peak time, considering that it is sufficient.
Assuming that the total heat load up to the peak time is Qsum-t, and the total heat load necessary for melting almost all of the snow islands is Qsum, Qsum-t: Qsum = the peak of already melted snow at the peak time Area: The floor area of the snow room. From this proportional relationship, Φ and d are obtained. As described above, since the width of the water channel does not change so much in the radial direction or the circumferential direction, the average of the width of the water channel in the radial direction and the width of the water channel in the circumferential direction may be substantially the same.
FIG. 9 is a plan view showing the melting of the snow island at the cooling start initial stage and the cooling load maximum stage in the example of the snow island formed by the water channel network in the present invention; The figure (b) in the figure is a figure through which the cold water from the upstream to the downstream of a cooling load maximum period flows.
In the figure, a to e are snow islands formed by radial radial water channels 6 and circumferential water channels 7 intersecting the radial water channels, and F is the above-mentioned snow island and return water supply port. It is a snowy island formed between the
As shown in FIG. 6A, in the initial stage of the cooling operation start, the gap through which the cold water flows is narrow, the flow velocity is fast, and the heat transfer coefficient is particularly large. In addition, Snow Island F, which is located upstream of cold water being distributed, may have a relatively high surrounding flow velocity, and melting may proceed initially.
Then, as shown in FIG. 7B, the snow island F disappears in the middle period when the cooling load is maximum. Further, at this time, the water channels 6, 7 are sufficiently expanded, the flow velocity is particularly small and the influence of natural convection is large, and the heat transfer coefficient of the snow island and the water is constant throughout.
And FIG. 10 represents the temperature change of the water which flows from the supply port 3 of the upstream toward the outlet 4 of the downstream on the floor surface 2 of the snow room on the conditions shown in FIG. 7, and a horizontal axis is distance from the upstream side to the downstream side, the vertical axis represents the temperature of the water, T1 is the temperature of went back water supplied to the supply port 3, T2 is the temperature of the water flowing between the Yukishima a 1 and a 2 , T3 is Yukishima a 2 and the temperature of the flow water between a 3, the temperature of the water T4 is taken out from the outlet 4, Ts is the temperature of the snow.
In the figure, when the temperature of the return water supplied to the supply port 3 is 10 ° C., the water flowing through the floor surface 2 of the snow chamber gradually decreases its temperature exponentially due to heat exchange with the snow, and the outlet It turns out that it will be about 5 ° C at 4.
The temperature of water flowing from the supply port 3 to the extraction port 4 can be calculated by the following equation (1).
Figure 0006513010

ここで、径方向の水路の最上流側の位置を原点とし、「JSMEテキスト 伝熱工学 日本機械学会編」に記載の、流体の温度変化の式に、最上流側の位置x=0[m]のときの水温Tin(=10℃)と、最下流側の位置(冷水の取出口4)x=10[m]のときの水温Tout(=5℃)を代入して、βを求めた。   Here, the position on the most upstream side of the water channel in the radial direction is set as the origin, and according to the equation of temperature change of fluid described in “JSME Text Heat Transfer Engineering Japan Ed. [Beta] was obtained by substituting the water temperature Tin (= 10 ° C.) at that time and the water temperature Tout (= 5 ° C.) at the most downstream position (the cold water outlet 4) x = 10 [m] .

式(1)から算出される水の温度を用いて、各雪島A〜Anにおける水と雪との間で交換される熱出力qを求めことができる。
ここで上流側から下流側に形成される雪島の数をnとし、該雪島を上流側からA、A、・・・Anとすると、k番目の雪島AKにおいて熱交換される熱出力qは、下記の式(2)により算出できる。

Figure 0006513010
The heat output q exchanged between water and snow in each of the snow islands A 1 to An can be determined using the temperature of water calculated from the equation (1).
Here the number of snow island is formed on the downstream side is n from the upstream side, A 1, A 2 and該雪island from the upstream side, when a · · · An, is heat exchanged in k-th Yukishima A K The heat output q k can be calculated by the following equation (2).
Figure 0006513010

ここで、Wkaを雪島Aの上流側の奥行き、Wkbを雪島Aの下流側の奥行き、Lを円弧状の水路nkとnk+1の径方向の幅、L’を雪島Aの径方向の幅、αwを雪島Aの径方向の熱伝導率、αLを雪島Aの周方向の熱伝導率、H’を雪島Aの高さ、hを雪島Aの下部の水に浸った部分の高さ、dを周方向の水路の幅、ψを放射状の水路6の幅の角度とする。
また、ΔTk―Sを雪島Aの上流側の奥行き面の温度差、ΔTk―(k+1)を雪島Aの上流側と下流側の奥行き面の対数平均温度差、ΔT(k+1)−sを雪島Aの下流側の奥行き面の温度差とする。
Here, the upstream side in the depth of Yukishima A k the WKA, downstream side in the depth of Yukishima A k the WKB, L k arcuate waterway nk and nk + 1 of the radial width, L 'k a Yukishima A k of radial width, the radial thermal conductivity of Yukishima a k the .alpha.w, circumferential direction of the thermal conductivity of Yukishima a k the .alpha.L, H 'the Yukishima a k height Yukishima the h Let the height of the lower portion of A k soaked in water, d be the width of the circumferential channel, and the ridge be the angle of the width of the radial channel 6.
Further, [Delta] T the temperature difference between the depth surface of the upstream side of the k-S the Yukishima A k, ΔT k- (k + 1) a Yukishima A upstream and log mean temperature difference between the depth surface of the downstream side of the k, ΔT (k + 1 ) -s to a temperature difference between the depth surface of the downstream side of Yukishima a k.

例えば、式(2)を用いて、雪島Aにおいて熱交換される熱出力qは、下記の式(2a)により算出できる。

Figure 0006513010
For example, using Equation (2), the heat output q 1 is heat-exchanged in Yukishima A 1 can be calculated by the following equation (2a).
Figure 0006513010

同様に雪島Aにおいて熱交換される熱出力qは、下記の式(2b)により算出できる。
雪島Aにおいて熱交換される熱出力(q

Figure 0006513010
Heat output q 2 which similarly heat exchange in Yukishima A 2 can be calculated by the following equation (2b).
Heat output to be exchanged in Yukishima A 2 (q 2 )
Figure 0006513010

発明者が行った実験によると、雪島の角度θや放射状の水路の幅の角度Φ、水路の幅dや雪室の大きさに拘わらず取出口から2〜3mの雪が融けることが分かった。
従って、取出口直近に設けられる円弧状の周方向の水路と取出口との距離を2〜3mとすることが望ましい。
また、雪と冷水の温度差は小さいが、取出口付近では上下方向の冷水の乱流が促進されるので雪が融けることから、下流側の雪島Aは、(冷房需要の)ピーク時にはほとんど融けているかもしくは消滅しているので、無視することができる。
According to experiments conducted by the inventor, it was found that 2 to 3 m of snow could be melted from the outlet regardless of the angle of the snow island, the angle Φ of the width of the radial water channel, the width d of the water channel and the size of the snow chamber .
Therefore, it is desirable to set the distance between the arc-shaped circumferential water channel provided immediately near the outlet and the outlet at 2 to 3 m.
In addition, although the temperature difference between snow and cold water is small, turbulent flow of cold water in the vertical direction is promoted near the outlet, so the snow melts, so the downstream Snow Island A 3 is mostly at the peak of (cooling demand) It can be ignored because it is melting or disappearing.

本発明における雪室を用いた冷房設備は、上記式(2)により求められる全雪島の持つ熱交換量qにより雪室1全体における可能な総熱交換量を算出し、前記図3に示した冷房需要のピーク値qc-maxに対応できるよう水路網5が構成される。前記雪室1全体における可能な総熱交換量と冷房需要のピーク値qc-maxとの関係は、下記式(3)のようになる。

Figure 0006513010
The cooling system using the snow room according to the present invention calculates the total heat exchange quantity possible in the entire snow room 1 from the heat exchange quantity q possessed by All Snow Island obtained by the above equation (2), and is shown in FIG. The water channel network 5 is configured to correspond to the peak value qc-max of the cooling demand. The relationship between the possible total heat exchange amount in the entire snow chamber 1 and the peak value qc-max of the cooling demand is as shown in the following formula (3).
Figure 0006513010

また、雪島Aが持つ冷熱Qは、下記式(4)により求められ、雪島Aを融解するために必要な時間tは、下記式(4)により求められる。

Figure 0006513010
Also, cold Q k with the Yukishima A k is calculated by the following formula (4), the time t k required to melt the Yukishima A k is obtained by the following equation (4).
Figure 0006513010

ここで、ρsは雪の密度 [kg/m]、ηsは雪の融解潜熱 [kJ/kg]である。

Figure 0006513010
Here, ρs is the density of snow [kg / m 3 ], and は s is the latent heat of melting of snow [kJ / kg].
Figure 0006513010

本発明にかかる雪室を用いた冷房設備は、上記のごとく算出した各雪島A〜Aの融解時間t〜tの差が同じになるように雪室の床面2に水路網5を敷設して形成される。
すなわち、雪室1の上流側と下流側の雪島21に融解ムラが生じないように、前記雪島A〜An−1を同じ時間(t1=t2=・・=tn−1)で融解するよう放射状の水路網5を設けて径方向の水路7の間隔L〜Ln−1を最適化して、冷熱出力の安定化を図るものである。
したがって、本発明に係る雪室を用いた冷房設備は、上記条件を充足するべく水路網5を構成するように径方向及び周方向の水路の本数及び配置間隔を調整している。
Cooling equipment with snow chamber according to the present invention, waterway floor 2 of Snow as differences in melting time t 1 ~t n each Yukishima A 1 to A n calculated as described above are the same It is formed by laying the net 5.
That is, the snow islands A 1 to A n-1 are in the same time (t 1 = t 2 = ···· = t n −1) so that uneven melting does not occur in the snow islands 21 on the upstream side and the downstream side of the snow chamber 1 A radial water flow network 5 is provided so as to melt, and the intervals L 1 to L n-1 of the water flow channels 7 in the radial direction are optimized to stabilize the cold heat output.
Therefore, in the cooling system using the snow chamber according to the present invention, the number and arrangement intervals of the water channels in the radial direction and the circumferential direction are adjusted so as to constitute the water channel network 5 in order to satisfy the above conditions.

以下に、図11を参考に、本発明の目的を達成するための雪室の床面2に構成される水路網5における径方向の水路の本数mと周方向の水路の本数n及び縦方向の水路同士の間隔Lを求める例を示す。
〈ステップ1〉
冷房設備に使用する雪室床面2の床面積(図11において縦及び横の長さa)、貯蔵する雪の高さ、雪室床面の上流側から供給する還り水の温度と取り出す温度を定めた雪室の設計仕様に基づき、雪室の床面(縦及び横の長さa)に合わせて、径方向の水路をm本と、円弧状の周方向の水路の本数nを決める。
この円弧状の水路nの本数は、雪室の大きさなどに応じて適宜決めればよいことから、例えば3本と決めると、同図に示すように床面が径方向の水路と周方向の水路とによって区切られ、径方向に3列、周方向に1行の区画が形成され、区画の各領域に、それぞれ上流側から雪島A、中間のA、下流側の雪島Aの3個の雪島が形成される。
また放射状の水路の幅の角度をΦとし、雪島A〜A幅の角度(隣り合う径方向の水路がなす角度)をθとし、円弧状の水路の幅をdとする。
なお、径方向の水路の幅の平均と周方向の水路の幅dが略同じになるようにdとΦを決めればよい。
〈ステップ2〉
次に、最上流の幅広の円弧状の水路と最上流の水路に隣り合う下流側の円弧状の水路間の距離をL(円弧状の水路nとnの間隔)、円弧状の水路nとnの間隔をL、円弧状の水路nと取出口4との間隔をL、L’を雪島Aの径方向の幅、L’を雪島Aの径方向の幅、L’を雪島Aの径方向の幅とする。ここで、水路の間隔Lの距離は、雪島の角度θなどに応じて適宜決めればよいが、ピーク時に下流側の雪島が融解する程度の距離(本件の例においては、2.5m)が好ましい。
ここで、下流側の雪島Aは、(冷房需要の)ピーク時にはほとんど融けているかもしくは消滅 しているので、Lについては無視することができるので、LとLを同一と仮定し、必要な放射状の水路の本数mを式(1)から(3)により求める。
〈ステップ3〉円弧状の水路間の距離を最適化するステップ
、Lの距離を異ならせ各雪島の融解時間が同じようになるよう式(4)及び式(5)から求める。
〈ステップ4〉
上記により最適化した円弧状の水路間の間隔(L、L)を使い、前記式(3)の条件を満たしているか否かを検証し同式(3)の条件が満たされていれば円弧状の水路間の間隔を確定し、前記式(3)の条件が満たされていないときは、径方向の水路の本数mを増やし、円弧状の水路間の距離を最適化し、前記式(3)の条件が満たされているか検証する。そして前記式(3)の条件が満たされるまで繰り返す。
この繰り返しにより、上流側の雪島と下流側の雪島との融解時間差が小さくなるよう径方向の水路の最小本数と各周方向の水路の間隔(L、L)を求める。なお、L+L+L=aであり、Lも決まった値なので、LとLの和は一定となり、Lの値が決まれば、Lの値も一義的に決まる。
すなわち、L、Lを適当な間隔で移行させて、雪島の融解時間t、tおよび融解時間のバラツキ(標準偏差σ)を求め、標準偏差σが最も小さくなるようなL、Lを検出することで、上流側の雪島と下流側の雪島との融解時間差が小さくなる水路の間隔(L、L、L)を求めることができる。
なお、L、L、Lの求め方として、上記のような直接検出による最適化を例示したがそれに限られるものではない。また、融解時間の最大値と最小値の差が最も小さくなるようなL、L、Lを検出してもよい。
In the following, referring to FIG. 11, the number m of water channels in the radial direction and the number n of water channels in the circumferential direction in the water channel network 5 constructed on the floor 2 of the snow chamber to achieve the object of the present invention An example is shown in which the distance L between waterways of
<Step 1>
Floor area of snow floor 2 used for cooling equipment (vertical and horizontal length a in Fig. 11), height of stored snow, temperature of return water supplied from upstream side of snow floor and temperature taken out Based on the design specification of the snow room which determined, according to the floor surface (longitudinal and horizontal length a) of the snow room, m water channels in the radial direction and the number n of circular water channels in the circumferential direction are determined .
The number of the circular arc-shaped water channels n may be appropriately determined according to the size of the snow chamber etc. For example, if it is decided to be three, the floor surface is a channel in the radial direction and the circumferential direction Divided by the water channel, divisions of 3 rows in the radial direction and 1 row in the circumferential direction are formed, in each area of the division, from the upstream side, Snow Island A 1 , middle A 2 , and downstream side Snow Island A 3 Three snow islands are formed.
The angle of the width of the radial water channel is Φ, the angle of the snow island A 1 to A 3 width (the angle formed by adjacent water channels in the radial direction) is θ, and the width of the circular water channel is d.
Note that d and Φ may be determined so that the average of the width of the water channel in the radial direction and the width d of the water channel in the circumferential direction are substantially the same.
<Step 2>
Next, the distance between the most upstream wide arc channel and the downstream arc channel adjacent to the most upstream channel is L 1 (distance between arc channels n 1 and n 2 ), arc-shaped interval L 2 waterways n 2 and n 3, arcuate waterways n 3 and preparative interval L 3, L 1 'the Yukishima a 1 in the radial direction of the width, L 2' of the outlet 4 Yukishima a Let the radial width of 2 and L 3 ′ be the radial width of Snow Island A 3 . The distance interval L 3 waterways may be appropriately determined depending on the angle of the snow island θ, but in the degree of distance (example of the present in which the downstream Yukishima melts at peak, 2.5 m Is preferred.
Here, Yukishima A 3 on the downstream side, since whether or disappear are almost melted during (cooling demand) peaks, it is possible to ignore the L 3, the same as assuming L 1 and L 2 Then, the required number m of radial water channels is obtained by the equations (1) to (3).
<Step 3> Step of Optimizing the Distance between Arc-Like Waterways The distances of L 1 and L 2 are made different from each other so that the melting times of the respective snow islands become the same, which are obtained from the equations (4) and (5).
<Step 4>
Using the spacing (L 1 , L 2 ) between the arc-shaped water channels optimized as described above, it is verified whether the condition of the equation (3) is satisfied, and the condition of the equation (3) is satisfied For example, if the distance between the circular water channels is determined, and the condition of the equation (3) is not satisfied, the number m of water channels in the radial direction is increased to optimize the distance between the circular water channels. Verify that the condition of (3) is satisfied. And it repeats until the conditions of said Formula (3) are satisfy | filled.
By repeating this, the minimum number of water channels in the radial direction and the distance between the water channels in each circumferential direction (L 1 , L 2 ) are determined so that the melting time difference between the upstream and downstream snow islands is reduced. Since L 1 + L 2 + L 3 = a and L 3 is also a fixed value, the sum of L 1 and L 2 is constant, and if the value of L 1 is determined, the value of L 2 is also uniquely determined.
That is, L 1 and L 2 are transferred at appropriate intervals to determine the melting time t 1 and t 2 of the snow island and the variation (standard deviation σ) of the melting time, and L 1 such that the standard deviation σ becomes the smallest. , L 2 , it is possible to obtain the distance (L 1 , L 2 , L 3 ) between the water channels where the melting time difference between the upstream snow island and the downstream snow island becomes smaller.
Incidentally, L as 1, L 2, Determination of L 3, does not has been exemplified optimizations above-described direct detection limited thereto. Also, L 1 , L 2 and L 3 may be detected such that the difference between the maximum value and the minimum value of the melting time is minimized.

具体的な例として、雪室の設計仕様を、縦の長さaが10m、横の長さがbが10mの床面2の雪室で、貯蔵する雪の高さH'を3m、雪島A〜Aの径方向に沿う両側面のなす角度θを0.77[rad](4.41°)、放射状の水路6の幅の角度Φを0.08[rad](4.58°)、円弧状の水路7の幅dを0.1m、雪島の下部の水と接する部分の高さhを0.2m、雪島の奥行き側の熱伝達率αを227W/mK、雪島の長さ側の熱伝達率αLを227W/mK、雪密度ρsを500kg/m、雪の溶解潜熱ηsを330kJ/kg、雪室床面の上流側の供給口から供給する還り水を10℃、下流側の取出口から取り出す冷水の温度を5℃とする。
前記雪室の周方向の水路の本数nを3本とし、径方向の水路の本数mを11本(90÷(4.41+4.58)+1)とする。すると、11本の径方向の水路m1〜m11と3本の周方向の水路n1〜n3と取出口により3個の雪島A、A、Aができる。なお、上記のように、雪島Aはピーク時には非常に小さくなっているか、あるいは消滅している可能性が高いので無視することもできる。
上記により、式(1)〜(5)により求められた各雪島A、Aの融解時間tとtの差が小さくなるように、最適化する円弧状の水路7の間隔L、LをもとめるとL=2.55m、L=4.95n(L=2.5m)が求められる。このL及びLを使用し式(1)〜(2)により、各雪島の水との熱交換(q、q)を求める。
次に、熱交換熱交換(q、q)の結果を式(3)の不等式にあてはめて、全雪島A、Aと水の熱交換の総熱出力(56200[J/s])が冷房ピーク時の負荷より大きくなることを確かめ、これによりこの金属棒の本数でピーク時の負荷を十分にまかなえることが判る。
なお、上記において、(3)の不等式を満たさないときは、径方向の水路の本数を増やし、増やした径方向の水路の本数を用いて上記の方法を実施し、最少本数の径方向の水路の本数を求める。
As a concrete example, the design specification of the snow chamber is 10 m in vertical length a and 10 m in horizontal length b, and the height H 'of snow to be stored is 3 m and snow is stored The angle θ between the side surfaces along the radial direction of the islands A 1 to A 3 is 0.77 [rad] (4.41 °), and the angle Φ of the width of the radial water channel 6 is 0.08 [rad] (4. 58 °), the width d of the arc-shaped water channel 7 is 0.1 m, the height h of the part in contact with the lower part of the snow island is 0.2 m, the heat transfer coefficient α w of the depth side of the snow island is 227 W / m Heat transfer coefficient α L of 2 K, length side of snow island 227 W / m 2 K, snow density ss 500 kg / m 3 , melting heat of dissolution η s 330 kJ / kg, supply of snow room floor upstream The return water supplied from the mouth is 10 ° C., and the temperature of cold water taken out from the downstream side outlet is 5 ° C.
The number n of water channels in the circumferential direction of the snow chamber is 3, and the number m of water channels in the radial direction is 11 (90 ÷ (4.41 + 4.58) +1). Then, three snow islands A 1 , A 2 , and A 3 are formed by the eleven radial channels m 1 to m 11, the three circumferential channels n 1 to n 3, and the outlet. As described above, it is possible to ignore Snow Island A 3 because it is very likely to be very small or disappear at the peak time.
According to the above, the distance L between the arc-shaped water channels 7 to be optimized so that the difference between the melting times t 1 and t 2 of the respective snow islands A 1 and A 2 determined by the equations (1) to (5) becomes smaller When 1 and L 2 are obtained, L 1 = 2.55 m and L 2 = 4.95 n (L 3 = 2.5 m) can be obtained. The formula using the L 1 and L 2 (1) ~ (2 ), determine the heat exchange with the water in the snow island (q 1, q 2).
Next, applying the result of heat exchange heat exchange (q 1 , q 2 ) to the inequality of equation (3), the total heat output of heat exchange between all the snow islands A 1 and A 2 and water (56200 [J / s It can be confirmed that the load at the time of peak cooling can be sufficiently covered by this number of metal rods.
In the above, when the inequality in (3) is not satisfied, the number of radial channels is increased, and the above method is implemented using the increased number of radial channels, and the minimum number of radial channels Find the number of

このように、上記ステップ1から径方向の水路の本数を求め、ステップ2から各周方向の水路間の距離(長さ)Lを求め、求めた各周方向の水路間の距離Lが式(3)の条件を満たすか否かを検証することで、上流側の雪島と下流側の雪島の融解時間の差が小さくなるような径方向の水路の本数と各周方向の水路間の距離Lが求まり、これにより算出された径方向の水路の本数と各周方向の水路間の距離で放射状の水路網5を雪室床面2に構成することで上流側から下流側まで各雪島からの水への熱交換能力の均等化が図られた優れた雪室を提供することができる。   Thus, the number of water channels in the radial direction is determined from step 1 above, the distance (length) L between water channels in each circumferential direction is determined from step 2, and the distance L between water channels in each circumferential direction obtained is The number of water channels in the radial direction and the distance between the water channels in each circumferential direction so that the difference in melting time between the upstream and downstream snow islands becomes smaller by verifying whether the conditions of 3) are satisfied or not The distance L is determined, and the radial channel network 5 is formed on the snow floor 2 by the number of channels in the radial direction and the distance between the channels in each circumferential direction calculated from the distance L. It is possible to provide an excellent snow chamber in which the heat exchange capacity from the island to the water is equalized.

なお、上記のような水路網5を形成するために、前記図2(b)について説明したように、上記放射状の水路網5の形状と同一の形状を金属製の棒8と、該棒8に交差する棒9で水路構成体5’を形成し、該放射状に形成された水路構成体5’を雪室の床面に配置することで、各棒8及び棒9によって生じる空間により水路が形成されるとともに、各棒8及び棒9に接する雪島の縁部に沿って雪が溶け各棒8及び棒9の回りに水路を形成することができる。
また、上記において、各周方向の水路間の距離Lを均等として径方向の水路の最小本数を求め、求めた各周方向の水路間の距離Lが式(3)の条件を満たすか否かを検証したが、他の方法として、径方向の水路mの本数を適宜設定し、その本数で求めた各径方向の水路間の距離Lが前記条件を満たすか否かを検証し、前記条件が満たされていないときは、満たすまで径方向の水路の本数を増やして前記条件を満たすか否かを検証し、前記条件が満たされているときは、径方向の水路の本数を減らして前記条件を満たすか否かを検証し、この繰り返しにより、上流側の雪島と下流側の雪島との融解時間差が小さくなるよう径方向の水路の最小本数と各周方向の水路間の距離を求めることもできる。
本実施形態では、複数の放射状の径方向の棒8と、該棒8に直交する複数の周方向の棒9で水路構成体5’を形成し、径方向の棒8の一端が取出口4に位置し、径方向の棒8の他端が雪室の床面2の周囲に位置する構成を例示したが、径方向の棒8の他端が最上流側の周方向の棒9に位置する構成でもよい。
さらに、該棒8に直交する複数の周方向の棒9を省略し、径方向の棒8の他端が雪室の床面2の周囲に位置する構成でもよい。周方向の棒9を設置しないので、雪島は、半径が床面の一辺の長さaから水路dの半分を引いた長さ、角度が雪島Aの幅の角度θの扇状の雪島A1つになる。このとき、総熱出力と冷房需要のピーク値との関係の式を満たすよう、下記の条件式(6)、(7)を満足する最小のmを、放射状の径方向の水路の本数mとして規定する。
雪島Aにおいて熱交換される熱出力

Figure 0006513010
In order to form the water channel network 5 as described above, as described with reference to FIG. 2B, the rod 8 made of metal and having the same shape as that of the radial water channel network 5 and the rod 8 By forming the water channel structure 5 'with the rods 9 intersecting with each other and arranging the radially formed water channel structures 5' on the floor surface of the snow chamber, the water channel can be As it is formed, the snow melts along the edge of the snow island bordering each rod 8 and 9 and a water channel can be formed around each rod 8 and 9.
Further, in the above, whether the distance L between the water channels in each circumferential direction is equal and the minimum number of water channels in the radial direction is determined, and whether the calculated distance L between water channels in each circumferential direction satisfies the condition of equation (3) However, as another method, the number of water channels m in the radial direction is appropriately set, and it is verified whether the distance L between the water channels in each radial direction obtained by the number satisfies the above condition, the above condition If the condition is not satisfied, increase the number of water channels in the radial direction until the condition is satisfied to verify whether the condition is satisfied, and if the condition is satisfied, reduce the number of water channels in the direction Whether the condition is satisfied or not is verified, and by this repetition, the minimum number of water channels in the radial direction and the distance between the water channels in each circumferential direction are set so that the melting time difference between the upstream and downstream snow islands is reduced. You can ask for it.
In this embodiment, the water channel structure 5 'is formed by the plurality of radial radial rods 8 and the plurality of circumferential rods 9 orthogonal to the rods 8, and one end of the radial rods 8 is the outlet 4 , And the other end of the radial bar 8 is located around the floor 2 of the snow chamber. However, the other end of the radial bar 8 is located at the most circumferential side bar 9 on the most upstream side. The configuration may be
Further, the plurality of circumferential rods 9 perpendicular to the rod 8 may be omitted, and the other end of the radial rods 8 may be positioned around the floor 2 of the snow chamber. Does not set up a circumferential direction of the rod 9, Yukishima the radius length obtained by subtracting half the waterway d from the length a of the floor surface side, the angle of the fan-shaped angle θ of the width of Yukishima A 1 Snow Island A 1 Become one. At this time, in order to satisfy the equation of the relation between the total heat output and the peak value of the cooling demand, the minimum m satisfying the following conditional expressions (6) and (7) is taken as the number m of radial radial water channels Specify.
Heat output to be exchanged in Yukishima A 1
Figure 0006513010

・雪室1全体における可能な総出力と冷房需要のピーク値qc-maxとの関係は、下記式(7)のようになる。
総熱力と冷房設備のピーク値との関係

Figure 0006513010
The relationship between the possible total output in the entire snow room 1 and the peak value qc -max of the cooling demand is as shown in the following formula (7).
Relationship between total heat power and peak value of cooling system
Figure 0006513010

この式を満たす最小のmを求める。その本数が放射状の水路6の本数になる。
・ここで、
:雪島Aの円弧の長さ
αw:雪島Aの径方向の熱伝達率
αL:雪島Aの周方向の熱伝達率
ΔT1−s(雪島Aの円弧の面の温度差)=Tin(水路n1の水温=還り冷水の温度=10℃)−T(雪島Aの温度=0℃)
ΔTa−o(雪島Aの円弧と中心の対数平均温度差)=(ΔTin−s−ΔTout−s)/ln(ΔTin−s/ΔTout−s)=(Tin−Tout)/ln(ΔTin−s/dΔTout−s)=5/ln(ΔTin−s/ΔTout−s
複数の周方向の棒9を省略した場合の水路網により形成される雪島の融解について説明する。冷房初期には、供給口から送水される冷水は、中央側の雪に当たり左右に分岐して放射状の水路を流れる。供給口付近を流れる冷水の速度は早いため、熱伝達率が大きくなり、冷水と雪の温度差も大きいため、中央側の雪は融解が早く進む。左右に分岐して低温化した冷水は、中央側の雪の隣りの雪に当たり更に左右に分岐して放射状の水路を流れる。左右に分岐した冷水の速度は遅くなるため、熱伝達率が小さくなり、低温化した冷水と雪の温度差も小さくなるため、隣りの雪は中央側の雪に比べて融解が遅くなる。このように、中央側から隅側にいくほど雪の融解が遅くなる。その結果、冷房ピーク時には、扇状に雪が残る。
このように、床面の一方の隅部に、取出口4を設け、その取出口4を中心に径方向の棒8を放射状に設置し、他方の隅部に、供給口3を設けるだけで、周方向の棒9を省略したとしても、雪の融解速度の違いで扇状に雪が残ることになり、更なる構成の簡素化が図れる。また、径方向の棒8と周方向の棒9を溶接しなくてもよく、径方向の棒8を転がし配置するだけでよいので、更なる施工の簡略化が図れる。
Find the minimum m that satisfies this expression. The number becomes the number of radial water channels 6.
·here,
w 1: length of the arc of Yukishima A 1 alpha w: Yukishima heat transfer coefficient in the radial direction of A 1 alpha L: Yukishima A 1 in the circumferential direction of the heat transfer coefficient ΔT 1-s (the Yukishima A 1 Temperature difference of the arc surface = T in (water temperature of water channel n 1 = temperature of return cold water = 10 ° C)-T s (temperature of snow island A 1 = 0 ° C)
ΔT a−o (log average temperature difference between the arc of the snow island A 1 and the center) = (ΔT in −s −ΔT out −s) / ln (ΔT in −s / ΔT out −s) = (T in −T out) / ln (ΔT in- s / dΔT out-s) = 5 / ln (ΔT in-s / ΔT out-s)
The melting of the snow island formed by the water channel network when the plurality of circumferential rods 9 are omitted will be described. In the early stage of cooling, cold water supplied from the supply port hits the snow on the central side and branches left and right to flow in the radial water channel. Because the speed of cold water flowing near the supply port is high, the heat transfer coefficient is large, and the temperature difference between cold water and snow is also large, so the snow on the central side melts quickly. The cold water branched leftward and rightward falls on the snow next to the snow on the central side and further branches leftward and rightward to flow in the radial water channel. Since the speed of cold water branched left and right becomes slower, the heat transfer coefficient becomes smaller, and the temperature difference between the cold water and the snow becomes smaller, so that the adjacent snow melts slower than the snow on the central side. Thus, the melting of snow slows down from the central side to the corner side. As a result, at the cooling peak, the fan-shaped snow remains.
Thus, the outlet 4 is provided at one corner of the floor surface, the radial rods 8 are radially installed centering on the outlet 4, and the supply port 3 is provided at the other corner. Even if the bar 9 in the circumferential direction is omitted, the snow remains fan-likely due to the difference in the melting speed of the snow, and the configuration can be further simplified. Further, since the radial bar 8 and the circumferential bar 9 do not have to be welded, and it is only necessary to roll and arrange the radial bar 8, the construction can be further simplified.

1:雪室
2:雪室の床面
3:供給口
4:取出口
5:水路網
5’:水路網構成体
6:径方向の水路
7:周方向の水路
8:径方向の棒
9:周方向の棒
10:伝熱面積
21、A、A、A:本発明の雪島
22:従来の雪島
1: Snow room 2: Floor of snow room 3: Supply port 4: Outlet 5: Waterway network 5: Waterway network component 6: Radial waterway 7: Circumferential waterway 8: Radial bar 9: Bars 10 in the circumferential direction: heat transfer area 21, A 1 , A 2 , A 3 : snow island of the present invention 22: conventional snow island

Claims (7)

上流側に還り水の供給口を少なくとも一箇所備えるとともに、この供給口から対角線上の位置に下流側に熱交換されて冷却された冷水の取出口を少なくとも一箇所備えた雪室を用いた冷房設備において、
前記供給口から前記取出口に至る雪室床面に、供給口から取出口に向かって流れる水との接触によって、上流側に形成される雪島と下流側に形成される雪島との融解時間が同じとなるように取出口を中心として該取出口から供給口に向かう放射状の水路を設けたことを特徴とする雪室を用いた冷房設備。
Cooling using a snow chamber provided with at least one return water supply port on the upstream side, and at least one cold water outlet that is cooled by heat exchange on the downstream side to a diagonal position from this supply port In the equipment,
On the snow room floor surface extending from the supply port to the outlet, contact is made with water flowing from the supply port toward the outlet to melt the snow island formed on the upstream side and the snow island formed on the downstream side A cooling installation using a snow room characterized by providing a radial water channel from the outlet to the supply port centering on the outlet so that the time is the same.
上流側に還り水の供給口を少なくとも一箇所備えるとともに、この供給口から対角線上の位置に下流側に熱交換されて冷却された冷水の取出口を少なくとも一箇所備えた雪室を用いた冷房設備において、
前記供給口から前記取出口に至る雪室床面に、供給口から取出口に向かって流れる水との接触によって、上流側に形成される雪島と下流側に形成される雪島との融解時間が同じとなるように取出口を中心として該取出口から供給口に向かう放射状の水路網を設けたことを特徴とする雪室を用いた冷房設備。
Cooling using a snow chamber provided with at least one return water supply port on the upstream side, and at least one cold water outlet that is cooled by heat exchange on the downstream side to a diagonal position from this supply port In the equipment,
On the snow room floor surface extending from the supply port to the outlet, contact is made with water flowing from the supply port toward the outlet to melt the snow island formed on the upstream side and the snow island formed on the downstream side A cooling system using a snow room characterized by providing a radial water channel network from the outlet to the supply port centering on the outlet so that the time is the same.
前記水路網が、取出口を中心として該取出口から供給口に向かう複数の放射状の径方向の水路と、該径方向の水路に交差する複数の周方向の水路とからなることを特徴とする請求項2に記載の雪室を用いた冷房設備。   The water channel network is characterized by comprising a plurality of radial radial water channels from the outlet toward the supply port centering on the outlet and a plurality of circumferential water channels intersecting the radial channel. The cooling installation using the snow room of Claim 2. 前記水路網を構成する取出口を中心として該取出口から供給口に向かう複数の放射状の径方向の水路と、該径方向の水路に交差する複数の周方向の水路とにより分断されて形成される雪島の底面積が取出口に向かって小さくなるように構成されたことを特徴とする請求項2に記載の雪室を用いた冷房設備。   It is divided and formed by a plurality of radial radial channels going from the outlet to the supply port around the outlet constituting the channel network and a plurality of circumferential channels intersecting the radial channel. The cooling installation using a snow room according to claim 2, characterized in that the bottom area of the snow island is reduced toward the outlet. 前記水路網が、金属製棒体を雪室床面に敷設することによって生じる空間により水路が形成されるとともに、該金属製棒体に雪が接触し融解されて水路が形成されてなることを特徴とする請求項2〜4のいずれか1に記載の雪室を用いた冷房設備。   The water channel network is characterized in that a water channel is formed by a space generated by laying a metal rod on the floor surface of a snow chamber, and snow is brought into contact with the metal rod and melted to form a water channel. The cooling installation using the snow room according to any one of claims 2 to 4. 前記水路網を構成する取出口を中心として該取出口から供給口に向かう複数の放射状の径方向の水路の本数mを、冷房設備に使用する雪室の床面積、貯蔵する雪の高さ、雪室床面の上流側から供給する還り水の温度と取り出す温度に基づき求めるため、
雪室床面の形状に合わせて、径方向の水路をm本とし、該径方向の水路と交差する周方向の水路n本を決め、また径方向の水路の幅の角度Φと、隣り合う径方向の水路がなす角度θ、水路の幅dを決めるステップ1と、
前記周方向の水路間の距離を最上流の幅広の円弧状の水路から下流側の円弧状の水路に向かってL(円弧状の水路nとnの間隔)、L(円弧状の水路nとnの間隔)・・Ln−1(円弧状の水路n−1とn間隔)とし、前記各水路間の距離を同一として、必要な径方向の水路の本数mを式(1)から(3)により求めるステップ2と、
円弧状の水路間のL、L・・Ln−1の距離を異ならせ各雪島の融解時間が同じようになるように最適な各水路間の距離を式(4)及び式(5)から求めるステップ3と、
上記のより、求めた最適化した円弧状の水路間の間隔(L、L、・・Ln−1)を使い、前記式(3)の条件を満たしているか否かを検証し同式(3)の条件が満たされていれば円弧状の水路間の間隔を確定し、前記式(3)の条件が満たされていないときは、径方向の水路の本数mを増やし、円弧状の水路間の距離を最適化し、前記式(3)の条件が満たされているか検証し、前記式(3)の条件が満たされるまで繰り返すことにより、上流側の雪島と下流側の雪島との融解時間差が小さくなるよう径方向の水路の最小本数と各周方向の水路の間隔(L、L・・Ln−1)を求めるステップ4と
から求められた径方向の水路と周方向の水路とからなる水路網であることを特徴とする請求項2〜5のいずれか1に記載の雪室を用いた冷房設備。
Figure 0006513010
Figure 0006513010
Figure 0006513010
Figure 0006513010
Figure 0006513010
The floor area of the snow room used for cooling equipment, the height of the snow to be stored, and the number m of a plurality of radial radial water channels from the outlet to the supply port centering on the outlet configuring the water channel network; In order to obtain based on the temperature of the return water supplied from the upstream side of the snow room floor and the temperature to be taken out,
In accordance with the shape of the floor of the snow chamber, m radial channels are defined, and n circumferential channels crossing the radial channel are determined, and the radial channel angle Φ and adjacent channels Step 1 of determining the angle θ formed by the radial water channel and the width d of the water channel;
The distance between the water channels in the circumferential direction is L 1 (the distance between the water channels n 1 and n 2 in the arc shape), L 2 (arc shape) from the widest circular arc channel on the most upstream to the downstream circular arc channel spacing waterways n 2 and n 3) and · · L n-1 (arc-shaped waterway n-1 and n intervals), as the same distance between the respective water channel, the necessary radial the number m of the channel Step 2 determined by the equations (1) to (3);
The distance between each water channel which is optimal so that the distance between L 1 and L 2 · · L n-1 between arc shaped water channels is made different so that the melting time of each snow island is the same can be expressed by Step 3 to obtain from 5),
From the above, using the spacing (L 1 , L 2 ,... L n-1 ) between the optimized arc-shaped water channels thus determined, it is verified whether the condition of the above equation (3) is satisfied or not If the condition of the equation (3) is satisfied, the interval between the arc-like water channels is determined, and if the condition of the equation (3) is not satisfied, the number m of water channels in the radial direction is increased By optimizing the distance between the waterways of the above and verifying that the condition of the above equation (3) is satisfied, it is repeated until the condition of the above equation (3) is satisfied. Calculating the minimum number of water channels in the radial direction and the distance between the water channels in each circumferential direction (L 1 , L 2 · · · L n -1 ) so as to reduce the melting time difference between The snow room according to any one of claims 2 to 5, which is a water channel network comprising water channels in the circumferential direction. Cooling equipment that was used.
Figure 0006513010
Figure 0006513010
Figure 0006513010
Figure 0006513010
Figure 0006513010
上流側に還り水の供給口を少なくとも一箇所備えるとともに、この供給口から対角線上の位置に下流側に熱交換されて冷却された冷水の取出口を少なくとも一箇所備えた雪室を用いた冷房設備において、
前記供給口から前記取出口に至る雪室床面に、供給口から取出口に向かって流れる水との接触によって、取出口を中心として該取出口から供給口に向かう放射状の水路を設け、下記の条件式(6)及び式(7)を満足する最小のmを、放射状の径方向の水路の本数mとしたことを特徴とする雪室を用いた冷房設備。
Figure 0006513010
Figure 0006513010
Cooling using a snow chamber provided with at least one return water supply port on the upstream side, and at least one cold water outlet that is cooled by heat exchange on the downstream side to a diagonal position from this supply port In the equipment,
A radial channel extending from the outlet to the outlet is provided on the floor of the snow chamber from the inlet to the outlet by contact with water flowing from the outlet to the outlet, A cooling installation using a snow chamber, wherein the minimum m satisfying the conditional expressions (6) and (7) is the number m of radial radial water channels.
Figure 0006513010
Figure 0006513010
JP2015195245A 2015-09-30 2015-09-30 Cooling system using a snow room Active JP6513010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015195245A JP6513010B2 (en) 2015-09-30 2015-09-30 Cooling system using a snow room

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015195245A JP6513010B2 (en) 2015-09-30 2015-09-30 Cooling system using a snow room

Publications (2)

Publication Number Publication Date
JP2017067395A JP2017067395A (en) 2017-04-06
JP6513010B2 true JP6513010B2 (en) 2019-05-15

Family

ID=58494450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015195245A Active JP6513010B2 (en) 2015-09-30 2015-09-30 Cooling system using a snow room

Country Status (1)

Country Link
JP (1) JP6513010B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4466256A (en) * 1982-05-12 1984-08-21 Maccracken Calvin D Ground-installed coldness storage and utilization system
JP2002147912A (en) * 2000-11-06 2002-05-22 Hisao Matsumoto Heat exchange by water flowing on floor face
JP4650857B2 (en) * 2001-02-08 2011-03-16 株式会社竹中工務店 Snow cold storage tank
JP4202399B2 (en) * 2007-04-27 2008-12-24 国策建設株式会社 Snow and ice heat exchanger system
JP2011141108A (en) * 2009-12-08 2011-07-21 Central Leasing System Co Ltd Snow cold supply system

Also Published As

Publication number Publication date
JP2017067395A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
US11041633B2 (en) District thermal energy distribution system
Bhutta et al. CFD applications in various heat exchangers design: A review
JP2011181882A (en) Cooling device having a plurality of fin pitches
JP2009063267A (en) Ground heat exchanger and its using method, and ground heat utilizing system and its operating method
JP2008292107A (en) Heat exchanger, heat exchange system, and construction method of heat exchange system
JPWO2014207785A1 (en) Heat exchanger, heat exchanger structure, and fin for heat exchanger
ES2652517A2 (en) Exchanger for a wind tunnel
JP6513010B2 (en) Cooling system using a snow room
CN103314266A (en) Heat source system, control method therfor, and program therefor
JP5961639B2 (en) Heat transfer pipe for heat exchanger
JP6427453B2 (en) Cooling system using a snow room
JP6477249B2 (en) Heat storage system
KR20160005811A (en) Heating and cooling and hot water supplying apparatus using geothermy
JP2008249168A (en) Heat exchanger
GB2534878A (en) Improvements in fluid storage systems
Takai et al. Heat transfer performance of an energy-saving heat removal device with uni-directional porous copper for divertor cooling
JP2015124940A (en) Heat storage structure and house using the same
CN105627789A (en) Heat exchanger with variable numbers of communicating holes
CN210051204U (en) Water energy storage water distributor
KR101543013B1 (en) Movable thermal storage apparatus
Alqawasmeh et al. Are construction errors in the placement of ground heat exchanging loops in energy piles important to consider?
JP2006029627A (en) Terrestrial heat exchanging device
RU86710U1 (en) RADIATOR SECTION FOR WATER HEATING SYSTEM
JP2000068119A (en) Cooling equipment for transformer
CN113280358B (en) Heat exchange calculation method for heat pipe temperature equalization of flue distributor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190409

R150 Certificate of patent or registration of utility model

Ref document number: 6513010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150