JP6597679B2 - Method for evaluating strain of steel sheet - Google Patents
Method for evaluating strain of steel sheet Download PDFInfo
- Publication number
- JP6597679B2 JP6597679B2 JP2017046748A JP2017046748A JP6597679B2 JP 6597679 B2 JP6597679 B2 JP 6597679B2 JP 2017046748 A JP2017046748 A JP 2017046748A JP 2017046748 A JP2017046748 A JP 2017046748A JP 6597679 B2 JP6597679 B2 JP 6597679B2
- Authority
- JP
- Japan
- Prior art keywords
- steel plate
- steel sheet
- strain
- distortion
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 120
- 239000010959 steel Substances 0.000 title claims description 120
- 238000000034 method Methods 0.000 title claims description 27
- 238000011156 evaluation Methods 0.000 claims description 19
- 238000001514 detection method Methods 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 230000004069 differentiation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Straightening Metal Sheet-Like Bodies (AREA)
Description
本発明は、鋼板の歪み評価方法に関し、特に、圧延工程又は加熱冷却工程において鋼板に発生した歪みを評価する方法に関するものであり、該評価結果をプレス矯正機での形状矯正に用いるのに好適なものである。 The present invention relates to a method for evaluating distortion of a steel sheet, and particularly relates to a method for evaluating distortion generated in a steel sheet in a rolling process or a heating / cooling process, and is suitable for using the evaluation result for shape correction with a press straightener. It is a thing.
鋼板の製造では、一般に、レベラーと呼ばれる複数のロールを上下に配置し、これらのロールの間に鋼板を搬送することで、製造時に発生した反り、耳波などの形状不良を矯正する。しかし、形状を矯正するのに必要な曲げモーメントは板厚の3乗に比例するため、厚さ40mm以上の厚鋼板の場合、レベラーでは形状を矯正しきれない。そのため、厚鋼板に形状不良が発生した場合には、鋼板をラインから外し、所謂オフラインでプレス機を用いて形状矯正を行う。 In the manufacture of steel plates, generally, a plurality of rolls called levelers are arranged one above the other, and the steel plates are transported between these rolls to correct shape defects such as warpage and ear waves that occur during manufacturing. However, since the bending moment necessary to correct the shape is proportional to the cube of the plate thickness, in the case of a steel plate having a thickness of 40 mm or more, the leveler cannot correct the shape. Therefore, when a shape defect occurs in a thick steel plate, the steel plate is removed from the line, and shape correction is performed using a press machine in a so-called offline.
プレス機による厚鋼板の形状矯正作業では、厚鋼板の表面上の各位置における歪み量を測定し、各位置での歪み量に基づいて、プレス機の加圧ラムによる圧下位置や圧下力を決定する。従来、歪み量の測定は、作業者が鋼板表面上に所定長さのストレッチャー(差し金)をあてがい、ストレッチャーと鋼板表面との隙間の大きさを観察することにより行っていた。歪み量の評価手法としては、ストレッチャーがQA計器として扱われており、この手法で得られる歪み量に基づいて、プレス機での矯正条件を決定すべきものとされている。しかしながら、この方法では、作業者が鋼板表面の多数の位置における歪み量を手作業で調べることになるため、作業者の負担が大きく、生産性の向上を阻害するという問題があった。 In the work to correct the shape of a thick steel plate using a press, the amount of strain at each position on the surface of the steel plate is measured, and the reduction position and force of the press ram are determined based on the amount of strain at each position. To do. Conventionally, the amount of strain has been measured by an operator applying a stretcher of a predetermined length on the steel plate surface and observing the size of the gap between the stretcher and the steel plate surface. As a distortion amount evaluation method, a stretcher is handled as a QA instrument, and correction conditions in a press machine should be determined based on the distortion amount obtained by this method. However, this method has a problem in that the operator manually examines the amount of distortion at a large number of positions on the surface of the steel sheet, which imposes a heavy burden on the operator and hinders productivity improvement.
そこで、特許文献1では、3Dスキャナ等の鋼板形状計測装置を用いて、鋼板の3次元表面形状データを取得し、この3次元表面形状データから、鋼板表面上の各位置における歪み量を計算する、鋼板の歪み評価方法が記載されている。具体的には、3次元表面形状データを2階微分することで鋼板の各位置における曲率を算出し、この値を歪み量としている。
Therefore, in
しかしながら、本発明者らの検討によれば、特許文献1に記載の方法で得た歪み量、すなわち、3次元表面形状データを2階微分した値は、ストレッチャーと鋼板表面との隙間の大きさとして評価した歪み量とはズレが見られることがわかった。すなわち、特許文献1に記載の方法は、プレス機による形状矯正を行う際に用いる歪みの評価手法としては適していないことが判明した。そのため、作業者がストレッチャーで歪み量を実測することなく、すなわち、作業者の負担や生産性の問題を回避しつつ、ストレッチャーで求めた歪み量と極力一致する歪み量の評価手法が求められる。
However, according to the study by the present inventors, the strain obtained by the method described in
そこで本発明は、上記課題に鑑み、作業者の負担や生産性を損なうことなく、鋼板の歪み量及び歪みの位置を適正に評価して、作業者が鋼板の形状の矯正を精度よく行うことを可能とする鋼板の歪み評価方法を提供することを目的とする。 Therefore, in view of the above problems, the present invention appropriately evaluates the amount of distortion and position of the steel sheet without damaging the operator's burden and productivity, and enables the operator to accurately correct the shape of the steel sheet. It aims at providing the distortion evaluation method of the steel plate which enables this.
上記課題を解決する本発明の要旨構成は以下のとおりである。
[1]鋼板形状計測装置で鋼板の3次元表面形状データを取得する工程と、
前記3次元表面形状データから、鋼板の所定板幅位置における鋼板の長手方向の位置をxとし、当該位置xでの鋼板の高さをyとして、鋼板の表面形状プロファイルとして曲線y=f(x)を得る工程と、
前記曲線y=f(x)を用いて、位置xにおける歪み量δ(x)を下記の方法で求める工程と、
を有することを特徴とする鋼板の歪み評価方法。
記
Lを単位長さとして、以下の式(1)に基づいてδ(x,L)を求め、
さらに、kを0超え1未満の数値として、式(2)に基づいて、複数のkの値に関してδ(x,kL)を求め、
得られたδ(x,L)及び複数のδ(x,kL)のうち最大値を、前記位置xにおける歪み量δ(x)とする。
[1] A step of acquiring three-dimensional surface shape data of a steel plate with a steel plate shape measuring device;
From the three-dimensional surface shape data, the position in the longitudinal direction of the steel plate at the predetermined plate width position of the steel plate is x, the height of the steel plate at the position x is y, and the curve y = f (x )
Using the curve y = f (x) to determine the strain amount δ (x) at the position x by the following method;
A method for evaluating strain of a steel sheet, comprising:
L is a unit length, and δ (x, L) is obtained based on the following formula (1):
Further, δ (x, kL) is obtained for a plurality of k values based on the equation (2), where k is a value greater than 0 and less than 1.
The maximum value among the obtained δ (x, L) and the plurality of δ (x, kL) is set as a distortion amount δ (x) at the position x.
[2]複数のkの値は、0.05以上0.2以下の間隔で設定する、上記[1]に記載の鋼板の歪み評価方法。 [2] The steel sheet strain evaluation method according to [1], wherein the plurality of k values are set at intervals of 0.05 to 0.2.
[3]kLの最小値が0.2m以下である、上記[1]又は[2]に記載の鋼板の歪み評価方法。 [3] The steel sheet strain evaluation method according to [1] or [2], wherein the minimum value of kL is 0.2 m or less.
[4]鋼板の長手方向の複数の位置xについて歪み量δ(x)を求めて、鋼板の長手方向における歪み量プロファイルを得る工程をさらに有する、上記[1]〜[3]のいずれか一項に記載の鋼板の歪み評価方法。 [4] Any one of [1] to [3], further including a step of obtaining a strain amount profile δ (x) at a plurality of positions x in the longitudinal direction of the steel sheet to obtain a strain amount profile in the longitudinal direction of the steel sheet. The distortion | strain evaluation method of the steel plate as described in a term.
本発明の鋼板の歪み評価方法は、作業者の負担や生産性を損なうことなく、鋼板の歪み量及び歪みの位置を適正に評価できるため、作業者が鋼板の形状の矯正を精度よく行うことを可能とする。 The steel sheet distortion evaluation method of the present invention can appropriately evaluate the distortion amount and position of the steel sheet without impairing the burden and productivity of the operator, so that the operator can accurately correct the shape of the steel sheet. Is possible.
まず、図1を参照して、本発明の一実施形態による鋼板の歪み評価方法を実施可能な、鋼板の形状矯正システム100を説明する。
First, a steel sheet
図1は、本実施形態で使用可能な鋼板の形状矯正システム100の概略全体図である。この形状矯正システム100は、鋼板をオフラインで形状矯正するものである。図中の符号1は、鋼板Sの形状を矯正するプレス機であり、プレス機1の入側には入側ベッド3、プレス機1の出側には出側ベッド4が配設されている。ベッド3,4は、いずれも鋼板Sを搬送するための多数のローラが配設されており、このローラの回転状態を制御することで鋼板Sの搬送状態を制御することができる。すなわち、これらのベッド3,4が鋼板Sの搬送装置を構成する。また、特に入側ベッド3には、例えばローラの回転状態から鋼板Sの搬送状態を検出するトラッキング装置7,8が設けられている。このトラッキング装置7,8は、例えばローラの回転量及びローラの径から鋼板Sの搬送量を算出するなどして、鋼板Sがどの位置にあるかを検出することができる。
FIG. 1 is a schematic overall view of a steel sheet
本実施形態におけるプレス機1の場合、加圧ラム2で鋼板Sを上から加圧し、主として鋼板Sに曲げモーメントを付与して鋼板の形状を矯正する。鋼板Sの形状は、後述する鋼板形状計測装置5によって計測する。鋼板形状矯正の条件としては、例えば、加圧ラム2の圧下位置、加圧ラム2による加圧力、シムと呼ばれる敷棒の位置と間隔、鋼板Sの位置などが挙げられる。本実施形態におけるプレス機1による鋼板形状矯正は、鋼板Sの下に2本のシムを敷き、そのシムの間の部分の鋼板Sを加圧ラム2で加圧する。加圧ラム2による曲げモーメントは、シムの間の部分の鋼板Sにのみ生じる。この曲げモーメントによる鋼板Sの変形量と加圧開放時の戻り量、所謂スプリングバック量を加味して、前述した種々のパラメータを調整する。
In the case of the
入側ベッド3の側方には、鋼板形状計測装置5及び制御装置6を設置した。このうち、形状計測装置5は、レーザ光によって検出点までの距離を検出するレーザ距離計と、レーザ距離計で検出された距離データから鋼板Sの形状を計測するコンピュータシステムとを備える。レーザ距離計で、鋼板Sの各検出点までの距離を計測することで、鋼板Sの表面形状を求めることができる。レーザ距離計は、レーザ光照射装置と、レーザ光受光装置とを備える。
A steel plate
鋼板形状計測装置5は、好適には3Dスキャナである。本実施形態による鋼板の歪み評価方法では、まず、鋼板形状計測装置5で鋼板の3次元表面形状データを取得する。具体的な3次元表面形状データの取得方法は、特許文献1に記載の方法とすることができる。すなわち、レーザ光を鋼板の長手方向及び幅方向に偏光・走査して、例えば、長手方向をX軸、高さ方向をY軸、板幅方向をZ軸としたXYZ空間中に、鋼板表面の位置を検出点群として抽出し、検出点群の密度を均一化するための間引き処理を行った後、検出点群のデータから回帰曲面を求め、これを3次元表面形状データとする。
The steel plate
制御装置6は、ホストコンピュータなどのコンピュータシステムを備えて構築され、前記形状計測装置5で計測された鋼板Sの3次元表面形状データから、鋼板表面の各位置での歪み量を計算する演算処理を行う。本開示の鋼板の歪み評価方法は、この演算処理に特徴を有する。
The
そして、制御装置6は、計算された鋼板表面の各位置での歪み量に基づいて、例えば、加圧ラム2の圧下位置、加圧ラム2による加圧力、シムと呼ばれる敷棒の位置と間隔、鋼板Sの位置などの鋼板形状矯正の条件を決定し、決定した条件下でプレス機1及びベッド3,4の稼動状態を制御する。矯正条件の決定方法は特に限定されず、例えば特許文献1に記載の方法を用いることができる。
And the
以下、制御装置6による鋼板の歪み評価方法を説明する。まず、形状計測装置5で計測された鋼板の3次元表面形状データから、鋼板の所定板幅位置(例えば、板幅中央位置)における鋼板の長手方向の位置をxとし、当該位置xでの鋼板の高さをyとして、鋼板の表面形状プロファイルとして曲線y=f(x)を得る。つまり、XYZ空間中の回帰曲面(3次元表面形状データ)の、板幅中央位置におけるXY断面が、曲線y=f(x)となる。実際の厚鋼板における表面形状プロファイルの一例を、図4に示す。
Hereinafter, a method for evaluating the distortion of the steel sheet by the
次に、曲線y=f(x)を用いて、位置xにおける歪み量δ(x)を下記の方法で求める。
記
まず、Lを単位長さとして、以下の式(1)に基づいてδ(x,L)を求め、さらに、kを0超え1未満の数値として、式(2)に基づいて、複数のkの値に関してδ(x,kL)を求め、得られたδ(x,L)及び複数のδ(x,kL)のうち最大値を、前記位置xにおける歪み量δ(x)とする。
First, δ (x, L) is obtained based on the following formula (1), where L is a unit length, and a plurality of numerical values less than 1 and greater than 0 are calculated based on formula (2). δ (x, kL) is obtained with respect to the value of k, and the maximum value among the obtained δ (x, L) and a plurality of δ (x, kL) is defined as the distortion amount δ (x) at the position x.
式(1)について、図2を参照して説明する。図2において、表面形状プロファイルを曲線y=f(x)としたとき、単位長さをLとしたときのx=x1における歪み量δ(x1,L)は、図2に示したように、
しかし、例えば表面形状プロファイルを曲線y=f(x)が図3に示す形状の場合、単位長さをLとしたときのx=x1における歪み量δ(x1,L)よりも、式(2)に基づいて計算するk=1/2としたときのx=x1における歪み量δ(x1,1/2L)の方が大きくなる。
矯正作業の際に必要な歪み量の情報としては、最大歪み量を用いる必要がある。そのため、矯正作業者に提示するx=x1における歪み量δの情報として適切なのは、δ(x1,L)ではなく、δ(x1,1/2L)となる。 As information on the amount of distortion necessary for the correction work, it is necessary to use the maximum amount of distortion. Therefore, δ (x 1 , 1 / 2L) is appropriate instead of δ (x 1 , L) as information on the distortion amount δ at x = x 1 presented to the correction worker.
そこで本開示の鋼板の歪み評価方法では、δ(x,L)を求めるだけではなく、δ(x,kL)を0<k<1の範囲で複数のk値について求めて、その中の最大値を、位置xにおける歪み量δ(x)とする。これにより、位置xでの鋼板の歪み量を適正に評価でき、作業者が鋼板の形状の矯正を精度よく行うことが可能となる。 Therefore, in the strain evaluation method of the steel sheet of the present disclosure, not only δ (x, L) is obtained, but δ (x, kL) is obtained for a plurality of k values in a range of 0 <k <1, and the maximum of them is obtained. The value is a distortion amount δ (x) at the position x. Thereby, the distortion amount of the steel plate in the position x can be evaluated appropriately, and the operator can correct the shape of the steel plate with high accuracy.
ここで、単位長さLは特に限定されないが、1m以上4m以下とすることができる。 Here, the unit length L is not particularly limited, but may be 1 m or more and 4 m or less.
δ(x,kL)を計算する際の複数のkの値は、0.05以上0.2以下の間隔で設定することが好ましく、kLの最小値は0.2m以下とすることが好ましい。kの間隔を0.2以下とすることにより、位置xでの鋼板の歪み量をより適正に評価できる。また、kの間隔を0.05程度とすれば、歪み量の最大値の精度は飽和する。また、kLの最小値を0.2m以下とすれば、歪み量の最大値の精度は飽和する。好適な実施形態としては、例えば、k=0.9〜0.2の範囲で0.1刻みでδ(x,kL)を求め、δ(x,L)と、8つのδ(x,kL)のうちの最大値を位置xにおける歪み量δ(x)とすることができる。 The plurality of k values when calculating δ (x, kL) are preferably set at intervals of 0.05 or more and 0.2 or less, and the minimum value of kL is preferably 0.2 m or less. By setting the k interval to 0.2 or less, the amount of distortion of the steel plate at the position x can be more appropriately evaluated. If the k interval is about 0.05, the accuracy of the maximum distortion amount is saturated. Moreover, if the minimum value of kL is 0.2 m or less, the accuracy of the maximum value of the distortion amount is saturated. As a preferred embodiment, for example, δ (x, kL) is obtained in increments of 0.1 in the range of k = 0.9 to 0.2, and δ (x, L) and eight δ (x, kL) are obtained. ) Can be the distortion amount δ (x) at the position x.
このような方法で、x=x1における歪み量δだけでなく、鋼板の長手方向の複数の位置xについて歪み量δ(x)を求めれば、鋼板の長手方向における歪み量プロファイルを得ることができる。実際の厚鋼板における歪み量プロファイルの一例を、図6に示す。矯正作業者は、この歪み量プロファイルに基づいて、鋼板形状矯正の条件を決定し、決定した条件下で制御装置6がプレス機1及びベッド3,4の稼動状態を制御する。
By calculating not only the strain amount δ at x = x 1 but also the strain amounts δ (x) at a plurality of positions x in the longitudinal direction of the steel sheet by such a method, a strain amount profile in the longitudinal direction of the steel sheet can be obtained. it can. An example of the strain profile in an actual thick steel plate is shown in FIG. Based on this distortion amount profile, the straightening operator determines the conditions for correcting the steel plate shape, and the
圧延後の厚鋼板(板厚:200mm、板長:6000mm、板幅:1337mm)について、3Dスキャナで鋼板表面を測定し、3次元表面形状データを取得した。取得した3次元表面形状データから、鋼板の板幅中央位置における鋼板の長手方向の位置をxとし、当該位置xでの鋼板の高さをyとして、鋼板の表面形状プロファイルとして曲線y=f(x)を得た。この表面形状プロファイルを図4に示す。 For the rolled steel plate (plate thickness: 200 mm, plate length: 6000 mm, plate width: 1337 mm), the steel plate surface was measured with a 3D scanner, and three-dimensional surface shape data was obtained. From the acquired three-dimensional surface shape data, the position in the longitudinal direction of the steel plate at the center position of the plate width of the steel plate is x, the height of the steel plate at the position x is y, and the curve y = f ( x) was obtained. This surface shape profile is shown in FIG.
(比較例)
図4の表面形状プロファイルを2階微分して得た鋼板の長手方向における歪み量プロファイルを、図5に示す。
(Comparative example)
FIG. 5 shows a strain profile in the longitudinal direction of the steel sheet obtained by second-order differentiation of the surface shape profile of FIG.
(発明例)
図4の表面形状プロファイルから本発明法によって求めた鋼板の長手方向における歪み量プロファイルを、図6に示す。長手方向の各位置での歪み量は、L=2mとして、式(1)を用いてδ(x,L)を求め、k=0.9〜0.5の範囲で0.1刻みでδ(x,kL)を求め、δ(x,L)と、5つのδ(x,kL)のうちの最大値を位置xにおける歪み量δ(x)とした。
(Invention example)
FIG. 6 shows a strain profile in the longitudinal direction of the steel sheet obtained by the method of the present invention from the surface shape profile of FIG. The amount of distortion at each position in the longitudinal direction is set to L = 2 m, and δ (x, L) is obtained using Equation (1), and δ is obtained in increments of 0.1 in the range of k = 0.9 to 0.5. (X, kL) was obtained, and the maximum value of δ (x, L) and the five δ (x, kL) was defined as the distortion amount δ (x) at the position x.
(評価)
厚鋼板のx=1000mmの位置において、長さ2mのストレッチャーを鋼板表面に当てて、ストレッチャーと鋼板表面との隙間の大きさを測定した。測定値を図5及び図6に合わせて示した。図6から明らかなように、本発明法で求めた歪み量は、ストレッチャーで求めた実測値と精度よく一致していた。これに対して、図5から明らかなように、比較例で求めた歪みは、ストレッチャーで求めた実測値とズレが見られた。このように、本発明法は、ストレッチャーで求めた歪み量と高精度に一致する歪みの評価手法であることがわかる。
(Evaluation)
At the position of x = 1000 mm of the thick steel plate, a stretcher having a length of 2 m was applied to the steel plate surface, and the size of the gap between the stretcher and the steel plate surface was measured. The measured values are shown in FIG. 5 and FIG. As is apparent from FIG. 6, the strain amount obtained by the method of the present invention coincided with the measured value obtained by the stretcher with high accuracy. On the other hand, as is clear from FIG. 5, the distortion obtained in the comparative example showed a deviation from the actually measured value obtained by the stretcher. Thus, it can be seen that the method of the present invention is a strain evaluation method that matches the strain amount obtained by the stretcher with high accuracy.
本発明の鋼板の歪み評価方法は、作業者の負担や生産性を損なうことなく、鋼板の歪み量及び歪みの位置を適正に評価できるため、作業者が鋼板の形状の矯正を精度よく行うことを可能とする。 The steel sheet distortion evaluation method of the present invention can appropriately evaluate the distortion amount and position of the steel sheet without impairing the burden and productivity of the operator, so that the operator can accurately correct the shape of the steel sheet. Is possible.
100 形状矯正システム
1 プレス機
2 加圧ラム
3 入側ベッド
4 出側ベッド
5 鋼板形状計測装置(3Dスキャナ)
6 制御装置
7,8 トラッキング装置
DESCRIPTION OF
6
Claims (4)
前記3次元表面形状データから、鋼板の所定板幅位置における鋼板の長手方向の位置をxとし、当該位置xでの鋼板の高さをyとして、鋼板の表面形状プロファイルとして曲線y=f(x)を得る工程と、
前記曲線y=f(x)を用いて、位置xにおける歪み量δ(x)を下記の方法で求める工程と、
を有することを特徴とする鋼板の歪み評価方法。
記
Lを単位長さとして、以下の式(1)に基づいてδ(x,L)を求め、
さらに、kを0超え1未満の数値として、式(2)に基づいて、複数のkの値に関してδ(x,kL)を求め、
得られたδ(x,L)及び複数のδ(x,kL)のうち最大値を、前記位置xにおける歪み量δ(x)とする。
From the three-dimensional surface shape data, the position in the longitudinal direction of the steel plate at the predetermined plate width position of the steel plate is x, the height of the steel plate at the position x is y, and the curve y = f (x )
Using the curve y = f (x) to determine the strain amount δ (x) at the position x by the following method;
A method for evaluating strain of a steel sheet, comprising:
L is a unit length, and δ (x, L) is obtained based on the following formula (1):
Further, δ (x, kL) is obtained for a plurality of k values based on the formula (2), where k is a value greater than 0 and less than 1.
The maximum value among the obtained δ (x, L) and the plurality of δ (x, kL) is set as a distortion amount δ (x) at the position x.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017046748A JP6597679B2 (en) | 2017-03-10 | 2017-03-10 | Method for evaluating strain of steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017046748A JP6597679B2 (en) | 2017-03-10 | 2017-03-10 | Method for evaluating strain of steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018151222A JP2018151222A (en) | 2018-09-27 |
JP6597679B2 true JP6597679B2 (en) | 2019-10-30 |
Family
ID=63679544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017046748A Active JP6597679B2 (en) | 2017-03-10 | 2017-03-10 | Method for evaluating strain of steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6597679B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112113963A (en) * | 2020-09-21 | 2020-12-22 | 武汉钢铁有限公司 | Online detection method and device for plate shape defects of finished oriented silicon steel product |
CN112304243B (en) * | 2020-11-12 | 2022-11-15 | 北京机电研究所有限公司 | Contour detection device and detection method for plate stamping part |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5112154A (en) * | 1974-07-22 | 1976-01-30 | Nippon Kokan Kk | Hyomenheitandosokuteihoho |
JPS577324A (en) * | 1980-06-18 | 1982-01-14 | Hitachi Ltd | Leveler for metallic plate |
JP3747661B2 (en) * | 1998-11-26 | 2006-02-22 | Jfeスチール株式会社 | Measuring device for bending amount of rod-shaped body |
ITVE20000023A1 (en) * | 2000-05-12 | 2001-11-12 | Tecnogamma S A S Di Zanin E & | LASER EQUIPMENT FOR THE CONTROL OF THE RAILWAYS OF A RAILWAY LINE. |
JP6003583B2 (en) * | 2012-11-27 | 2016-10-05 | Jfeスチール株式会社 | Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method |
-
2017
- 2017-03-10 JP JP2017046748A patent/JP6597679B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018151222A (en) | 2018-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6003583B2 (en) | Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method | |
JP4781361B2 (en) | Metal strip straightening method | |
JP2007229753A (en) | Press-straightening machine and press-straightening method | |
JP5967031B2 (en) | Method and apparatus for correcting the perpendicularity of H-shaped steel flange | |
JP5983311B2 (en) | Steel plate shape correction method | |
CN113382812B (en) | Method and device for straightening material by means of a straightening device | |
JP6597679B2 (en) | Method for evaluating strain of steel sheet | |
JP6624121B2 (en) | Steel plate shape straightening device | |
KR101134922B1 (en) | Shape controller and shape method for steel plate of hot rolling process | |
KR101701656B1 (en) | Plate camber detection device, descaling control device, and pass schedule calculation device | |
JP6477541B2 (en) | Steel plate shape correction method and steel plate manufacturing method | |
CN113732073B (en) | Correction method for flatness defect of finish rolling outlet strip steel | |
JP7207448B2 (en) | Method for calculating corrected position of steel plate and method for manufacturing steel plate | |
JP6451696B2 (en) | Steel plate straightening method using roll leveler and roll leveler | |
JP2010207824A (en) | Method of manufacturing hot-rolled steel strip | |
JP2018158365A (en) | Hot rolling method and hot rolling device | |
US20020174699A1 (en) | Method of and apparatus for eliminating crossbow in metal strip | |
JP2018096876A (en) | Shape estimation method, steel sheet shape correction method, and manufacturing method of steel sheet | |
JP2013180335A (en) | Method of straightening steel sheet with roller leveler and roller leveler straightener | |
JP6028931B2 (en) | Steel pipe manufacturing method and manufacturing apparatus thereof | |
KR101917459B1 (en) | Apparatus for correcting sheet material and method of fabricating sheet material | |
JP6580723B2 (en) | Steel plate shape straightening device and shape straightening method | |
JP6597669B2 (en) | Straightening method and apparatus for tapered steel plate | |
KR100523219B1 (en) | Method for measuring dog-bone profile of bar using both CCD camera and laser slit beam in hot strip mill | |
JP2017006941A (en) | Zero point adjustment method of roller leveler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181024 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190816 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190903 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190916 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6597679 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |