JP6576077B2 - Low Pb brass rod and manufacturing method thereof - Google Patents
Low Pb brass rod and manufacturing method thereof Download PDFInfo
- Publication number
- JP6576077B2 JP6576077B2 JP2015074825A JP2015074825A JP6576077B2 JP 6576077 B2 JP6576077 B2 JP 6576077B2 JP 2015074825 A JP2015074825 A JP 2015074825A JP 2015074825 A JP2015074825 A JP 2015074825A JP 6576077 B2 JP6576077 B2 JP 6576077B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- hot extrusion
- extrusion
- brass
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001369 Brass Inorganic materials 0.000 title claims description 51
- 239000010951 brass Substances 0.000 title claims description 51
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000002245 particle Substances 0.000 claims description 66
- 239000000463 material Substances 0.000 claims description 59
- 238000001192 hot extrusion Methods 0.000 claims description 54
- 238000001125 extrusion Methods 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 23
- 238000012545 processing Methods 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 17
- 239000010949 copper Substances 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 11
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 7
- 229910052718 tin Inorganic materials 0.000 claims description 7
- 229910052745 lead Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 description 32
- 238000010438 heat treatment Methods 0.000 description 19
- 238000012360 testing method Methods 0.000 description 15
- 238000004453 electron probe microanalysis Methods 0.000 description 11
- 239000011701 zinc Substances 0.000 description 10
- 238000005211 surface analysis Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010622 cold drawing Methods 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 229910017518 Cu Zn Inorganic materials 0.000 description 2
- 229910017752 Cu-Zn Inorganic materials 0.000 description 2
- 229910017943 Cu—Zn Inorganic materials 0.000 description 2
- 229910000978 Pb alloy Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Extrusion Of Metal (AREA)
Description
本発明は、良好な切削性を有し、リサイクル性にも優れる低Pb黄銅棒材およびその製造方法に関する。 The present invention relates to a low Pb brass bar having good machinability and excellent recyclability, and a method for producing the same.
Pbを多量に含有する快削黄銅は熱間加工性、切削性に優れ、古くから水回り部品やガスバルブなどに広く使用されている。規格としては例えば鍛造用黄銅棒(JIS C3771)、快削黄銅棒(JIS C3604)などがある。これらの快削黄銅はPbを1〜4質量%程度と多量に含有する。Pbは人体に有害であることから、特に水回り部品等の用途ではPb含有量ができるだけ少ない材料を使用することが望まれている。 Free-cutting brass containing a large amount of Pb is excellent in hot workability and machinability and has been widely used for water-related parts and gas valves for a long time. Examples of the standard include a forging brass bar (JIS C3771) and a free-cutting brass bar (JIS C3604). These free-cutting brass contains Pb in a large amount of about 1 to 4% by mass. Since Pb is harmful to the human body, it is desired to use a material having as little Pb content as possible, particularly in applications such as water-borne parts.
Pb含有量を低減させた黄銅の切削性を高めるために、Siを2〜4%添加する手法が知られている(特許文献1)。また、Pbに代えてBiを添加することにより黄銅の切削性を改善する技術が知られている(例えば特許文献2〜6)。これらの技術を利用した快削性の良好なPbレス黄銅がすでに実用化されている。 In order to improve the machinability of brass having a reduced Pb content, a method of adding 2 to 4% of Si is known (Patent Document 1). Moreover, the technique which improves the machinability of a brass by adding Bi instead of Pb is known (for example, patent documents 2-6). Pb-less brass with good free-cutting properties using these technologies has already been put into practical use.
Biを含有する快削黄銅はリサイクル性が悪いという欠点がある。快削黄銅には現在でもPbを含有するCu−Zn−Pb系合金が多く使用されており、その切屑を主体とするスクラップが多量に発生している。Bi含有黄銅のスクラップは、快削黄銅スクラップの大部分を占めるCu−Zn−Pb系合金スクラップと混合して処理することができず、分別が必要となる。切粉などの細かい切屑を分別管理するには手間が掛かり、そのことがBi含有快削黄銅を用いた切削部品のコストを増大させる要因となっている。また、多量のSiを添加することによって快削性を付与した高Si快削黄銅も、Cu−Zn−Pb系合金スクラップと一緒に処理することが困難であり、Bi含有黄銅と同様にリサイクル性が悪い。 Free-cutting brass containing Bi has the disadvantage of poor recyclability. Even in free-cutting brass, Cu-Zn-Pb-based alloys containing Pb are still widely used, and a large amount of scraps mainly composed of chips are generated. Bi-containing brass scrap cannot be mixed with Cu-Zn-Pb alloy scrap, which occupies most of the free-cutting brass scrap, and needs to be separated. It takes time and effort to separate and manage fine chips such as chips, which increases the cost of cutting parts using Bi-containing free-cutting brass. In addition, high Si free-cutting brass imparted with free-cutting properties by adding a large amount of Si is difficult to process together with Cu-Zn-Pb alloy scrap, and recyclability is similar to Bi-containing brass. Is bad.
本発明は、Pb含有量を低減した黄銅棒材において、リサイクル性を損なわずに、Pbを多量に含有する従来一般的な快削黄銅の長所である「優れた熱間加工性」および「快削性」を実現しようというものである。 The present invention is a brass rod material with a reduced Pb content, and has the advantages of “excellent hot workability” and “excellent” which are the advantages of conventional free-cutting brass containing a large amount of Pb without impairing recyclability. It is intended to realize “Machinability”.
Pbを多量に含有する従来一般的なCu−Zn−Pb系の快削黄銅材料は、α相とβ相からなるマトリックス中に多数のPb濃化粒子が分散した金属組織を呈する。Pb濃化粒子は融点が低いので、切削時に発生する切屑は、切削の加工熱によりPb濃化粒子の部分で容易に脆化作用を生じ、細かく分断された切屑形態となる。すなわち、切屑中に多量に存在するPb濃化粒子の脆化作用によって良好な切削性(快削性)が得られている。黄銅中のPb含有量を低減すればPb濃化粒子の存在個数が減少するので、それに伴って切削性は劣化するのが一般的である。 A conventional general Cu—Zn—Pb-based free-cutting brass material containing a large amount of Pb exhibits a metal structure in which a large number of Pb-concentrated particles are dispersed in a matrix composed of an α phase and a β phase. Since the melting point of the Pb-concentrated particles is low, chips generated at the time of cutting are easily embrittled in the Pb-concentrated particles due to the processing heat of cutting, and are in the form of finely divided chips. That is, good machinability (free-cutting property) is obtained by the embrittlement action of Pb-enriched particles present in large amounts in the chips. If the Pb content in the brass is reduced, the number of Pb-concentrated particles is reduced, so that the machinability is generally deteriorated accordingly.
発明者らは詳細な研究の結果、黄銅中のPb含有量を低減した場合であっても、α相の内部に存在するPb濃化粒子の個数を十分に確保すれば、良好な切削性が維持できることを見出した。すなわち、β相中やα相とβ相の界面に存在するPb濃化粒子を減らし、α相の内部にできるだけ多くのPb濃化粒子を存在させることにより、少ないPb含有量においても優れた切屑分断効果を得ることができるのである。低Pb黄銅の場合、熱間押出の条件を工夫することによって、α相内部に多数のPb濃化粒子が分散した組織状態の黄銅棒材を実現できることがわかった。本発明はこのような知見に基づいて完成したものである。 As a result of detailed studies, the inventors have found that, even when the Pb content in the brass is reduced, if the number of Pb-concentrated particles existing in the α phase is sufficiently secured, good machinability is achieved. I found that I can maintain it. That is, by reducing the number of Pb-concentrated particles present in the β phase or at the interface between the α-phase and the β-phase, and by making as many Pb-concentrated particles as possible inside the α-phase, excellent chip even at a small Pb content. A dividing effect can be obtained. In the case of low Pb brass, it was found that a brass rod with a structure in which a large number of Pb-concentrated particles are dispersed inside the α phase can be realized by devising the conditions for hot extrusion. The present invention has been completed based on such findings.
上記目的を達成するために、本発明では、質量%で、Cu:54.0〜66.0%、Pb:0.05〜0.50%、必要に応じてSi:0.02〜0.20%を含有し、Sn:0.40%以下、Fe:0.60%以下、P:0.15%以下の1種以上を、Sn、Fe、Pの合計含有量が0.02%以上となるように含有し、残部がZnおよび不可避的不純物からなる化学組成を有する銅合金の棒材であって、α相とβ相からなるマトリックス(金属素地)中にPb濃化粒子が分散しており、長手方向に垂直な断面の組織観察において、α相の内部に存在するPb濃化粒子の個数密度がα相の面積に対して150個/mm2以上である金属組織を有する低Pb黄銅棒材が提供される。Pb濃化粒子は、粒子中に含有される元素のうちPbの質量割合が最も多い粒子であり、多くの場合Pb相からなるものである。 In order to achieve the above object, according to the present invention, Cu: 54.0 to 66.0%, Pb: 0.05 to 0.50%, and Si: 0.02 to 0.5% as necessary. Containing 20%, Sn: 0.40% or less, Fe: 0.60% or less, P: 0.15% or less, Sn, Fe, P total content is 0.02% or more A copper alloy rod having a chemical composition consisting of Zn and inevitable impurities, the balance being dispersed in a matrix (metal substrate) composed of an α phase and a β phase. In the observation of the structure in a cross section perpendicular to the longitudinal direction, the low Pb having a metal structure in which the number density of Pb-concentrated particles existing in the α phase is 150 particles / mm 2 or more with respect to the area of the α phase. A brass bar is provided. Pb-enriched particles are particles having the largest mass ratio of Pb among the elements contained in the particles, and in many cases are composed of a Pb phase.
上記組成範囲の銅合金の場合、金属組織中のα相とβ相の識別およびPb濃化粒子の同定は、EPMA(電子線マイクロアナライザ)による分析によって行うことができる。α相の内部に存在するPb濃化粒子の個数密度は以下のようにして測定することができる。 In the case of the copper alloy having the above composition range, the α phase and β phase in the metal structure and the identification of the Pb-enriched particles can be performed by analysis using EPMA (electron beam microanalyzer). The number density of Pb-enriched particles existing inside the α phase can be measured as follows.
〔α相の内部に存在するPb濃化粒子の個数密度の測定方法〕
棒材長手方向に垂直な断面内に無作為に設けた観察視野についてEPMA(電子線マイクロアナライザ)による面分析を行い、マトリックス(金属素地)をα相領域とβ相領域に分離してα相領域の面積を求めるとともに、α相領域内に粒子の全体像が観測されるPb濃化粒子の数をカウントする、という操作を合計測定面積が0.10mm2以上となるように重複しない複数の観察視野について行い、全観察視野における前記Pb濃化粒子の合計カウント数をα相領域の合計面積で除した値(個/mm2)を、α相の内部に存在するPb濃化粒子の個数密度とする。
この場合、α相領域の合計面積には、その中に存在するPb濃化粒子部分の面積が含まれる。α相とβ相の界面(以下「α/β界面」という)に存在するPb濃化粒子は「α相領域内に粒子の全体像が観測されるPb濃化粒子」には該当しないため、カウント対象とならない。上記のEPMA分析によりカウントされるPb濃化粒子は、観察面上での粒子径(長径)が0.5μm以上のPb濃化粒子に相当するものである。
[Method for measuring number density of Pb-concentrated particles existing in α phase]
The field of view randomly provided in the cross section perpendicular to the longitudinal direction of the bar is subjected to surface analysis using EPMA (electron beam microanalyzer), and the matrix (metal substrate) is separated into an α phase region and a β phase region to obtain an α phase. In addition to obtaining the area of the region and counting the number of Pb-enriched particles in which the entire image of the particles is observed in the α-phase region, a plurality of operations that do not overlap so that the total measurement area becomes 0.10 mm 2 or more. The number of Pb-enriched particles present in the α-phase is obtained by dividing the total count of the Pb-enriched particles in the entire observation field by the total area of the α-phase region (number / mm 2 ). Density.
In this case, the total area of the α phase region includes the area of the Pb-enriched particle portion existing therein. Since Pb-enriched particles existing at the interface between α phase and β phase (hereinafter referred to as “α / β interface”) do not correspond to “Pb-enriched particles in which the entire image of the particles is observed in the α-phase region”. Not counted. The Pb-enriched particles counted by the above EPMA analysis correspond to Pb-enriched particles having a particle diameter (major axis) on the observation surface of 0.5 μm or more.
上記の低Pb黄銅棒材は、上記化学組成を有する鋳造材に熱間押出加工を施す工程を経て製造することができる。その熱間押出加工は、熱間押出ダイスとして、押出方向最前部から最狭隘部までの押出方向長さLが2mm以上であるダイスを使用し、押出開始時の材料温度を700〜850℃、下記(1)式で定義される加工速度εを70〜140min -1とする条件で行うことができる。
ε=[(A0−A1)/A0]×(V0/L) …(1)
ここで、A0は熱間押出前の材料の熱間押出方向に垂直な断面積(mm2)、A1は熱間押出後の材料の熱間押出方向に垂直な断面積(mm2)、V0は熱間押出前の材料の押出速度(mm/min)、Lは熱間押出ダイスの押出方向最前部から最狭隘部までの押出方向長さ(mm)である。
鋳造材を300℃から700℃までの平均昇温速度が20℃/min以下となるように昇温して700〜850℃に保持した後、熱間押出加工に供することがより好ましい。
Said low Pb brass rod can be manufactured through the process of hot-extruding to the cast material which has the said chemical composition. The hot extrusion process uses, as a hot extrusion die, a die having an extrusion direction length L from the foremost portion in the extrusion direction to the narrowest flange portion of 2 mm or more, and the material temperature at the start of extrusion is 700 to 850 ° C., the machining speed ε is defined by the following formula (1) can be carried out in conditions that 70 to 140 min -1.
ε = [(A 0 −A 1 ) / A 0 ] × (V 0 / L) (1)
Here, A 0 is a cross-sectional area perpendicular to the hot extrusion direction of the material before hot extrusion (mm 2 ), and A 1 is a cross-sectional area perpendicular to the hot extrusion direction of the material after hot extrusion (mm 2 ). , V 0 is the extrusion speed (mm / min) of the material before hot extrusion, and L is the length (mm) in the extrusion direction from the foremost part of the hot extrusion die to the narrowest part.
More preferably, the cast material is heated and maintained at 700 to 850 ° C. so that the average rate of temperature increase from 300 ° C. to 700 ° C. is 20 ° C./min or less, and then subjected to hot extrusion.
本発明によれば、低Pb含有量でありながら従来のPb含有快削黄銅と同等の熱間加工性や快削性を有し、かつリサイクル性に優れた銅合金棒材を提供することができる。 According to the present invention, it is possible to provide a copper alloy bar having a low Pb content, hot workability and free machinability equivalent to conventional Pb-containing free-cutting brass, and excellent recyclability. it can.
〔化学組成〕
本発明ではCu−Zn系銅合金(黄銅)を対象とする。以下において、化学組成に関する「%」は特に断らない限り「質量%」を意味する。
CuおよびZnは、黄銅の基本成分である。Cu含有量が54.0%より少ないとα相が減少して伸びなどの機械的性質が低下する。一方、Cu含有量が66.0%を超えて多くなると高温域でのβ相生成量が減少して熱間加工性が低下する。ここではCu含有量が54.0〜66.0%の銅合金を対象とする。耐脱亜鉛性を重視する場合はCu含有量を60.0〜66.0%の範囲とすることが好ましい。Cuと後述の成分元素を除く残部はZnおよび不可避的不純物である。
[Chemical composition]
In the present invention, a Cu—Zn-based copper alloy (brass) is targeted. In the following, “%” related to chemical composition means “% by mass” unless otherwise specified.
Cu and Zn are basic components of brass. If the Cu content is less than 54.0%, the α phase is reduced and mechanical properties such as elongation are lowered. On the other hand, if the Cu content exceeds 66.0%, the amount of β-phase generated in the high temperature region decreases and hot workability deteriorates. Here, a copper alloy having a Cu content of 54.0 to 66.0% is targeted. When importance is attached to dezincing resistance, the Cu content is preferably in the range of 60.0 to 66.0%. The balance excluding Cu and component elements described later is Zn and inevitable impurities.
Pbは、快削性を向上させる元素である。従来一般的な快削黄銅はPbを1〜4%と多量に含有している。Pbは人体に有害であることから、本発明ではPb含有量を0.05〜0.50%の範囲に低減した化学組成を適用する。水洗器具等の部品に用いた場合のPb溶出量はPb含有量が高くなるほど多くなり、その程度は0.50%を超えると特に大きくなる。0.30%以下のPb含有量とすることがより好ましい。Pbは銅合金中に析出してPb濃化粒子を形成する。特にα相内部に分散したPb濃化粒子は切削加工において切屑の分断に大きく寄与する。種々検討の結果、0.05%以上のPb含有量を確保したときに、後述の熱間押出条件を適用することによって、Pb濃化粒子による切削性の向上効果を発揮させることができる。0.10%以上のPb含有量とすることがより好ましい。 Pb is an element that improves free machinability. Conventional free-cutting brass contains Pb in a large amount of 1 to 4%. Since Pb is harmful to the human body, in the present invention, a chemical composition in which the Pb content is reduced to a range of 0.05 to 0.50% is applied. The amount of Pb elution when used for parts such as water-washing appliances increases as the Pb content increases, and the degree increases particularly when it exceeds 0.50%. More preferably, the Pb content is 0.30% or less. Pb precipitates in the copper alloy to form Pb concentrated particles. In particular, the Pb-enriched particles dispersed inside the α phase greatly contribute to the fragmentation of chips in the cutting process. As a result of various studies, when a Pb content of 0.05% or more is ensured, the effect of improving the machinability by the Pb-enriched particles can be exhibited by applying the hot extrusion conditions described later. More preferably, the Pb content is 0.10% or more.
Sn、Fe、Pは、黄銅材料の強度向上に寄与する。さらにSn、Pは黄銅材料の耐脱亜鉛性向上にも寄与する。切削部品として使用される種々の用途を考慮すると、Sn:0.40%以下、Fe:0.60%以下、P:0.15%以下の1種以上を、Sn、Fe、Pの合計含有量が0.02%以上となるように含有することが望ましい。Sn:0.02〜0.40%、Fe:0.02〜0.60%、P:0.02〜0.15%の範囲でこれらの1種以上を含有することがより好ましい。これらの元素は黄銅スクラップ中に含まれるので、スクラップを有効利用することができる。 Sn, Fe, and P contribute to improving the strength of the brass material. Furthermore, Sn and P contribute to the dezincing resistance improvement of the brass material. In consideration of various uses used as a cutting part, Sn: Fe, P or less, Fe: 0.60% or less, P: 0.15% or less, Sn, Fe, P total content It is desirable that the content be 0.02% or more. It is more preferable to contain one or more of these in the range of Sn: 0.02 to 0.40%, Fe: 0.02 to 0.60%, and P: 0.02 to 0.15%. Since these elements are contained in brass scrap, the scrap can be effectively used.
Siは、耐応力腐食割れ性を向上させる作用を有するので、必要に応じて含有させることができる。その作用を十分に発揮させるためには0.01%以上のSi含有量を確保することが効果的である。一方、Siの亜鉛当量は10と高く、多量のSi含有はβ相の増大を招く。Siを含有させる場合、0.20%以下の範囲の含有量とすることが好ましい。 Since Si has an effect of improving the stress corrosion cracking resistance, it can be contained as required. In order to fully exhibit the action, it is effective to secure a Si content of 0.01% or more. On the other hand, the zinc equivalent of Si is as high as 10, and a large amount of Si content causes an increase in β phase. When Si is contained, the content is preferably in the range of 0.20% or less.
〔金属組織〕
本発明で対象とする上記の黄銅組成域では、常温でマトリックス(金属素地)がα相とβ相の複相組織となる。α相はβ相よりもCuに富み比較的軟質である。β相はα相よりもZnに富み比較的硬質である。α相とβ相は主成分であるCuおよびZnの濃度が異なるので、EPMAの面分析データを画像処理することによって明瞭に区別することができる。
本発明に従う黄銅棒材は、Pbを0.05%以上含有しているので、そのPbはPb濃化相を形成してマトリックス中に析出する。
[Metal structure]
In the above brass composition range that is the subject of the present invention, the matrix (metal substrate) has a multiphase structure of α phase and β phase at room temperature. The α phase is richer in Cu and relatively soft than the β phase. The β phase is richer in Zn and relatively hard than the α phase. Since the α phase and the β phase have different concentrations of the main components Cu and Zn, the surface analysis data of EPMA can be clearly distinguished by image processing .
Since the brass bar according to the present invention contains 0.05% or more of Pb, the Pb forms a Pb concentrated phase and precipitates in the matrix.
α相はβ相に比べ常温の強度が低いので、これらの相を含む黄銅に塑性加工を施すとα相での変形が優先的に生じる。切削加工においては切屑内でせん断変形が生じており、主にα相で変形が起きる。一方、Pb濃化粒子は融点が低いので切削時の加工熱により容易に軟化または溶融し、切屑の脆化を引き起こす機能を発揮する。Pb濃化粒子が、切屑内での大きな変形を担うα相中に多く分散しているほど、切屑の微細分断化が容易に起こり、切削性は向上する。詳細な検討の結果、EPMAを用いた前述の測定方法による「α相の内部に存在するPb濃化粒子の個数密度」が150個/mm2以上であるとき、従来一般的な快削黄銅に比べ実用上遜色のないレベルの優れた切削性が得られることがわかった。上記Pb濃化粒子の個数密度が200個/mm2以上であることがより効果的である。Pb含有量を上記のように低減した黄銅であっても、後述の熱間押出工程を経ることによってα相中に多くのPb濃化粒子を分散させることが可能となる。α相中のPb濃化粒子の数が多くなるほど切削性は向上する傾向を示すが、過剰に存在させる必要はない。上記Pb濃化粒子の個数密度は例えば900個/mm2以下とすればよく、800個/mm2以下としてもよい。 Since the α phase has a lower strength at room temperature than the β phase, if the brass containing these phases is plastically processed, deformation in the α phase occurs preferentially. In the cutting process, shear deformation occurs in the chips, and deformation mainly occurs in the α phase. On the other hand, since the Pb-enriched particles have a low melting point, they are easily softened or melted by the processing heat at the time of cutting, and exhibit a function of causing chip embrittlement. The more the Pb-enriched particles are dispersed in the α phase that bears a large deformation in the chip, the more easily the chip is finely divided and the machinability is improved. As a result of detailed examination, when the “number density of Pb-concentrated particles existing in the α phase” by the above-described measuring method using EPMA is 150 particles / mm 2 or more, conventional free-cutting brass is used. It was found that excellent machinability at a level comparable to practical use was obtained. It is more effective that the number density of the Pb-enriched particles is 200 / mm 2 or more. Even with brass whose Pb content has been reduced as described above, it is possible to disperse many Pb-enriched particles in the α-phase through the hot extrusion process described later. Although the machinability tends to improve as the number of Pb-enriched particles in the α phase increases, it does not need to be present excessively. The number density of the Pb-enriched particles may be, for example, 900 / mm 2 or less, and may be 800 / mm 2 or less.
図1に、本発明に従う黄銅棒材(熱間押出、冷間引抜、熱処理の工程で製造されたもの)の長手方向に垂直な断面についてのEPMAによる面分析画像を例示する。これは、CuおよびPbの特性X線検出強度により作成されたカラーマッピング画像をモノクロ化して掲載したものである。白く見える斑点状の部分がPb濃化粒子に相当する。 FIG. 1 illustrates an area analysis image by EPMA of a cross section perpendicular to the longitudinal direction of a brass bar material (produced by the steps of hot extrusion, cold drawing, and heat treatment) according to the present invention. This is a black and white version of a color mapping image created with the characteristic X-ray detection intensities of Cu and Pb. A spot-like portion that appears white corresponds to Pb-enriched particles.
図2に、図1と同様の黄銅棒材断面について、EPMAにより測定されたZnの特性X線による面分析データを画像処理して、マトリックス(金属素地)をα相領域とβ相領域に二分して表示した画像を例示する。白い部分がα相領域、黒い部分がβ相領域である。このような画像からα相領域の面積を求めることができる。また、このα相領域にPb濃化粒子の存在位置を重ね合わせることによって、α領域内に粒子の全体像が観測されるPb濃化粒子の数をカウントすることができる。 In FIG. 2, the surface analysis data of the characteristic X-ray of Zn measured by EPMA is image-processed with respect to the same brass rod cross section as in FIG. 1, and the matrix (metal substrate) is divided into the α phase region and the β phase region. An example of the displayed image is shown below. The white portion is the α phase region and the black portion is the β phase region. The area of the α phase region can be obtained from such an image. In addition, by superimposing the existence position of the Pb-enriched particles on this α-phase region, the number of Pb-enriched particles in which the entire image of the particles is observed in the α region can be counted.
〔製造方法〕
本発明に従う切削性に優れた黄銅棒材は、鋳造材に熱間押出加工を施す工程を経て製造することができる。例えば、半連続鋳造あるいは連続鋳造、熱間押出、冷間引抜、熱処理を順次施す工程が採用できる。必要に応じて、熱間押出後に、さらに熱間鍛造等の熱間加工プロセスを加えることもできる。熱間加工後、あるいは熱処理後には、酸化スケールを除去するために、適宜、酸洗が施される。最終的に得られる本発明対象の黄銅棒材は、円形断面であってもよいし、異形断面であってもよい。それらの断面積は、例えば15〜15000mm2である。熱間押出以外の工程については、特にこだわる必要はなく、従来公知の手法が適用できる。
〔Production method〕
The brass rod material excellent in machinability according to the present invention can be manufactured through a process of subjecting a cast material to hot extrusion. For example, a process of sequentially performing semi-continuous casting or continuous casting, hot extrusion, cold drawing, and heat treatment can be employed. If necessary, after hot extrusion, a hot working process such as hot forging can be further added. After hot working or heat treatment, pickling is appropriately performed in order to remove the oxide scale. The finally obtained brass bar of the present invention may have a circular cross section or an irregular cross section. Their cross-sectional area is, for example, 15 to 15000 mm 2 . For processes other than hot extrusion, there is no need to pay particular attention, and conventionally known methods can be applied.
〔熱間押出工程〕
鋳造材に対して最初に施す熱間加工を熱間押出によって行い、かつ、その熱間押出加工条件を工夫することによって、Pb含有量を低減した黄銅であっても、α相中に多数のPb濃化粒子を分散させた組織状態を得ることができる。
[Hot extrusion process]
Even if the Pb content is reduced by performing the hot working first applied to the cast material by hot extruding and devising the hot extruding conditions, there are many in the α phase. A tissue state in which Pb-enriched particles are dispersed can be obtained.
Cu−Zn系銅合金中に含有されているPbは、鋳造後の状態において、α/β界面にPb濃化相として多く存在する。これらのPb濃化相は熱間押出の加工によって分断され、通常は、熱間押出材においてもα/β界面上にPb濃化粒子が多く分布すると考えられる。熱間押出後の冷却およびその後の熱処理によってα相は成長しようとするが、α/β界面上にPb濃化粒子が分散していると、それらの粒子の存在箇所ではα/β界面の移動(α相の成長)が妨げられ、それらの粒子をα相の内部に取り込むことが難しい。その結果、最終的にPb濃化粒子の多くはα/β界面上に残留して存在することになる。この場合、切削加工時に切屑の分断に大きく寄与するα相内部のPb濃化粒子が少ないため、切削性の顕著な改善は望めない。 A large amount of Pb contained in the Cu—Zn-based copper alloy exists as a Pb-concentrated phase at the α / β interface in the state after casting. These Pb-concentrated phases are divided by hot extrusion processing, and it is generally considered that a large amount of Pb-concentrated particles are distributed on the α / β interface even in the hot-extruded material. The α phase tends to grow by cooling after the hot extrusion and subsequent heat treatment, but if the Pb-concentrated particles are dispersed on the α / β interface, the α / β interface moves at the locations where these particles exist. (Α phase growth) is hindered and it is difficult to incorporate these particles into the α phase. As a result, most of the Pb-enriched particles are finally left on the α / β interface. In this case, since there are few Pb-concentrated particles inside the α phase that greatly contribute to the cutting of chips during cutting, a significant improvement in machinability cannot be expected.
本発明では、熱間押出加工時に、鋳造組織のα/β界面上に存在するPb濃化相をできるだけ凝集粗大化させ、α/β界面の移動を阻害しにくい粗大なPb濃化粒子として存在させることにより、α相の成長過程(α/β界面の移動過程)で面積を増していくα相内にPb濃化粒子の多くを取り込むという思想で、切削性の向上を狙う。 In the present invention, during hot extrusion, the Pb-concentrated phase existing on the α / β interface of the cast structure is aggregated and coarsened as much as possible, and present as coarse Pb-concentrated particles that hardly inhibit the movement of the α / β interface. By doing so, the aim is to improve the machinability with the idea of incorporating most of the Pb-enriched particles into the α phase that increases in area during the α phase growth process (α / β interface movement process).
Pb濃化相を凝集粗大化させるためには、熱間押出加工の温度を高めに設定することが有利となる。種々検討の結果、押出開始時の材料温度を700〜850℃とすることが望ましい。高温での酸化を抑制する観点からは、押出開始時の材料温度を700〜800℃とすることが効果的である。 In order to agglomerate and coarsen the Pb-concentrated phase, it is advantageous to set the hot extrusion temperature higher. As a result of various studies, it is desirable that the material temperature at the start of extrusion be 700 to 850 ° C. From the viewpoint of suppressing oxidation at a high temperature, it is effective to set the material temperature at the start of extrusion to 700 to 800 ° C.
また、熱間押出時に動的再結晶粒の発生をできるだけ抑えることが、Pb濃化相の凝集粗大化に極めて有効であることがわかった。動的再結晶粒の発生が少ないことは結晶粒界面積の増大が少ないことを意味する。結晶粒界面積の増大が少ないほど、α/β界面に存在しているPb濃化相の迅速な凝集に有利となり、粗大なPb濃化粒子が形成される。動的再結晶を生じにくくするためには、熱間押出時の加工速度(ひずみ速度)が過大にならないように、熱間押出条件をコントロールすることが重要となる。 It has also been found that suppressing the generation of dynamic recrystallized grains as much as possible during hot extrusion is extremely effective for agglomeration and coarsening of the Pb concentrated phase. Less generation of dynamic recrystallized grains means less increase in grain boundary area. The smaller the increase in the crystal grain interface area, the more advantageous is the rapid aggregation of the Pb-concentrated phase existing at the α / β interface, and coarse Pb-concentrated particles are formed. In order to make it difficult for dynamic recrystallization to occur, it is important to control the hot extrusion conditions so that the processing speed (strain rate) during hot extrusion does not become excessive.
図3に、熱間押出加工時の工具と素材(被加工材)の断面構造の一例を模式的に示す。ビレット、ブルームなどの素材1がコンテナ2により周囲方向への変形を拘束された状態でステム3によりダイス4に向けて一方向に押し込まれ、ダイス4によって素材1の径が減じられる。 In FIG. 3, an example of the cross-sectional structure of the tool at the time of a hot extrusion process and a raw material (processed material) is shown typically. The material 1 such as billet or bloom is pushed in one direction toward the die 4 by the stem 3 in a state in which deformation in the peripheral direction is constrained by the container 2, and the diameter of the material 1 is reduced by the die 4.
図4に、熱間押出ダイスの断面形状の一例を模式的に示す。図中の矢印方向に素材(ビレットなど)が導入される。ダイスに対する素材の進行方向(図中の矢印に平行な方向)を「押出方向」と呼ぶ。押出方向に垂直な断面の断面積(以下単に「断面積」と呼ぶことがある)が減じ始める押出方向位置を「押出方向最前部」と呼び、図中に符号5で示してある。また、ダイスの最狭隘部を符号6で示してある。押出ダイスは用途に応じて種々の形状のものがあるが、ここでは押出方向最前部5から最狭隘部6までの押出方向長さLが2mm以上であるダイスを使用することが好ましい。前記Lが2〜50mmの範囲にあるダイスを使用することがより好ましい。なお、図4のダイス形状は一例であり、後述(1)式を満たす熱間押出加工が可能なダイスであれば、設備仕様や目的の断面形状に応じて適切な形状のダイスを使用することができる。 In FIG. 4, an example of the cross-sectional shape of a hot extrusion die is typically shown. A material (such as a billet) is introduced in the direction of the arrow in the figure. The direction of movement of the material relative to the die (the direction parallel to the arrow in the figure) is called the “extrusion direction”. The position in the extrusion direction at which the cross-sectional area of the cross section perpendicular to the extrusion direction (hereinafter sometimes simply referred to as “cross-sectional area”) begins to decrease is referred to as the “frontmost part in the extrusion direction” and is denoted by reference numeral 5 in the figure. Further, the narrowest narrow portion of the die is indicated by reference numeral 6. There are various shapes of extrusion dies depending on the application, but here, it is preferable to use a die having a length L in the extrusion direction from the foremost portion 5 in the extrusion direction to the narrowest flange portion 6 of 2 mm or more. It is more preferable to use a die in which L is in the range of 2 to 50 mm. In addition, the die shape of FIG. 4 is an example, and if it is a die that can be hot-extruded that satisfies the formula (1) described later, a die having an appropriate shape should be used according to the equipment specifications and the target cross-sectional shape. Can do.
発明者らの検討によれば、熱間押出時の動的再結晶を抑制するために、下記(1)式で定義される加工速度εが70〜140min -1となる条件で熱間押出を行うことが極めて有効であることがわかった。
ε=[(A0−A1)/A0]×(V0/L) …(1)
ここで、A0は熱間押出前の材料の熱間押出方向に垂直な断面積(mm2)、A1は熱間押出後の材料の熱間押出方向に垂直な断面積(mm2)、V0は熱間押出前の材料の押出速度(mm/min)である。Lは押出方向最前部から最狭隘部までの押出方向長さである。
加工速度εが140min-1を超えると、動的再結晶が起こりやすくなることに起因してPb濃化粒子の凝集粗大化が生じにくくなり、α相の成長過程でα相の内部に十分な量のPb濃化粒子を取り込むことが難しくなる。加工速度εは130min-1以下とすることがより好ましい。一方、加工速度εを過度に小さくすることは、生産性の低下を招く。また、加工に長時間を要すると加工中の材料温度低下が著しくなり、好ましくない。そのため加工速度εは70min-1以上の範囲とすることが望ましく、80min-1以上とすることがより好ましい。
According to the study by the inventors, in order to suppress dynamic recrystallization during hot extrusion, hot extrusion is performed under conditions where the processing speed ε defined by the following equation (1) is 70 to 140 min −1. Has been found to be extremely effective.
ε = [(A 0 −A 1 ) / A 0 ] × (V 0 / L) (1)
Here, A 0 is a cross-sectional area perpendicular to the hot extrusion direction of the material before hot extrusion (mm 2 ), and A 1 is a cross-sectional area perpendicular to the hot extrusion direction of the material after hot extrusion (mm 2 ). , V 0 is the extrusion speed (mm / min) of the material before hot extrusion. L is the length in the extrusion direction from the frontmost part in the extrusion direction to the narrowest flange.
When the processing speed ε exceeds 140 min −1 , dynamic recrystallization is likely to occur, which makes it difficult for the Pb-enriched particles to agglomerate and become coarse, and the α phase is sufficiently grown inside the α phase. It becomes difficult to incorporate an amount of Pb-enriched particles. The processing speed ε is more preferably 130 min −1 or less. On the other hand, when the processing speed ε is excessively reduced, productivity is lowered. In addition, if a long time is required for processing, the material temperature during processing is remarkably lowered, which is not preferable. Therefore the processing speed ε is desirably in the range of more than 70 min -1, and more preferably to 80min -1 or more.
熱間押出の前に行う鋳造材の加熱を利用して、α/β界面上にPbをできるだけ多く集めておくことがより効果的である。そのためには鋳造材の昇温過程および加熱保持過程においてα/β界面の移動を伴う相変態を十分に生じさせることが有効である。界面移動によってα相内またはβ相内に存在する微細なPb粒子をα/β界面に収集することができる。 It is more effective to collect as much Pb as possible on the α / β interface by utilizing the heating of the cast material before the hot extrusion. For this purpose, it is effective to sufficiently generate a phase transformation accompanied by movement of the α / β interface in the temperature raising process and the heat holding process of the cast material. Fine Pb particles present in the α phase or the β phase can be collected at the α / β interface by the interface movement.
昇温過程では、300℃から700℃までの平均昇温速度が20℃/min以下となるように700℃以上の温度域まで昇温することが望ましい。上記平均昇温速度を15℃/min以下とすることがより効果的である。このようにゆっくりと昇温することでα相が成長し、それに伴うα/β界面の移動をPb収集に利用することができる。過剰に遅い昇温速度とすることは生産性低下を招くので、上記昇温速度は3℃/min以上の範囲で設定すればよい。 In the temperature raising process, it is desirable to raise the temperature to a temperature range of 700 ° C. or higher so that the average temperature rising rate from 300 ° C. to 700 ° C. is 20 ° C./min or lower. It is more effective to set the average heating rate to 15 ° C./min or less. The α phase grows by slowly raising the temperature in this way, and the accompanying movement of the α / β interface can be used for Pb collection. Since an excessively slow heating rate causes a decrease in productivity, the heating rate may be set in a range of 3 ° C./min or more.
700℃まで昇温した後の保持温度は700〜850℃とすることが好ましく、700〜800℃とすることがより好ましい。また、上記温度範囲における材料保持時間(材料の表面温度が上記温度範囲に保持される時間)は10min以上を確保することが好ましく30min以上とすることがより好ましい。この加熱保持によりβ相の成長を進行させることができ、それに伴うα/β界面の移動を利用してPbの更なる回収が可能となる。また、β相の生成量を多くすることによって熱間押出時の熱間加工性が向上するというメリットも享受できる。過剰に長い保持時間とすることは生産性低下を招くので、上記保持時間は300min以下の範囲で設定すればよい。 The holding temperature after raising the temperature to 700 ° C is preferably 700 to 850 ° C, and more preferably 700 to 800 ° C. Further, the material holding time in the above temperature range (the time during which the surface temperature of the material is held in the above temperature range) is preferably 10 min or more, and more preferably 30 min or more. By this heating and holding, the growth of the β phase can be advanced, and further recovery of Pb is possible by utilizing the accompanying movement of the α / β interface. Moreover, the merit that the hot workability at the time of hot extrusion improves by increasing the production amount of β phase can be enjoyed. Since an excessively long holding time causes a decrease in productivity, the holding time may be set in a range of 300 min or less.
〔鋳造・熱間押出〕
表1に示す銅合金を誘導炉で溶解し、半連続鋳造により直径80mmの円形断面を持つ鋳造材を得た。その鋳造材(ビレット)を炉に装入して所定温度で加熱保持した後、炉から取り出し、図3に示す構成の装置により熱間押出加工を施し、直径24mmの円形断面を有する棒状の熱間押出材を得た。
[Casting / Hot extrusion]
The copper alloys shown in Table 1 were melted in an induction furnace, and a cast material having a circular cross section with a diameter of 80 mm was obtained by semi-continuous casting. The cast material (billet) is charged into a furnace, heated and held at a predetermined temperature, then taken out from the furnace, hot-extruded by an apparatus having the configuration shown in FIG. 3, and a rod-shaped heat having a circular cross section with a diameter of 24 mm. An intermediate extruded material was obtained.
ここでは、押出方向最前部から最狭隘部までの押出方向長さLが5mmの熱間押出ダイスを使用した。表2に加熱条件および押出条件を示してある。表2中の「押出温度」は押出開始時の材料温度である。炉から取り出した後、速やかに熱間押出を開始したので、この押出温度は加熱保持温度とほぼ同じであるとみなしてよい。表2中の「昇温速度」については、押出温度が700℃以上の例では加熱保持温度も700℃以上であるので300℃から700℃までの平均昇温速度を示してあり、押出温度が700℃未満の例では加熱保持温度も700℃未満であるので300℃から加熱保持温度までの平均昇温速度を示してある。加熱時の昇温は所定の加熱保持温度までの刻々の昇温速度が概ね一定となるようにコントロールした。表2中の「加工速度ε」は上述(1)式により算出した値である。熱間押出加工後は、冷却ファンで空気を送風して材料温度が300℃になるまで10℃/secで冷却し、その後は大気中で自然冷却した。このようにして熱間押出材を得た。 Here, the hot extrusion die | dye whose extrusion direction length L from the extrusion direction front part to the narrowest collar part is 5 mm was used. Table 2 shows heating conditions and extrusion conditions. The “extrusion temperature” in Table 2 is the material temperature at the start of extrusion. Since the hot extrusion was started immediately after taking out from the furnace, this extrusion temperature may be regarded as substantially the same as the heating and holding temperature. Regarding the “temperature increase rate” in Table 2, in the case where the extrusion temperature is 700 ° C. or higher, the heating holding temperature is also 700 ° C. or higher, so the average temperature increase rate from 300 ° C. to 700 ° C. is shown. In the example of less than 700 ° C., the heating and holding temperature is also less than 700 ° C., so the average temperature increase rate from 300 ° C. to the heating and holding temperature is shown. The temperature rise during heating was controlled so that the rate of temperature rise up to a predetermined heating and holding temperature was substantially constant. “Processing speed ε” in Table 2 is a value calculated by the above equation (1). After hot extrusion, air was blown with a cooling fan to cool at 10 ° C./sec until the material temperature reached 300 ° C., and then naturally cooled in the atmosphere. In this way, a hot extruded material was obtained.
〔アプセット試験〕
得られた熱間押出材(常温まで冷却したもの)から高さ20mmの円柱試料(直径24mm×高さ20mm)を切り出し、アプセット試験を行って熱間鍛造性を評価した。アプセット試験は、所定の温度に加熱した試料をプレス機によって予め定められたアプセット率まで押し潰す試験である。押し潰された後の試料に生じている割れの発生程度から、熱間鍛造性を評価することができる。図5にアプセット試験後の試料外観の参考写真を例示する。積み重ねた4種類のサンプルのうち、上2例は割れが発生しなかったもの、下2例は割れが発生したものである。アプセット率は下記(2)式により定まる。
アプセット率(%)=(h0−h1)/h0×100 …(2)
ただし、h0は試験前の試料高さ(mm)、h1は試験後の試料高さ(mm)である。
ここでは、h0=20mmであり、アプセット率は70%とした。各熱間押出材につき610℃、650℃、690℃の3水準の温度で試験を実施した。試験後の試料表面を観察して割れの発生有無を判定し、3水準全ての温度で割れが発生しなかった材料を○(熱間鍛造性;良好)、それ以外の材料を×(熱間鍛造性;不良)と評価した。結果を表2に示す。
[Upset test]
A cylindrical sample (diameter: 24 mm × height: 20 mm) having a height of 20 mm was cut out from the obtained hot-extruded material (cooled to room temperature), and an upset test was performed to evaluate hot forgeability. The upset test is a test in which a sample heated to a predetermined temperature is crushed to a predetermined upset rate by a press. The hot forgeability can be evaluated from the degree of occurrence of cracks in the sample after being crushed. FIG. 5 illustrates a reference photograph of the appearance of the sample after the upset test. Of the four types of stacked samples, the upper two cases were not cracked, and the lower two were cracked. The upset rate is determined by the following equation (2).
Upset rate (%) = (h 0 −h 1 ) / h 0 × 100 (2)
However, h 0 is the sample height before test (mm), h 1 is the sample height after test (mm).
Here, h 0 = 20 mm, and the upset rate was 70%. Each hot extrudate was tested at three levels of temperature: 610 ° C, 650 ° C, and 690 ° C. Observe the surface of the sample after the test to determine whether cracks occurred or not. ○ (hot forgeability: good) for materials that did not crack at all three temperatures, and x (hot) for other materials. Forgeability; poor). The results are shown in Table 2.
〔冷間引抜・熱処理〕
上記の熱間押出材(直径24mm)に冷間引抜加工を施して直径23mmとした後、一部の例(No.13)を除き、250〜600℃の温度範囲で2min〜5h保持する熱処理を施し、黄銅棒材の供試材を得た。No.13は上記熱処理を省略して、冷間引抜のままのものを供試材とした。得られた供試材について以下のことを調べた。
(Cold drawing / heat treatment)
After the above hot-extruded material (diameter 24 mm) is cold-drawn to a diameter of 23 mm, except for some examples (No. 13), heat treatment is maintained at a temperature range of 250 to 600 ° C. for 2 min to 5 h. The test material of the brass bar was obtained. For No. 13, the heat treatment was omitted, and the cold-drawn sample was used as a test material. The following was investigated about the obtained test material.
〔α相の内部に存在するPb濃化粒子の個数密度の測定〕
供試材の長手方向に垂直な断面について、前掲の「α相の内部に存在するPb濃化粒子の個数密度の測定方法」に従って、EPMA分析装置(日本電子株式会社製、JXA−8200)により加速電圧15.0kV、照射電流3.0×10-8Aの条件でZnとPbの特性X線を用いて面分析を行い、α相の内部に存在するPb濃化粒子の個数密度を求めた。SEMにより倍率600倍で無作為に選択した重複しない5視野を測定した。合計測定面積は約0.15mm2である。α相領域の面積はEPMAにより測定されたZnの特性X線による面分析データを画像処理解析して求めた。なお、Pb濃化粒子について倍率7500倍の組成像からサイズの確認を行ったところ、カウントしたPb濃化粒子は小さいものでも直径(長径)0.5μm以上であった。結果を表2に示す。
[Measurement of number density of Pb-enriched particles existing in α phase]
With respect to the cross section perpendicular to the longitudinal direction of the test material, according to the above-mentioned “Method for measuring the number density of Pb-enriched particles existing in the α phase”, an EPMA analyzer (JXA-8200, manufactured by JEOL Ltd.) Surface analysis is performed using characteristic X-rays of Zn and Pb under the conditions of an acceleration voltage of 15.0 kV and an irradiation current of 3.0 × 10 −8 A to obtain the number density of Pb-enriched particles existing inside the α phase. It was. Five non-overlapping fields randomly selected by SEM at a magnification of 600 were measured. The total measurement area is about 0.15 mm 2 . The area of the α phase region was obtained by image processing analysis of surface analysis data based on characteristic X-rays of Zn measured by EPMA. When the size of the Pb-enriched particles was confirmed from a composition image at a magnification of 7500, the counted Pb-enriched particles were 0.5 μm or more in diameter (major axis) even if they were small. The results are shown in Table 2.
〔切削試験〕
供試材(直径23mmの丸棒材)の外周を旋盤加工し、発生した切屑の分断性によって切削性を評価した。切削条件は以下の5水準とした。
[1]回転数1030rpm、切込量1.0mm、送り速度0.13mm/rev.
[2]回転数1030rpm、切込量1.0mm、送り速度0.23mm/rev.
[3]回転数1030rpm、切込量1.0mm、送り速度0.34mm/rev.
[4]回転数1800rpm、切込量1.0mm、送り速度0.34mm/rev.
[5]回転数1030rpm、切込量0.5mm、送り速度0.13mm/rev.
[Cutting test]
The outer periphery of the test material (round bar with a diameter of 23 mm) was turned and the machinability was evaluated by the severability of the generated chips. The cutting conditions were the following five levels.
[1] Rotation speed 1030 rpm, depth of cut 1.0 mm, feed rate 0.13 mm / rev.
[2] Rotation speed 1030 rpm, depth of cut 1.0 mm, feed rate 0.23 mm / rev.
[3] Number of rotations 1030 rpm, depth of cut 1.0 mm, feed rate 0.34 mm / rev.
[4] Number of rotations 1800 rpm, depth of cut 1.0 mm, feed rate 0.34 mm / rev.
[5] Rotation speed: 1030 rpm, depth of cut: 0.5 mm, feed rate: 0.13 mm / rev.
発生した切屑を、(A)針形状片、(B)1巻以下、(C)2巻前後、(D)3巻以上、の4種類に分類した。図6に、各分類の切屑形状を模式的に示す。切屑の分断性はA>B>C>Dの順でAが最も良好であり、Dが最も悪い。Dの切屑が発生する場合は、切屑がバイト等の工具に絡みつく可能性があり、連続で加工を行う際に機械的トラブルが発生したり製品表面を損傷させたりする恐れがある。また、切屑が嵩ばるため、屑処理性が悪いという問題もある。一方、Aの場合には、Dのような問題は回避される反面、飛散した切屑の回収に却って手間が掛かることもある。ここでは、上記5水準の切削条件のうち1つでもDに分類される切屑が発生した材料は×(切削性;不良)、5水準のいずれの条件においてもA〜Cに分類される切屑のみが発生した材料は○(切削性;良好)と評価した。結果を表2に示す。 The generated chips were classified into four types: (A) needle-shaped piece, (B) 1 volume or less, (C) 2 volumes or so, (D) 3 volumes or more. FIG. 6 schematically shows the chip shape of each classification. As for the fragmentability of chips, A is the best in the order of A> B> C> D, and D is the worst. When the D chips are generated, the chips may be entangled with a tool such as a bite, which may cause mechanical troubles or damage the product surface during continuous processing. Moreover, since chips are bulky, there is also a problem that scrap disposal is poor. On the other hand, in the case of A, problems such as D can be avoided, but it may take time to collect scattered chips. Here, the material in which chips classified as D in any of the above five levels of cutting conditions are generated is x (cutting ability; poor), and only the chips classified as A to C under any of the five levels. The material in which was generated was evaluated as ◯ (cutting property: good). The results are shown in Table 2.
本発明例のものはいずれも、α相の内部に存在するPb濃化粒子の個数密度が150個/mm2以上であり、Pb含有量を低減しているにもかかわらず、良好な切削性を有する。熱間鍛造性にも問題はなかった。 In all of the examples of the present invention, the number density of the Pb-concentrated particles existing in the α phase is 150 particles / mm 2 or more, and good machinability is achieved even though the Pb content is reduced. Have There was no problem in hot forgeability.
これに対し、比較例No.21〜24は、熱間押出の温度が低いか、または熱間押出の加工速度εが大きいために、α相内部のPb濃化粒子の数を十分に確保することができず、切削性に劣った。No.25はPbを多量に含有する従来の快削黄銅であり、切削性は良好であるが、Pbの溶出を低減するというニーズには対応できない。No.26はPbの代わりにBiを添加した快削黄銅であり、前述のようにリサイクル性の面で問題がある。また、切削性は改善されている反面、熱間鍛造性が悪かった。No.27は切削性の向上には特段の配慮を行っていない一般的な黄銅材料であり、上記の切削性評価方法で良好な切削性は得られなかった。 On the other hand, Comparative Examples Nos. 21 to 24 have a sufficiently high number of Pb-enriched particles inside the α phase because the temperature of hot extrusion is low or the processing speed ε of hot extrusion is high. Inability to cut and poor machinability. No. 25 is a conventional free-cutting brass containing a large amount of Pb and has good machinability, but cannot meet the need to reduce the elution of Pb. No. 26 is a free-cutting brass in which Bi is added instead of Pb, and there is a problem in terms of recyclability as described above. Further, while the machinability was improved, the hot forgeability was poor. No. 27 is a general brass material that does not give special consideration to improvement of machinability, and good machinability was not obtained by the above machinability evaluation method.
1 素材
2 コンテナ
3 ステム
4 ダイス
5 ダイスの押出方向最前部
6 ダイスの最狭隘部
DESCRIPTION OF SYMBOLS 1 Material 2 Container 3 Stem 4 Dies 5 Dies extrusion direction foremost part 6 Dies narrowest ridge part
Claims (4)
熱間押出ダイスとして、押出方向最前部から最狭隘部までの押出方向長さLが2mm以上であるダイスを使用し、押出開始時の材料温度を700〜850℃、下記(1)式で定義される加工速度εを70〜140min -1とする条件で熱間押出を行う請求項1または2に記載の低Pb黄銅棒材の製造方法。
ε=[(A0−A1)/A0]×(V0/L) …(1)
ここで、A0は熱間押出前の材料の熱間押出方向に垂直な断面積(mm2)、A1は熱間押出後の材料の熱間押出方向に垂直な断面積(mm2)、V0は熱間押出前の材料の押出速度(mm/min)、Lは熱間押出ダイスの押出方向最前部から最狭隘部までの押出方向長さ(mm)である。 When producing a copper alloy bar through a process of hot extrusion to the cast material,
As a hot extrusion die, a die having an extrusion direction length L from the foremost part of the extrusion direction to the narrowest part of the extrusion direction of 2 mm or more is used. The manufacturing method of the low Pb brass rod material of Claim 1 or 2 which performs hot extrusion on the conditions which make processing speed (epsilon) 70-140 min < -1 >.
ε = [(A 0 −A 1 ) / A 0 ] × (V 0 / L) (1)
Here, A 0 is a cross-sectional area perpendicular to the hot extrusion direction of the material before hot extrusion (mm 2 ), and A 1 is a cross-sectional area perpendicular to the hot extrusion direction of the material after hot extrusion (mm 2 ). , V 0 is the extrusion speed (mm / min) of the material before hot extrusion, and L is the length (mm) in the extrusion direction from the foremost part of the hot extrusion die to the narrowest part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015074825A JP6576077B2 (en) | 2015-04-01 | 2015-04-01 | Low Pb brass rod and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015074825A JP6576077B2 (en) | 2015-04-01 | 2015-04-01 | Low Pb brass rod and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016194122A JP2016194122A (en) | 2016-11-17 |
JP6576077B2 true JP6576077B2 (en) | 2019-09-18 |
Family
ID=57322654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015074825A Active JP6576077B2 (en) | 2015-04-01 | 2015-04-01 | Low Pb brass rod and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6576077B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3992320A1 (en) * | 2020-10-29 | 2022-05-04 | Otto Fuchs - Kommanditgesellschaft - | Lead-free cu-zn alloy |
CN115125414B (en) * | 2022-07-27 | 2023-05-09 | 宁波金田铜业(集团)股份有限公司 | Brass alloy and preparation method thereof |
DE102022002927B4 (en) | 2022-08-11 | 2024-04-25 | Wieland-Werke Aktiengesellschaft | Wrought material made of a copper-zinc alloy, semi-finished product made of a wrought material and process for producing such a semi-finished product |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59153856A (en) * | 1983-02-17 | 1984-09-01 | Nippon Mining Co Ltd | Copper alloy with superior corrosion resistance |
JPS62278242A (en) * | 1985-07-22 | 1987-12-03 | Nippon Mining Co Ltd | Copper alloy excellent in machinability and corrosion resistance |
WO2015100872A1 (en) * | 2014-01-03 | 2015-07-09 | 嘉兴艾迪西暖通科技有限公司 | Low-lead bismuth-free silicone-free brass |
-
2015
- 2015-04-01 JP JP2015074825A patent/JP6576077B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016194122A (en) | 2016-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6576079B2 (en) | Low Pb brass rod and manufacturing method thereof | |
JP5051927B2 (en) | High-strength, high-conductivity copper alloy tube, rod, wire | |
EP2799564A1 (en) | Aluminum alloy forged material for automobile and method for manufacturing the same | |
EP2761042B1 (en) | Leadless free-cutting copper alloy | |
JP5530216B2 (en) | Magnesium alloy forging with excellent mechanical properties and method for producing the same | |
JP6440476B2 (en) | Aluminum alloy wire, aluminum alloy twisted wire, covered electric wire and wire harness, and method for producing aluminum alloy wire | |
JP6576077B2 (en) | Low Pb brass rod and manufacturing method thereof | |
JP6850985B1 (en) | Free-cutting copper alloy and method for manufacturing free-cutting copper alloy | |
JP2021042459A (en) | Free-cutting copper alloy and method for producing free-cutting copper alloy | |
JP2007138227A (en) | Magnesium alloy material | |
JP7167478B2 (en) | Aluminum alloy wire rod and manufacturing method thereof | |
JP2018080355A (en) | Aluminum alloy extrusion material | |
JP2020152965A (en) | Aluminum alloy material, method for producing the same, and impeller | |
JP3552608B2 (en) | Manufacturing method of extruded aluminum alloy with excellent partial corrosion resistance and high fatigue strength | |
JP2009242871A (en) | High strength and high electric conductivity two-phase copper alloy foil | |
JP6796355B1 (en) | Free-cutting copper alloy and method for manufacturing free-cutting copper alloy | |
JP6091912B2 (en) | Copper-chromium alloy wire and method for non-heating production of high ductility, high-strength copper-chromium alloy wire | |
JP4987640B2 (en) | Titanium alloy bar wire for machine parts or decorative parts suitable for manufacturing cold-worked parts and method for manufacturing the same | |
JP2017218660A (en) | Titanium alloy forging material | |
JP4160922B2 (en) | Magnesium wire | |
JP7022320B2 (en) | Copper alloy wire | |
JP4824124B1 (en) | Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material | |
JP4253846B2 (en) | Magnesium alloy wire, method for producing the same, and magnesium alloy molded body | |
JP4849377B2 (en) | Magnesium alloy screw manufacturing method and magnesium alloy screw | |
KR20240063124A (en) | Lead-free free-cutting beryllium copper alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190402 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190813 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190820 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6576077 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |