Nothing Special   »   [go: up one dir, main page]

JP6503192B2 - Laminate - Google Patents

Laminate Download PDF

Info

Publication number
JP6503192B2
JP6503192B2 JP2015025699A JP2015025699A JP6503192B2 JP 6503192 B2 JP6503192 B2 JP 6503192B2 JP 2015025699 A JP2015025699 A JP 2015025699A JP 2015025699 A JP2015025699 A JP 2015025699A JP 6503192 B2 JP6503192 B2 JP 6503192B2
Authority
JP
Japan
Prior art keywords
thermal expansion
weight
parts
layer
expansion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015025699A
Other languages
Japanese (ja)
Other versions
JP2016124285A (en
Inventor
軽賀 英人
英人 軽賀
鈴木 明
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Consultant Co Ltd
Original Assignee
F Consultant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Consultant Co Ltd filed Critical F Consultant Co Ltd
Publication of JP2016124285A publication Critical patent/JP2016124285A/en
Application granted granted Critical
Publication of JP6503192B2 publication Critical patent/JP6503192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、優れた耐熱保護性を有する積層体に関するものである。本発明の積層体は、建築構造物における各種基材を高温から保護する目的で使用することができる。   The present invention relates to a laminate having excellent heat resistance protection. The laminate of the present invention can be used for the purpose of protecting various substrates in a building structure from high temperatures.

建築構造物が火災によって高温に晒された場合には、柱、梁、床、屋根、壁等の各種基材の物理的強度が急激に低下するおそれがある。これに対して、建築構造物の各種基材を耐熱保護材で被覆して耐熱性を高める方法が種々提案されている。   When a building structure is exposed to high temperatures due to a fire, the physical strength of various substrates such as columns, beams, floors, roofs, walls, etc. may be rapidly reduced. On the other hand, various methods have been proposed for improving the heat resistance by coating various substrates of a building structure with a heat resistant protective material.

耐熱保護材としては、例えば、ロックウール、パーライト、バーミュキュライト等の無機質軽量骨材とセメントとを含む材料がよく知られている。しかしながら、かかる材料の耐熱保護材を使用する場合、十分な耐熱性能を得るためには、20〜50mm程度の厚い被膜を施工しなければならない。そのため、施工時に多量の材料を必要とし、作業上の負担が大きい上、乾燥に時間を要するという問題もある。更に、被膜が厚いため、空間の有効利用が妨げられるおそれや、外観上圧迫感を与えるおそれがある。   As a heat-resistant protective material, for example, a material containing inorganic lightweight aggregate such as rock wool, perlite, vermiculite and cement and the like is well known. However, when using the heat resistant protective material of such a material, in order to obtain sufficient heat resistant performance, it is necessary to apply a thick film of about 20 to 50 mm. Therefore, a large amount of material is required at the time of construction, and the burden on the operation is large, and there is also a problem that it takes time for drying. Furthermore, because the film is thick, there is a risk that the effective use of the space may be impeded, and the appearance may be oppressive.

近年、これらの欠点を改良した耐熱保護材として、熱膨張性材料を用いた耐熱保護材が注目されている。熱膨張性材料は、火災時の温度上昇によって熱膨張性材料の被膜が膨張することにより炭化断熱層を形成することができるため、初期段階(施工段階)の被膜を薄膜化することが可能である。   In recent years, a heat-resistant protective material using a thermally expandable material has attracted attention as a heat-resistant protective material in which these drawbacks are improved. The thermally expandable material can form a carbonized heat insulating layer by expanding the film of the thermally expandable material due to the temperature rise at the time of fire, so that it is possible to thin the film of the initial stage (construction stage) is there.

かかる熱膨張性材料としては、例えば、ポリ酢酸ビニル、アクリル樹脂等の結合材と、ポリリン酸アンモニウム等のリン化合物と、多糖類、多価アルコール等の炭化剤と、メラミン、ジシアンジアミド等の含窒素発泡剤とを主要成分とする熱膨張性材料が挙げられる(特許文献1、特許文献2等)。   As such a thermally expandable material, for example, a binder such as polyvinyl acetate and acrylic resin, a phosphorus compound such as ammonium polyphosphate, a carbonizing agent such as polysaccharide and polyhydric alcohol, and nitrogen containing such as melamine and dicyandiamide Examples thereof include thermally expandable materials having a foaming agent as a main component (Patent Document 1, Patent Document 2 and the like).

特表平4−504135号公報Japanese Patent Publication No. 4-504135 特開平7−331124号公報Japanese Patent Laid-Open No. 7-331124

ところで、高度な耐熱保護性が要求される場合、上記特許文献1、2等に記載の熱膨張性材料では、その厚みを大きくする手段を採用することができる。しかし、上記特許文献1、2等に記載の熱膨張性材料では、厚みに応じた耐熱保護性が得られにくい場合があり、十分な耐熱保護性を満たすには、相当な厚みが必要となる場合がある。   By the way, when a high degree of heat resistance protection is required, a means for increasing the thickness can be adopted for the thermally expandable material described in Patent Documents 1 and 2 and the like. However, in the case of the thermally expandable materials described in Patent Documents 1 and 2, etc., it may be difficult to obtain heat resistant protection according to the thickness, and a considerable thickness is required to satisfy sufficient heat resistant protection. There is a case.

本発明は、このような問題点に鑑みて完成されたものであり、熱膨張性材料を用いた積層体(耐熱保護材)であって、薄膜性、熱膨張性及び耐熱保護性において優れた性能を発揮することができる、新たな積層体を提供することを目的とする。   The present invention has been completed in view of such problems, and is a laminate (heat-resistant protective material) using a thermally expandable material, and is excellent in thin film properties, thermal expansion and heat-resistant protective properties. It aims at providing a new layered product which can exhibit performance.

本発明者は、上記目的を解決するために鋭意検討を重ねた結果、特定の熱膨張層A及び熱膨張層Bが少なくとも積層されている積層体を採用する場合には、上記目的が達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above object, the present inventor can achieve the above object when adopting a laminate in which at least a specific thermal expansion layer A and thermal expansion layer B are laminated. The present invention has been completed.

即ち、本発明は、下記の積層体に関する。
1.熱膨張性を有する積層体であって、
前記積層体は、少なくとも熱膨張層A及び熱膨張層Bが積層されており、
前記熱膨張層Aは、結合材、難燃剤、発泡剤及び炭化剤を含有し、
前記熱膨張層Bは、結合材、難燃剤、発泡剤、及びシラン化合物を含有し、
前記熱膨張層Bの膨張温度は、前記熱膨張層Aの膨張温度よりも低く、
耐熱性を付与すべき構造物の基材に、前記熱膨張層A及び前記熱膨張層Bが積層されていることを特徴とする積層体。
2.耐熱性を付与すべき構造物の基材に、前記熱膨張層B及び前記熱膨張層Aが当該順に積層されているか、または前記熱膨張層A及び前記熱膨張層Bが当該順に積層されていることを特徴とする1.記載の積層体。
3.前記熱膨張層Bは、発泡剤として熱膨張性黒鉛を含むことを特徴とする1.または2.記載の積層体。


That is, the present invention relates to the following laminates.
1. A laminate having thermal expansion properties,
In the laminate, at least a thermal expansion layer A and a thermal expansion layer B are laminated,
The thermal expansion layer A contains a binder, a flame retardant, a blowing agent and a carbonizing agent,
The thermal expansion layer B contains a binder, a flame retardant, a blowing agent, and a silane compound,
The expansion temperature of the thermal expansion layer B is lower than the expansion temperature of the thermal expansion layer A,
A laminate, wherein the thermal expansion layer A and the thermal expansion layer B are laminated on a base of a structure to which heat resistance is to be imparted.
2. The thermal expansion layer B and the thermal expansion layer A are laminated in this order on the base of the structure to be imparted with heat resistance, or the thermal expansion layer A and the thermal expansion layer B are laminated in this order Are characterized by Description laminate.
3. The thermally expandable layer B contains thermally expandable graphite as a foaming agent. Or 2. Description laminate.


本発明の積層体は、熱膨張性材料を用いた積層体であって、薄膜性、熱膨張性及び耐熱保護性において優れた性能を発揮することができるものである。本発明の積層体は、建築構造物における各種基材を高温から保護する目的で使用する耐熱保護材として有用である。   The laminate of the present invention is a laminate using a thermally expandable material, and can exhibit excellent performance in thin film properties, thermal expansion and heat protection properties. The laminate of the present invention is useful as a heat resistant protective material used for the purpose of protecting various substrates in a building structure from high temperatures.

本発明の積層体は、熱膨張性を有する積層体であって、
熱膨張性を有する積層体であって、
前記積層体は、少なくとも熱膨張層A及び熱膨張層Bが積層されており、
前記熱膨張層Bの膨張温度は、前記熱膨張層Aの膨張温度よりも低く、
耐熱性を付与すべき構造物の基材に、前記熱膨張層A及び前記熱膨張層Bが積層されていることを特徴とする。
The laminate of the present invention is a laminate having thermal expansion properties, and
A laminate having thermal expansion properties,
In the laminate, at least a thermal expansion layer A and a thermal expansion layer B are laminated,
The expansion temperature of the thermal expansion layer B is lower than the expansion temperature of the thermal expansion layer A,
The thermal expansion layer A and the thermal expansion layer B are laminated on a base of a structure to which heat resistance is to be imparted.

本発明積層体の好ましい態様としては、例えば、以下の態様が挙げられる。
即ち、本発明積層体における第1の態様は、耐熱性を付与すべき構造物の基材に、前記熱膨張層B及び前記熱膨張層Aが当該順に積層されている態様であり、第2の態様は、耐熱性を付与すべき構造物の基材に、前記熱膨張層A及び前記熱膨張層Bが当該順に積層されている態様である。
As a preferable aspect of this invention laminated body, the following aspects are mentioned, for example.
That is, a first aspect of the laminate of the present invention is an aspect in which the thermal expansion layer B and the thermal expansion layer A are laminated in this order on a base of a structure to which heat resistance is to be imparted, The aspect of is an aspect in which the thermal expansion layer A and the thermal expansion layer B are laminated in this order on a base of a structure to which heat resistance is to be imparted.

上記第1の態様では、耐熱性を付与すべき構造物の基材に、熱膨張層B及び熱膨張性Aが当該順に積層されるように施工される。即ち、熱膨張層Bが構造物の基材に近い側に施工され、熱膨張層Aが構造物の基材から遠い側に施工される。
上記第2の態様では、耐熱性を付与すべき構造物の基材に、熱膨張層A及び熱膨張性Bが当該順に積層されるように施工される。即ち、熱膨張層Aが構造物の基材に近い側に施工され、熱膨張層Bが構造物の基材から遠い側に施工される。
これらの点を踏まえ、本発明の積層体において、基材に近い方を「基材側」、基材から遠い方を「表側」とも言う。なお、耐熱性を付与すべき構造物の基材としては限定的ではないが、例えば、建築構造物の柱、梁、床、屋根、壁等が挙げられる。
In the first aspect, the thermal expansion layer B and the thermal expansion property A are applied to the base of the structure to be imparted with heat resistance so as to be laminated in that order. That is, the thermal expansion layer B is applied to the side closer to the base of the structure, and the thermal expansion layer A is applied to the side farther from the base of the structure.
In the second aspect, the thermal expansion layer A and the thermal expansion property B are applied to the base of the structure to be imparted with heat resistance so as to be laminated in that order. That is, the thermal expansion layer A is applied to the side closer to the base of the structure, and the thermal expansion layer B is applied to the side farther from the base of the structure.
Based on these points, in the laminate of the present invention, the one closer to the substrate is also referred to as the “substrate side”, and the one further from the substrate is also referred to as the “front side”. In addition, although it does not limit as a base material of the structure which should be provided with heat resistance, the pillar of a building structure, a beam, a floor, a roof, a wall etc. are mentioned, for example.

本発明の積層体では、熱膨張層Bの膨張温度が、熱膨張層Aの膨張温度よりも低く設定されている。本発明では、このような熱膨張層A及び熱膨張層Bを積層することにより、比較的薄膜で、優れた熱膨張性を有し、優れた耐熱保護性を発揮することができる。なお、本発明における膨張温度とは、熱膨張層を加熱した場合に、膨張が開始する温度のことである。   In the laminate of the present invention, the expansion temperature of the thermal expansion layer B is set lower than the expansion temperature of the thermal expansion layer A. In the present invention, by laminating such a thermal expansion layer A and a thermal expansion layer B, it is possible to exhibit a relatively thin film, an excellent thermal expansion property, and an excellent heat resistance protection property. In the present invention, the expansion temperature is a temperature at which expansion starts when the thermal expansion layer is heated.

熱膨張層Aの膨張温度は、好ましくは180℃以上、より好ましくは200℃以上、さらに好ましくは250℃以上400℃以下である。熱膨張層Bの膨張温度は、好ましくは50℃以上、より好ましくは80℃以上、さらに好ましくは100℃以上240℃以下である。   The expansion temperature of the thermal expansion layer A is preferably 180 ° C. or more, more preferably 200 ° C. or more, and still more preferably 250 ° C. or more and 400 ° C. or less. The expansion temperature of the thermal expansion layer B is preferably 50 ° C. or more, more preferably 80 ° C. or more, and still more preferably 100 ° C. or more and 240 ° C. or less.

熱膨張層A
熱膨張層Aは、結合材、難燃剤、発泡剤及び炭化剤を含有することが望ましい。
Thermal expansion layer A
The thermal expansion layer A preferably contains a binder, a flame retardant, a blowing agent and a carbonizing agent.

結合材としては、公知の熱膨張性材料で採用されているものを使用することができる。結合材としては、例えば、アクリル樹脂、酢酸ビニル樹脂、酢酸ビニル−アクリル共重合樹脂、ポリエチレン樹脂、アクリル−スチレン共重合樹脂、酢酸ビニル−エチレン共重合樹脂、ポリエステル樹脂、酢酸ビニル−バーサチック酸ビニルエステル共重合樹脂、酢酸ビニル−バーサチック酸ビニルエステル−アクリル共重合樹脂、フェノール樹脂、石油樹脂、塩化ビニル樹脂、エポキシ樹脂、ウレタン樹脂、ポリブタジエン樹脂、アルキッド樹脂、メラミン樹脂、プロピレンゴム、クロロプレンゴム、ブチルゴム、イソブチレンゴム等の有機質結合材が挙げられる。これらの結合材は、単独で又は2種以上を組み合わせて使用することができる。また、必要に応じて、セメント、石膏、水ガラス、シリコーン樹脂等の無機質結合材を併用することも可能である。   As the binder, those employed for known thermal expansion materials can be used. As the binder, for example, acrylic resin, vinyl acetate resin, vinyl acetate-acrylic copolymer resin, polyethylene resin, acrylic-styrene copolymer resin, vinyl acetate-ethylene copolymer resin, polyester resin, vinyl acetate-versatric acid vinyl ester Copolymer resin, vinyl acetate-versatic acid vinyl ester-acrylic copolymer resin, phenol resin, petroleum resin, vinyl chloride resin, epoxy resin, urethane resin, urethane resin, polybutadiene resin, alkyd resin, melamine resin, propylene rubber, chloroprene rubber, butyl rubber, Organic binders such as isobutylene rubber are mentioned. These binders can be used alone or in combination of two or more. Moreover, it is also possible to use together inorganic binders, such as cement, gypsum, water glass, and silicone resin, as needed.

難燃剤は、火災時に脱水冷却効果、不燃性ガス発生効果、結合材炭化促進効果等の少なくとも1つの効果を発揮し、結合材の燃焼を抑制する作用を有するものである。難燃剤としては、上記作用を有する限り特に制限されず、公知の熱膨張性材料で使用する難燃剤と同様のものが使用できる。   The flame retardant exhibits at least one of effects such as dehydration cooling effect, non-combustible gas generation effect, and binder carbonization promoting effect at the time of fire, and has an effect of suppressing the combustion of the binder. The flame retardant is not particularly limited as long as it has the above-described function, and the same flame retardant as that used for a known thermally expandable material can be used.

難燃剤としては、例えば、トリクレジルホスフェート、ジフェニルクレジルフォスフェート、ジフェニルオクチルフォスフェート、トリ(β−クロロエチル)フォスフェート、トリブチルフォスフェート、トリ(ジクロロプロピル)フォスフェート、トリフェニルフォスフェート、トリ(ジブロモプロピル)フォスフェート、クロロフォスフォネート、ブロモフォスフォネート、ジエチル−N,N−ビス(2−ヒドロキシエチル)アミノメチルフォスフェート、ジ(ポリオキシエチレン)ヒドロキシメチルフォスフォネート、三塩化リン、五塩化リン、リン酸アンモニウム、ポリリン酸アンモニウム等のリン化合物;塩素化ポリフェニル、塩素化ポリエチレン、塩化ジフェニル、塩化トリフェニル、塩素化パラフィン、五塩化脂肪酸エステル、パークロロペンタシクロデカン、塩素化ナフタレン、テトラクロル無水フタル酸等の塩素化合物;三酸化アンチモン、五塩化アンチモン等のアンチモン化合物;ホウ酸亜鉛、ホウ酸ソーダ、ホウ砂、ホウ酸等のホウ素化合物等が挙げられる。これらの難燃剤は、単独で又は2種以上を組み合わせて使用することができる。   Examples of flame retardants include tricresyl phosphate, diphenyl cresyl phosphate, diphenyl octyl phosphate, tri (β-chloroethyl) phosphate, tributyl phosphate, tri (dichloropropyl) phosphate, triphenyl phosphate, tri (Dibromopropyl) phosphate, chlorophosphonate, bromophosphonate, diethyl-N, N-bis (2-hydroxyethyl) aminomethylphosphate, di (polyoxyethylene) hydroxymethylphosphonate, phosphorus trichloride And phosphorus compounds such as phosphorus pentachloride, ammonium phosphate and ammonium polyphosphate; chlorinated polyphenyl, chlorinated polyethylene, diphenyl chloride, triphenyl chloride, chlorinated paraffin, fatty acid pentachloride ester Chlorinated compounds such as perchloropentacyclodecane, chlorinated naphthalene and tetrachlorophthalic anhydride; antimony compounds such as antimony trioxide and antimony pentachloride; and boron compounds such as zinc borate, sodium borate, borax and boric acid It can be mentioned. These flame retardants can be used alone or in combination of two or more.

本発明では、難燃剤として、リン化合物、塩素化合物、ホウ素化合物から選ばれる1種又は2種以上を含むことが好ましい。リン化合物と、塩素化合物及び/又はホウ素化合物とを組み合わせることも好適である。このような組み合わせによれば、耐熱保護性向上の点で好ましく、炭化断熱層の強度等を高めることもできる。   In the present invention, it is preferable that the flame retardant contains one or more selected from a phosphorus compound, a chlorine compound, and a boron compound. It is also suitable to combine a phosphorus compound and a chlorine compound and / or a boron compound. According to such a combination, it is preferable from the viewpoint of the improvement of the heat resistant protective property, and the strength and the like of the carbonized heat insulating layer can be enhanced.

本発明では、難燃剤として、特にポリリン酸アンモニウムを含むことが好ましい。ポリリン酸アンモニウムを使用する場合には、脱水冷却効果及び不燃性ガス発生効果をより効果的に発揮することができる。   In the present invention, as a flame retardant, it is particularly preferable to contain ammonium polyphosphate. When ammonium polyphosphate is used, the dehydration cooling effect and the nonflammable gas generation effect can be more effectively exhibited.

発泡剤は、火災時に不燃性ガスを発生させて、炭化していく結合材、後記の炭化剤、あるいは発泡剤自身を膨張させて気孔を有する炭化断熱層を形成させる役割を有する。発泡剤は、かかる作用を有する限り特に制限されず、公知の熱膨張性材料における発泡剤と同様のものを使用することができる。   The blowing agent generates noncombustible gas in the event of a fire, and has the role of expanding the carbonizing binder, the carbonizing agent described later, or the blowing agent itself to form a carbonized heat insulating layer having pores. The foaming agent is not particularly limited as long as it has such an action, and the same foaming agents as known foaming materials can be used.

発泡剤としては、例えば、含窒素発泡剤、膨張性黒鉛等が挙げられる。このうち、含窒素発泡剤としては、例えば、メラミン及びその誘導体、ジシアンジアミド及びその誘導体、アゾジカーボンアミド、尿素、チオ尿素等が挙げられる。これらの発泡剤は、単独で又は2種以上で使用することができる。これらの発泡剤のうち、熱膨張層Aでは、含窒素発泡剤が含まれることが好ましく、メラミン、ジシアンジアミド、アゾジカーボンアミド等が不燃性ガスの発生効率に優れている点でより好ましく、特にメラミンが好適である。本発明では、熱膨張層Aにおける発泡剤が、膨張性黒鉛を含まず、含窒素発泡剤のみからなることも好適である。このような場合、本発明に適した高い膨張温度の層が得られやすく、炭化断熱層の強度向上化等の点でも好適である。   Examples of the blowing agent include nitrogen-containing blowing agents and expandable graphite. Among these, as the nitrogen-containing blowing agent, for example, melamine and its derivative, dicyandiamide and its derivative, azodicarbonamide, urea, thiourea and the like can be mentioned. These blowing agents can be used alone or in combination of two or more. Among these foaming agents, the thermal expansion layer A preferably contains a nitrogen-containing foaming agent, and more preferably melamine, dicyandiamide, azodicarbonamide or the like in terms of excellent incombustible gas generation efficiency, particularly Melamine is preferred. In the present invention, it is also preferable that the blowing agent in the thermal expansion layer A does not contain expandable graphite and is composed only of a nitrogen-containing blowing agent. In such a case, a layer having a high expansion temperature suitable for the present invention can be easily obtained, and is also suitable in terms of the improvement of the strength of the carbonized heat insulating layer and the like.

炭化剤は、火災時に結合材の炭化とともにそれ自体も脱水炭化していくことにより、断熱性に優れた厚みのある炭化断熱層を形成する作用を有する。炭化剤としては、このような作用を有する限り特に制限されず、公知の熱膨張性材料で使用する炭化剤と同様のものが使用できる。   The carbonizing agent has an action of forming a carbonized heat insulating layer having a thickness excellent in heat insulating property, by dewatering and carbonizing itself together with carbonization of a binder at the time of fire. The carbonizing agent is not particularly limited as long as it has such an effect, and the same carbonizing agent as used in known thermally expandable materials can be used.

炭化剤としては、例えば、ペンタエリスリトール、ジペンタエリスリトール、トリメチロールプロパン等の多価アルコール;デンプン、カゼイン等が挙げられる。これらの炭化剤は、単独で又は2種以上を組み合わせて使用することができる。本発明では、炭化剤として、特にペンタエリスリトール、ジペンタエリスリトール等が脱水冷却効果と炭化断熱層形成作用に優れている点で好ましい。   Examples of the carbonizing agent include polyhydric alcohols such as pentaerythritol, dipentaerythritol, and trimethylolpropane; starch, casein, and the like. These carbonizing agents can be used alone or in combination of two or more. In the present invention, as a carbonizing agent, pentaerythritol, dipentaerythritol and the like are particularly preferable in that they are excellent in the dehydration cooling effect and the carbonized heat insulating layer forming action.

熱膨張層Aにおける各成分の配合比率は、火災発生時に十分な断熱性を有する炭化断熱層が形成可能である限り限定されないが、各成分の種類などに応じて適宜設定できる。   Although the compounding ratio of each component in the thermal expansion layer A is not limited as long as a carbonized heat insulating layer having sufficient thermal insulation at the time of fire occurrence can be formed, it can be appropriately set according to the type of each component.

難燃剤の配合比率は、結合材の固形分100重量部に対して、好ましくは50〜1000重量部、より好ましくは100〜800重量部、更に好ましくは150〜600重量部である。また、発泡剤の配合比率は、結合材の固形分100重量部に対して、好ましくは5〜500重量部、より好ましくは30〜200重量部である。また、炭化剤の配合比率は、結合材の固形分100重量部に対して、好ましくは5〜600重量部、より好ましくは10〜400重量部である。   The blending ratio of the flame retardant is preferably 50 to 1000 parts by weight, more preferably 100 to 800 parts by weight, and still more preferably 150 to 600 parts by weight with respect to 100 parts by weight of the solid content of the binder. In addition, the blending ratio of the foaming agent is preferably 5 to 500 parts by weight, more preferably 30 to 200 parts by weight with respect to 100 parts by weight of the solid content of the binder. Further, the blending ratio of the carbonizing agent is preferably 5 to 600 parts by weight, more preferably 10 to 400 parts by weight with respect to 100 parts by weight of the solid content of the binder.

上記各成分の配合比率が、上記範囲内であれば、特に炭化断熱層の熱膨張性に優れ、熱膨張度合いが均一であり、優れた断熱効果、強度等が得られ易い。   If the compounding ratio of each component is within the above range, the thermal expansion of the carbonized heat insulating layer is particularly excellent, the degree of thermal expansion is uniform, and an excellent thermal insulation effect, strength and the like are easily obtained.

熱膨張層Aには、上述の成分以外にも、必要に応じて、充填剤、着色顔料、繊維、可塑剤、分散剤、増粘剤、消泡剤、滑剤等を配合することもできる。   In addition to the components described above, fillers, color pigments, fibers, plasticizers, dispersants, thickeners, antifoaming agents, lubricants, and the like can be blended into the thermally expandable layer A as necessary.

充填剤としては、例えば、タルク等の珪酸塩;炭酸カルシウム、炭酸ナトリウム等の炭酸塩;酸化アルミニウム、二酸化チタン、酸化亜鉛、アルミナ等の金属酸化物;粘土、クレー、シリカ等の天然鉱物類等が挙げられる。
充填剤の配合比率は、結合材の固形分100重量部に対して、好ましくは10〜300重量部、より好ましくは20〜250重量部である。
As the filler, for example, silicates such as talc; carbonates such as calcium carbonate and sodium carbonate; metal oxides such as aluminum oxide, titanium dioxide, zinc oxide and alumina; natural minerals such as clay, clay and silica Can be mentioned.
The compounding ratio of the filler is preferably 10 to 300 parts by weight, more preferably 20 to 250 parts by weight with respect to 100 parts by weight of the solid content of the binder.

熱膨張層B
熱膨張層Bは、結合材、難燃剤、及び発泡剤を含有することが望ましく、これらに加え、さらに炭化剤を含有することがより望ましい。
Thermal expansion layer B
The thermal expansion layer B preferably contains a binder, a flame retardant, and a foaming agent, and in addition to these, it is more desirable to contain a carbonizing agent.

熱膨張層Bで用いる結合材、難燃剤、発泡剤、及び炭化剤は、熱膨張層Aの項目で例示した成分から適宜選定して、使用することができる。   The binder, the flame retardant, the blowing agent, and the carbonizing agent used in the thermal expansion layer B can be appropriately selected from the components exemplified in the item of the thermal expansion layer A and can be used.

本発明では、熱膨張層Bにおける難燃剤として、リン化合物、塩素化合物、ホウ素化合物から選ばれる1種又は2種以上を含むことが好ましい。リン化合物と、塩素化合物及び/又はホウ素化合物とを組み合わせることも好適である。このような組み合わせによれば、耐熱保護性向上の点で好ましく、炭化断熱層の強度等を高めることもできる。   In the present invention, the flame retardant in the thermally expandable layer B preferably contains one or more selected from a phosphorus compound, a chlorine compound, and a boron compound. It is also suitable to combine a phosphorus compound and a chlorine compound and / or a boron compound. According to such a combination, it is preferable from the viewpoint of the improvement of the heat resistant protective property, and the strength and the like of the carbonized heat insulating layer can be enhanced.

本発明では、熱膨張層Bにおける発泡剤として、熱膨張性黒鉛を含むことが好ましい。熱膨張層Bが熱膨張性黒鉛を含む場合、本発明に適した低い膨張温度の層が得られやすい。   In the present invention, as the foaming agent in the thermal expansion layer B, it is preferable to contain thermal expansion graphite. When the thermal expansion layer B contains thermal expansion graphite, a layer having a low expansion temperature suitable for the present invention tends to be obtained.

本発明では、熱膨張層Bにおける発泡剤が、膨張性黒鉛と含窒素発泡剤とを含むことも好適である。このような場合、本発明に適した低い膨張温度の層が得られやすく、炭化断熱層の強度向上化等の点でも好適である。熱膨張層Bにおける膨張性黒鉛と含窒素発泡剤との重量比(膨張性黒鉛:含窒素発泡剤)は、好ましくは95:5〜5:95、より好ましくは90:10〜20:80、さらに好ましくは80:20〜40:60である。   In the present invention, it is also preferable that the foaming agent in the thermal expansion layer B contains expandable graphite and a nitrogen-containing foaming agent. In such a case, a layer having a low expansion temperature suitable for the present invention can be easily obtained, and is also suitable in terms of improvement in the strength of the carbonized heat insulating layer and the like. The weight ratio of the expandable graphite to the nitrogen-containing blowing agent in the thermal expansion layer B (expandable graphite: nitrogen-containing blowing agent) is preferably 95: 5 to 5:95, more preferably 90:10 to 20:80, More preferably, it is 80:20 to 40:60.

熱膨張層Bにおける各成分の配合比率は、火災発生時に十分な断熱性を有する炭化断熱層が形成可能である限り特に限定はされないが、各成分の種類などに応じて適宜設定することができる。   The compounding ratio of each component in the thermal expansion layer B is not particularly limited as long as a carbonized heat insulating layer having sufficient heat insulation at the time of fire occurrence can be formed, but can be appropriately set according to the type of each component. .

熱膨張層Bにおける難燃剤の配合比率は、結合材の固形分100重量部に対して、好ましくは50〜1000重量部、より好ましくは60〜800重量部、更に好ましくは70〜600重量部である。また、発泡剤の配合比率は、結合材の固形分100重量部に対して、好ましくは5〜500重量部、より好ましくは30〜200重量部である。また、炭化剤の配合比率は、結合材の固形分100重量部に対して、好ましくは5〜600重量部、より好ましくは10〜400重量部である。   The compounding ratio of the flame retardant in the thermal expansion layer B is preferably 50 to 1000 parts by weight, more preferably 60 to 800 parts by weight, still more preferably 70 to 600 parts by weight with respect to 100 parts by weight of the solid content of the binder. is there. In addition, the blending ratio of the foaming agent is preferably 5 to 500 parts by weight, more preferably 30 to 200 parts by weight with respect to 100 parts by weight of the solid content of the binder. Further, the blending ratio of the carbonizing agent is preferably 5 to 600 parts by weight, more preferably 10 to 400 parts by weight with respect to 100 parts by weight of the solid content of the binder.

熱膨張層Bにおける上記各成分の配合比率が、上記範囲内であれば、特に炭化断熱層の熱膨張性に優れ、熱膨張度合いが均一であり、優れた断熱効果、強度等が得られ易い。   If the blending ratio of each component in the thermal expansion layer B is within the above range, the thermal expansion property of the carbonized heat insulating layer is particularly excellent, the degree of thermal expansion is uniform, and an excellent thermal insulation effect, strength and the like are easily obtained. .

熱膨張層Bには、上記以外にも、必要に応じて、充填剤、着色顔料、繊維、可塑剤、分散剤、増粘剤、消泡剤、滑剤等を配合することもできる。   A filler, a color pigment, a fiber, a plasticizer, a dispersing agent, a thickener, an antifoamer, a lubricant, etc. can also be mix | blended with the thermal expansion layer B as needed other than the above.

熱膨張層Bにおける充填剤の配合比率は、結合材の固形分100重量部に対して、好ましくは10〜300重量部、より好ましくは20〜250重量部である。   The compounding ratio of the filler in the thermal expansion layer B is preferably 10 to 300 parts by weight, more preferably 20 to 250 parts by weight with respect to 100 parts by weight of the solid content of the binder.

本発明における熱膨張層Bは、シラン化合物を含むことが望ましい。このようなシラン化合物は、炭化断熱層の強度向上化等の点で有利に作用する。   The thermal expansion layer B in the present invention preferably contains a silane compound. Such a silane compound works advantageously in terms of improving the strength of the carbonized heat insulating layer and the like.

シラン化合物としては、アルコキシシリル基を有する化合物が使用でき、例えば、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリエトキシシシラン、ビニルトリメトキシシシシラン、ビニルトリエトキシシシラン等の不飽和結合含有シラン化合物;
3−グリドキシメタクリロキシプロピルトリメトキシシラン、3−グリドキシメタクリロキシプロピルメチルジメトキシシラン、3−グリドキシメタクリロキシプロピルトリエトキシシラン、3−グリドキシメタクリロキシプロピルメチルジエトキシシシラン、2−(3、4エポキシシクロヘキシル)エチルトリメトキシシラン等のグリシジル含有シラン化合物;
N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、N−2(アミノエチル)3−アミノプロピルメチルジエトキシシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン等のアミノ含有シラン化合物;
γ−メルカプトプロピルトリメトキシシラン等のメルカプト基含有シラン化合物;
テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン、テトラ−n−ブトキシシラン、テトラ−i−ブトキシシラン、テトラ−t−ブトキシシラン等のテトラアルコキシシラン化合物;
メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、エチルトリブトキシシラン等のアルキルシラン化合物等が挙げられる。これらは1種または2種以上で使用できる。このうち、本発明では、アミノ基含有シラン化合物が好ましく、特に1分子中に窒素原子を2以上有するアミノ基含有シラン化合物がより好ましい。
As a silane compound, a compound having an alkoxysilyl group can be used. For example, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, vinyltrimethoxysilane , Unsaturated bond-containing silane compounds such as vinyltriethoxysilane;
3-Glydoxymethacryloxypropyltrimethoxysilane, 3-Glydoxymethacryloxypropylmethyldimethoxysilane, 3-Glydoxymethacryloxypropyltriethoxysilane, 3-Glydoxymethacryloxypropylmethyldiethoxysilane, 2- (3) , 4 glycidyl-containing silane compounds such as epoxycyclohexyl) ethyltrimethoxysilane;
N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, N-2 ( Aminoethyl silane compounds such as 3-aminopropylmethyldiethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, etc .;
Mercapto-containing silane compounds such as γ-mercaptopropyltrimethoxysilane;
Tetraalkoxysilane compounds such as tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n-butoxysilane, tetra-i-butoxysilane, tetra-t-butoxysilane;
Examples include alkylsilane compounds such as methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, ethyltributoxysilane, and the like. These can be used alone or in combination of two or more. Among these, in the present invention, an amino group-containing silane compound is preferable, and in particular, an amino group-containing silane compound having two or more nitrogen atoms in one molecule is more preferable.

シラン化合物の配合比率は、結合材の固形分100重量部に対して、好ましくは0.1〜50重量部、より好ましくは1〜30重量部である。   The compounding ratio of the silane compound is preferably 0.1 to 50 parts by weight, more preferably 1 to 30 parts by weight with respect to 100 parts by weight of the solid content of the binder.

本発明の積層体は、建築物・土木構築物等の構造物において耐熱構造とすべき部分に適用することができる。具体的には、壁、柱、床、梁、屋根、階段、天井、戸等の各種基材に施工することができる。適用可能な材質としては、例えば、金属、コンクリート、木質材、樹脂等が挙げられる。これら基材は、何らかの下地処理(防錆処理、難燃処理等)が施されたものであってもよい。   The laminate of the present invention can be applied to a portion that should be a heat resistant structure in a structure such as a building or civil engineering structure. Specifically, it can be applied to various substrates such as walls, columns, floors, beams, roofs, stairs, ceilings, and doors. As a material which can be applied, metal, concrete, wood material, resin etc. are mentioned, for example. These substrates may be subjected to any kind of surface treatment (antirust treatment, flame retardant treatment, etc.).

本発明の積層体は、前記の通り、耐熱性を付与すべき構造物の基材に、各熱膨張層が積層されるように施工する。そして、基材と基材側熱膨張層との間、及び/又は、基材側熱膨張層と表側熱膨張層との間には、必要に応じて、補強層、接着層等を更に設けることができる。   As described above, the laminate of the present invention is applied to the base of the structure to be imparted with heat resistance such that the respective thermal expansion layers are laminated. If necessary, a reinforcing layer, an adhesive layer, and the like are further provided between the base and the base side thermal expansion layer and / or between the base side thermal expansion layer and the front side thermal expansion layer. be able to.

熱膨張層A及び熱膨張層Bとしては、予めシート化されたシート材を用いてもよいし、これらは、コーティングによって形成してもよい。コーティングによって形成する場合には、上記各成分に必要に応じて溶剤等を配合し、公知の方法に従って均一に混合し、熱膨張層用組成物(コーティング材)を用意すればよい。   As the thermal expansion layer A and the thermal expansion layer B, pre-sheeted sheet materials may be used, or they may be formed by coating. When it forms by coating, a solvent etc. may be mix | blended with each said component as needed, it may mix uniformly according to a well-known method, and the composition (coating material) for thermal expansion layers may be prepared.

コーティング材を用いて各熱膨張層を形成する場合は、適用部位に対して、スプレー、ローラー、刷毛等の塗装器具を使用してコーティングすればよい。
また、シート材を用いる場合には、接着剤等を使用してシート材を適用部位に貼り付けることによって、熱膨張層を形成すればよい。
When each thermal expansion layer is formed using a coating material, the application site may be coated using a coating device such as a spray, a roller, or a brush.
In the case of using a sheet material, the thermal expansion layer may be formed by attaching the sheet material to the application site using an adhesive or the like.

積層体の厚み(塗装後又はシート化した際の乾燥膜厚)は、所望の耐熱性能、適用部位等により適宜設定すればよいが、熱膨張層Aの厚みは、好ましくは0.2〜6mm、より好ましくは0.3〜5mmである。熱膨張層Bの厚みは、好ましくは0.1〜5mm、より好ましくは0.2〜3mmである。このような厚み設定は、耐熱性の向上化等に有利である。
また、積層体表面には、必要に応じて化粧層、保護層等を形成させることもできる。
The thickness of the laminate (dried film thickness after painting or when it is made into a sheet) may be appropriately set according to the desired heat resistance performance, application site, etc., but the thickness of the thermal expansion layer A is preferably 0.2 to 6 mm. More preferably, it is 0.3-5 mm. The thickness of the thermal expansion layer B is preferably 0.1 to 5 mm, more preferably 0.2 to 3 mm. Such thickness setting is advantageous for the improvement of heat resistance and the like.
In addition, a cosmetic layer, a protective layer, and the like can be formed on the surface of the laminate, if necessary.

以下に実施例及び比較例を示して、本発明の特徴をより明確にする。但し、本発明はこの範囲には限定されない。   The features of the present invention will be made clearer by the following examples and comparative examples. However, the present invention is not limited to this range.

○熱膨張用組成物の製造
各成分は以下の通りである。
・結合材A:アクリルスチレン共重合樹脂溶液(固形分50重量%)
・難燃剤A:ポリリン酸アンモニウム
・難燃剤B:塩素化パラフィン
・発泡剤A:メラミン
・発泡剤B:熱膨張性黒鉛
・炭化剤A:ジペンタエリスリトール
・充填剤A:酸化チタン
・充填剤B:炭酸カルシウム
Preparation of Thermal Expansion Composition Each component is as follows.
-Binder A: acrylic styrene copolymer resin solution (solid content 50% by weight)
-Flame retardant A: ammonium polyphosphate-Flame retardant B: Chlorinated paraffin-Blowing agent A: Melamine-Blowing agent B: Thermal expansion graphite-Carbonization agent A: Dipentaerythritol-Filler A: Titanium oxide-Filler B : Calcium carbonate

(熱膨張用組成物1)
結合材A200重量部(固形分100重量部)、難燃剤A380重量部、発泡剤A75重量部、炭化剤A75重量部、充填剤A90重量部、さらに溶剤を加えて均一に混合し、熱膨張用組成物1を製造した。この熱膨張用組成物1によって形成される熱膨張層1の膨張温度は330℃である。
(Composition for thermal expansion 1)
200 parts by weight of binder A (solid content 100 parts by weight), 380 parts by weight of flame retardant A, 75 parts by weight of foaming agent A, 75 parts by weight of carbonizing agent A, 90 parts by weight of filler A and further solvent and uniformly mixed, for thermal expansion Composition 1 was produced. The expansion temperature of the thermal expansion layer 1 formed by the thermal expansion composition 1 is 330 ° C.

(熱膨張用組成物2)
結合材A200重量部(固形分100重量部)、発泡剤B140重量部、充填剤B250重量部、さらに溶剤を加えて均一に混合し、熱膨張用組成物2を製造した。この熱膨張用組成物2によって形成される熱膨張層2の膨張温度は170℃である。
(Composition for thermal expansion 2)
200 parts by weight of a binder A (solid content: 100 parts by weight), 140 parts by weight of a foaming agent B, 250 parts by weight of a filler B, and further a solvent were added and uniformly mixed to produce a composition 2 for thermal expansion. The expansion temperature of the thermal expansion layer 2 formed by the thermal expansion composition 2 is 170 ° C.

(熱膨張用組成物3)
結合材A200重量部(固形分100重量部)、難燃剤A140重量部、発泡剤B70重量部、充填剤B250重量部、さらに溶剤を加えて均一に混合し、熱膨張用組成物3を製造した。この熱膨張用組成物3によって形成される熱膨張層3の膨張温度は180℃である。
(Composition for thermal expansion 3)
200 parts by weight of binder A (solid content 100 parts by weight), 140 parts by weight of flame retardant A, 70 parts by weight of foaming agent B, 250 parts by weight of filler B and further solvent were added and uniformly mixed to produce composition 3 for thermal expansion . The expansion temperature of the thermal expansion layer 3 formed by the thermal expansion composition 3 is 180 ° C.

(熱膨張用組成物4)
結合材A200重量部(固形分100重量部)、難燃剤A140重量部、発泡剤B70重量部、充填剤B250重量部、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン7重量部、さらに溶剤を加えて均一に混合し、熱膨張用組成物4を製造した。この熱膨張用組成物4によって形成される熱膨張層4の膨張温度は180℃である。
(Composition for thermal expansion 4)
200 parts by weight of binder A (solid content 100 parts by weight), 140 parts by weight of flame retardant A, 70 parts by weight of foaming agent B, 250 parts by weight of filler B, 7 parts by weight of N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, and further The solvent was added and uniformly mixed to produce a thermal expansion composition 4. The expansion temperature of the thermal expansion layer 4 formed by the thermal expansion composition 4 is 180 ° C.

(熱膨張用組成物5)
結合材A200重量部(固形分100重量部)、難燃剤A140重量部、発泡剤A15重量部、発泡剤B85重量部、炭化剤A20重量部、充填剤A30重量部、充填剤B70重量部、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン7重量部、さらに溶剤を加えて均一に混合し、熱膨張用組成物5を製造した。この熱膨張用組成物5によって形成される熱膨張層5の膨張温度は190℃である。
(Composition for thermal expansion 5)
Binder A 200 parts by weight (solid content 100 parts by weight) Flame retardant A 140 parts by weight Foaming agent A 15 parts by weight Foaming agent B 85 parts by weight Carbonization agent A 20 parts by weight Filler A 30 parts by weight Filler B 70 parts by weight N 7 parts by weight of -2 (aminoethyl) 3-aminopropyltrimethoxysilane and further a solvent were added and uniformly mixed to produce a composition 5 for thermal expansion. The expansion temperature of the thermal expansion layer 5 formed by the thermal expansion composition 5 is 190 ° C.

(熱膨張用組成物6)
結合材A200重量部(固形分100重量部)、難燃剤A140重量部、難燃剤B30重量部、発泡剤A15重量部、発泡剤B85重量部、炭化剤A20重量部、充填剤A30重量部、充填剤B70重量部、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン7重量部、さらに溶剤を加えて均一に混合し、熱膨張用組成物6を製造した。この熱膨張用組成物6によって形成される熱膨張層6の膨張温度は185℃である。
(Composition 6 for thermal expansion)
Binder A 200 parts by weight (solid content 100 parts by weight), flame retardant A 140 parts by weight, flame retardant B 30 parts by weight, foaming agent A 15 parts by weight, foaming agent B 85 parts by weight, carbonizing agent A 20 parts by weight, filler A 30 parts by weight, filled 70 parts by weight of an agent B, 7 parts by weight of N-2 (aminoethyl) 3-aminopropyl trimethoxysilane and further a solvent were added and uniformly mixed to produce a composition for thermal expansion 6. The expansion temperature of the thermal expansion layer 6 formed by the thermal expansion composition 6 is 185 ° C.

(熱膨張用組成物7)
結合材A200重量部(固形分100重量部)、難燃剤A140重量部、難燃剤B30重量部、発泡剤A30重量部、発泡剤B70重量部、炭化剤A20重量部、充填剤A30重量部、充填剤B70重量部、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン7重量部、さらに溶剤を加えて均一に混合し、熱膨張用組成物7を製造した。この熱膨張用組成物7によって形成される熱膨張層7の膨張温度は190℃である。
(Composition 7 for thermal expansion)
Binder A 200 parts by weight (solid content 100 parts by weight), flame retardant A 140 parts by weight, flame retardant B 30 parts by weight, foaming agent A 30 parts by weight, foaming agent B 70 parts by weight, carbonizing agent A 20 parts by weight, filler A 30 parts by weight, filled 70 parts by weight of an agent B, 7 parts by weight of N-2 (aminoethyl) 3-aminopropyl trimethoxysilane, and a solvent were further added and uniformly mixed to prepare a thermal expansion composition 7. The expansion temperature of the thermal expansion layer 7 formed by the thermal expansion composition 7 is 190 ° C.

○試験1
(実施例1−1)
鋼板(厚み8mm)に対し、乾燥厚みが0.4mmとなるように熱膨張用組成物2を塗付け、乾燥後、その上に、乾燥厚みが0.4mmとなるように熱膨張組成物1を塗付けた。以上の方法によって、実施例1−1の試験体を得た。
○ Test 1
Example 1-1
The composition for thermal expansion 2 is applied to a steel sheet (thickness 8 mm) so that the dry thickness is 0.4 mm, and after drying, the thermal expansion composition 1 so that the dry thickness is 0.4 mm. I painted it. The test body of Example 1-1 was obtained by the above method.

(実施例1−2)
鋼板(厚み8mm)に対し、乾燥厚みが0.4mmとなるように熱膨張用組成物3を塗付け、乾燥後、その上に、乾燥厚みが0.4mmとなるように熱膨張組成物1を塗付けた。以上の方法によって、実施例1−2の試験体を得た。
(Example 1-2)
The composition 3 for thermal expansion is applied to a steel plate (thickness 8 mm) so that the dry thickness is 0.4 mm, and after drying, the thermal expansion composition 1 so that the dry thickness is 0.4 mm. I painted it. The test body of Example 1-2 was obtained by the above method.

(実施例1−3)
鋼板(厚み8mm)に対し、乾燥厚みが0.4mmとなるように熱膨張用組成物4を塗付け、乾燥後、その上に、乾燥厚みが0.4mmとなるように熱膨張組成物1を塗付けた。以上の方法によって、実施例1−3の試験体を得た。
(Example 1-3)
The composition for thermal expansion 4 is applied to a steel plate (thickness 8 mm) so that the dry thickness is 0.4 mm, and after drying, the thermal expansion composition 1 so that the dry thickness is 0.4 mm. I painted it. The test body of Example 1-3 was obtained by the above method.

(比較例1−1)
鋼板(厚み8mm)に対し、乾燥厚みが0.4mmとなるように熱膨張用組成物1を塗付け、乾燥後、その上に、乾燥厚みが0.4mmとなるように、再度、熱膨張組成物1を塗付けた。以上の方法によって、比較例1−1の試験体を得た。
(Comparative Example 1-1)
The composition for thermal expansion 1 is applied to a steel plate (thickness 8 mm) so that the dry thickness is 0.4 mm, and after drying, the thermal expansion is performed again so that the dry thickness is 0.4 mm. Composition 1 was applied. The test body of Comparative Example 1-1 was obtained by the above method.

(特性評価1)
得られた試験体の裏面に熱電対を設置し、試験体の表面側からヒーター温度700℃にて加熱し、10分後の鋼板裏面温度を測定した。その結果、実施例1−1、1−2、及び1−3が230〜260℃の範囲内であったのに対し、比較例1−1では300℃を超えた。
実施例1−1〜1−3の炭化層強度は、実施例1−1よりも実施例1−2のほうが高く、実施例1−2よりも実施例1−3のほうが高かった。
(Characteristics evaluation 1)
A thermocouple was placed on the back surface of the obtained test body, and the heater temperature was heated from the surface side of the test body at 700 ° C., and the steel plate back surface temperature after 10 minutes was measured. As a result, Example 1-1, 1-2, and 1-3 were in the range of 230-260 degreeC, However, Comparative example 1-1 exceeded 300 degreeC.
The carbonized layer strengths of Examples 1-1 to 1-3 were higher in Example 1-2 than in Example 1-1 and higher in Example 1-3 than in Example 1-2.

○試験2
(実施例2−1)
鋼板(厚み8mm)に対し、乾燥厚みが0.4mmとなるように熱膨張用組成物1を塗付け、乾燥後、その上に、乾燥厚みが0.4mmとなるように熱膨張組成物5を塗付けた。以上の方法によって、実施例2−1の試験体を得た。
○ Test 2
(Example 2-1)
The composition for thermal expansion 1 is applied to a steel plate (thickness 8 mm) so that the dry thickness is 0.4 mm, and after drying, the thermal expansion composition 5 so that the dry thickness is 0.4 mm I painted it. The test body of Example 2-1 was obtained by the above method.

(実施例2−2)
鋼板(厚み8mm)に対し、乾燥厚みが0.4mmとなるように熱膨張用組成物1を塗付け、乾燥後、その上に、乾燥厚みが0.4mmとなるように熱膨張組成物6を塗付けた。以上の方法によって、実施例2−2の試験体を得た。
(Example 2-2)
The composition for thermal expansion 1 is applied to a steel plate (thickness 8 mm) so that the dry thickness is 0.4 mm, and after drying, the thermal expansion composition 6 so that the dry thickness is 0.4 mm I painted it. The test body of Example 2-2 was obtained by the above method.

(実施例2−3)
鋼板(厚み8mm)に対し、乾燥厚みが0.4mmとなるように熱膨張用組成物1を塗付け、乾燥後、その上に、乾燥厚みが0.4mmとなるように熱膨張組成物7を塗付けた。以上の方法によって、実施例2−3の試験体を得た。
(Example 2-3)
The composition for thermal expansion 1 is applied to a steel sheet (thickness 8 mm) so that the dry thickness is 0.4 mm, and after drying, the thermal expansion composition 7 so that the dry thickness is 0.4 mm. I painted it. The test body of Example 2-3 was obtained by the above method.

(比較例2−1)
上記比較例1−1と同様の方法によって、比較例2−1の試験体を得た。
(Comparative example 2-1)
The test body of Comparative Example 2-1 was obtained by the same method as Comparative Example 1-1.

(特性評価2)
得られた試験体の裏面に熱電対を設置し、試験体の表面側からヒーター温度700℃にて加熱し、10分後の鋼板裏面温度を測定した。その結果、実施例2−1、2−2、及び2−3が230〜260℃の範囲内であったのに対し、比較例2−1では300℃を超えた。
実施例2−1〜2−3の炭化層強度は、実施例2−1よりも実施例2−2のほうが高く、実施例2−2よりも実施例2−3のほうが高かった。

(Characteristics evaluation 2)
A thermocouple was placed on the back surface of the obtained test body, and the heater temperature was heated from the surface side of the test body at 700 ° C., and the steel plate back surface temperature after 10 minutes was measured. As a result, Example 2-1, 2-2, and 2-3 were in the range of 230-260 degreeC, and in Comparative Example 2-1, it exceeded 300 degreeC.
The carbonized layer strengths of Examples 2-1 to 2-3 were higher in Example 2-2 than in Example 2-1 and higher in Example 2-3 than in Example 2-2.

Claims (3)

熱膨張性を有する積層体であって、
前記積層体は、少なくとも熱膨張層A及び熱膨張層Bが積層されており、
前記熱膨張層Aは、結合材、難燃剤、発泡剤及び炭化剤を含有し、
前記熱膨張層Bは、結合材、難燃剤、発泡剤、及びシラン化合物を含有し、
前記熱膨張層Bの膨張温度は、前記熱膨張層Aの膨張温度よりも低く、
耐熱性を付与すべき構造物の基材に、前記熱膨張層A及び前記熱膨張層Bが積層されていることを特徴とする積層体。
A laminate having thermal expansion properties,
In the laminate, at least a thermal expansion layer A and a thermal expansion layer B are laminated,
The thermal expansion layer A contains a binder, a flame retardant, a blowing agent and a carbonizing agent,
The thermal expansion layer B contains a binder, a flame retardant, a blowing agent, and a silane compound,
The expansion temperature of the thermal expansion layer B is lower than the expansion temperature of the thermal expansion layer A,
A laminate, wherein the thermal expansion layer A and the thermal expansion layer B are laminated on a base of a structure to which heat resistance is to be imparted.
耐熱性を付与すべき構造物の基材に、前記熱膨張層B及び前記熱膨張層Aが当該順に積層されているか、または前記熱膨張層A及び前記熱膨張層Bが当該順に積層されていることを特徴とする請求項1記載の積層体。   The thermal expansion layer B and the thermal expansion layer A are laminated in this order on the base of the structure to be imparted with heat resistance, or the thermal expansion layer A and the thermal expansion layer B are laminated in this order The laminate according to claim 1, characterized in that 前記熱膨張層Bは、発泡剤として熱膨張性黒鉛を含むことを特徴とする請求項1または請求項2記載の積層体。The laminate according to claim 1 or 2, wherein the thermally expandable layer B contains thermally expandable graphite as a foaming agent.
JP2015025699A 2014-12-27 2015-02-12 Laminate Active JP6503192B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014266795 2014-12-27
JP2014266795 2014-12-27

Publications (2)

Publication Number Publication Date
JP2016124285A JP2016124285A (en) 2016-07-11
JP6503192B2 true JP6503192B2 (en) 2019-04-17

Family

ID=56357367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015025699A Active JP6503192B2 (en) 2014-12-27 2015-02-12 Laminate

Country Status (1)

Country Link
JP (1) JP6503192B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7243997B2 (en) * 2018-08-24 2023-03-22 三商株式会社 Fireproof materials and fireproof structures of structural members
JP6662996B1 (en) * 2018-12-27 2020-03-11 日本ペイント・インダストリアルコ−ティングス株式会社 Paint composition set, multi-layer coating film forming method, road marking and road marking removing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3218359B2 (en) * 1994-04-12 2001-10-15 エスケー化研株式会社 Foamed refractory laminate and method of forming the same
US6410122B1 (en) * 1997-01-16 2002-06-25 Sekisui Chemical Co., Ltd. Fire-resistant sheetlike molding, fire-resistant laminate for covering steel, fire-resistant structure for wall, and method for constructing fire-resistant steel and fire-resistant wall
US6958184B2 (en) * 1997-01-16 2005-10-25 Sekisui Chemical Co., Ltd. Fire-resistant sheetlike molding, fire-resistant laminate for covering steel, fire-resistant structure for wall, and method for constructing fire-resistant steel and fire-resistant wall
JP3838780B2 (en) * 1998-05-20 2006-10-25 積水化学工業株式会社 Refractory sheet-like molded body and sheet laminate
JP2000117870A (en) * 1998-08-10 2000-04-25 Toray Ind Inc Fire-resistant member made of fiber-reinforced plastic and manufacture thereof
JP2002138596A (en) * 2000-11-02 2002-05-14 Meiken Kagaku Kogyo Kk Fireproof board and fireproof adhesive compound
JP2005088559A (en) * 2003-08-11 2005-04-07 Crk Kk Thermal expansive fire prevention structural matter
JP4693615B2 (en) * 2005-12-13 2011-06-01 積水化学工業株式会社 Steel fireproof coating sheet
CN103717397B (en) * 2011-07-29 2015-08-19 F顾问株式会社 Duplexer

Also Published As

Publication number Publication date
JP2016124285A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
US10487218B2 (en) Fire retardant coating composition
JP5535406B2 (en) Coating material
KR20190030148A (en) Panels Formed with Nonflammable Coated Layer for Buildings and Method of Forming Nonflammable Coated Layer on Panels
JP3218359B2 (en) Foamed refractory laminate and method of forming the same
JP5984342B2 (en) Coating material
JP6369849B2 (en) Thermal insulation coating material, thermal insulation building material, and building repair method
JP6503192B2 (en) Laminate
JP3740566B2 (en) Foam refractory laminate and method for forming the same
KR101562544B1 (en) Laminate
JP2004315812A (en) Intumescent fire-resistant coating
JP2024097785A (en) Liquid composition, fireproof layer, laminate structure including fireproof layer, and fireproofing method
JP6845616B2 (en) Covering material
JP6190597B2 (en) Covering structure
RU2514940C1 (en) Dyeing multifunctional protective coating
JP7026523B2 (en) Dressing
JP3163414B2 (en) Composite refractory coating composition, composite refractory coating layer and method of forming the same
WO1998004639A1 (en) Intumescent composition for cement board basecoat
JP2000192570A (en) Foamed fire resisting sheet composition and foamed fire resisting sheet
JP4751086B2 (en) Foam fireproof paint
JP3814717B2 (en) Foam fireproof sheet coating method
JPS63273693A (en) Fireproofing material
JP2004155889A (en) Intumescent refractory material
JP7042665B2 (en) Aqueous dressing
JP2024081829A (en) Coating material, and coating layer forming method
JP2000229368A (en) Method for forming insulating laminate having fire proof property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R150 Certificate of patent or registration of utility model

Ref document number: 6503192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250