JP6575119B2 - Method for producing heat-treated hollow metal member excellent in chemical conversion treatment of inner surface - Google Patents
Method for producing heat-treated hollow metal member excellent in chemical conversion treatment of inner surface Download PDFInfo
- Publication number
- JP6575119B2 JP6575119B2 JP2015081129A JP2015081129A JP6575119B2 JP 6575119 B2 JP6575119 B2 JP 6575119B2 JP 2015081129 A JP2015081129 A JP 2015081129A JP 2015081129 A JP2015081129 A JP 2015081129A JP 6575119 B2 JP6575119 B2 JP 6575119B2
- Authority
- JP
- Japan
- Prior art keywords
- metal member
- heat
- hollow metal
- gas
- hollow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Bending Of Plates, Rods, And Pipes (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明は、内面の化成処理性に優れる熱処理中空金属部材の製造方法に関し、具体的には、中空の鋼材に熱処理または熱処理を伴う曲げ加工を行って製造され、高強度と優れた化成処理性を有することから、例えば自動車用として好適に用いられる熱処理中空金属部材の製造方法に関する。 The present invention relates to a method for producing a heat-treated hollow metal member excellent in chemical conversion treatment on the inner surface, and specifically, it is produced by subjecting a hollow steel material to heat treatment or bending with heat treatment, and has high strength and excellent chemical conversion treatment. Therefore, the present invention relates to a method for manufacturing a heat-treated hollow metal member suitably used for automobiles, for example.
近年、地球環境問題および衝突安全性能の観点から、自動車用構造部品の薄肉化および高強度化が求められている。これらの要求に応えるべく、高強度鋼板を素材とする自動車用構造部品が増加している。しかし、高強度鋼板を素材としてプレス成形により自動車用構造部品を製造すると、しわやスプリングバックといった成形不良が生じ易くなる。このため、高強度鋼板を素材としてプレス成形により自動車用構造部品を製造することは容易ではない。 In recent years, from the viewpoint of global environmental problems and collision safety performance, there has been a demand for thinner and higher strength structural parts for automobiles. In order to meet these demands, structural parts for automobiles made of high-strength steel sheets are increasing. However, when a structural component for automobiles is manufactured by press molding using a high-strength steel plate as a raw material, molding defects such as wrinkles and springback are likely to occur. For this reason, it is not easy to manufacture structural parts for automobiles by press molding using a high-strength steel plate as a raw material.
このような問題を解決する手法として、鋼材を熱間で加工し、かつ急冷して焼入れすることにより高強度の成形品を製造する技術が実用化されている。例えば、熱間プレス(ホットスタンプともいう)は、成形素材である鋼板が高温で軟質かつ高延性になっているため、複雑な形状を寸法精度よく成形することが可能である。さらに、鋼板をオーステナイト域に加熱しておき、金型内で急冷することにより、マルテンサイト変態による鋼板の高強度化が同時に達成できる。 As a technique for solving such a problem, a technique for manufacturing a high-strength molded product by processing a steel material hot and quenching it by quenching has been put into practical use. For example, a hot press (also referred to as a hot stamp) can form a complicated shape with high dimensional accuracy because a steel sheet as a forming material is soft and highly ductile at high temperatures. Further, by heating the steel plate in the austenite region and quenching in the mold, it is possible to simultaneously achieve high strength of the steel plate by martensitic transformation.
しかし、800〜1000℃といった高温に加熱するため、鋼板表面が酸化するという問題が生じる。このスケールが残存すると、次工程で塗装する場合に鋼板と塗膜の密着性が劣り、耐食性の低下を招く。そこでプレス成形後は、ショットブラスト等のスケール除去処理が必要となる。 However, since it heats to high temperature of 800-1000 degreeC, the problem that the steel plate surface oxidizes arises. If this scale remains, the adhesion between the steel sheet and the coating film will be inferior when coating in the next step, leading to a reduction in corrosion resistance. Therefore, after press molding, a scale removal process such as shot blasting is required.
特許文献1には、中空の鋼材(例えば鋼管)の曲げ加工方法において、加熱装置および冷却装置を鋼材に対して相対移動させながら、加熱装置により鋼材を局部的に加熱し、加熱により変形抵抗が大幅に低下した部位に曲げモーメントを与えて二次元または三次元に屈曲した所望の形状に曲げ加工し、次いで冷却装置により冷却して焼入れする技術(本明細書では「三次元熱間曲げ焼入れ(3DQ:3 Dimensional Hot Bending and Direct Quench)」という)が開示されている。この三次元熱間曲げ焼入れによれば、高い曲げ加工精度を有する、例えば900MPa級以上の高強度の成形品を効率よく製造することができる。 In Patent Document 1, in a method of bending a hollow steel material (for example, a steel pipe), the steel material is locally heated by the heating device while the heating device and the cooling device are moved relative to the steel material, and the deformation resistance is caused by the heating. A bending moment is applied to a greatly lowered portion to bend into a desired shape bent in two or three dimensions, and then cooled by a cooling device (in this specification, “three-dimensional hot bending quenching” 3DQ: 3 Dimensional Hot Bending and Direct Quench) ”. According to this three-dimensional hot bending quenching, it is possible to efficiently produce a high-strength molded article having a high bending accuracy, for example, 900 MPa class or higher.
しかし、この方法においても、鋼材をオーステナイト域に加熱して冷却媒体で急冷することによってマルテンサイト変態による鋼材の高強度化を図っているため、製造された成形品の表面に酸化スケールが生成して、次工程で塗装する場合に鋼材と塗膜の密着性が劣り、耐食性の低下を招くという問題がある。 However, even in this method, the steel material is heated to the austenite region and rapidly cooled with a cooling medium to increase the strength of the steel material by martensitic transformation. Therefore, oxide scale is generated on the surface of the manufactured molded product. In the case of coating in the next step, there is a problem that the adhesion between the steel material and the coating film is inferior and the corrosion resistance is lowered.
