Nothing Special   »   [go: up one dir, main page]

JP6554955B2 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP6554955B2
JP6554955B2 JP2015139980A JP2015139980A JP6554955B2 JP 6554955 B2 JP6554955 B2 JP 6554955B2 JP 2015139980 A JP2015139980 A JP 2015139980A JP 2015139980 A JP2015139980 A JP 2015139980A JP 6554955 B2 JP6554955 B2 JP 6554955B2
Authority
JP
Japan
Prior art keywords
valve
convex curved
curved surface
curvature
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015139980A
Other languages
Japanese (ja)
Other versions
JP2017020447A (en
Inventor
祐介 戸田
祐介 戸田
義典 山下
義典 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015139980A priority Critical patent/JP6554955B2/en
Publication of JP2017020447A publication Critical patent/JP2017020447A/en
Application granted granted Critical
Publication of JP6554955B2 publication Critical patent/JP6554955B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

本発明は、内燃機関へ燃料を噴射する燃料噴射弁に関する。   The present invention relates to a fuel injection valve that injects fuel into an internal combustion engine.

従来、燃料を噴射する噴孔よりも上流側において、弁座面が下流側へ向かって縮径する弁ハウジング内に弁部材が収容される燃料噴射弁は、広く利用されている。こうした燃料噴射弁では、弾性部材により付勢される弁部材が弁座面に対して離着座することで、開閉弁して噴孔からの燃料噴射が断続されることになる。したがって、弁座面に対して弁座面が着座する着座位置は、燃料噴射量を安定させる上で重要となる。   2. Description of the Related Art Conventionally, a fuel injection valve in which a valve member is accommodated in a valve housing whose valve seat surface is reduced in diameter toward a downstream side upstream of a fuel injection hole has been widely used. In such a fuel injection valve, when the valve member urged by the elastic member is separated from and seated on the valve seat surface, the fuel injection from the injection hole is intermittently performed by opening and closing the valve. Therefore, the seating position where the valve seat surface is seated with respect to the valve seat surface is important in stabilizing the fuel injection amount.

例えば、特許文献1に開示される燃料噴射弁の弁部材には、縦断面上において曲率中心位置が規定される円弧形に、凸曲面が形成されている。この凸曲面は、弁座面へ向かって突出することで、弁座面に着座可能となっている。ここで縦断面上において、凸曲面が弁座面に着座する着座位置は、凸曲面に規定される曲率中心位置に応じて、一義的に決まる。故に、弁部材が弁座面から離座して開弁するときの移動量、ひいては開弁による燃料噴射量を安定させることができる。   For example, the valve member of the fuel injection valve disclosed in Patent Document 1 is formed with a convex curved surface in an arc shape in which the center position of curvature is defined on the longitudinal section. This convex curved surface can be seated on the valve seat surface by projecting toward the valve seat surface. Here, on the longitudinal section, the seating position where the convex curved surface is seated on the valve seat surface is uniquely determined according to the center of curvature defined by the convex curved surface. Therefore, it is possible to stabilize the amount of movement when the valve member is opened from the valve seat surface, and thus the amount of fuel injected by the valve opening.

特開2003−314412号公報Japanese Patent Laid-Open No. 2003-314212

さて、特許文献1に開示される燃料噴射弁によると、凸曲面が着座位置を決める曲率中心位置は、縦断面上の径方向において弁部材の弁中心線を当該着座位置とは反対側へと越えた位置に、規定されている。これは、摩耗に対する燃料噴射量の変化率を小さくするために、凸曲面の曲率半径を大きくするためである。   According to the fuel injection valve disclosed in Patent Document 1, the center of curvature at which the convex curved surface determines the seating position is such that the valve center line of the valve member is opposite to the seating position in the radial direction on the longitudinal section. It is defined in the position beyond. This is to increase the radius of curvature of the convex curved surface in order to reduce the rate of change of the fuel injection amount with respect to wear.

しかし、弾性部材により弁座面へと向かって付勢される弁部材の凸曲面から、弁座面に着座位置において作用する静的面圧は、凸曲面の曲率半径が大きくなるほど、減少する。その結果、凸曲面が弁座面に着座した閉弁状態に拘らず、凸曲面と弁座面との間からは、燃料漏れが生じてしまう。このような現象は、内燃機関の吸気ポートへ噴射する燃料の燃圧が比較的低圧となることで、当該燃圧により弁座へと向かって弁部材を押圧する力が低下するような場合に、特に顕著に現出する。   However, the static surface pressure acting at the seating position on the valve seat surface from the convex curved surface of the valve member urged toward the valve seat surface by the elastic member decreases as the curvature radius of the convex curved surface increases. As a result, fuel leaks from between the convex curved surface and the valve seat surface regardless of the closed state where the convex curved surface is seated on the valve seat surface. Such a phenomenon occurs particularly when the fuel pressure of the fuel injected into the intake port of the internal combustion engine is relatively low, and the force pressing the valve member toward the valve seat is reduced by the fuel pressure. Remarkably appear.

本発明は、以上説明した問題に鑑みてなされたものであって、その目的は、閉弁状態における燃料漏れを抑制する燃料噴射弁を、提供することにある。   The present invention has been made in view of the above-described problems, and an object thereof is to provide a fuel injection valve that suppresses fuel leakage in a valve-closed state.

以下、課題を達成するための発明の技術的手段について、説明する。尚、発明の技術的手段を開示する特許請求の範囲及び本欄に記載された括弧内の符号は、後に詳述する実施形態に記載された具体的手段との対応関係を示すものであり、発明の技術的範囲を限定するものではない。   The technical means of the invention for achieving the object will be described below. The reference numerals in parentheses described in the claims and in this section disclosing the technical means of the invention indicate the correspondence with the specific means described in the embodiment described in detail later. It is not intended to limit the technical scope of the invention.

上述の課題を解決するために開示された第一発明は、
内燃機関(2)へ燃料を噴射する噴孔(17)、並びに噴孔よりも上流側において下流側へ向かって縮径する弁座面(16)を、有する弁ハウジング(10)と、
弁ハウジング内に収容され、弁座面に対して同軸上に離着座することにより、開閉弁して噴孔からの燃料噴射を断続させる弁部材(40)と、
弁部材を弁座面へ向かって付勢する弾性部材(50)とを、備えた燃料噴射弁(1)であって、
弁部材は、
縦断面上において曲率中心位置(Pc)の規定される円弧形に形成され、弁座面へ向かって突出する凸曲面(440)を、有し、
縦断面上の径方向において凸曲面が弁座面に着座する着座位置(Ps)を決める曲率中心位置として、当該着座位置の内周側から外周側に跨って円弧形に形成された凸曲面の曲率中心位置は、弁部材の弁中心線(Lv)よりも当該着座位置側に規定され
弁部材は、縦断面上において凸曲面よりも小さな曲率半径の円弧形に形成された追加面(441)を、凸曲面の外周側に連続して有することを特徴とする。
The first invention disclosed in order to solve the above-mentioned problem is
A valve housing (10) having a nozzle hole (17) for injecting fuel into the internal combustion engine (2), and a valve seat surface (16) whose diameter is reduced toward the downstream side upstream of the nozzle hole;
A valve member (40) housed in the valve housing and detachably seated coaxially with respect to the valve seat surface to open and close the fuel injection from the nozzle hole;
A fuel injection valve (1) comprising an elastic member (50) for urging the valve member toward the valve seat surface,
The valve member
A convex curved surface (440) which is formed in an arc shape with a center of curvature (Pc) defined on the longitudinal section and protrudes toward the valve seat surface;
A convex curved surface formed in an arc shape from the inner peripheral side to the outer peripheral side of the seating position as a center position of curvature that determines the seating position (Ps) where the convex curved surface is seated on the valve seat surface in the radial direction on the longitudinal section The curvature center position is defined on the seating position side from the valve center line (Lv) of the valve member ,
The valve member has an additional surface (441) formed in an arc shape having a smaller radius of curvature than the convex curved surface on the longitudinal cross section, continuously on the outer peripheral side of the convex curved surface .

このような第一発明によると、縦断面上において円弧形に形成される凸曲面の曲率中心位置は、同断面上の径方向では、弁部材の弁中心線よりも、弁座面に対する凸曲面の着座位置側に規定される。これにより、曲率中心位置が着座位置側へと近づく凸曲面では、曲率半径が可及的に小さくなる。故に、弾性部材により弁座面へと向かって付勢される弁部材のうち小曲率半径の凸曲面からは、弁座面に着座位置において作用する静的面圧を、増大させることができる。したがって、凸曲面が弁座面に着座した閉弁状態において、それら凸曲面と弁座面との間から燃料漏れが生じる事態を、抑制することが可能となる。   According to the first invention as described above, the center of curvature of the convex curved surface formed in an arc shape on the longitudinal cross section is more convex to the valve seat surface than the valve center line of the valve member in the radial direction on the cross section. It is defined on the seating position side of the curved surface. Thereby, the curvature radius becomes as small as possible on the convex curved surface whose curvature center position approaches the seating position side. Therefore, the static surface pressure acting on the valve seat surface at the seating position can be increased from the convex curved surface having a small radius of curvature among the valve members urged toward the valve seat surface by the elastic member. Accordingly, it is possible to suppress a situation in which fuel leakage occurs between the convex curved surface and the valve seat surface in the closed state where the convex curved surface is seated on the valve seat surface.

また、開示された第二発明によると、第一発明における噴孔は、内燃機関の吸気ポート(2b)へ燃料を噴射することを特徴とする。   According to the disclosed second invention, the nozzle hole in the first invention is characterized by injecting fuel into the intake port (2b) of the internal combustion engine.

このような第二発明では、吸気ポートへの噴射燃料の比較的低い燃圧により閉弁状態の弁部材を弁座面へ向かって押圧する押圧力が低下したとしても、第一発明により、小曲率半径の凸曲面から弁座面に作用する静的面圧が増大し得る。したがって、噴射燃料の燃圧が比較的低圧な構成下でも、閉弁状態での燃料漏れを抑制することが可能となる。   In such a second invention, even if the pressing force for pressing the valve member in the closed state toward the valve seat surface is reduced by the relatively low fuel pressure of the injected fuel to the intake port, the first invention has a small curvature. The static surface pressure acting on the valve seat surface from the convex surface of the radius can be increased. Therefore, it is possible to suppress fuel leakage in the closed state even under a configuration in which the fuel pressure of the injected fuel is relatively low.

一実施形態による燃料噴射弁が搭載される内燃機関を示す構成図である。It is a block diagram which shows the internal combustion engine by which the fuel injection valve by one Embodiment is mounted. 一実施形態による燃料噴射弁を示す縦断面図である。It is a longitudinal cross-sectional view which shows the fuel injection valve by one Embodiment. 図2を部分的に拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows FIG. 2 partially. 図2,3の当接部を拡大して示す縦断面図であって、図5のIV−IV線縦断面図である。FIG. 6 is an enlarged longitudinal sectional view showing a contact portion in FIGS. 2 and 3, and is a longitudinal sectional view taken along line IV-IV in FIG. 5. 図4のV−V線横断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. 図4の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of FIG. 図4の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of FIG. 図4の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of FIG. 図4の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of FIG. 図4の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of FIG.

以下、本発明の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、本発明の一実施形態として燃料噴射弁1は、気筒2a内においてガソリンを燃焼させる内燃機関2に、搭載される。燃料噴射弁1は、吸入空気と共に気筒2a内へと吸入される燃料を、当該吸入空気の流通する吸気ポート2bへと噴射する。   As shown in FIG. 1, as an embodiment of the present invention, a fuel injection valve 1 is mounted on an internal combustion engine 2 that burns gasoline in a cylinder 2a. The fuel injection valve 1 injects the fuel sucked into the cylinder 2a together with the intake air into the intake port 2b through which the intake air flows.

(基本構成)
まず、燃料噴射弁1の基本構成を説明する。図2に示すように燃料噴射弁1は、弁ハウジング10、固定コア20、可動コア30、弁部材40、弾性部材50及び駆動部60を備えている。
(Basic configuration)
First, the basic configuration of the fuel injection valve 1 will be described. As shown in FIG. 2, the fuel injection valve 1 includes a valve housing 10, a fixed core 20, a movable core 30, a valve member 40, an elastic member 50, and a drive unit 60.

弁ハウジング10は、パイプ部材11、弁座部材12及び噴孔部材13等から構成されている。円筒状のパイプ部材11は、第一磁性部110、非磁性部111及び第二磁性部112を、軸方向の開弁側から閉弁側へ向かってこの順に有している。金属磁性体からなる各磁性部110,112と、金属非磁性体からなる非磁性部111とは、例えばレーザ溶接等により同軸上に結合されている。この結合構造により非磁性部111は、第一磁性部110と第二磁性部112との間における磁束の短絡を、遮断している。   The valve housing 10 includes a pipe member 11, a valve seat member 12, a nozzle hole member 13, and the like. The cylindrical pipe member 11 has a first magnetic part 110, a nonmagnetic part 111, and a second magnetic part 112 in this order from the valve opening side to the valve closing side in the axial direction. The magnetic parts 110 and 112 made of a metal magnetic material and the nonmagnetic part 111 made of a metal nonmagnetic material are coupled coaxially by, for example, laser welding. Due to this coupling structure, the nonmagnetic portion 111 blocks a short circuit of magnetic flux between the first magnetic portion 110 and the second magnetic portion 112.

第一磁性部110は、燃料ポンプ3(図1参照)から燃料の供給を受ける供給入口14を、形成している。第二磁性部112には、円筒状の金属からなる弁座部材12が同軸上に嵌入固定されている。弁座部材12は、上流側から導かれる燃料を下流側へと流通させるように、燃料通路15をパイプ部材11と共同して形成している。それと共に弁座部材12は、図2〜4に示すように燃料通路15に露出する弁座面16を、有している。弁座面16は、燃料通路15の下流側へ向かって縮径する縮径形状として、本実施形態では縮径率が一定のテーパ面状(円錐面状)に形成されている。   The first magnetic part 110 forms a supply inlet 14 that receives the supply of fuel from the fuel pump 3 (see FIG. 1). A valve seat member 12 made of a cylindrical metal is coaxially fitted and fixed to the second magnetic portion 112. The valve seat member 12 forms a fuel passage 15 in cooperation with the pipe member 11 so that the fuel guided from the upstream side flows to the downstream side. At the same time, the valve seat member 12 has a valve seat surface 16 exposed to the fuel passage 15 as shown in FIGS. In the present embodiment, the valve seat surface 16 is formed in a tapered surface shape (conical surface shape) having a constant diameter reduction rate as a reduced diameter shape that decreases in diameter toward the downstream side of the fuel passage 15.

有底円筒状の金属からなる噴孔部材13は、第二磁性部112とは反対側において、弁座部材12に同軸上に外嵌固定されている。噴孔部材13は、複数の噴孔17を底部に有している。各噴孔17は、弁座面16よりも下流側において燃料通路15と連通していると共に、吸気ポート2b(図1参照)へ向かって放射状に開口している。   The nozzle member 13 made of a bottomed cylindrical metal is coaxially fitted and fixed to the valve seat member 12 on the side opposite to the second magnetic portion 112. The nozzle hole member 13 has a plurality of nozzle holes 17 at the bottom. Each nozzle hole 17 communicates with the fuel passage 15 on the downstream side of the valve seat surface 16 and opens radially toward the intake port 2b (see FIG. 1).

図2に示すように、円筒状の金属磁性体からなる固定コア20は、第一磁性部110及び非磁性部111に同軸上に内嵌固定されている。固定コア20には、円筒状の金属からなるアジャスティングパイプ22が同軸上に圧入固定されている。固定コア20は、上流側の供給入口14から流入した燃料を下流側へ流出させるように、固定通路24をアジャスティングパイプ22と共同して形成している。   As shown in FIG. 2, the fixed core 20 made of a cylindrical metal magnetic body is coaxially fitted and fixed to the first magnetic part 110 and the nonmagnetic part 111. An adjusting pipe 22 made of a cylindrical metal is press-fitted and fixed coaxially to the fixed core 20. The fixed core 20 forms a fixed passage 24 together with the adjusting pipe 22 so that the fuel flowing in from the upstream supply inlet 14 flows out to the downstream side.

円筒状の金属磁性体からなる可動コア30は、非磁性部111及び第二磁性部112内に同軸上に収容されている。可動コア30は、固定コア20よりも閉弁側において、軸方向の両側へと往復移動可能となっている。有底円筒状の金属非磁性体からなる弁部材40は、第二磁性部112内及び弁座部材12内に跨って同軸上に収容されている。図2,3に示すように弁部材40は、可動コア30に閉弁側から嵌入固定されている。これにより弁部材40は、自身の弁中心線Lvに沿う軸方向の両側へ、可動コア30と一体に往復移動可能となっている。弁部材40は、上流側の固定通路24から流出する燃料を下流側の燃料通路15へと導くように、可動通路42を可動コア30と共同して形成している。   The movable core 30 made of a cylindrical metal magnetic body is accommodated coaxially in the nonmagnetic portion 111 and the second magnetic portion 112. The movable core 30 can reciprocate to both sides in the axial direction on the valve closing side with respect to the fixed core 20. The valve member 40 made of a bottomed cylindrical metal nonmagnetic material is accommodated coaxially across the second magnetic portion 112 and the valve seat member 12. As shown in FIGS. 2 and 3, the valve member 40 is fitted and fixed to the movable core 30 from the valve closing side. Thereby, the valve member 40 can be reciprocated integrally with the movable core 30 to both sides in the axial direction along its own valve center line Lv. The valve member 40 forms a movable passage 42 together with the movable core 30 so as to guide the fuel flowing out from the upstream fixed passage 24 to the downstream fuel passage 15.

弁部材40は、弁座面16よりも上流側において往復移動する当接部44を、閉弁側の底部に有している。図2〜4に示すように弁部材40は、全噴孔17よりも上流側において上記縮径形状を呈する弁座面16に対して、当接部44を同軸上に離着座させる。具体的に弁部材40は、開弁側へ移動することで、当接部44を弁座面16から全周に亘って離座させる。その結果、弁部材40が開弁して各噴孔17が燃料通路15と連通するので、それら各噴孔17からは燃料が吸気ポート2b(図1参照)へ噴射される。また一方で弁部材40は、閉弁側へ移動することで、当接部44を弁座面16に全周に亘って着座させる。その結果、弁部材40が閉弁して各噴孔17が燃料通路15との連通を遮断されるので、それら各噴孔17からの燃料噴射が停止する。このように弁部材40は、弁座面16に対する離着座により開閉弁することで、各噴孔17からの燃料噴射を断続可能となっている。   The valve member 40 has a contact portion 44 that reciprocates on the upstream side of the valve seat surface 16 at the bottom portion on the valve closing side. As shown in FIGS. 2 to 4, the valve member 40 causes the contact portion 44 to be coaxially separated from and seated on the valve seat surface 16 having the reduced diameter shape on the upstream side of all the injection holes 17. Specifically, the valve member 40 moves to the valve opening side, thereby causing the contact portion 44 to be separated from the valve seat surface 16 over the entire circumference. As a result, the valve member 40 is opened, and each nozzle hole 17 communicates with the fuel passage 15. Therefore, fuel is injected from each nozzle hole 17 into the intake port 2b (see FIG. 1). On the other hand, the valve member 40 moves to the valve closing side to seat the contact portion 44 on the valve seat surface 16 over the entire circumference. As a result, the valve member 40 is closed and each injection hole 17 is disconnected from the fuel passage 15, so that fuel injection from each injection hole 17 is stopped. As described above, the valve member 40 can be opened and closed by opening and closing the valve seat surface 16 so that fuel injection from each nozzle hole 17 can be intermittently performed.

図2に示すように弾性部材50は、金属からなる圧縮コイルスプリングであり、固定コア20及び可動コア30内の各通路24,42に同軸上に収容されている。弾性部材50は、固定コア20内のアジャスティングパイプ22と、可動コア30との間に挟持されている。この挟持構造により弾性部材50は、要素22,30間での圧縮に応じて弾性復原力を発生することで、可動コア30及び弁部材40を閉弁側の弁座面16へと向かって付勢する。即ち、弾性部材50の発生する弾性復原力が、可動コア30及び弁部材40を付勢する付勢力となる。   As shown in FIG. 2, the elastic member 50 is a compression coil spring made of metal, and is accommodated coaxially in the passages 24 and 42 in the fixed core 20 and the movable core 30. The elastic member 50 is sandwiched between the adjusting pipe 22 in the fixed core 20 and the movable core 30. With this clamping structure, the elastic member 50 generates an elastic restoring force in response to compression between the elements 22 and 30, thereby attaching the movable core 30 and the valve member 40 toward the valve seat surface 16 on the valve closing side. Rush. That is, the elastic restoring force generated by the elastic member 50 becomes a biasing force that biases the movable core 30 and the valve member 40.

駆動部60は、ソレノイドコイル61、スプール62、ターミナル63及びコネクタ64等から構成されている。ソレノイドコイル61は、円筒状の樹脂からなるスプール62に金属線材を巻回すことで、形成されている。ソレノイドコイル61は、スプール62を介して磁性部110,112及び非磁性部111に同軸上に外嵌固定されている。金属からなるターミナル63は、樹脂からなるコネクタ64に埋設され、外部の制御回路4(図1参照)と内部のソレノイドコイル61との間を電気接続する。この電気接続によりソレノイドコイル61への通電は、制御回路4により制御可能となっている。   The drive unit 60 includes a solenoid coil 61, a spool 62, a terminal 63, a connector 64, and the like. The solenoid coil 61 is formed by winding a metal wire around a spool 62 made of a cylindrical resin. The solenoid coil 61 is coaxially fitted and fixed to the magnetic portions 110 and 112 and the nonmagnetic portion 111 via the spool 62. A terminal 63 made of metal is embedded in a connector 64 made of resin, and electrically connects the external control circuit 4 (see FIG. 1) and the internal solenoid coil 61. With this electrical connection, the energization of the solenoid coil 61 can be controlled by the control circuit 4.

以上の如く構成される燃料噴射弁1の開弁作動では、制御回路4により通電されるソレノイドコイル61が励磁することで、第一磁性部110、固定コア20、可動コア30、及び第二磁性部112に磁束が案内される。その結果、互いに対向するコア20,30間には、可動コア30を開弁側の固定コア20へと向かって吸引するように、磁気吸引力が発生する。すると、可動コア30は、弾性部材50の付勢力に抗した開弁側へ弁部材40と共に駆動されるため、固定コア20に当接して係止される。このとき弁部材40は、当接部44を弁座面16から離座させるので、各噴孔17から燃料が噴射される。   In the valve opening operation of the fuel injection valve 1 configured as described above, the solenoid coil 61 energized by the control circuit 4 is excited to excite the first magnetic part 110, the fixed core 20, the movable core 30, and the second magnetism. The magnetic flux is guided to the portion 112. As a result, a magnetic attractive force is generated between the cores 20 and 30 facing each other so as to attract the movable core 30 toward the fixed core 20 on the valve opening side. Then, since the movable core 30 is driven together with the valve member 40 to the valve opening side against the urging force of the elastic member 50, the movable core 30 is brought into contact with and locked to the fixed core 20. At this time, the valve member 40 separates the contact portion 44 from the valve seat surface 16, so that fuel is injected from each injection hole 17.

一方、こうした開弁作動後の閉弁作動では、制御回路4により通電を停止されるソレノイドコイル61が消磁するので、コア20,30間の磁気吸引力が消失する。すると、可動コア30は、弾性部材50の付勢力により閉弁側へ弁部材40と共に駆動されるため、当該弁部材40が弁座部材12に当接して係止される。その結果として弁部材40は、当接部44を弁座面16に着座させるので、各噴孔17からの燃料噴射が停止する。また、こうして閉弁した弁部材40は、弾性部材50の付勢力に加えて、可動通路42の燃料から当接部44に作用する燃圧により、弁座面16へと向かって付勢された状態となる。   On the other hand, in such a valve closing operation after the valve opening operation, the solenoid coil 61 that is de-energized by the control circuit 4 is demagnetized, so that the magnetic attractive force between the cores 20 and 30 disappears. Then, since the movable core 30 is driven together with the valve member 40 to the valve closing side by the urging force of the elastic member 50, the valve member 40 contacts and is locked to the valve seat member 12. As a result, the valve member 40 causes the contact portion 44 to be seated on the valve seat surface 16, so that fuel injection from each nozzle hole 17 stops. The valve member 40 thus closed is urged toward the valve seat surface 16 by the fuel pressure acting on the contact portion 44 from the fuel in the movable passage 42 in addition to the urging force of the elastic member 50. It becomes.

(弁部材の詳細構成)
次に、弁部材40の詳細構成を図4,5に基づき説明する。尚、図4は、弁部材40の径方向中心に延伸想定される弁中心線Lvを含んで切られる縦断面の一つを、図示している。そこで以下では、弁部材40に関して図4の縦断面を含む任意の縦断面を、単に縦断面というものとする。
(Detailed configuration of valve member)
Next, the detailed structure of the valve member 40 is demonstrated based on FIG. FIG. 4 illustrates one of longitudinal sections that are cut including a valve center line Lv assumed to extend at the radial center of the valve member 40. Therefore, in the following, an arbitrary longitudinal section including the longitudinal section of FIG. 4 regarding the valve member 40 is simply referred to as a longitudinal section.

図4に示すように弁部材40は、弁中心線Lvを中心とした円筒面状にストレートに延伸する弁外周面46を、当接部44の外周側且つ開弁側に有している。それと共に弁部材40は、当接部44の内周側且つ閉弁側に、凸曲面状又は平面状の先端面47を有している。さらに弁部材40は、弁ハウジング10のうち弁座部材12の弁座面16へ向かって湾曲面状に突出する凸曲面440を、当接部44の全周に亘って有している。凸曲面440は、弁外周面46から内周側へ屈曲して連なっている。これにより凸曲面440は、弁外周面46との境界部の全周に亘って、屈曲部48をエッジ状に形成している。凸曲面440からは、先端面47が内周側へ屈曲して連なっている。これにより先端面47は、燃料通路15の一部として開弁時に燃料を各噴孔17へと案内する偏平状のサック室150を、弁ハウジング10のうち噴孔部材13との間に形成している。   As shown in FIG. 4, the valve member 40 has a valve outer peripheral surface 46 that extends straight in a cylindrical shape centered on the valve center line Lv on the outer peripheral side and the valve opening side of the contact portion 44. At the same time, the valve member 40 has a convex curved surface or a flat tip surface 47 on the inner peripheral side and the valve closing side of the contact portion 44. Further, the valve member 40 has a convex curved surface 440 that protrudes in a curved surface shape toward the valve seat surface 16 of the valve seat member 12 in the valve housing 10 over the entire circumference of the contact portion 44. The convex curved surface 440 is continuous from the valve outer peripheral surface 46 to the inner peripheral side. Thereby, the convex curved surface 440 forms the bending part 48 in edge shape over the perimeter of the boundary part with the valve | bulb outer peripheral surface 46. FIG. From the convex curved surface 440, the front end surface 47 is bent and connected to the inner peripheral side. As a result, the front end surface 47 forms a flat sack chamber 150 as a part of the fuel passage 15 between the nozzle hole member 13 in the valve housing 10 and guides fuel to the nozzle holes 17 when the valve is opened. ing.

凸曲面440は、縦断面上において曲率中心位置Pcの規定される円弧形に、曲率半径Rcをもって形成されている。この曲率中心位置Pcは、そうした断面円弧形の凸曲面440がテーパ面状の弁座面16に着座する着座位置Psを、一義的に決める。そこで、面圧増大となる着座位置Psを決める曲率中心位置Pcは、縦断面上の径方向において弁部材40の弁中心線Lvよりも当該着座位置Ps側の特定位置に、規定されている。ここで、縦断面上の径方向において弁中心線Lvと着座位置Psとの間となる中点に、基準中点Pbを想定する。かかる想定下、本実施形態による縦断面上の径方向では特に、弁中心線Lv及び基準中点Pbよりも着座位置Ps側のうち、基準中点Pbと着座位置Psとの間の中点Pmよりもさらに着座位置Ps側に、曲率中心位置Pcが規定されている。即ち、縦断面上の径方向において曲率中心位置Pcは、中点Pmと着座位置Psとの間に規定されている。   The convex curved surface 440 is formed in a circular arc shape having a curvature center position Pc on the longitudinal section with a curvature radius Rc. The curvature center position Pc uniquely determines the seating position Ps where the convex curved surface 440 having such a circular arc shape is seated on the valve seat surface 16 having a tapered surface. Therefore, the curvature center position Pc that determines the seating position Ps that increases the surface pressure is defined at a specific position on the seating position Ps side of the valve center line Lv of the valve member 40 in the radial direction on the longitudinal section. Here, a reference midpoint Pb is assumed to be a midpoint between the valve center line Lv and the seating position Ps in the radial direction on the longitudinal section. Under such assumption, particularly in the radial direction on the vertical cross section according to the present embodiment, the midpoint Pm between the reference midpoint Pb and the seating position Ps on the side of the seating position Ps from the valve center line Lv and the reference midpoint Pb. Further, the curvature center position Pc is defined on the seating position Ps side. That is, the curvature center position Pc is defined between the midpoint Pm and the seating position Ps in the radial direction on the longitudinal section.

こうして縦断面毎に規定される曲率中心位置Pcは、弁中心線Lvに対して実質直交する図5の横断面上において、同線Lvを中心とした円周Cc上に位置することとなる。また、図5に併せて模式的に示すように、凸曲面440が弁座面16に着座する着座位置Psは、曲率中心位置Pcの円周Ccよりも外周側において、弁中心線Lvを中心とした円周Cs上に位置することになる。   Thus, the curvature center position Pc defined for each longitudinal section is located on a circumference Cc centered on the same line Lv on the transverse section of FIG. 5 substantially orthogonal to the valve center line Lv. Further, as schematically shown in FIG. 5, the seating position Ps where the convex curved surface 440 is seated on the valve seat surface 16 is centered on the valve center line Lv on the outer peripheral side of the circumference Cc of the curvature center position Pc. It will be located on the circumference Cs.

(作用効果)
以上説明した燃料噴射弁1の作用効果を、以下に説明する。
(Function and effect)
The effect of the fuel injection valve 1 demonstrated above is demonstrated below.

燃料噴射弁1によると、縦断面上において円弧形に形成される凸曲面440の曲率中心位置Pcは、同断面上の径方向では、弁部材40の弁中心線Lvよりも、弁座面16に対する凸曲面440の着座位置Ps側に規定される。これにより、曲率中心位置Pcが着座位置Ps側へと近づく凸曲面440では、曲率半径Rcが可及的に小さくなる。故に、弾性部材50により弁座面16へと向かって付勢される弁部材40のうち小曲率半径Rcの凸曲面440からは、弁座面16に着座位置Psにおいて作用する静的面圧を、増大させることができる。したがって、凸曲面440が弁座面16に着座した閉弁状態において、それら凸曲面440と弁座面16との間から燃料漏れが生じる事態を、抑制することが可能となる。   According to the fuel injection valve 1, the curvature center position Pc of the convex curved surface 440 formed in an arc shape on the longitudinal section is larger than the valve center line Lv of the valve member 40 in the radial direction on the section. 16 is defined on the seating position Ps side of the convex curved surface 440. Thereby, the curvature radius Rc becomes as small as possible in the convex curved surface 440 in which the curvature center position Pc approaches the seating position Ps side. Therefore, a static surface pressure acting on the valve seat surface 16 at the seating position Ps is applied to the valve seat surface 16 from the convex curved surface 440 of the valve member 40 biased toward the valve seat surface 16 by the elastic member 50. Can be increased. Therefore, it is possible to suppress a situation in which fuel leakage occurs between the convex curved surface 440 and the valve seat surface 16 in a valve-closed state where the convex curved surface 440 is seated on the valve seat surface 16.

さらに燃料噴射弁1によると、縦断面上の径方向において凸曲面440の曲率中心位置Pcは、弁中心線Lvと着座位置Psとの間に想定される基準中点Pbよりも着座位置Ps側に、規定される。ここで特に、本実施形態の燃料噴射弁1によると、縦断面上の径方向において凸曲面440の曲率中心位置Pcは、そうした基準中点Pbと着座位置Psとの間の中点Pmよりも、さらに着座位置Ps側に規定される。これにより、弁中心線Lv及び基準中点Pbよりも着座位置Psに曲率中心位置Pcが近くなることから、曲率半径Rcの縮小により凸曲面440は、弁座面16に作用させる静的面圧の増大を確実なものとする。したがって、閉弁状態での燃料漏れを抑制する効果の発揮につき、信頼性を高めることが可能となる。   Further, according to the fuel injection valve 1, the curvature center position Pc of the convex curved surface 440 in the radial direction on the longitudinal section is on the side of the seating position Ps from the reference midpoint Pb assumed between the valve center line Lv and the seating position Ps. Stipulated. Here, in particular, according to the fuel injection valve 1 of the present embodiment, the center of curvature Pc of the convex curved surface 440 in the radial direction on the longitudinal section is more than the midpoint Pm between the reference midpoint Pb and the seating position Ps. Further, it is defined on the seating position Ps side. As a result, the curvature center position Pc is closer to the seating position Ps than the valve center line Lv and the reference midpoint Pb. Therefore, the convex curved surface 440 acts on the valve seat surface 16 by reducing the curvature radius Rc. To ensure an increase in Therefore, it is possible to improve the reliability with respect to the effect of suppressing the fuel leakage in the valve closed state.

加えて燃料噴射弁1によると、縦断面上において小曲率半径Rcとなる凸曲面440は、弁部材40の弁外周面46から屈曲して連なることで、下流側へ向かって縮径する弁座面16との間には、着座位置Psから外周側に向かうほど大きな隙間151(図4参照)を確保し得る。これによれば、弾性部材50による付勢力の偏り等に起因して弁部材40が弁座面16に対して傾いたとしても、弁外周面46と凸曲面440とのなす屈曲部48は、弁座面16には当接し難くなる。故に、そうした屈曲部48が正規の着座位置Psよりも外周側において弁座面16に当接するのを回避しつつ、当該正規の着座位置Psでは小曲率半径Rcの凸曲面440により静的面圧を増大させて、閉弁状態での燃料漏れを抑制することが可能となる。   In addition, according to the fuel injection valve 1, the convex curved surface 440 having a small radius of curvature Rc in the longitudinal section is bent from the valve outer peripheral surface 46 of the valve member 40 and connected continuously, thereby reducing the diameter of the valve seat toward the downstream side. A larger gap 151 (see FIG. 4) can be secured between the surface 16 and the outer periphery side from the seating position Ps. According to this, even if the valve member 40 is inclined with respect to the valve seat surface 16 due to the bias of the urging force by the elastic member 50, the bent portion 48 formed by the valve outer peripheral surface 46 and the convex curved surface 440 is It becomes difficult to contact the valve seat surface 16. Therefore, while avoiding the bent portion 48 from coming into contact with the valve seat surface 16 on the outer peripheral side of the normal seating position Ps, the static surface pressure is generated by the convex curved surface 440 having the small curvature radius Rc at the normal seating position Ps. It is possible to suppress fuel leakage when the valve is closed.

さらに加えて燃料噴射弁1では、吸気ポート2bへの噴射燃料の比較的低い燃圧により閉弁状態の弁部材40を弁座面16へ向かって押圧する押圧力が低下したとしても、小曲率半径Rcの凸曲面440から弁座面16に作用する静的面圧が増大し得る。したがって、噴射燃料の燃圧が比較的低圧な構成下でも、閉弁状態での燃料漏れを抑制することが可能となる。   In addition, in the fuel injection valve 1, even if the pressing force that presses the valve member 40 in the closed state toward the valve seat surface 16 is reduced due to the relatively low fuel pressure of the fuel injected into the intake port 2b, the small radius of curvature is reduced. The static surface pressure acting on the valve seat surface 16 from the convex curved surface 440 of Rc can be increased. Therefore, it is possible to suppress fuel leakage in the closed state even under a configuration in which the fuel pressure of the injected fuel is relatively low.

(他の実施形態)
以上、本発明の一実施形態について説明したが、本発明は、当該実施形態に限定して解釈されるものではなく、本発明の要旨を逸脱しない範囲内において種々の実施形態に適用することができる。
(Other embodiments)
Although one embodiment of the present invention has been described above, the present invention is not construed as being limited to the embodiment, and can be applied to various embodiments without departing from the gist of the present invention. it can.

具体的に変形例1では、図6に示すように縦断面上の径方向において凸曲面440の曲率中心位置Pcを、弁中心線Lv及び基準中点Pbよりも着座位置Ps側のうち、基準中点Pbと中点Pmとの間に規定してもよい。また、変形例2では、図7に示すように、縦断面上の径方向において凸曲面440の曲率中心位置Pcを、弁中心線Lvよりも着座位置Ps側のうち、弁中心線Lvと基準中点Pbとの間に規定してもよい。   Specifically, in Modification 1, as shown in FIG. 6, the curvature center position Pc of the convex curved surface 440 in the radial direction on the longitudinal section is set to the reference position on the side of the seating position Ps from the valve center line Lv and the reference midpoint Pb. You may prescribe | regulate between the midpoint Pb and the midpoint Pm. Further, in Modification 2, as shown in FIG. 7, the curvature center position Pc of the convex curved surface 440 in the radial direction on the longitudinal section is set to the valve center line Lv on the seating position Ps side with respect to the valve center line Lv. You may prescribe | regulate between the midpoints Pb.

変形例3では、図8に示すように、当接部44のうち凸曲面440の外周側且つ弁外周面46の内周側において、それら面440,46の間を接続する追加面441を形成してもよい。かかる追加面441については、図8の如く凸曲面440よりも小さな曲率半径Raの断面円弧形を呈する凸曲面状に形成してもよいし、図示はしないが、例えばテーパ面状等に形成してもよい。尚、図8において凸曲面440と追加面441との境界は、符号49を付して示されている。   In Modification 3, as shown in FIG. 8, an additional surface 441 that connects the surfaces 440 and 46 is formed on the outer peripheral side of the convex curved surface 440 and the inner peripheral side of the valve outer peripheral surface 46 in the contact portion 44. May be. The additional surface 441 may be formed in a convex curved surface shape having a circular arc shape with a radius of curvature Ra smaller than that of the convex curved surface 440 as shown in FIG. May be. In FIG. 8, the boundary between the convex curved surface 440 and the additional surface 441 is indicated by reference numeral 49.

変形例4では、図9に示すように、燃料通路15の下流側へ向かって縮径する縮径率が下流側ほど小さくなる湾曲面状に、弁座面16を形成してもよい。また、変形例5では、図10に示すように、燃料通路15の下流側へ向かって縮径する縮径率が下流側ほど大きくなる湾曲面状に、弁座面16を形成してもよい。   In the fourth modification, as shown in FIG. 9, the valve seat surface 16 may be formed in a curved surface shape in which the diameter reduction rate toward the downstream side of the fuel passage 15 decreases toward the downstream side. Moreover, in the modification 5, as shown in FIG. 10, the valve seat surface 16 may be formed in a curved surface shape in which the diameter reduction rate that decreases toward the downstream side of the fuel passage 15 increases toward the downstream side. .

変形例6では、ガソリン式内燃機関の気筒内へ燃料を噴射する燃料噴射弁に、本発明を適用してもよい。また、変形例7では、ディーゼル式内燃機関の気筒内へ燃料を噴射する燃料噴射弁に、本発明を適用してもよい。   In the sixth modification, the present invention may be applied to a fuel injection valve that injects fuel into a cylinder of a gasoline internal combustion engine. In Modification 7, the present invention may be applied to a fuel injection valve that injects fuel into a cylinder of a diesel internal combustion engine.

1 燃料噴射弁、2 内燃機関、2b 吸気ポート、10 弁ハウジング、16 弁座面
17 噴孔、40 弁部材、44 当接部、46 弁外周面、48 屈曲部、50 弾性部材、151 隙間、440 凸曲面、Lv 弁中心線、Pb 基準中点、Pc 曲率中心位置、Pm 中点、Ps 着座位置、Rc 曲率半径
DESCRIPTION OF SYMBOLS 1 Fuel injection valve, 2 Internal combustion engine, 2b Intake port, 10 Valve housing, 16 Valve seat surface 17 Injection hole, 40 Valve member, 44 Contact part, 46 Valve outer peripheral surface, 48 Bending part, 50 Elastic member, 151 Clearance, 440 Convex surface, Lv valve center line, Pb reference midpoint, Pc curvature center position, Pm midpoint, Ps seating position, Rc curvature radius

Claims (5)

内燃機関(2)へ燃料を噴射する噴孔(17)、並びに前記噴孔よりも上流側において下流側へ向かって縮径する弁座面(16)を、有する弁ハウジング(10)と、
前記弁ハウジング内に収容され、前記弁座面に対して同軸上に離着座することにより、開閉弁して前記噴孔からの燃料噴射を断続させる弁部材(40)と、
前記弁部材を前記弁座面へ向かって付勢する弾性部材(50)とを、備えた燃料噴射弁(1)であって、
前記弁部材は、
縦断面上において曲率中心位置(Pc)の規定される円弧形に形成され、前記弁座面へ向かって突出する凸曲面(440)を、有し、
前記縦断面上の径方向において前記凸曲面が前記弁座面に着座する着座位置(Ps)を決める前記曲率中心位置として、当該着座位置の内周側から外周側に跨って円弧形に形成された前記凸曲面の前記曲率中心位置は、前記弁部材の弁中心線(Lv)よりも当該着座位置側に規定され
前記弁部材は、前記縦断面上において前記凸曲面よりも小さな曲率半径の円弧形に形成された追加面(441)を、前記凸曲面の外周側に連続して有することを特徴とする燃料噴射弁。
A valve housing (10) having a nozzle hole (17) for injecting fuel to the internal combustion engine (2), and a valve seat surface (16) whose diameter is reduced toward the downstream side upstream of the nozzle hole;
A valve member (40) housed in the valve housing and configured to open and close and to intermittently inject fuel from the nozzle hole by being seated coaxially with respect to the valve seat surface;
A fuel injection valve (1) comprising an elastic member (50) for urging the valve member toward the valve seat surface,
The valve member is
A convex curved surface (440) which is formed in an arc shape with a center of curvature (Pc) defined on the longitudinal section and protrudes toward the valve seat surface;
In the radial direction on the longitudinal section, the convex curved surface is formed in an arc shape extending from the inner peripheral side to the outer peripheral side of the seating position as the curvature center position that determines the seating position (Ps) on which the valve seat is seated The center of curvature of the convex curved surface is defined on the seating position side of the valve center line (Lv) of the valve member ,
The valve member has an additional surface (441) formed in an arc shape having a smaller radius of curvature than the convex curved surface on the longitudinal section, continuously on the outer peripheral side of the convex curved surface. Injection valve.
前記縦断面上の径方向において前記曲率中心位置は、前記弁中心線と前記着座位置との間の中点に想定される基準中点(Pb)よりも前記着座位置側に、規定されることを特徴とする請求項1に記載の燃料噴射弁。   In the radial direction on the longitudinal section, the center of curvature is defined on the side of the seating position with respect to a reference midpoint (Pb) assumed as a midpoint between the valve center line and the seating position. The fuel injection valve according to claim 1. 前記縦断面上の径方向において前記曲率中心位置は、前記基準中点と前記着座位置との間の中点(Pm)よりも前記着座位置側に、規定されることを特徴とする請求項2に記載の燃料噴射弁。   3. The curvature center position in the radial direction on the longitudinal section is defined closer to the seating position than a midpoint (Pm) between the reference midpoint and the seating position. The fuel injection valve described in 1. 前記凸曲面は、前記弁部材の弁外周面(46)から屈曲して連なることを特徴とする請求項1〜3のいずれか一項に記載の燃料噴射弁。   The fuel injection valve according to any one of claims 1 to 3, wherein the convex curved surface is bent from the valve outer peripheral surface (46) of the valve member. 前記噴孔は、前記内燃機関の吸気ポート(2b)へ燃料を噴射することを特徴とする請求項1〜4のいずれか一項に記載の燃料噴射弁。   The fuel injection valve according to any one of claims 1 to 4, wherein the injection hole injects fuel into an intake port (2b) of the internal combustion engine.
JP2015139980A 2015-07-13 2015-07-13 Fuel injection valve Active JP6554955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015139980A JP6554955B2 (en) 2015-07-13 2015-07-13 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015139980A JP6554955B2 (en) 2015-07-13 2015-07-13 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2017020447A JP2017020447A (en) 2017-01-26
JP6554955B2 true JP6554955B2 (en) 2019-08-07

Family

ID=57887804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015139980A Active JP6554955B2 (en) 2015-07-13 2015-07-13 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP6554955B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6821523B2 (en) * 2017-06-29 2021-01-27 愛三工業株式会社 Internal combustion engine bypass air volume control device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987007334A2 (en) * 1986-05-31 1987-12-03 Robert Bosch Gmbh Fuel injection valve
JP3183156B2 (en) * 1995-04-27 2001-07-03 株式会社デンソー Fluid injection nozzle
JP2003056430A (en) * 2001-08-20 2003-02-26 Denso Corp Fuel injection valve
JP3932967B2 (en) * 2002-04-26 2007-06-20 株式会社デンソー Fuel injection device
JP4335280B2 (en) * 2006-11-27 2009-09-30 三菱電機株式会社 Fuel injection valve
JP2015101982A (en) * 2013-11-22 2015-06-04 株式会社デンソー Fuel injection nozzle

Also Published As

Publication number Publication date
JP2017020447A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP5965253B2 (en) Fuel injection valve
JP5623784B2 (en) Electromagnetic fuel injection valve
JP2008031853A (en) Fuel injection valve
JP5239965B2 (en) Fuel injection valve
JP5262972B2 (en) Fuel injection valve
JP5152024B2 (en) Fuel injection valve
JP6167992B2 (en) Fuel injection valve and manufacturing method thereof
JP2013167194A (en) Fuel injection valve
JP4120632B2 (en) Fuel injection valve
WO2015136862A1 (en) Fuel injection device
JP6554955B2 (en) Fuel injection valve
JP2017048764A (en) Fuel injection valve
JP6015870B2 (en) Fuel injection valve
JP6861297B2 (en) Fuel injection device
JP6020194B2 (en) Fuel injection valve
JP6167993B2 (en) Fuel injection valve
JP4577654B2 (en) Electromagnetic drive device and fuel injection valve using the same
JP2010159677A (en) Fuel injection valve
JP6256495B2 (en) Fuel injection valve
CN108779747B (en) fuel injection device
WO2017010034A1 (en) Fuel injection valve
JP2006307831A (en) Fuel injection valve
JP4285701B2 (en) Fuel injection valve
JP7545322B2 (en) Electromagnetic fuel injection valve
JP2005282564A (en) Fuel injection valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R151 Written notification of patent or utility model registration

Ref document number: 6554955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250