これらの問題に対して、本出願人は特許文献2により、鋼材をその長手方向へ送りながら、送られる鋼材を焼入れ可能温度域に加熱した後に冷却して鋼材を焼入れる際に、酸化スケールの発生を抑制もしくは解消することができる焼入れ鋼材の製造方法及び製造装置に関する発明を開示した。 With respect to these problems, according to Patent Document 2, when the steel material is fed in the longitudinal direction thereof, the steel material to be fed is heated to a quenchable temperature range and then cooled to quench the steel material. An invention relating to a method and an apparatus for manufacturing a hardened steel material capable of suppressing or eliminating the generation has been disclosed.
この発明によれば、鋼材をその長手方向へ送りながら、送られる鋼材から離間して第1の位置に配置される加熱装置により鋼材を焼入れ可能温度域に加熱し、第1の位置よりも鋼材の送り方向の下流の第2の位置に配置される冷却装置により鋼材に冷却媒体を吹き付けることにより鋼材を焼入れる際に、鋼材における、加熱装置により加熱された部分の周囲の空間に、不活性ガス又は還元性ガスを充満させることで、酸化スケールの生成を抑制した焼入れ鋼材を製造方法することが可能になる。さらに、鋼材の内部に不活性ガス又は還元性ガスを供給することにより、鋼材の内面におけるスケールの形成をも抑制もしくは解消することができるようになる。 According to the present invention, the steel material is heated to the quenchable temperature range by the heating device arranged at the first position while being sent in the longitudinal direction while the steel material is being sent in the longitudinal direction, and the steel material is more than at the first position. When quenching a steel material by spraying a cooling medium on the steel material by a cooling device arranged at a second position downstream of the feed direction of the steel, the space around the portion of the steel material heated by the heating device is inert. By filling the gas or reducing gas, it is possible to manufacture a hardened steel material in which the generation of oxide scale is suppressed. Furthermore, by supplying an inert gas or a reducing gas to the inside of the steel material, scale formation on the inner surface of the steel material can also be suppressed or eliminated.
一方、金属管の管内の清浄化に着目した熱処理方法として、特許文献3に開示された発明がある。この発明では、第1の方法として、ペイオフテーブルに載置された金属管コイルから巻き解かれた金属管を加熱炉に通して連続的に熱処理した後、レシービングテーブルに巻き取る金属管の熱処理方法において、レシービングテーブル側の金属管コイルの管端から熱処理中の金属管内にパージガスを吹き込んで金属管内の残油を除去する。第2の方法として、ペイオフテーブルに載置された金属管コイルから巻き解かれた金属管を加熱炉に通して連続的に熱処理した後、レシービングテーブルに巻き取る金属管の熱処理方法において、ペイオフテーブル側の金属管コイルの管端から熱処理中の金属管内にパージガスを吹き込んで金属管内の残油を除去する。第3の方法として、ペイオフテーブルに載置された金属管コイルから巻き解かれた金属管を加熱炉に通して連続的に熱処理した後、レシービングテーブルに巻き取る金属管の熱処理方法において、ペイオフテーブル側の金属管コイルの管端から熱処理中の金属管内にパージガスを吹き込んだ後、レシービングテーブル側の金属管コイルの管端から熱処理中の金属管内にパージガスを吹き込んで金属管内の残油を除去する。 On the other hand, there is an invention disclosed in Patent Document 3 as a heat treatment method focusing on cleaning the inside of a metal tube. In this invention, as a first method, a metal tube unwound from a metal tube coil placed on a payoff table is continuously heat-treated through a heating furnace, and then wound on a receiving table. The purge gas is blown into the metal tube being heat-treated from the tube end of the metal tube coil on the receiving table side to remove residual oil in the metal tube. As a second method, in a heat treatment method for a metal tube, a metal tube unwound from a metal tube coil placed on a payoff table is continuously heat-treated through a heating furnace and then wound on a receiving table. A purge gas is blown into the metal tube being heat-treated from the tube end of the side metal tube coil to remove residual oil in the metal tube. As a third method, in a heat treatment method for a metal tube in which a metal tube unwound from a metal tube coil placed on a payoff table is continuously heat-treated through a heating furnace and then wound on a receiving table, the payoff table Purge gas is blown into the metal tube being heat-treated from the tube end of the metal tube coil on the side, and then purge gas is blown into the metal tube being heat-treated from the tube end of the metal tube coil on the receiving table side to remove residual oil in the metal tube. .
例えば自動車の構造部材として用いられる中空金属部材のうち、自動車の使用状態においてその内部に水分が侵入する可能性があるものについては、中空部材の外面側だけでなく内面側についても耐食性が必要であり、内面側にも塗装およびその下地処理としての化成処理が施される。このため、それらに用いられる熱処理中空金属部材には、内面の化成処理性に優れることが要求される。 For example, among hollow metal members used as structural members of automobiles, those that may allow moisture to enter the interior of the automobile when used, require corrosion resistance not only on the outer surface side but also on the inner surface side of the hollow member. In addition, the inner surface side is also subjected to coating and chemical conversion treatment as a base treatment. For this reason, it is requested | required that the heat-processed hollow metal member used for them is excellent in the chemical conversion treatment property of an inner surface.
特許文献1により開示された製造方法において、熱処理で酸化スケールが部材外面に生成すると、前述の通り塗膜の密着性が劣り耐食性が低下するが、中空部材の内面に関しては、中空部材の内部の空間に存在する酸素の量が限定され、かつ内面は冷却水や水蒸気に触れることもないため、外面に比べればスケールの生成量は少ない。しかし、ある程度の量のスケールは生成して、極端な塗膜密着性の劣化はもたらさないまでも、内面の化成処理性に悪影響を及ぼす。 In the manufacturing method disclosed in Patent Document 1, when the oxide scale is generated on the outer surface of the member by heat treatment, the adhesion of the coating film is inferior and the corrosion resistance is reduced as described above, but the inner surface of the hollow member is the inside of the hollow member. Since the amount of oxygen present in the space is limited and the inner surface is not exposed to cooling water or water vapor, the amount of scale produced is smaller than the outer surface. However, a certain amount of scale is generated, which adversely affects the chemical conversion treatment of the inner surface, even if it does not cause extreme deterioration of coating film adhesion.
その内面のスケール生成を抑制するため、特許文献2により開示された方法により中空部材の内部に不活性ガスまたは還元性ガスを供給すれば、内面のスケールの生成を抑制もしくは解消することができる。 In order to suppress the generation of scale on the inner surface, if an inert gas or a reducing gas is supplied into the hollow member by the method disclosed in Patent Document 2, the generation of scale on the inner surface can be suppressed or eliminated.
しかしながら、本発明者らが発明のさらなる向上を図るべく鋭意検討を重ねたところ、製造条件によっては、スケールの生成を抑制したにも関わらず化成処理性がやや劣る場合があることが分かった。その理由は以下のことと関連があると考えられる。 However, as a result of extensive studies by the present inventors in order to further improve the invention, it has been found that, depending on the production conditions, the chemical conversion processability may be slightly inferior even though scale formation is suppressed. The reason seems to be related to the following.
熱処理に供される中空金属部材の素材の表面は、素材の製造過程において潤滑油が付着したままの状態となっているか、場合によっては熱処理に供されるまでの期間に錆が発生することを防ぐために防錆油が塗布された状態となっている。 The surface of the material of the hollow metal member that is subjected to heat treatment is in a state where the lubricating oil remains adhered in the manufacturing process of the material, or in some cases, rust is generated during the period until the heat treatment is performed. In order to prevent, rust preventive oil is applied.
この状態の素材を加熱すると、それらの油分が熱分解して煤等の生成物の微粒子を含むガスが発生する。部材の外面側ではそのガスが周囲に分散して影響が無いものの、部材の内面側ではガスがその場に留まって熱処理後の部材内面に接触し、ガスに含まれる熱分解生成物が付着すると考えられる。 When the material in this state is heated, those oil components are thermally decomposed to generate gas containing fine particles of products such as soot. Although the gas is dispersed and has no influence on the outer surface side of the member, the gas stays in place on the inner surface side of the member and comes into contact with the inner surface of the member after heat treatment, and the pyrolysis product contained in the gas adheres. Conceivable.
このため、特許文献2により開示された発明のように、鋼材の内部に不活性ガスまたは還元性ガスを滞留、充満させるだけでは、スケールの生成は抑制できても、油分から発生した熱分解生成物の付着を充分に防ぐことは難しく、発生したガスが部材の内部に留まらないようにすることが重要であることが判明した。 For this reason, as in the invention disclosed in Patent Document 2, even if the inert gas or reducing gas is retained and filled in the steel material, the generation of scale can be suppressed, but the thermal decomposition generated from the oil It has been found that it is difficult to sufficiently prevent the adhesion of objects, and it is important to prevent the generated gas from staying inside the member.
また、特許文献2では不活性ガス又は還元性ガスを鋼材の送り方向の後端部から鋼材内部へ供給し、送り方向の先端部から外部へ排出することを例示しているが、この場合、油分から発生した熱分解生成物が熱処理後の製品側を通過することになり、熱処理後の部材内面に付着すると考えられることも判明した。 In addition, Patent Document 2 exemplifies supplying an inert gas or a reducing gas from the rear end portion of the steel material in the steel material feed direction to the inside of the steel material, and discharging it from the front end portion in the feed direction to the outside. It has also been found that the thermal decomposition product generated from the oil component passes through the product side after the heat treatment and is considered to adhere to the inner surface of the member after the heat treatment.
上記問題に対し、金属管の管内の清浄化に着目した熱処理方法である、特許文献3により開示された第1の方法を応用し、送り方向の先端部からパージガスを吹き込んで、加熱し気化させた油分を送り方向の後端部から外部へ排出することが考えられる。 In response to the above problem, the first method disclosed in Patent Document 3, which is a heat treatment method focused on cleaning the inside of a metal tube, is applied, and a purge gas is blown from the tip in the feed direction to heat and vaporize. It is conceivable to discharge the oil from the rear end in the feed direction to the outside.
しかし、特許文献3により開示された熱処理方法は、熱交換器等の銅管または銅合金管を対象に想定した技術であり、その加熱温度は高くても700℃程度であるために、油分の気化および再凝縮を前提にしたこの方法が成り立つが、鋼の高周波焼き入れを目的として急速に900〜1100℃の温度域へ加熱すると、油分が熱分解して煤等の生成物の微粒子が発生し、これがパージガスの流れによって送り方向の後端側の部材内面に付着すると、その部分があとで加熱されても気化せずそのまま残留し、化成処理性に影響を及ぼすという問題があることが判明した。 However, the heat treatment method disclosed in Patent Document 3 is a technique assumed for copper tubes or copper alloy tubes such as heat exchangers, and since the heating temperature is about 700 ° C. at the highest, This method is based on the premise of vaporization and recondensation, but when heated rapidly to a temperature range of 900 to 1100 ° C for the purpose of induction hardening of steel, the oil is thermally decomposed and fine particles of products such as soot are generated. However, if this adheres to the inner surface of the member on the rear end side in the feed direction due to the flow of the purge gas, it turns out that even if the part is heated later, it remains as it is without being vaporized, and there is a problem that it affects the chemical conversion treatment performance. did.
なお、油分から発生する熱分解生成物を無くすために、熱処理に供する前に鋼材に脱脂を行うことも考えられるが、工程追加によるコストの増大や、中空部材の特に内面側に付着している油分を脱脂することの困難さ、および脱脂をするとその乾燥過程でも錆が発生する可能性があることなどから、脱脂を行ってから熱処理することは現実的ではない。 In order to eliminate the thermal decomposition products generated from the oil, it is conceivable to degrease the steel before it is subjected to heat treatment, but it increases the cost due to the addition of the process and adheres to the inner surface of the hollow member. Since it is difficult to degrease the oil, and when degreasing, rust may be generated even during the drying process, it is not realistic to perform the heat treatment after degreasing.
本発明は、このような課題に鑑みてなされたものであり、油分から発生した熱分解生成物が熱処理後の製品内面に付着しないようにすること、および送り方向後端部側の未加熱の部材内面に付着する熱分解生成物による化成処理性の劣化が無いようにすることにより、優れた化成処理性を有する熱処理中空金属部材の製造方法を提供することを目的とする。より具体的には、本発明は、中空金属部材に熱処理または熱処理を伴う曲げ加工を行って製造され、高強度と優れた化成処理性を有することから、例えば自動車用として好適に用いられる熱処理中空金属部材の製造方法を提供することを目的とする。 The present invention has been made in view of such problems, and prevents thermal decomposition products generated from oil from adhering to the inner surface of the product after heat treatment, and unheated on the rear end side in the feed direction. It aims at providing the manufacturing method of the heat-processed hollow metal member which has the outstanding chemical conversion property by making it the deterioration of chemical conversion property by the thermal decomposition product adhering to a member inner surface. More specifically, the present invention is manufactured by subjecting a hollow metal member to heat treatment or bending with heat treatment, and has high strength and excellent chemical conversion treatment. It aims at providing the manufacturing method of a metal member.
本発明者らは、熱処理中空金属部材の製造方法において、油分から発生した熱分解生成物が送り方向先端側の熱処理後の製品内面に付着しないよう中空部材内部の気体の流れを制御するとともに、送り方向後端側の部材内面に熱分解生成物が付着しても部材内部のガス中に微量含まれる酸素により燃焼させることで、優れた化成処理性を確保できることを知見し、本発明を完成するに至った。本発明は、以下に列記の通りである。 In the method for producing a heat-treated hollow metal member, the present inventors control the gas flow inside the hollow member so that the thermal decomposition product generated from the oil does not adhere to the inner surface of the product after the heat treatment on the front side in the feed direction, Discovered that even if pyrolysis products adhere to the inner surface of the member on the rear end side in the feed direction, combustion can be ensured by burning with a small amount of oxygen in the gas inside the member, and the present invention is completed. It came to do. The present invention is listed below.
(1)加熱装置および冷却装置を中空鋼部材に対して相対移動させながら、前記加熱装置により前記中空鋼部材を局部的にAc 3 点以上1100℃以下の温度域に加熱し、次いで冷却装置により冷却して熱処理することにより熱処理中空鋼部材を製造する方法であって、前記加熱装置および前記冷却装置に対する前記中空鋼部材の相対的な送り方向の先端部から後端部へ向けて、前記中空鋼部材の内部に、0.01〜1体積%の酸素および不活性ガスを含む気体を0.1m/秒以上の流速で流すことを特徴とする熱処理中空鋼部材の製造方法。 (1) While relatively moving the heating device and the cooling device with respect to the hollow steel member, the heating device locally heats the hollow steel member to a temperature range of Ac 3 to 1100 ° C. , and then the cooling device. a method of manufacturing a heat-treated hollow steel member by cooling and heat treatment, toward the rear end from the relative feed direction of the distal end portion of the hollow steel member with respect to the heating device and the cooling device, the hollow A method for producing a heat-treated hollow steel member, characterized by flowing a gas containing 0.01 to 1% by volume of oxygen and an inert gas at a flow rate of 0.1 m / second or more inside a steel member.
(2)前記気体は、0.01〜1体積%の酸素を含み、残部が不活性ガスおよび不可避的不純物からなるガスであることを特徴とする1項に記載された熱処理中空鋼部材の製造方法。 (2) Production of a heat-treated hollow steel member as described in item (1), wherein the gas contains 0.01 to 1% by volume of oxygen, and the balance is an inert gas and an unavoidable impurity. Method.
(3)前記気体の流速は、2.0m/秒以下であることを特徴とする1項または2項に記載された熱処理中空鋼部材の製造方法。 (3) The method for producing a heat-treated hollow steel member according to item 1 or 2, wherein a flow rate of the gas is 2.0 m / second or less.
(4)加熱装置および冷却装置を中空金属部材に対して相対移動させながら、前記加熱装置により前記中空金属部材を局部的に加熱し、次いで冷却装置により冷却して熱処理することにより熱処理中空金属部材を製造する方法であって、
前記加熱装置および前記冷却装置に対する前記中空金属部材の相対的な送り方向の先端部から後端部へ向けて、前記中空金属部材の内部に気体を0.1m/秒以上の流速で流し、
前記中空金属部材における、前記局部的に加熱した部位に曲げモーメントまたはせん断力を与えて二次元または三次元に屈曲した所望の形状に曲げ加工またはせん断加工することを特徴とする熱処理中空金属部材の製造方法。
(4) Heat-treating hollow metal member by locally heating the hollow metal member by the heating device and then cooling and heat-treating by the cooling device while moving the heating device and the cooling device relative to the hollow metal member A method of manufacturing
Flowing gas at a flow rate of 0.1 m / second or more from the inside of the hollow metal member toward the rear end portion in the relative feeding direction of the hollow metal member with respect to the heating device and the cooling device,
Heat treatment the hollow metal member, wherein the at hollow metal member, to bending or shearing the desired bent shape in two or three dimensions giving bending moment or shear force to the locally pressurizing hot sites Manufacturing method.
本発明により、油分から発生した生成物が製品内面に付着することを防げるので、その付着物が化成皮膜の形成を阻害することを防ぐことができ、内面の化成処理性に優れ、ひいては塗装後の耐食性にも優れる熱処理中空金属部材を提供することができる。 According to the present invention, the product generated from the oil can be prevented from adhering to the inner surface of the product, so that the adhering material can be prevented from inhibiting the formation of a chemical conversion film, and the inner surface is excellent in chemical conversion treatment, and thus after coating. It is possible to provide a heat-treated hollow metal member having excellent corrosion resistance.
本発明に係る熱処理中空金属部材の適用部位としては、自動車部品の場合には、鋼の焼入れで高強度化することにより車両軽量化および衝突安全性向上を図ることができるとともに耐食性が要求される部位であることが好ましく、例えば、各種ピラー、ドアビーム、ルーフやバンパーなどのレインフォース類、フレーム類、さらにはアーム類等が例示される。 As an application site of the heat-treated hollow metal member according to the present invention, in the case of an automobile part, it is possible to reduce the vehicle weight and improve the collision safety by increasing the strength by quenching steel, and at the same time, corrosion resistance is required. It is preferably a part, and examples thereof include various pillars, door beams, reinforcements such as roofs and bumpers, frames, and arms.
本発明に係る熱処理中空金属部材の製造方法の限定理由を以下に説明する。
本発明では、加熱装置および冷却装置を中空金属部材に対して相対移動させながら、中空金属部材を局部的に加熱および冷却して熱処理を行い、熱処理中空金属部材を製造する。この際に、本発明では、加熱装置および冷却装置に対する中空金属部材の相対的な送り方向の先端部から後端部へ向けて、中空金属部材の内部に気体を0.1m/秒以上の流速で流す。
The reason for limitation of the manufacturing method of the heat-treated hollow metal member according to the present invention will be described below.
In the present invention, while the heating device and the cooling device are moved relative to the hollow metal member, the hollow metal member is locally heated and cooled to perform heat treatment to produce a heat treated hollow metal member. At this time, in the present invention, the flow rate of the gas inside the hollow metal member is 0.1 m / second or more from the front end portion to the rear end portion in the relative feeding direction of the hollow metal member with respect to the heating device and the cooling device. Rinse with.
中空金属部材内部の気体を、滞留させたり、あるいは送り方向の後端部から先端部に向けて流したのでは、中空金属部材の加熱部分で付着油分から発生したガスが熱処理後の製品内面に接触して熱分解生成物が付着し、その付着物が化成皮膜の形成を阻害するおそれがある。 If the gas inside the hollow metal member stays or flows from the rear end to the front end in the feed direction, the gas generated from the adhering oil in the heated part of the hollow metal member will be applied to the inner surface of the product after heat treatment. There is a possibility that the thermal decomposition product adheres upon contact, and the adhered matter inhibits the formation of the chemical conversion film.
また、加熱装置および冷却装置に対する中空金属部材の相対的な送り方向の先端部から後端部へ向けて気体を流す場合であっても、気体の流速が0.1m/秒未満では、発生したガスが製品側に流れてくることを防ぐ効果を十分に得られない。このため、本発明では、加熱装置および冷却装置に対する中空金属部材の相対的な送り方向の先端部から後端部へ向けて、中空金属部材の内部に気体を0.1m/秒以上の流速で流す。 Moreover, even when the gas flowed from the front end portion to the rear end portion in the relative feeding direction of the hollow metal member with respect to the heating device and the cooling device, it occurred when the gas flow rate was less than 0.1 m / sec. The effect of preventing gas from flowing to the product side cannot be obtained sufficiently. For this reason, in the present invention, the gas is introduced into the hollow metal member at a flow rate of 0.1 m / second or more from the front end portion to the rear end portion in the relative feeding direction of the hollow metal member with respect to the heating device and the cooling device. Shed.
本発明における中空金属部材の内部に流す気体の流速は、室温状態での中空金属部材の内部の空間断面における平均値とし、中空金属部材の内部で流速を直接測定せずとも室温状態での気体流量を空間断面積で除することにより求められる。 The flow velocity of the gas flowing inside the hollow metal member in the present invention is the average value in the space section inside the hollow metal member at room temperature, and the gas at room temperature without directly measuring the flow velocity inside the hollow metal member It is obtained by dividing the flow rate by the space cross-sectional area.
こうすることにより、加熱部分で発生したガスは、中空金属部材の送り方向の後端部側に流れ、未加熱の中空金属部材の内面と接触することになるが、そこに熱分解生成物が付着したとしても、その箇所はその後に加熱される部分であるので、ガス中に微量含まれる酸素により燃焼すると考えられ、優れた化成処理性を確保することができる。 By doing so, the gas generated in the heated portion flows to the rear end side in the feed direction of the hollow metal member and comes into contact with the inner surface of the unheated hollow metal member, but the pyrolysis product is present there. Even if it adheres, the portion is a portion to be heated thereafter, so that it is considered that it is burned by a small amount of oxygen contained in the gas, and excellent chemical conversion property can be ensured.
ところで、中空金属部材の後端部は、中空金属部材を送るための冶具(例えばチャック)と接続しているため、加熱することができないが、本発明が対象としている自動車等の強度部材、構造部材において部材後端の非加熱部を切り落とすとコスト的に不利となるため、これらの部分も含めて製品とすることが重要である。さらに、本発明が対象としている部材では、その途中に意図的に加熱しない部分を設けることも可能である。 By the way, since the rear end portion of the hollow metal member is connected to a jig (for example, a chuck) for feeding the hollow metal member, it cannot be heated, but the strength member and structure of an automobile or the like targeted by the present invention Cutting off the non-heated portion at the rear end of the member in the member is disadvantageous in terms of cost, so it is important to make a product including these portions. Furthermore, in the member which is the object of the present invention, it is possible to provide a part not intentionally heated in the middle.
これらのように、中空金属部材の内面に熱分解生成物が付着した箇所がその後に加熱されない場合も想定されるが、もともと中空金属部材の内面に付着している油分の上に熱分解生成物が付着した状態であるので、この部材が化成処理・塗装される工程において、化成処理の直前に行われる脱脂により油分とともに除去されるため悪影響を及ぼさない。 As described above, it is assumed that the portion where the pyrolysis product adheres to the inner surface of the hollow metal member is not heated after that, but the pyrolysis product is originally deposited on the oil component adhering to the inner surface of the hollow metal member. In the process of chemical conversion treatment / painting, since this member is removed together with the oil by degreasing performed immediately before chemical conversion treatment, there is no adverse effect.
また、中空金属部材の内部に流す気体は、不活性ガスを主体とし0.01〜1体積%以下の酸素を含むガスであることが好ましい。酸素濃度を1体積%以下とすることにより、加熱された部分の素材表面の酸化を緩やかにしてスケールの生成を抑制できるので、油分から発生する熱分解生成物の付着を防ぐ効果と相乗して、化成処理性をより向上することができる。 The gas flowing inside the hollow metal member is preferably a gas mainly containing an inert gas and containing 0.01 to 1% by volume or less of oxygen. By adjusting the oxygen concentration to 1% by volume or less, it is possible to moderate the oxidation of the surface of the heated part and suppress the formation of scales, so it synergizes with the effect of preventing the adhesion of thermal decomposition products generated from oil. The chemical conversion processability can be further improved.
不活性ガスとしては、アルゴンや窒素などを用いることが例示される。酸素濃度が1体積%を超えると、スケールの形成が顕著となるので、酸素濃度1体積%以下とすることが好ましい。一方、酸素濃度が0.01体積%未満であると、油分から発生した熱分解生成物が送り方向の後端側の部材内面に付着した場合に、その後にこの部分が加熱されても、ガス中の酸素により十分燃焼せずに残留すると考えられ、化成処理性が相対的に劣るため、酸素濃度を0.01体積%以上とすることが好ましい。 Examples of the inert gas include argon and nitrogen. When the oxygen concentration exceeds 1% by volume, the formation of scale becomes remarkable, so the oxygen concentration is preferably 1% by volume or less. On the other hand, if the oxygen concentration is less than 0.01% by volume, the pyrolysis product generated from the oil adheres to the inner surface of the member on the rear end side in the feed direction. The oxygen concentration is preferably 0.01 vol% or more because it is considered that the oxygen remains in the tank without being sufficiently burned and the chemical conversion treatment property is relatively inferior.
さらに、中空金属部材の内部に流す気体の流速は2.0m/秒以下とすることが好ましい。0.1m/秒以上の流速で気体を流せば、発生したガスを製品内面に接触させない効果を十分得られ、このような観点からは中空金属部材の内部に流す気体の流速の上限を特に定める必要はないが、流速を過剰に高めると中空金属部材の加熱部分に単位時間当たりに接触する酸素の量が多くなることによりスケールの形成が顕著となり、化成処理性が劣る可能性がある。よって、中空金属部材の内部に流す気体の流速は2.0m/秒以下とすることが好ましい。 Furthermore, the flow rate of the gas flowing inside the hollow metal member is preferably 2.0 m / second or less. If gas is flowed at a flow rate of 0.1 m / sec or more, the effect of preventing the generated gas from contacting the inner surface of the product can be obtained sufficiently. From this viewpoint, the upper limit of the flow velocity of the gas flowing inside the hollow metal member is particularly determined. Although it is not necessary, if the flow rate is excessively increased, the amount of oxygen that contacts the heated portion of the hollow metal member per unit time increases, so that the formation of scale becomes remarkable, and the chemical conversion processability may be deteriorated. Therefore, the flow rate of the gas flowing inside the hollow metal member is preferably 2.0 m / second or less.
本発明の一つの態様として、中空金属部材に加熱および冷却を行う間で、中空金属部材における、加熱により変形抵抗が大幅に低下した部位に曲げモーメントまたはせん断力を与えて二次元または三次元に屈曲した所望の形状に曲げ加工またはせん断加工する、いわゆる三次元熱間曲げ焼入れにより、熱処理中空金属部材を製造することが好ましい。三次元熱間曲げ焼入れによって、高強度で高剛性の任意の曲げ形状を有する熱処理中空金属部材を製造できるためである。 As one aspect of the present invention, during the heating and cooling of the hollow metal member, a bending moment or a shearing force is applied to the portion of the hollow metal member where the deformation resistance is greatly reduced by heating, so that it is two-dimensional or three-dimensional. It is preferable to manufacture the heat-treated hollow metal member by so-called three-dimensional hot bending quenching, in which bending or shearing into a desired bent shape is performed. This is because a heat-treated hollow metal member having an arbitrary bending shape with high strength and high rigidity can be produced by three-dimensional hot bending quenching.
なお、中空金属部材として中空の鋼材を用いて三次元熱間曲げ焼入れにより任意の曲げ形状を有する熱処理中空鋼材を製造する場合、鋼材を、300℃/秒以上3000℃/秒以下の昇温速度でAc3点以上1100℃以下の温度域に加熱し、この温度域に0.2秒間以上0.8秒間以下保持した後、300℃/秒以上2000℃/秒以下の冷却速度で室温まで冷却することが、例示される。 In addition, when manufacturing a heat-treated hollow steel material having an arbitrary bending shape by three-dimensional hot bending quenching using a hollow steel material as a hollow metal member, the temperature rise rate of the steel material is 300 ° C./second or more and 3000 ° C./second or less. After heating to a temperature range of Ac 3 points to 1100 ° C and holding in this temperature range for 0.2 seconds to 0.8 seconds, cooling to room temperature at a cooling rate of 300 ° C / second to 2000 ° C / second This is exemplified.
本発明が目的とする熱処理中空金属部材の内面の化成処理性の改善と併せて、外面についても、その塗装後耐食性を改善するための方法を同時に実施することが望ましく、例えば特許文献2により開示された方法で実施することが好ましい。 In addition to improving the chemical conversion treatment property of the inner surface of the heat-treated hollow metal member which is the object of the present invention, it is desirable to simultaneously carry out a method for improving the post-coating corrosion resistance of the outer surface. It is preferable to carry out by the method described above.
本発明の効果を確認するため、表1に示す化学組成を有する矩形断面の電縫鋼管(40mm×40mm×肉厚1.6mm)を素材として準備した。 In order to confirm the effect of the present invention, a rectangular cross-section ERW steel pipe (40 mm × 40 mm × wall thickness 1.6 mm) having the chemical composition shown in Table 1 was prepared as a raw material.
この素材鋼管を、特許文献2により開示された三次元熱間曲げ焼入れ装置を用いて、表2に示す条件で熱処理を行い、製品である熱処理鋼管を製造した。 This material steel pipe was heat-treated under the conditions shown in Table 2 using the three-dimensional hot bending quenching apparatus disclosed in Patent Document 2 to produce a heat-treated steel pipe as a product.
素材鋼管の送り速度を80mm/秒として加工を行い、外面の加熱部雰囲気は、窒素吹き付けとした。後述する表2では、素材鋼管の内部の気体の流速は、素材鋼管の送り方向の先端部から後端部に向かう向きを正の数値で表し、逆の向きを負の数値で表す。なお、表2のNo.3については三次元熱間曲げ焼入れ装置の冷却過程の制御により焼戻しを施した。 Processing was performed at a feed rate of the raw steel pipe of 80 mm / second, and the atmosphere of the heated part on the outer surface was nitrogen blowing. In Table 2, which will be described later, the flow rate of the gas inside the material steel pipe is expressed by a positive value in the direction from the front end to the rear end in the feed direction of the material steel pipe, and is expressed by a negative value in the opposite direction. In Table 2, No. No. 3 was tempered by controlling the cooling process of the three-dimensional hot bending quenching apparatus.
得られた熱処理鋼管の断面組織を、ナイタールエッチング後に走査型電子顕微鏡を用いて500倍の倍率で4視野観察し、鋼組織を確認した。 The cross-sectional structure of the obtained heat-treated steel pipe was observed with four fields of view at a magnification of 500 times using a scanning electron microscope after nital etching to confirm the steel structure.
また、熱処理鋼管の内面および外面について、X線光電子分光分析によりスケールの膜厚を測定した。 Moreover, the film thickness of the scale was measured by X-ray photoelectron spectroscopy analysis on the inner and outer surfaces of the heat-treated steel pipe.
さらに、熱処理鋼管を、脱脂後に日本パーカライジング株式会社製の表面調整剤PL−Xで処理し、日本パーカライジング株式会社製PBL3080を用いて当該処理液の標準条件で120秒間の化成処理を施し、化成処理後の表面を走査型電子顕微鏡で観察し、化成皮膜の被覆状況を評価した。 Furthermore, the heat-treated steel pipe is treated with a surface conditioner PL-X manufactured by Nippon Parkerizing Co., Ltd. after degreasing, and subjected to chemical conversion treatment for 120 seconds under the standard conditions of the processing liquid using PBL3080 manufactured by Nippon Parkerizing Co., Ltd. The subsequent surface was observed with a scanning electron microscope, and the coating state of the chemical conversion film was evaluated.
具体的には、化成皮膜が付着していないスケと呼ばれる部分が多く存在すると塗装後の耐食性が低下することから、走査型電子顕微鏡により倍率500倍で10視野観察し、均一に化成皮膜が形成されてスケの面積率が5%以下のものを化成処理性が優れるとして○と評価し、スケの面積率が10%以下のものを化成処理性に問題は無いとして△と評価し、スケの面積率が10%を超えるものを化成処理性に問題ありとして×と評価した。 Specifically, if there are many parts called scales with no chemical conversion film attached, the corrosion resistance after coating will decrease, and 10 fields of view will be observed with a scanning electron microscope at a magnification of 500 times to form a uniform chemical conversion film. If the area ratio of the scale is 5% or less, the chemical conversion processability is evaluated as “good”, and if the area ratio of the scale is 10% or less, the chemical conversion processability is evaluated as “no problem”. Those having an area ratio exceeding 10% were evaluated as x because there was a problem in chemical conversion treatment.
また、前記同様の化成処理を行った上で、日本ペイント製PN−110で膜厚20μm狙いの電着塗装を実施して塗装品とし、この塗装品について、塗膜密着性試験として40℃温水240時間浸漬後の碁盤目テープ剥離評価を行うとともに、JASO複合サイクル腐食試験の180サイクル後のカット部の錆・膨れを評価した。 In addition, after performing the same chemical conversion treatment as described above, electrodeposition coating with a film thickness of 20 μm was performed with PN-110 manufactured by Nippon Paint to obtain a coated product, and this coated product was heated at 40 ° C. as a coating film adhesion test. A cross-cut tape peeling evaluation after immersion for 240 hours was performed, and rust and swelling of the cut portion after 180 cycles of the JASO combined cycle corrosion test were evaluated.
塗膜密着性試験においては、大きく剥がれた格子が無く、カット交差部の小さな剥がれも5面積%以下であるものを良好と判定した。JASO試験の錆・膨れの評価においては、カット両側における錆または膨れの最大の幅が8mm以下であるものを良好と判定した。 In the coating film adhesion test, it was determined that there was no lattice that was largely peeled off, and small peeling at the cut intersection was 5 area% or less. In the evaluation of rust and blistering in the JASO test, it was determined that the maximum width of rust or blistering on both sides of the cut was 8 mm or less.
結果を表2にまとめて示す。なお、表2の「鋼組織」の欄におけるMはマルテンサイトを示し、TMは焼戻しマルテンサイトを示す。塗装後耐食性の評価結果は、良好を○、不良を×と表記した。 The results are summarized in Table 2. In Table 2, M in the “steel structure” column represents martensite, and TM represents tempered martensite. In the evaluation results of the corrosion resistance after painting, “good” was indicated as “good”, and “bad” was indicated as “poor”.
表2に示すように、本発明で規定する範囲を満足することにより、内面の化成処理性に優れ、ひいては塗装後の耐食性にも優れる熱処理中空金属部材が提供されることがわかる。 As shown in Table 2, it can be seen that satisfying the range defined in the present invention provides a heat-treated hollow metal member that is excellent in chemical conversion treatment on the inner surface and, in turn, excellent in corrosion resistance after coating.
Claims (4)
前記加熱装置および前記冷却装置に対する前記中空金属部材の相対的な送り方向の先端部から後端部へ向けて、前記中空金属部材の内部に気体を0.1m/秒以上の流速で流し、
前記中空金属部材における、前記局部的に加熱した部位に曲げモーメントまたはせん断力を与えて二次元または三次元に屈曲した所望の形状に曲げ加工またはせん断加工することを特徴とする熱処理中空金属部材の製造方法。 While the heating device and the cooling device are moved relative to the hollow metal member, the hollow metal member is locally heated by the heating device and then cooled and heat-treated by the cooling device to produce a heat-treated hollow metal member. A method,
Flowing gas at a flow rate of 0.1 m / second or more from the inside of the hollow metal member toward the rear end portion in the relative feeding direction of the hollow metal member with respect to the heating device and the cooling device,
Heat treatment the hollow metal member, wherein the at hollow metal member, to bending or shearing the desired bent shape in two or three dimensions giving bending moment or shear force to the locally pressurizing hot sites Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015081129A JP6575119B2 (en) | 2015-04-10 | 2015-04-10 | Method for producing heat-treated hollow metal member excellent in chemical conversion treatment of inner surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015081129A JP6575119B2 (en) | 2015-04-10 | 2015-04-10 | Method for producing heat-treated hollow metal member excellent in chemical conversion treatment of inner surface |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016199791A JP2016199791A (en) | 2016-12-01 |
JP6575119B2 true JP6575119B2 (en) | 2019-09-18 |
Family
ID=57423545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015081129A Active JP6575119B2 (en) | 2015-04-10 | 2015-04-10 | Method for producing heat-treated hollow metal member excellent in chemical conversion treatment of inner surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6575119B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220149089A (en) * | 2021-04-30 | 2022-11-08 | 울산대학교 산학협력단 | Mold system for hot stamping of aluminum materials |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0857505A (en) * | 1994-08-19 | 1996-03-05 | Sumitomo Metal Ind Ltd | Manufacturing method for austenitic stainless steel pipe |
JP4200716B2 (en) * | 2002-09-06 | 2008-12-24 | 住友金属工業株式会社 | Method for suppressing carburization in heat treatment step of tube made of Ni-base alloy or Fe-base alloy |
JP4825019B2 (en) * | 2005-03-03 | 2011-11-30 | 住友金属工業株式会社 | Bending method of metal material, bending apparatus and bending equipment row, and bending product using them |
CN101228285B (en) * | 2005-07-25 | 2010-12-08 | 住友金属工业株式会社 | Continuous heat treatment stove, metal tube using the same and thermal treatment method |
JP4702095B2 (en) * | 2006-02-24 | 2011-06-15 | 住友金属工業株式会社 | Method for producing Cr-containing nickel-base alloy tube |
-
2015
- 2015-04-10 JP JP2015081129A patent/JP6575119B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016199791A (en) | 2016-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6829312B2 (en) | Steel welded parts with aluminum or aluminum alloy coating and how to prepare them | |
JP5246273B2 (en) | Bending metal material and manufacturing method thereof | |
JP6028761B2 (en) | Hot-pressed plated steel sheet | |
JP6822491B2 (en) | Alloyed Al-plated steel sheet for hot stamping and hot stamping member | |
JP2016125101A (en) | Hot stamp molded body and manufacturing method of hot stamp molded body | |
EA017216B1 (en) | Galvannealed heat-treated steel material and process for producing the same | |
JP4840089B2 (en) | Manufacturing method of molded products | |
JP4830742B2 (en) | Al-plated heat-treated steel and method for producing the same | |
JP6575119B2 (en) | Method for producing heat-treated hollow metal member excellent in chemical conversion treatment of inner surface | |
JP2015193892A (en) | Hight strength cold-rolled sheet with excellent moldability, and its production method | |
JP5887892B2 (en) | Method for manufacturing zinc-plated heat-treated steel | |
JP5578038B2 (en) | Manufacturing method of bending member | |
KR102283926B1 (en) | Method for manufacturing thermally treated steel sheet | |
JP6008066B2 (en) | Heat-treated steel product having high strength and excellent chemical conversion treatment and method for producing the same | |
JP2010265516A (en) | Coated and heat-treated steel material and method for manufacturing the same | |
JP2013234360A (en) | Method for producing galvanized heat-treated steel pipe | |
JP6210172B2 (en) | Hardened steel manufacturing method | |
JP7433972B2 (en) | Al-plated steel pipes and aluminum-plated steel pipe parts for STAF (registered trademark) construction method, and their manufacturing method | |
JP2011157577A (en) | Surface treatment liquid for steel for heat treatment and method of producing heat-treated steel using the same | |
JP5857867B2 (en) | Method for manufacturing zinc-plated heat-treated steel | |
CN110494571A (en) | The manufacturing method of vehicle bottom part blank, the manufacturing method of vehicle bottom part blank and vehicle bottom component | |
Shukla et al. | Simulation studies in Hot Dip Process Simulator (HDPS) on Al-Si Coatings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20151016 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190723 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190805 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6575119 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |