Nothing Special   »   [go: up one dir, main page]

JP6546688B1 - Method and apparatus for treating organic wastewater or sludge - Google Patents

Method and apparatus for treating organic wastewater or sludge Download PDF

Info

Publication number
JP6546688B1
JP6546688B1 JP2018246238A JP2018246238A JP6546688B1 JP 6546688 B1 JP6546688 B1 JP 6546688B1 JP 2018246238 A JP2018246238 A JP 2018246238A JP 2018246238 A JP2018246238 A JP 2018246238A JP 6546688 B1 JP6546688 B1 JP 6546688B1
Authority
JP
Japan
Prior art keywords
sludge
treatment
fiber material
anaerobic
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018246238A
Other languages
Japanese (ja)
Other versions
JP2020104064A (en
Inventor
萩野 隆生
隆生 萩野
安永 利幸
利幸 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2018246238A priority Critical patent/JP6546688B1/en
Application granted granted Critical
Publication of JP6546688B1 publication Critical patent/JP6546688B1/en
Publication of JP2020104064A publication Critical patent/JP2020104064A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

【課題】処理プロセス及び処理システム全体における処理効率の向上が可能な有機性廃水または汚泥の処理方法及び処理装置を提供する。【解決手段】有機性廃水または汚泥を処理対象とし、微生物を利用して有機成分の処理を行う有機性廃水または汚泥の処理方法であって、好気性微生物を用いた好気性処理を行う有機性廃水または汚泥に対して、あるいは好気性処理後の有機性廃水または汚泥に対して、生分解性有機系繊維物質を添加し、生分解性有機系繊維物質が添加された汚泥に対して嫌気性微生物を用いた嫌気性処理を行い、嫌気性処理の前段及び/又は後段において固液分離処理し、嫌気性処理及び固液分離処理の少なくとも1の処理に対して生分解性有機系繊維物質を更に添加することを含む有機性廃水または汚泥の処理方法である。【選択図】図1An organic wastewater or sludge treatment method and treatment apparatus capable of improving treatment efficiency in a treatment process and a treatment system as a whole are provided. An organic wastewater or sludge treatment method for treating organic wastewater or sludge using microorganisms to treat organic components, wherein the organic wastewater or sludge is treated with an aerobic microorganism. Biodegradable organic fiber material is added to wastewater or sludge, or to organic wastewater or sludge after aerobic treatment, and anaerobic to sludge with biodegradable organic fiber material added Anaerobic treatment using microorganisms is performed, and solid-liquid separation treatment is performed before and / or after anaerobic treatment, and biodegradable organic fiber material is added to at least one treatment of anaerobic treatment and solid-liquid separation treatment. A method of treating organic wastewater or sludge comprising the further addition. [Selected figure] Figure 1

Description

本発明は、有機性廃水または汚泥の処理方法及び処理装置に関する。   The present invention relates to a method and apparatus for treating organic wastewater or sludge.

従来、活性汚泥法に代表される水処理装置において、処理槽内の微生物濃度を高め、活性汚泥と処理水との分離性を良くする為、微生物固定化用の接触ろ材や流動担体を処理槽内に投入する方法が多く採用されてきた。接触ろ材や流動担体に固定化された活性汚泥は、その量が必要以上に多くなると逆洗などの操作によりその一部をろ材や担体から剥離し、余剰汚泥として系外に排出され、脱水処理される。接触ろ材や流動担体には、プラスチックや活性炭、アンスラサイト、ポリエチレングリコールなどが使用される。   Conventionally, in a water treatment apparatus represented by the activated sludge method, in order to increase the concentration of microorganisms in the treatment tank and improve the separability between the activated sludge and the treated water, the contact filter medium or fluid carrier for immobilizing microorganisms is treated with the treatment tank. Many methods have been adopted for introducing inside. When the amount of activated sludge fixed to the contact filter medium or fluid carrier is increased more than necessary, part of the activated sludge is peeled off from the filter medium or carrier by an operation such as backwashing and discharged out of the system as excess sludge and dewatered. Be done. Plastics, activated carbon, anthracite, polyethylene glycol and the like are used as the contact media and the fluid carrier.

また、近年、水処理装置において発生した余剰汚泥をメタン発酵処理等の嫌気性処理工程に導入し、前記汚泥中の有機物をメタンや水素等の可燃性ガス化して回収、発電、売電等の取組みを行うケースが増加している。嫌気性処理後の汚泥は、脱水処理等の固液分離処理を得て汚泥中固形物を減量化し、脱水ケーキ、焼却灰等の形態で系外に搬出する場合が多い。   Also, in recent years, excess sludge generated in water treatment equipment is introduced into anaerobic treatment processes such as methane fermentation treatment, and organic matter in the sludge is converted to combustible gas such as methane or hydrogen and recovered, power generation, sale of electricity, etc. Cases are increasing. The sludge after anaerobic treatment is subjected to solid-liquid separation treatment such as dehydration treatment to reduce solids in the sludge, and is often carried out of the system in the form of dewatered cake, incinerated ash or the like.

これらの有機性廃水または汚泥の処理プロセス全体の最適化を考える時、(1)水処理系における処理水質、(2)活性汚泥と処理水の固液分離性、(3)微生物が付着するろ材や担体の耐久性、生物剥離性及びコスト、(4)メタン発酵槽における可燃性ガス回収量、(5)嫌気性処理後の汚泥の固液分離性等の5つの評価項目が、プロセス全体を考慮する上で必要な評価項目として挙げられる。   When considering the optimization of the whole organic wastewater or sludge treatment process, (1) treated water quality in water treatment system, (2) solid-liquid separation of activated sludge and treated water, (3) filter medium to which microorganisms adhere And five evaluation items such as durability of the carrier, bioremovability and cost, (4) recoverable amount of combustible gas in methane fermentation tank, and (5) solid-liquid separation of sludge after anaerobic treatment It is listed as a necessary evaluation item to consider.

5つの評価項目に関し、(1)の処理水質は、処理対象成分であるBOD、COD、リン、窒素などが放流規制値以下で安定することが望ましい。(2)の活性汚泥と処理水の固液分離性は、季節変動、水質変動等の影響を受けにくく安定し、バルキング等が生じないように制御できることが望ましい。(3)のろ材や担体は、微生物が付着し易く、一方で逆洗時は微生物が剥離し易く、耐久性があり、低コストである方が望ましい。(4)の可燃性ガス回収量はできるだけ多い方が望ましい上、回収ガスで発電した電力は電力会社が固定価格買取制度で決められた比較的高い買取価格で買い取ってくれるため収益に大きく影響する。(5)の嫌気性消化汚泥に代表される嫌気性処理後の汚泥は、脱水処理される場合が多いが、その際に使用する高分子凝集剤の添加量は少ないほど、脱水してできたケーキの含水率が低いほど、処理コスト及び処分コストが下がるので望ましい。   With regard to the five evaluation items, it is desirable that the treated water quality in (1) be stabilized at BOD, COD, phosphorus, nitrogen, etc., which are the components to be treated, below the discharge regulation value. It is desirable that solid-liquid separation between activated sludge and treated water in (2) should be stable and unlikely to be affected by seasonal fluctuation, water quality fluctuation and the like, and be controlled so as not to cause bulking and the like. In the filter medium and carrier of (3), microorganisms are likely to be attached, and at the time of backwashing, the microorganisms are likely to be exfoliated, which is durable, and it is desirable that the cost be low. It is desirable that the flammable gas recovery amount in (4) be as large as possible, and the power generated by the recovered gas will be greatly affected by the profit because the power company will buy it at the relatively high purchase price decided by the fixed price purchase system. . The sludge after anaerobic treatment represented by anaerobic digestion sludge (5) is often dewatered, but it was dewatered as the amount of polymer flocculant used was small. The lower the moisture content of the cake, the lower the processing and disposal costs are desirable.

特許文献1では微生物が処理対象原水と接触し混合される処理槽内に、微生物の固定化用に有機系繊維質の比率の大きい粒状担体を含ませ、所定の滞留時間後に該担体の少なくとも一部を固液分離し、付着した微生物とともに余剰汚泥として系外に取り出し脱水を行う例が記載されている。担体にはセルロース系の廃棄物を使用する方法が提案されている。この方式では、セルロース系素材を一過性の微生物の固定化用担体として使用すると同時に、後段の固液分離としての脱水処理工程において脱水性を向上させる材料として活用しているが、嫌気性処理を行うことを前提としたプロセスではなく、セルロース系素材の嫌気性処理における分解率を含めたシステム全体の効率化に関する示唆は全く含まれていない。   In Patent Document 1, a particulate carrier having a large proportion of organic fibers is contained in a treatment tank in which microorganisms are brought into contact with and mixed with the raw water to be treated, and after a predetermined residence time, at least one of the carriers is contained. An example is described in which the part is subjected to solid-liquid separation and taken out of the system as excess sludge together with the adhered microorganisms to be dehydrated. A method has been proposed that uses cellulose-based waste as a carrier. In this method, a cellulose-based material is used as a carrier for immobilizing transient microorganisms, and at the same time, it is used as a material for improving the dewatering property in the subsequent dehydration processing step as solid-liquid separation. There is no suggestion on the efficiency of the entire system, including the degradation rate in anaerobic treatment of cellulosic materials, rather than the process premised on performing

また、特許文献2では生物処理を行う前の有機性廃水をふるい体に通過させ、ふるい体の透過水について生物処理を行い、ふるい体を透過しなかった固形物、すなわち粒径の大きい繊維分等を生物処理で発生する余剰汚泥に添加して脱水処理を行う方法が提案されている。この方式では、原水中のトイレットペーパー由来の繊維分等の粒径が比較的大きい固形物を、生物処理を経由せずに脱水処理工程の前段で余剰汚泥に添加して脱水性を向上させることが記載されているが、特許文献2に記載された発明にも、生物固定化担体、嫌気性処理の有機物源、脱水性向上の有機物源の3つの側面を考慮した有機系繊維物質の効率的な添加方法に関する記述や示唆は含まれていない。   Further, in Patent Document 2, organic wastewater before biological treatment is passed through a sieving body, and the permeated water of the sieving body is subjected to a biological treatment to obtain a solid which has not permeated through the sieving body, that is, a fiber having a large particle diameter. There has been proposed a method of dewatering treatment by adding excess sludge to surplus sludge generated by biological treatment. In this method, solid matter with a relatively large particle size, such as a fiber component derived from toilet paper in raw water, is added to excess sludge at the stage prior to the dewatering treatment step without passing through biological treatment to improve the dewaterability. In the invention described in Patent Document 2, the efficiency of the organic fiber material in consideration of three aspects of the bioimmobilization carrier, the organic matter source for anaerobic treatment, and the organic matter source for improving the dewaterability is also described. There is no description or suggestion on the method of addition.

特開平11−10182号公報Japanese Patent Application Laid-Open No. 11-10182 特開2001−219186号公報JP 2001-219186 A

既存の処理施設は、プラント設計当初時の処理対象物質に関する計画水質と計画水量に基づいて設計計算された上でプラントが構成されているため、水処理系や汚泥処理系等への想定外の外部搬入負荷物投入を極力嫌う性格がある。その理由は、外部搬入物質の影響をプラント全体として正確かつ長期的に推測しづらい点が大きい。例を挙げると、生物担体として水処理系に投入した外部有機物が原因となる不活性汚泥率増加と消化槽での硫化水素発生量増加、嫌気性消化ガス回収量を増加させるために添加した外部有機物が原因となる後段でのスケールトラブルと脱水ケーキ発熱量低下、脱水性を向上させるために添加した外部有機物が原因となる返流リン負荷増加と水処理系薬剤使用量増加等がある。   The existing treatment facility is designed and calculated based on the planned water quality and the planned water volume for the treatment target material at the initial stage of plant design, and the plant is configured, so unexpected cases for water treatment system, sludge treatment system, etc. There is a character that hates the external loading load input as much as possible. The reason is that it is difficult to accurately and long-term infer the effects of externally loaded substances as a whole plant. For example, the amount of inactive sludge increased due to the external organic matter added to the water treatment system as a biological carrier, the amount of hydrogen sulfide generation in the digester increased, and the amount of external added to increase the amount of anaerobic digestion gas recovered There are scale trouble and decrease in calorific value of dewatering cake in the latter stage caused by organic matter, increase in return phosphorus load and increase in the amount of used water treatment chemicals due to external organic matter added to improve dewaterability.

即ち従来は、「ガス発生量」や「脱水性改善」等の一面的な目的のための繊維物質利用概念はあっても、実際のプラント設計及びプラント維持管理の当業者としては、必要最小限の限定的かつ単一装置的な利用にとどめるべきであるというのが常識であり、それ以上は影響が煩雑になり大きなリスクを伴うという観点から、繊維物質の複数箇所への添加やその添加量調整に関する実プラントでの取組み及びそれらによるプラント全体としての系統立てた総合評価は成されてきておらず、それらに関する文献も殆ど皆無であった。   That is, conventionally, although there is a fiber material utilization concept for one purpose, such as "gas generation amount" and "improvement of dewaterability", a person skilled in the art of actual plant design and plant maintenance and management needs a minimum. It is common sense that it should be limited to a single, unitary use of the material, and from the point of view that the influence becomes complicated and entails a large risk, the addition of the fiber material to multiple locations and its addition amount Efforts at actual plants for adjustment and their systematic integrated evaluation as a whole plant have not been made, and there is almost no literature on them.

上記課題を鑑み、本発明は、処理プロセス及び処理システム全体における処理効率の向上が可能な有機性廃水または汚泥の処理方法及び処理装置を提供する。   In view of the above problems, the present invention provides a method and an apparatus for treating organic wastewater or sludge capable of improving the treatment efficiency in the treatment process and the entire treatment system.

本願発明者らは上記課題を解決すべく、メタン発酵処理に代表される嫌気性処理工程を組み込んだ有機性廃水または汚泥の処理プロセスにおいて、系内に導入する生分解性有機系繊維物質の添加方法とそのプロセス全体への効果に関して様々な条件で検討した。特に、従来のような繊維物添加による単一装置評価的な手法ではなく、水処理系、汚泥処理系の嫌気性処理及び脱水処理を含めたプラント全体としての全体評価を本願発明者らは重視し、一面的には効果が小さくても他の評価軸ではそれなりの効果が出る場合等を含め、様々な繊維物添加方法を含めたコスト重視の全体評価方式でプロセスを評価したところ、上記課題を解決できる手法を見出した。   In order to solve the above problems, the inventors of the present invention added biodegradable organic fiber materials to be introduced into the system in the treatment process of organic wastewater or sludge incorporating an anaerobic treatment process represented by methane fermentation treatment. The method and its effect on the whole process were discussed under various conditions. In particular, the inventors of the present invention place importance on the whole evaluation as a whole plant including anaerobic treatment and dehydration treatment of water treatment system and sludge treatment system instead of the single-device evaluation method by adding textiles as in the prior art. The above problem is that the process is evaluated by the cost-oriented overall evaluation method including various fiber material addition methods, including cases where effects are small on one side, and effects are reasonable on other evaluation axes. I found a method that can solve the problem.

以上の知見を基礎として完成した本発明の実施の形態に係る有機性廃水または汚泥の処理方法は、一側面において、有機性廃水または汚泥を処理対象とし、微生物を利用して有機成分の処理を行う有機性廃水または汚泥の処理方法であって、好気性微生物を用いた好気性処理を行う有機性廃水または汚泥に対して、あるいは好気性処理後の有機性廃水または汚泥に対して、生分解性有機系繊維物質を添加し、生分解性有機系繊維物質が添加された汚泥に対して嫌気性微生物を用いた嫌気性処理を行い、嫌気性処理の前段及び/又は後段において固液分離処理し、嫌気性処理及び固液分離処理の少なくとも1の処理に対して生分解性有機系繊維物質を更に添加することを含む有機性廃水または汚泥の処理方法である。   The method for treating organic wastewater or sludge according to the embodiment of the present invention completed on the basis of the above findings is, in one aspect, treating organic wastewater or sludge and treating microorganisms using microorganisms. Method for treating organic wastewater or sludge, wherein the biodegradation is performed on organic wastewater or sludge subjected to aerobic treatment using aerobic microorganisms, or on organic wastewater or sludge after aerobic treatment An anaerobic treatment using an anaerobic microorganism is performed on the sludge to which the biodegradable organic fiber material is added and the biodegradable organic fiber material is added, and the solid-liquid separation treatment is performed before and / or after the anaerobic treatment. And a process of treating organic wastewater or sludge further comprising adding biodegradable organic fiber material to at least one treatment of anaerobic treatment and solid-liquid separation treatment.

本発明の実施の形態に係る有機性廃水または汚泥の処理方法は一実施態様において、生分解性有機系繊維物質が添加された汚泥の一部を、嫌気性処理を経由せずに嫌気性処理の後段の固液分離処理へ迂回させる。   In one embodiment, the method for treating organic wastewater or sludge according to the embodiment of the present invention is to anaerobically treat a part of sludge to which biodegradable organic fiber material is added without passing through anaerobic treatment. Bypass to the subsequent solid-liquid separation process of

本発明の実施の形態に係る有機性廃水または汚泥の処理方法は更に別の一実施態様において、生分解性有機系繊維物質の物性に応じて、生分解性有機系繊維物質の添加位置及び添加率を調整する。   The method for treating organic wastewater or sludge according to the embodiment of the present invention is, in still another embodiment, the position and addition of the biodegradable organic fiber material according to the physical properties of the biodegradable organic fiber material. Adjust the rate.

本発明の実施の形態に係る有機性廃水または汚泥の処理方法は更に別の一実施態様において、生分解性有機系繊維物質が、比重0.75〜1.15、繊維長6mm以下の繊維状物質を含む。   In still another embodiment of the method for treating organic wastewater or sludge according to the embodiment of the present invention, the biodegradable organic fiber material has a fibrous form with a specific gravity of 0.75 to 1.15 and a fiber length of 6 mm or less. Contains substance.

本発明の実施の形態に係る有機性廃水または汚泥の処理方法は更に別の一実施態様において、有機性廃水または汚泥に生分解性有機系繊維物質を添加した場合における好気性処理及び嫌気性処理を模した試験を行い、試験の結果に基づいて、生分解性有機系繊維物質の添加位置及び添加率を調整する。   The method for treating organic wastewater or sludge according to the embodiment of the present invention is, in still another embodiment, aerobic treatment and anaerobic treatment when biodegradable organic fiber material is added to organic wastewater or sludge. The test which imitated is performed, and the addition position and addition rate of biodegradable organic fiber material are adjusted based on the result of the test.

本発明の実施の形態に係る有機性廃水または汚泥の処理装置は一側面において、有機性廃水または汚泥に対して好気性微生物を用いた好気性処理を行う好気性処理手段と、好気性処理手段、あるいは好気性処理手段による好気性処理後の有機性廃水または汚泥に対して生分解性有機系繊維物質を添加する添加手段と、生分解性有機系繊維物質が添加された汚泥に対して嫌気性処理を行う嫌気性処理手段と、嫌気性処理の前段及び/又は後段において固液分離処理する固液分離手段と、嫌気性処理及び固液分離処理の少なくとも1の処理に対して、生分解性有機系繊維物質を更に添加する再添加手段とを備える有機性廃水または汚泥の処理装置である。   An apparatus for treating organic wastewater or sludge according to an embodiment of the present invention is, in one aspect, aerobic treatment means for aerobically treating organic wastewater or sludge using aerobic microorganisms, and aerobic treatment means Or an additive means for adding biodegradable organic fiber material to organic wastewater or sludge after aerobic treatment by aerobic treatment means, and anaerobic for sludge to which biodegradable organic fiber material is added Anaerobic treatment means that perform anaerobic treatment, solid-liquid separation means that performs solid-liquid separation treatment in the first and / or second stage of anaerobic treatment, and biodegradation for at least one treatment of anaerobic treatment and solid-liquid separation treatment And a re-adding means for further adding the organic fiber-based fiber material.

本発明の実施の形態に係る有機性廃水または汚泥の処理装置は一実施態様において、生分解性有機系繊維物質が添加された汚泥の一部を、嫌気性処理手段を経由せずに嫌気性処理手段の後段の固液分離手段へと迂回させる迂回ラインを備える。   In one embodiment, the apparatus for treating organic waste water or sludge according to the embodiment of the present invention is a part of the sludge to which the biodegradable organic fiber material is added without being passed through the anaerobic treatment means. A detour line is provided for detouring to the solid-liquid separation means downstream of the processing means.

本発明の実施の形態に係る有機性廃水または汚泥の処理装置は別の一実施態様において、生分解性有機系繊維物質の物性に基づいて、生分解性有機系繊維物質の添加率を制御する制御手段を更に備える。   In another embodiment, the apparatus for treating organic wastewater or sludge according to the embodiment of the present invention controls the rate of addition of biodegradable organic fiber material based on the physical properties of biodegradable organic fiber material. The apparatus further comprises control means.

本発明によれば、処理プロセス及び処理システム全体における処理効率の向上が可能な有機性廃水または汚泥の処理方法及び処理装置が提供できる。   According to the present invention, it is possible to provide a method and apparatus for treating organic wastewater or sludge capable of improving the treatment efficiency in the treatment process and the entire treatment system.

本発明の実施の形態に係る有機性廃水または汚泥の処理方法に適用可能な処理システムを表す概略図であり、好気性処理の効率化を考慮して添加される繊維物質の添加位置を例示する図である。It is a schematic diagram showing the processing system applicable to the processing method of the organic waste water or sludge concerning the embodiment of the present invention, and illustrates the addition position of the fiber substance added in consideration of the efficiency improvement of aerobic processing. FIG. 本発明の実施の形態に係る有機性廃水または汚泥の処理方法に適用可能な処理システムを表す概略図であり、嫌気性処理の効率化を考慮して添加される繊維物質の添加位置の例示する図である。It is a schematic diagram showing the processing system applicable to the processing method of the organic waste water concerning the embodiment of the present invention, or sludge, and illustrates the addition position of the textiles added in consideration of streamlining of anaerobic processing. FIG. 本発明の実施の形態に係る有機性廃水または汚泥の処理方法に適用可能な処理システムを表す概略図であり、固液分離処理の効率化を考慮して添加される繊維物質の添加位置の例示する図である。It is a schematic diagram showing the processing system applicable to the processing method of the organic waste water concerning the embodiment of the present invention, or sludge, and an illustration of the addition position of the textiles added in consideration of efficiency improvement of solid-liquid separation processing. It is a figure to do. 生分解性有機系繊維物質の種類A〜Cに応じた特性(繊維物質好気性分解率(AD3)、繊維物質嫌気性分解率(DD7)、繊維物質由来CH4発生率(FG7)、3日間曝気試験後汚泥の繊維物量(FI3)、及び7日間嫌気的バイアル試験後汚泥の繊維物量(FO7))の評価結果をそれぞれ例示するグラフである。Characteristics according to the type A~C biodegradable organic fiber material (fiber material aerobic decomposition rate (AD3), fibrous materials anaerobic decomposition rate (DD7), fibrous materials derived from CH 4 generation rate (FG7), 3 days It is a graph which illustrates the evaluation result of the amount of textiles (FI3) of sludge after an aeration test, and the amount of textiles (FO7) of sludge after a seven-day anaerobic vial test, respectively. 実施例1〜3における繊維物質の添加位置をそれぞれ示す処理フロー図である。It is a processing flow figure which shows the addition position of the textiles in Examples 1-3, respectively.

以下、図面を参照しながら本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであってこの発明の技術的思想は構成部品の構造、配置等を下記のものに特定するものではなく、特に記載の無い限り本明細書中の「%」は質量%を意味するものとする。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiment shown below exemplifies an apparatus and a method for embodying the technical idea of the present invention, and the technical idea of the present invention specifies the structure, arrangement and the like of the component parts as follows. Unless otherwise stated, "%" in the present specification shall mean% by mass.

なお、以下においては、水処理系として標準活性汚泥処理を採用し、汚泥処理系として嫌気性消化処理と脱水処理をそれぞれ採用する一般的な下水処理場を一例として説明する。しかしながら、当業者であれば、有機性廃液または有機物を処理する施設として嫌気的処理を組み込む食品系廃水処理、し尿系廃水処理、生ごみや有機廃材系廃水処理等のあらゆる処理プロセスに適応または応用が可能であり、例示する下水処理に限定されるものではないことは勿論である。   In addition, below, the standard activated sludge process is employ | adopted as a water-treatment system, and the general sewage treatment plant which respectively adopts an anaerobic digestion process and a dehydration process as a sludge treatment system is demonstrated as an example. However, those skilled in the art can apply or apply to any treatment process such as food waste water treatment incorporating anaerobic treatment as a facility for treating organic waste liquid or organic matter, human waste water waste treatment, garbage and organic waste material waste water treatment, etc. Of course, it is not limited to the illustrated sewage treatment.

有機性廃水または汚泥を対象液とする処理プロセスにおいて、好気的水処理工程は処理対象液を、活性汚泥などの好気性微生物を多く含む汚泥と混合して曝気槽等に導入して微生物の働きにより有機成分をCO2やH2O等の形態に無機化する。活性汚泥は通常は曝気槽の液中に浮遊しており、最終的には最終沈澱池などで沈降分離した汚泥と上澄分離した処理水に分離される。ただし、流入水質や活性汚泥などの微生物活性等の状況変化によっては重力沈降方式では汚泥と処理水の固液分離性が悪化する場合がある。そのため、活性汚泥を浮遊させるのではなく、人工的に合成されたプラスチック製やポリエチレングリコール製等の固定ろ材や流動担体等に固定することで固液分離性能を安定させる方式が20年以上前より数多く提案されている。 In the treatment process using organic wastewater or sludge as the target fluid, the aerobic water treatment process mixes the treatment target fluid with sludge containing a large amount of aerobic microorganisms such as activated sludge and introduces it into an aeration tank etc. By the action, the organic component is mineralized to a form such as CO 2 or H 2 O. Activated sludge usually floats in the liquid of the aeration tank, and is finally separated into sludge separated by sedimentation in a final settling tank and the like and treated water separated by supernatant. However, depending on changes in conditions such as inflow water quality and microbial activity such as activated sludge, the solid-liquid separation between sludge and treated water may be deteriorated in the gravity settling method. Therefore, a system that stabilizes the solid-liquid separation performance by fixing the activated sludge to a fixed filter medium such as artificially synthesized plastic or polyethylene glycol, or a fluid carrier, instead of suspending it is 20 years or more ago. Many have been proposed.

流動担体は固定ろ材と比較して流動していることから、流動担体表面に付着した微生物が取り込もうとする周囲の基質成分が一旦消費されても常に動いているために再び新たな基質成分に出会う確率が高いが、固定ろ材は表面付着微生物量が増加し過ぎて肥厚する場合もあり、ろ材近傍の流動性が低下した場合等は微生物周辺の基質成分が欠乏し、必要な酸素の供給が不十分になり微生物の活性が低下するリスクがある。これら固定ろ材や流動担体は、リアクター内の微生物濃度を高濃度に維持する場合や増殖速度が比較的小さい嫌気性微生物であるアンモニア酸化細菌や硝化菌等を一定量保持する場合に使用されることが多い。しかし、これら微生物保持用担体は一般的にコンクリート製や金属製のリアクター内を流動していることから長時間の運転により劣化、破損を免れることはできず、年間数十%程度の補充が必要となる場合が多い。また、スクリーン等でリアクターからの担体流出を防止しているが、スクリーンの目詰まりによるトラブル等も多く報告されており課題も多い。担体としての設計要素としては、素材、大きさ、形状、比重、表面の物理的処理方式や化学的処理方式等を選択して、担体の耐久性、流動性、基質浸透性、微生物の付着性、剥離性等を設計するのが一般的である。   Since the fluid carrier is flowing relative to the fixed filter medium, new substrate components are encountered again because they are always moving even if the surrounding substrate components to be taken up by the microorganisms attached to the surface of the fluid carrier are consumed. Although there is a high probability, the fixed filter media may become thickened because the amount of surface-adhering microorganisms increases too much, and when the fluidity near the filter media is reduced, the substrate component around the microorganisms is lacking, and the necessary oxygen supply is not sufficient. There is a risk that it is sufficient to reduce the activity of the microorganism. These fixed filter media and fluid carriers are used when maintaining high concentration of microorganisms in the reactor or when holding a fixed amount of ammonia oxidizing bacteria, nitrifying bacteria, etc. which are anaerobic microorganisms having relatively low growth rate. There are many. However, since these microbe-supporting carriers generally flow in a reactor made of concrete or metal, they can not escape deterioration or breakage during long-term operation, and it is necessary to replenish several dozens of percent a year. It is often the case. Moreover, although the carrier outflow from the reactor is prevented by the screen etc., many problems due to the clogging of the screen etc. are also reported and there are many problems. Materials, size, shape, specific gravity, physical treatment method and chemical treatment method of surface, etc. are selected as design elements as a carrier, and durability, fluidity, substrate permeability, adhesion of microorganisms, and the like of the carrier are selected. It is common to design the peelability and the like.

「生物担体特性」という評価軸で繊維物質の使用方法を検討する場合、本実施形態では、基本的には生分解性有機系繊維物質を一過性で使用する方式を提案する。「生分解性有機系繊維物質」としては、具体的には農産物収穫後のセルロース系残査、動植物を原料とする加工工場からのプロセス廃材及びそれら残査、あるいは廃材を破砕、表面処理、一部化学処理等を施して粒径、表面ぬれ性、比重等を整えたものを使用することができる。これら有機性廃材を「生物担体」として使用する最大の理由は供給コストが安いまたは有価で引き取れる点にある。このような有機性廃材の発生場所が処理施設に十分近く、輸送費や需給量が見合えばコストメリットはさらに大きくなる。   When considering the method of using the fiber material in the evaluation axis of "biological carrier characteristics", the present embodiment basically proposes a method of using the biodegradable organic fiber material transiently. Specific examples of the “biodegradable organic fiber material” include cellulose residue after harvesting agricultural products, process waste materials from processing plants that use animals and plants as raw materials, and their residues or crushing waste materials, surface treatment, It is possible to use one that has been subjected to a partial chemical treatment or the like to adjust the particle diameter, surface wettability, specific gravity and the like. The main reason for using these organic waste materials as "biological carriers" is that the cost of supply is low or valuable. If the place where such organic waste material is generated is sufficiently close to the treatment facility, and the transportation cost and the supply and demand amount are met, the cost merit is further increased.

活性汚泥微生物等をこれら有機性廃材である繊維物質表面に付着させて好気的環境下で水処理を行う場合、有機性廃材はSRT:3〜6日程度の好気的環境下において大幅に分解せずに生物担体としてある程度の期間維持し、加えて液側に農薬等の一部の有害な化学物質を溶出させない廃材を選択する必要がある。このような有機性廃材を好気性処理に用いる場合には、例えば、3日間の曝気試験を行い、繊維物質好気性分解率(以下「AD3」とも称する)を測定して添加方法を決定する。好気性条件下での繊維物質の分解率が非常に高い素材の場合は、好気性工程に投入する繊維物質量を小さくするかまたはゼロにし、後段の嫌気性処理工程以降のプロセスに導入する繊維物質添加量を増加させる方が有効な場合もある。   When activated sludge microorganisms etc. are attached to the surface of the fiber material which is these organic waste materials and water treatment is performed under aerobic environment, the organic waste materials are significantly SRT: under aerobic condition of about 3 to 6 days. It is necessary to select a waste material that is maintained as a biological carrier for a certain period without decomposition and additionally does not elute some harmful chemicals such as pesticides on the liquid side. When such an organic waste material is used for aerobic treatment, for example, an aeration test for 3 days is carried out, and the fiber material aerobic decomposition rate (hereinafter also referred to as "AD3") is measured to determine the addition method. In the case of a material with a very high rate of degradation of fiber material under aerobic conditions, reduce or eliminate the amount of fiber material input to the aerobic process, and introduce fiber to the process after the subsequent anaerobic treatment process In some cases it may be more effective to increase the amount of substance added.

廃水等の好気的処理において生成した微生物主体の余剰汚泥は初沈汚泥とともにメタン発酵等の嫌気性処理に導入される。嫌気性処理では投入された有機物が反応槽内で酸発酵、メタン発酵を経て分解され、CH4ガス、CO2ガス、H2ガス等が生成される。一般的な下水処理における嫌気性消化処理では有機物の45〜60%程度がガス化され、残りの40〜55%は汚泥中に依然として有機物として残留する。本実施形態において好気処理工程に生物担体として添加される生分解性有機系繊維物質は、その種類によってメタン発酵槽内での分解率やCH4ガス発生率に差がでるが、メタン発酵におけるガス発生量増加を特に重要視する場合は3〜6日程度のSRTの好気性処理では分解されにくいものの、20〜40日程度のSRTの嫌気性処理ではある程度分解される物質であることが望ましい。 Excess sludge mainly composed of microorganisms generated in aerobic treatment such as wastewater is introduced into anaerobic treatment such as methane fermentation together with primary settling sludge. In the anaerobic treatment, the input organic substance is decomposed through acid fermentation and methane fermentation in the reaction tank to generate CH 4 gas, CO 2 gas, H 2 gas and the like. In anaerobic digestion treatment in general sewage treatment, about 45 to 60% of organic matter is gasified, and the remaining 40 to 55% still remains in the sludge as organic matter. The biodegradable organic fiber material added as a biological carrier to the aerobic treatment step in this embodiment has a difference in decomposition rate and CH 4 gas generation rate in the methane fermentation tank depending on its type, but in methane fermentation When importance is given to increasing the amount of gas generation, it is preferable that the substance is difficult to be decomposed by aerobic treatment of SRT for about 3 to 6 days, but it is a substance that is decomposed to some extent by anaerobic treatment of SRT for about 20 to 40 days .

嫌気性処理における「可燃性ガス増量」という評価軸で添加する繊維物質の使用方法を検討する場合、添加する繊維物質の有機成分は嫌気性処理工程においてできるだけ分解しガス化することが望ましい。しかし添加する繊維物質の物性によっては嫌気的分解があまり進まない場合もあり、特に好気性処理工程において生分解性有機系繊維物質の大半が既に分解済みで嫌気性処理工程での更なる分解が望めない場合は、好気処理工程に導入した繊維物質とは別に添加繊維物質を直接嫌気性処理工程に更に導入する方が望ましい場合もある。また、繊維物質が好気的環境下では溶出しないが嫌気的環境下では溶出する金属イオン等が原因となりスケールや腐食等のプロセス障害を引き起こす可能性がある場合等は嫌気性処理工程またはその前段に投入する繊維物質を制限するか、もしくは繊維物質投入済みの好気性処理工程後の汚泥の一部に対して嫌気性処理工程を経由させずに後段の固液分離工程に導入する方法が望ましい場合もある。また、繊維物質を多く含む汚泥と繊維物質が少ない汚泥に分離することで、一方を嫌気性処理工程に、他方を固液分離工程に導入することでプロセス全体を効率化できる場合もある。好気性処理工程から排出される汚泥を添加した繊維物質が多い汚泥と繊維物質が少ない汚泥に分離する方法としては、遠心分離方式またはふるい体分級方式が有効である。繊維物質に付着した微生物群は通常の活性汚泥微生物と比べて比較的粒径が大きく密な集合体を形成していることが多くこれらを物理的に分離することは比較的容易である。以上のような検討項目を判断するために、添加する繊維物質に対して、あらかじめ7日間の嫌気的条件下のバイアル試験を行い、繊維物質嫌気性分解率(以下「DD7」とも称する)と繊維物質由来CH4発生率(以下「=FG7」とも称する)を測定しておくことが望ましい。 When considering how to use the fiber material to be added on the evaluation axis of "increase in flammable gas" in anaerobic treatment, it is desirable that the organic component of the fiber material to be added be decomposed and gasified as much as possible in the anaerobic treatment process. However, depending on the physical properties of the fiber substance to be added, anaerobic decomposition may not progress so much, and in particular, most of biodegradable organic fiber substances have already been decomposed in the aerobic treatment process, and further decomposition in the anaerobic treatment process is If this can not be expected, it may be desirable to further introduce the added fiber material directly to the anaerobic treatment step separately from the fiber material introduced to the aerobic treatment step. In addition, when there is a possibility that the fiber substance does not elute in aerobic environment but may cause process failure such as scale or corrosion due to the metal ion eluting in anaerobic environment, etc. It is desirable to limit the fiber material to be fed into the waste water, or introduce a part of the sludge after the aerobic treatment process to which the fiber material has been fed into the subsequent solid-liquid separation process without passing through the anaerobic treatment process. In some cases. In addition, separation into sludge containing a large amount of fiber material and sludge containing a small amount of fiber material may allow the efficiency of the entire process to be improved by introducing one into an anaerobic treatment step and the other into a solid-liquid separation step. A centrifugal separation method or a sieve classification method is effective as a method of separating sludge containing a large amount of fiber material and sludge containing a small amount of fiber material discharged from the aerobic treatment step. Microorganisms attached to the fibrous material often form relatively large particles and relatively dense aggregates compared to ordinary activated sludge microorganisms, and it is relatively easy to physically separate them. In order to determine the above-mentioned items to be studied, the fiber substance to be added is subjected to a vial test under anaerobic conditions in advance for 7 days, and the fiber substance anaerobic decomposition rate (hereinafter also referred to as "DD7") and fiber It is desirable to measure the substance-derived CH 4 generation rate (hereinafter also referred to as “= FG7”).

嫌気性処理工程を経た汚泥は固液分離工程に導入され、濃縮処理や脱水処理等が施される。脱水ケーキはそのまま搬出したり、乾燥処理や焼却処理まで行い焼却灰として搬出したりする場合もある。好気性処理工程や嫌気性処理工程で汚泥に投入された繊維物質由来の有機分と無機分は共に固液分離工程に流入する汚泥中にある程度残留しているが、それらはいずれも固液分離性能を向上させる場合が多く、特に繊維性が維持されている場合は脱水処理における圧搾工程等で繊維成分が分離水を固形物粒子の間隙をぬって系外に誘導するようにろ液ガイド管的役割をする場合が多く、有効な場合が多い。一般的に汚泥の脱水性はその汚泥の強熱原料物(VTS)と相関があり、VTSが低いほど汚泥の脱水性が良いとされている。嫌気性処理工程で生成する無機系微粒子としては一般的にリン酸マグネシウムアンモニウム、リン酸カルシウム、炭酸カルシウム、石膏、水酸化鉄、リン酸鉄等が挙げられるが、いずれも汚泥中に浮遊分散する微粒子状である限りにおいて、脱水性がやや向上するとされている。添加する繊維物質由来の生成無機物として、これら無機系微粒子の一部が生成される場合があるが、生成量が多すぎるとプラント内の配管内スケール、焼却時の煙道閉塞やクリンカの原因となることもあり、プロセス全体を考慮した繊維物質の選定と適正添加量には注意が必要である。   The sludge that has undergone the anaerobic treatment process is introduced into the solid-liquid separation process and subjected to concentration treatment, dehydration treatment, and the like. Dehydrated cake may be carried out as it is, or may be carried out as drying treatment or incineration treatment and carried out as incineration ash. Although the organic and inorganic components derived from the fiber material introduced into the sludge in the aerobic treatment process and the anaerobic treatment process both remain to some extent in the sludge flowing into the solid-liquid separation process, both of them are solid-liquid separation In many cases, the performance is improved, and in particular when the fiber property is maintained, the filtrate guide pipe is such that the fiber component guides the separated water out of the system through the gaps of the solid particles in the squeezing step etc. Often play an important role and are often effective. Generally, the dewaterability of sludge is correlated with the VTS of the sludge, and the lower the VTS, the better the dewaterability of the sludge. Inorganic fine particles produced in the anaerobic treatment step generally include magnesium ammonium phosphate, calcium phosphate, calcium carbonate, gypsum, iron hydroxide, iron phosphate, etc. As long as it is, dewatering property is said to be somewhat improved. A part of these inorganic fine particles may be generated as a generated inorganic substance derived from the fiber substance to be added, but if the amount of generation is too large, the scale in the piping in the plant, the cause of flue clogging at the time of incineration and clinker Care must be taken in the selection of the fiber material and the proper addition amount in consideration of the whole process.

「嫌気性処理前後の固液分離特性」という評価軸で添加する繊維物質の使用方法を検討する場合、前述したように繊維物質の存在により固液分離性が向上することから、嫌気性処理工程に導入する前の汚泥中の繊維物量が多いほど当該汚泥の濃縮性が高まり必要に応じて嫌気性処理工程に導入する汚泥濃度を高めることが可能になる。例えば、好気性処理工程に繊維物質を添加した場合、微生物を表面に付着させたこの繊維物質は、繊維分が依然としてある程度の強度を保ったまま好気性処理工程から排出される場合が多いことから、嫌気性処理の前段で汚泥を濃縮して消化槽に投入する場合等は、濃縮処理が比較的容易であり無薬注またはごく少量の薬注率で凝集濃縮が可能になる場合が多く、高濃度消化処理が低コストで可能となる上に消化槽のコンパクト化が可能となる。むろんこれは嫌気性処理工程投入汚泥に直接繊維物質を添加する場合も同様の効果が得られる。嫌気性処理工程後の固液分離工程においても同様に、汚泥中の繊維物量が大きいほど固液分離性(脱水性)を高めることから固液分離工程に投入される汚泥中の繊維物量が重要になる。繊維物量が大きいほど、固液分離時の凝集剤添加率が低下し、脱水ケーキの含水率が低下し、系外に搬出する廃棄物としての脱水ケーキ排出量が低下し、コスト面では薬品使用コストとケーキ処分コストが共に低下する。これらの検討項目を考慮して「嫌気性処理前後の固液分離特性」に関して定量的に把握すべく、あらかじめ嫌気性処理前汚泥または嫌気性処理後汚泥に残留する繊維物量に関して、先に示した3日間曝気試験後汚泥の繊維物量(以下「FI3」とも称する)、及び7日間嫌気的バイアル試験後汚泥の繊維物量(以下「FO7」とも称する)を用いて嫌気性処理工程前後の汚泥の固液分離性能を評価しておくことが望ましい。   When considering how to use the fiber material to be added on the evaluation axis of “solid-liquid separation characteristics before and after anaerobic treatment”, as described above, the solid-liquid separation property is improved by the presence of the fiber material. As the amount of fibrous material in the sludge before introduction into the sludge increases, the concentration of the sludge increases and it becomes possible to increase the concentration of sludge introduced into the anaerobic treatment process as necessary. For example, when a fibrous material is added to the aerobic treatment step, the fibrous material having microorganisms attached to the surface is often discharged from the aerobic treatment step while the fiber content still maintains a certain level of strength. When concentrating sludge before the anaerobic treatment and feeding it into the digester, etc., it is relatively easy to concentrate, and in many cases it is possible to carry out coagulation concentration with no chemical injection or a very small amount of chemical injection. High concentration digestion processing is possible at low cost, and in addition, the digester can be made compact. Of course, the same effect can be obtained also when the fiber substance is directly added to the anaerobic treatment process input sludge. Similarly, in the solid-liquid separation step after the anaerobic treatment step, the solid-liquid separation property (dehydration ability) is enhanced as the amount of fiber material in the sludge increases, so the amount of fiber matter in sludge input to the solid-liquid separation step is important become. The larger the amount of fiber, the lower the flocculating agent addition rate at the time of solid-liquid separation, the lower the moisture content of the dewatered cake, and the lower the amount of dewatered cake discharged as waste discharged out of the system. Both costs and cake disposal costs are reduced. In order to quantitatively understand the “solid-liquid separation characteristics before and after anaerobic treatment” in consideration of these items to be studied, we previously showed in advance the amount of fibrous material remaining in the sludge before anaerobic treatment or sludge after anaerobic treatment. Solid content of sludge before and after anaerobic treatment process using the amount of fibrous material of sludge after 3 days aeration test (hereinafter also referred to as “FI3”) and the amount of fibrous material of sludge after 7 days of anaerobic vial test (hereinafter also referred to as “FO7”) It is desirable to evaluate the liquid separation performance.

以上に示すように、汚泥に添加する繊維物質による「生物担体特性」、「可燃性ガス増量」、「嫌気性処理前後の固液分離特性」を定量的に把握した上でプロセス全体が最も効率的にバランス良く機能し、処理性能の安定化と低コスト化が実現できるよう設計するためには、プロセス構築前に上述のAD3:繊維物質好気性分解率(%:投入繊維VSあたり百分率)、DD7:繊維物質嫌気性分解率(%:投入繊維VSあたり百分率)、FG7:繊維物質由来CH4発生率(%:投入繊維CODCr1gあたりCH4発生量0.35NLを100%とした場合の比較百分率)、FI3:3日間曝気試験後汚泥の繊維物率(%:汚泥VSSあたりの74μm以上粗浮遊物百分率)、及びFO7:7日間嫌気的バイアル試験後汚泥の繊維物率(%:汚泥VSSあたりの74μm以上粗浮遊物百分率)を測定し、それらの結果を踏まえて総合的に判断して、繊維物質の添加位置、添加割合、汚泥移送ルートやその割合等について最適化を図ることが望ましい。 As described above, the overall efficiency of the entire process is the most efficient after quantitatively grasping the “biological carrier characteristics”, “combustible gas increase”, and “solid-liquid separation characteristics before and after anaerobic treatment” by the fiber substance added to the sludge. In order to function in a well-balanced manner and to realize stabilization of processing performance and cost reduction, the above-mentioned AD3: fiber material aerobic degradation rate (%: percentage per input fiber VS) before process construction, DD7: fibrous material anaerobic degradation rate (%: percentage per charged fibers VS), FG7: Textile materials from CH 4 generation rate (%: comparison percentage is 100% of the charged fibers CODCr1g per CH 4 emissions 0.35NL ), FI3: fiber matter ratio of sludge after aeration test for 3 days (%: crude suspension percentage of at least 74 μm per sludge VSS), and FO7: fiber matter ratio of sludge after a 7 day anaerobic vial test (%: Measure the coarse floating matter percentage (74 μm or more per mud VSS), judge comprehensively based on the results, and optimize the addition position of the fiber material, the addition ratio, the sludge transfer route and the ratio etc. Is desirable.

本実施形態は水処理系や汚泥処理系に有機物としての繊維分を投入する方式であることから、本実施形態に係る処理を活用することにより、活性汚泥処理法の一種である長時間曝気法、OD法、嫌気好気法、嫌気無酸素好気法、ステップ流入法、膜分離活性汚泥、回分式活性汚泥法等の変法において、有機物処理以外のリン除去、窒素除去、汚泥減容化、等の評価項目を考慮した上での繊維物の添加位置と添加量の最適化を図ることも可能である。同様に、高濃度嫌気性消化、担体投入型嫌気性消化、乾式嫌気性消化等の嫌気性処理方式、ベルトプレス型、遠心型、スクリュー型、毛管現象利用型等の脱水処理方式等を考慮した、繊維物の添加位置と添加量の最適化を図ることも可能であることは勿論である。   Since the present embodiment is a method in which a fiber component as an organic substance is introduced into a water treatment system or a sludge treatment system, a long-time aeration method, which is a type of activated sludge treatment method, is utilized by utilizing the treatment according to the present embodiment. Removal of phosphorus other than organic matter treatment, nitrogen removal, sludge volume reduction in modified methods such as OD method, anaerobic aerobic method, anaerobic anoxic aerobic method, step inflow method, membrane separation activated sludge, batch activated sludge method etc. It is also possible to optimize the fiber addition position and addition amount in consideration of evaluation items such as. Similarly, anaerobic treatment methods such as high concentration anaerobic digestion, carrier input anaerobic digestion, dry anaerobic digestion, etc., and dewatering treatment methods such as belt press type, centrifugal type, screw type, capillary type utilizing type etc. are considered. Of course, it is possible to optimize the addition position and the addition amount of the fibrous material.

図1は、本発明の実施の形態に係る有機性廃水又は汚泥の処理方法の実施に好適な下水処理場の処理システムを表す概略図である。本処理システムは、有機性廃水または汚泥1を処理する最初沈澱池21、活性汚泥槽22、最終沈澱池23を含む水処理系2の処理設備と、最初沈澱池21で得られる初沈汚泥5及び最終沈澱池23で得られる余剰汚泥7を混合し、必要に応じて濃縮処理して混合生汚泥8とする混合槽31、混合生汚泥8を嫌気性処理する消化槽33及び消化槽33で得られる消化汚泥を固液分離する固液分離装置36を備える汚泥処理系3の処理設備とを備える。   FIG. 1 is a schematic view showing a treatment system of a sewage treatment plant suitable for implementation of the method for treating organic wastewater or sludge according to the embodiment of the present invention. The present treatment system comprises the treatment equipment of the water treatment system 2 including the first settling basin 21 for treating organic wastewater or sludge 1, the activated sludge tank 22 and the final settling basin 23, and the first settling sludge 5 obtained in the first settling basin 21. And the mixing tank 31 which mixes the excess sludge 7 obtained in the final settling tank 23 and concentrates it as necessary to make the mixed raw sludge 8, and the digestion tank 33 and the digestion tank 33 which treats the mixed raw sludge 8 anaerobically It comprises the processing equipment of the sludge treatment system 3 provided with a solid-liquid separation device 36 for solid-liquid separation of the obtained digested sludge.

最初沈澱池21では、流入水である有機性廃水または汚泥1から有機酸を多く含む初沈汚泥5と流出水4とに分離される。流出水4は活性汚泥槽22において好気性微生物である活性汚泥を含む微生物と共に好気性処理が行われ、活性汚泥混合液6が得られる。活性汚泥混合液6は、最終沈澱池23において固液分離されて余剰汚泥7と処理水が得られる。   In the first settling tank 21, organic wastewater or inflow 1 is separated into incipient sludge 5 containing a large amount of organic acid and outflow water 4 from organic wastewater or sludge 1. The effluent water 4 is subjected to aerobic treatment in the activated sludge tank 22 together with microorganisms including activated sludge which is an aerobic microorganism, whereby an activated sludge mixed liquid 6 is obtained. The activated sludge mixed solution 6 is subjected to solid-liquid separation in the final settling tank 23 to obtain excess sludge 7 and treated water.

最終沈澱池23で沈降分離した活性汚泥性微生物主体の余剰汚泥7は一部が活性汚泥槽22へ返送され、その他の余剰汚泥7と初沈汚泥5とが、混合槽31において混合されて混合生汚泥8が得られる。混合槽31で得られた混合生汚泥8は、消化槽33へ供給され、消化槽33において嫌気性微生物を用いた嫌気性処理が行われる。嫌気性消化処理により消化槽33から消化汚泥11が生成され、例えば脱水装置等の固液分離装置36において固液分離処理が行われ、脱水ケーキと濃縮液が得られる。濃縮液は最初沈澱池21へ循環される。なお、混合槽31は濃縮機能を有することができ、混合槽31における濃縮処理によって得られた濃縮分離水は最初沈澱池21へ返送される。   A part of the excess sludge 7 mainly composed of activated sludge microorganism which sediments and separates in the final settling tank 23 is returned to the activated sludge tank 22 and the other excess sludge 7 and the primary sludge 5 are mixed and mixed in the mixing tank 31 Raw sludge 8 is obtained. The mixed raw sludge 8 obtained in the mixing tank 31 is supplied to the digestion tank 33, and in the digestion tank 33, an anaerobic treatment using an anaerobic microorganism is performed. The digested sludge 11 is generated from the digestion tank 33 by the anaerobic digestion treatment, and solid-liquid separation treatment is performed, for example, in a solid-liquid separator 36 such as a dewatering device, to obtain a dehydrated cake and a concentrated liquid. The concentrate is first circulated to the sedimentation basin 21. The mixing tank 31 can have a concentration function, and the concentrated separated water obtained by the concentration processing in the mixing tank 31 is first returned to the settling tank 21.

本発明の実施の形態に係る有機性廃水または汚泥の処理方法は、図1に示すような、有機性廃水または汚泥を処理対象とし、微生物を利用して有機成分の処理を行う処理システムにおいて好適に用いられるものである。具体的には、本処理方法は、好気性微生物を用いた好気性処理を行う有機性廃水または汚泥、あるいは好気性処理後の有機性廃水または汚泥に対して生分解性有機系繊維物質を添加し、生分解性有機系繊維物質が添加された汚泥に対して嫌気性微生物を用いた嫌気性処理を行い、嫌気性処理の前段及び/又は後段において固液分離処理し、嫌気性処理及び固液分離処理の少なくとも1の処理に対して生分解性有機系繊維物質を更に添加することを含む。   The method for treating organic wastewater or sludge according to the embodiment of the present invention is suitable for a treatment system for treating organic wastewater or sludge as shown in FIG. 1 and treating microorganisms using microorganisms. Used for Specifically, in the present treatment method, a biodegradable organic fiber material is added to organic wastewater or sludge subjected to aerobic treatment using aerobic microorganisms, or organic wastewater or sludge after aerobic treatment. The sludge to which the biodegradable organic fiber material has been added is subjected to an anaerobic treatment using an anaerobic microorganism, and the solid-liquid separation treatment is carried out in the former stage and / or the latter stage of the anaerobic treatment. The method further comprises adding a biodegradable organic fiber material to at least one treatment of the liquid separation treatment.

生分解性有機系繊維物質が添加された汚泥の一部を、嫌気性処理を経由せずに嫌気性処理の後段の固液分離処理へ迂回させてもよい。生分解性有機系繊維物質中に例えばカルシウムイオン、硫酸イオン等を含む場合には、嫌気性処理に投入されることにより硫酸イオンが硫化水素化し、排ガス中の脱硫処理における薬品使用量が増加したり、処理槽内に石膏スケールが発生したりしてトラブルが生じる場合がある。このような生分解性有機系繊維物質を使用する場合には、汚泥の一部を後段の固液分離処理へ迂回させることにより、処理システムのトラブルを低減しながら生分解性有機系繊維物質の添加による固液分離特性を向上させることができる。   A part of the sludge to which the biodegradable organic fiber material is added may be diverted to the solid-liquid separation treatment of the latter stage of the anaerobic treatment without passing through the anaerobic treatment. When, for example, calcium ion, sulfate ion, etc. are contained in the biodegradable organic fiber material, the sulfate ion becomes hydrogen sulfide by being fed to the anaerobic treatment, and the amount of chemicals used in the desulfurization treatment in the exhaust gas increases. Or, gypsum scale may be generated in the treatment tank to cause problems. When using such biodegradable organic fiber material, by bypassing a part of the sludge to the subsequent solid-liquid separation treatment, it is possible to reduce the trouble of the treatment system while reducing the number of biodegradable organic fiber materials. The solid-liquid separation characteristic by the addition can be improved.

生分解性有機系繊維物質の物性に応じて、生分解性有機系繊維物質の添加位置及び添加率が調整されることが好ましい。以下において詳しく説明するが、生分解性有機系繊維物質の物性に応じて添加すべき量(添加率)や添加位置を調整することにより、処理プロセス全体の処理効率を向上することができる。   It is preferable that the addition position and the addition rate of the biodegradable organic fiber material be adjusted in accordance with the physical properties of the biodegradable organic fiber material. As described in detail below, the treatment efficiency of the entire treatment process can be improved by adjusting the amount (addition rate) and the addition position to be added according to the physical properties of the biodegradable organic fiber material.

生分解性有機系繊維物質の添加に際しては、有機性廃水または汚泥に生分解性有機系繊維物質を添加した場合における好気性処理、嫌気性処理、更には必要に応じて固液分離処理を模した試験を行い、試験の結果に基づいて、各添加位置における生分解性有機系繊維物質の添加率及び添加位置を調整することが好ましい。   When adding biodegradable organic fiber material, aerobic treatment, anaerobic treatment in case of adding biodegradable organic fiber material to organic wastewater or sludge, and, if necessary, solid-liquid separation treatment is simulated. It is preferable to conduct the test and adjust the addition rate and the addition position of the biodegradable organic fiber material at each addition position based on the result of the test.

(好気性処理への繊維物質添加)
好気性微生物を用いた好気性処理を行う有機性廃水または汚泥、あるいは好気性処理後の有機性廃水または汚泥に対して生分解性有機系繊維物質を添加するために好適な添加位置としては、例えば、図1に示す星印が付された4か所から添加することができる。即ち、(1)最初沈澱池21から越流した流出水4に添加する場合(図1の添加位置1)、(2)活性汚泥槽22に添加する場合(図1の添加位置2)、(3)最終沈澱池23において固液分離された余剰汚泥7のうち活性汚泥槽22に返送される返送汚泥に添加する場合(図1の添加位置3)、(4)最終沈澱池23において固液分離された余剰汚泥7に添加する場合(図1の添加位置4)などがある。
(Fiber substance addition to aerobic treatment)
As a suitable addition position for adding biodegradable organic fiber material to organic wastewater or sludge subjected to aerobic treatment using aerobic microorganisms, or organic wastewater or sludge after aerobic treatment, For example, it can be added from four places marked with stars shown in FIG. That is, (1) when added to the effluent water 4 overflowed from the first settling tank 21 (addition position 1 in FIG. 1), (2) when added to the activated sludge tank 22 (addition position 2 in FIG. 1) 3) When adding to the return sludge returned to the activated sludge tank 22 among the excess sludge 7 solid-liquid separated in the final settling tank 23 (addition position 3 in FIG. 1), (4) solid-liquid in the final settling tank 23 There are cases such as adding to the separated excess sludge 7 (addition position 4 in FIG. 1).

なお、図1の添加位置2に示す活性汚泥槽22に生分解性有機系繊維物質を添加する場合においては、活性汚泥槽22における処理として嫌気好気法等が採用される場合は、必要に応じて嫌気槽または好気槽のいずれかを選択して生分解性有機系繊維物質を添加することができる。   In addition, when adding a biodegradable organic fiber material to the activated sludge tank 22 shown in the addition position 2 of FIG. 1, when an anaerobic aerobic method etc. are employ | adopted as a process in the activated sludge tank 22, it is necessary. Depending on whether it is an anaerobic tank or an aerobic tank, the biodegradable organic fiber material can be added.

(嫌気性処理への添加)
嫌気性処理に対して生分解性有機系繊維物質を添加するために好適な添加位置としては、例えば、図2に示す星印が付された6か所から添加することができる。即ち、(1)流入原水である有機性廃水または汚泥1に添加する場合(図2の添加位置1)、(2)最終沈澱池23において固液分離され、返送汚泥を引き抜いた後の汚泥処理系3の処理設備へと供給される余剰汚泥7に添加する場合(図2の添加位置2)、(3)最終沈澱池23において固液分離された余剰汚泥7であって返送汚泥として活性汚泥槽22へ返送される汚泥を含む余剰汚泥7に添加する場合(図2の添加位置3)、(4)混合槽31に添加する場合(図2の添加位置4)、(5)混合槽31で混合され必要に応じて濃縮処理された濃縮汚泥に対して添加する場合(図2の添加位置5)、(6)固液分離装置36で得られた分離水に添加する場合(図2の添加位置6)などがある。
(Addition to anaerobic treatment)
As a suitable addition position for adding a biodegradable organic fiber material to anaerobic treatment, for example, it can be added from six places marked with an asterisk shown in FIG. That is, (1) when added to organic wastewater or sludge 1 which is inflowing raw water (addition position 1 in FIG. 2), (2) sludge treatment after solid-liquid separation in final settling tank 23 and withdrawal of return sludge When it is added to the excess sludge 7 supplied to the treatment equipment of system 3 (addition position 2 in FIG. 2), (3) the excess sludge 7 solid-liquid separated in the final settling tank 23 and activated sludge as return sludge When added to excess sludge 7 including sludge returned to tank 22 (adding position 3 in FIG. 2), (4) added to mixing tank 31 (adding position 4 in FIG. 2), (5) mixing tank 31 (6) when added to the separated water obtained by the solid-liquid separator 36 (FIG. 2) There are addition positions 6) and the like.

図2の添加位置1で繊維物質が添加される場合、添加された繊維物質は最初沈澱池21で沈降し、混合槽31で混合及び必要に応じて濃縮処理されて、消化槽33へと供給される。図2の添加位置2で繊維物質が添加される場合、繊維物質は混合槽31を経由して消化槽33へと供給される。図2の添加位置3で繊維物質が供給される場合、繊維物質の一部が混合槽31を経由して消化槽33へと供給されるとともに、繊維物質の他の一部が水処理系2へと返送されることで好気性処理の処理効率の向上が期待できる。図2の添加位置6で固液分離装置36から返流される分離水に対して繊維物質が供給される場合は、繊維物質の一部が最初沈澱池21、混合槽31を経て消化槽33へ供給されるとともに、繊維物質の他の一部が分離水の成分と一部反応することによって、水処理系2の設備の負荷を軽減する効果がある。   When the fiber material is added at the addition position 1 in FIG. 2, the added fiber material first settles in the settling tank 21, is mixed and optionally concentrated in the mixing tank 31, and is supplied to the digestion tank 33. Be done. When the fiber material is added at the addition position 2 of FIG. 2, the fiber material is supplied to the digester 33 via the mixing tank 31. When the fiber material is supplied at the addition position 3 in FIG. 2, a part of the fiber material is supplied to the digester 33 via the mixing tank 31 and the other part of the fiber material is the water treatment system 2 It is expected to improve the processing efficiency of aerobic processing by being returned to the When the fiber material is supplied to the separated water returned from the solid-liquid separator 36 at the addition position 6 in FIG. 2, a part of the fiber material passes through the first settling tank 21 and the mixing tank 31 and the digestion tank 33 As a result, the other part of the fiber material partially reacts with the components of the separated water while being supplied to the water treatment system 2, thereby reducing the load on the equipment of the water treatment system 2.

(固液分離処理への添加)
固液分離処理に対して生分解性有機系繊維物質を添加するために好適な位置としては、例えば、図3に示す星印が付された7箇所から添加することができる。即ち、(1)固液分離装置36へ投入される消化汚泥11へ添加する場合(図3の添加位置1)、(2)脱水装置等の固液分離装置36に直接添加する場合(図3の添加位置2)、(3)混合槽31で得られる混合生汚泥8を嫌気性処理を行う消化槽33を経由せずに嫌気性処理の後段の固液分離処理へ迂回させる迂回ライン37へ添加する場合(図3の添加位置3)、(4)混合生汚泥8または混合槽31で濃縮処理された濃縮汚泥に対して添加する場合(図3の添加位置4)、(5)混合槽31または混合槽31が備える濃縮機構へ添加する場合(図3の添加位置5)、(6)最終沈澱池23から引き抜かれた余剰汚泥7へ添加する場合(図3の添加位置6)、(7)流入原水である有機性廃水または汚泥1に添加する場合(図3の添加位置7)などがある。
(Addition to solid-liquid separation process)
As a suitable position for adding a biodegradable organic fiber material to the solid-liquid separation treatment, for example, it can be added from seven places marked with an asterisk shown in FIG. That is, (1) when added to the digested sludge 11 charged to the solid-liquid separator 36 (addition position 1 in FIG. 3), (2) when directly added to the solid-liquid separator 36 such as a dehydrator (FIG. 3) 2), (3) To the bypass line 37 for diverting the mixed raw sludge 8 obtained in the mixing tank 31 to the solid-liquid separation process of the latter stage of the anaerobic treatment without passing through the digestion tank 33 for anaerobic treatment. In the case of addition (addition position 3 in FIG. 3), (4) in the case of addition to the mixed raw sludge 8 or concentrated sludge concentrated in the mixing tank 31 (addition position 4 in FIG. 3), (5) mixing tank 31 or when added to the concentration mechanism provided in the mixing tank 31 (addition position 5 in FIG. 3), (6) when added to excess sludge 7 withdrawn from the final settling tank 23 (addition position 6 in FIG. 3) 7) When adding to organic wastewater or sludge 1 which is influent raw water (addition of Fig. 3 Location 7), and the like.

図3の添加位置4及び5で繊維物質が添加される場合は、消化槽33での繊維物質の分解率に応じて固液分離工程で寄与する繊維物質変化量を考慮に入れることが好ましい。図3の添加位置6で繊維物質が添加される場合は、余剰汚泥7の一部を返送汚泥として活性汚泥槽22へ返送することと、残りの汚泥を消化槽33で分解させることを考慮に入れることが好ましい。図3の添加位置7で繊維物質が添加される場合、添加された繊維物質は最初沈澱池21で沈降し、混合槽31で混合及び必要に応じて濃縮処理されて、消化槽33へと供給されることを考慮に入れることが好ましい。   When the fiber material is added at the addition positions 4 and 5 in FIG. 3, it is preferable to take into consideration the amount of change in the fiber material contributed in the solid-liquid separation step according to the decomposition rate of the fiber material in the digestion tank 33. When the fiber material is added at the addition position 6 in FIG. 3, in consideration of returning a part of the excess sludge 7 as return sludge to the activated sludge tank 22 and decomposing the remaining sludge in the digestion tank 33 It is preferable to put it. When the fiber material is added at the addition position 7 in FIG. 3, the added fiber material first settles in the settling tank 21, is mixed in the mixing tank 31 and concentrated if necessary, and is supplied to the digestion tank 33. It is preferable to take into account what is done.

これら好気性処理における「生物担体特性」、嫌気性処理における「可燃性ガス増量」、固液分離処理における「固液分離特性」をそれぞれ考慮した添加方法は、各処理施設の設置面積、レイアウト、水処理制御システム、制御盤容量、繊維物質搬入経路、繊維物質添加制御システム、維持管理作業上の動線及びそれらすべてを考慮した上での設備及び維持管理コストなどを考慮した上で、繊維物の最適添加位置を決定することが望ましい。   The addition methods that take into consideration the “biological carrier characteristics” in these aerobic treatments, “increasing combustible gas” in anaerobic treatments, and “solid-liquid separation characteristics” in solid-liquid separation treatments are the installation area, layout, and the like of each treatment facility. Considering the water treatment control system, control panel capacity, fiber material import route, fiber material addition control system, flow lines for maintenance work and equipment and maintenance costs taking into account all of them, etc. It is desirable to determine the optimum addition position of

特に、既設プラントの改造工事として本実施形態を採用する場合には、繊維物質の添加位置の選択は重要なポイントになるものであり、繊維物質の種類やプラントの状況に応じて図1〜図3に例示した添加位置を適宜組み合わせることができる。また、図1〜図3に例示した添加位置からも理解できるように、1の添加位置で「生物担体特性」、「可燃性ガス増量」及び「固液分離特性」の3つの効果のうち2つ以上の効果を同時に期待できる添加位置も存在するが、繊維物質の物性に応じて、以下に例示する5つの評価項目(AD3、DD7、FG7、FI3、FO7)に関する試験データを元にして判断することが望ましい。   In particular, when the present embodiment is adopted as remodeling work of an existing plant, the selection of the addition position of the fiber material is an important point, and depending on the type of the fiber material and the condition of the plant, FIGS. The addition position illustrated to 3 can be combined suitably. Further, as can be understood from the addition positions illustrated in FIGS. 1 to 3, 2 of the three effects of “biological carrier property”, “combustible gas increase” and “solid-liquid separation property” at 1 addition position. Although there are addition positions where one or more effects can be expected simultaneously, judgment is made based on test data on five evaluation items (AD3, DD7, FG7, FI3, FO7) exemplified below, according to the physical properties of the fiber material. It is desirable to do.

(生分解性有機系繊維物質)
生分解性有機系繊維物質としては、比重0.75〜1.15、更には0.96〜1.05、繊維長6.0mm以下、更には5.0mm以下の繊維を含む含水率15%以上の繊維物質が好適に利用される。具体的には、農産物系廃棄物を粉砕加工処理したセルロース系繊維状物(繊維物A)、食品加工系廃棄物を粉砕加工処理した果実系繊維状物(繊維物B)、木材加工系向上廃棄物を一部化学処理したセルロース、リグニン系繊維状物(繊維物C)などを用いることができる。
(Biodegradable organic fiber material)
The biodegradable organic fiber material has a specific gravity of 0.75 to 1.15, further 0.96 to 1.05, a fiber length of 6.0 mm or less, and further a fiber having a water length of 5.0 mm or less 15% The above fiber materials are suitably used. Specifically, cellulose fiber material (fiber material A) obtained by pulverizing and processing agricultural waste, fruit fiber material obtained by crushing food processing waste (fiber material B), improvement of wood processing system It is possible to use cellulose obtained by partially chemically treating waste, lignin-based fibrous material (fibrous C), and the like.

繊維物Aとしては、含水率が15〜45%で、繊維長が50μm〜5.0mm、より典型的には75μm〜3.0mmの繊維状物質である。この繊維状物質は比重が0.75〜1.00であり、比重が0.85〜0.95である。繊維状物質を投入する水処理プロセスの中では、比重が小さすぎると浮上スカムとなる場合があり、逆に比重が大き過ぎると反応槽内で沈降する場合があり、いずれも繊維分に付着した微生物の反応性を低下させるリスクが生じる。なお、ここで表記した比重は含水率15%の時の気乾比重を示したものである。   The fibrous material A is a fibrous material having a moisture content of 15 to 45% and a fiber length of 50 μm to 5.0 mm, more typically 75 μm to 3.0 mm. This fibrous material has a specific gravity of 0.75 to 1.00 and a specific gravity of 0.85 to 0.95. In the water treatment process in which the fibrous material is charged, floating scum may occur if the specific gravity is too small, and conversely, it may precipitate in the reaction tank if the specific gravity is too large, and all adhere to the fiber content There is a risk of reducing the reactivity of the microorganism. The specific gravity described here is the air-dried specific gravity at a water content of 15%.

繊維物Bとしては、含水率が50〜85%で、繊維長が30μm〜4.0mm、より典型的には150μm〜3.0mmの繊維状物質である。この繊維状物は比重が0.85〜1.10であり、より典型的には比重が0.95〜1.05である。なお、ここで表記した比重は含水率50%の時の気乾比重を示したものである。   The fibrous material B is a fibrous material having a moisture content of 50 to 85% and a fiber length of 30 μm to 4.0 mm, more typically 150 μm to 3.0 mm. This fibrous material has a specific gravity of 0.85 to 1.10, and more typically, a specific gravity of 0.95 to 1.05. The specific gravity described here indicates the air-dried specific gravity at a water content of 50%.

繊維物Cとしては、含水率が40〜97%で固形状物や液状物等形態は様々であり、繊維長が30μm〜6.0mm、より典型的には40μm〜4.0mm、比重が0.75〜0.95、より典型的には比重が0.75〜0.90の繊維状物質を含む。なお、ここで表記した比重は含水率15%の時の気乾比重を示したものである。   The fibrous material C has a moisture content of 40 to 97% and various forms such as a solid or liquid, and the fiber length is 30 μm to 6.0 mm, more typically 40 μm to 4.0 mm, and the specific gravity is 0 Containing fibrous materials of 75 to 0.95, more typically 0.75 to 0.90; The specific gravity described here is the air-dried specific gravity at a water content of 15%.

発生元が異なる3種類の繊維物A、B、Cに対して、それぞれ上述のAD3(繊維物質好気性分解率(%:投入繊維VSあたり百分率))、DD7(繊維物質嫌気性分解率(%:投入繊維VSあたり百分率))、FG7(繊維物質由来CH4発生率(%:投入繊維CODCr1gあたりCH4発生量0.35NLを100%とした場合の比較百分率))、FI3(3日間曝気試験後汚泥の繊維物率(%:汚泥VSSあたりの74μm以上粗浮遊物百分率))、及びFO7(7日間嫌気的バイアル試験後汚泥の繊維物率(%:汚泥VSSあたりの74μm以上粗浮遊物百分率))を測定した例を図4に示す。 The above-mentioned AD3 (Fibrous material aerobic decomposition rate (%: percentage per input fiber VS) above, DD7 (Fibrous material anaerobic decomposition rate (%) for three types of fibrous materials A, B, C having different sources) : percentage per charged fibers VS)), FG7 (fiber material from CH 4 generation rate (%: comparison percentage is 100% to CH 4 emissions 0.35NL per charged fibers CODCr1g)), FI3 (3 days aeration test Fiber matter ratio of post sludge (%: 74 μm or more coarse floe percentage per sludge VSS), and FO7 (7 day fiber matter ratio of sludge after anaerobic vial test (%: 74 μm coarse floe percentage per sludge VSS) An example of measuring) is shown in FIG.

図4に示すように、繊維物Aの場合、好気処理のAD3は13%と分解率は低いものの、嫌気処理のDD7は72%と分解率が高く、嫌気処理におけるCH4化率FG7も64%と比較的高い。また、好気処理後の繊維物率FI3は18%と比較的高く、固液分離濃縮性は比較的良いと思われ、低薬注濃縮及び高濃度消化が可能であると推測できる。嫌気性消化処理後の繊維物率FO7は10%と比較的低く、固液分離性能は比較的悪いと推測される。 As shown in FIG. 4, in the case of the textile A, although the decomposition rate is low at 13% in aerobic treatment AD3, the decomposition rate is high at 72% in DD7 anaerobic treatment, and the CH 4 conversion ratio FG7 in anaerobic treatment is also It is relatively high at 64%. Also, the fiber rate FI3 after aerobic treatment is relatively high at 18%, and solid-liquid separation and concentration seems to be relatively good, and it can be inferred that low drug concentration and high concentration digestion are possible. The fiber content FO7 after anaerobic digestion is relatively low at 10%, and the solid-liquid separation performance is estimated to be relatively poor.

図4に示す繊維物Aの評価項目の結果を鑑みてプラント全体のプロセスを設計した場合、好気性処理工程において繊維物Aを対汚泥MLSSあたり3〜30%の添加率、より好ましくは8〜22%の添加率で投入することが好ましい。嫌気性処理工程に導入する汚泥を例えば、無薬注機械濃縮とするか、または対汚泥SSあたり凝集剤を0.20%以下の薬注率凝集後2.0〜4.5倍、より好ましくは2.5〜3.5倍となるように濃縮し、約30日おこなうことを想定すると、嫌気性消化工程後の汚泥中には繊維分があまり残留しないため、嫌気性処理工程へ投入する対汚泥SSあたり3〜20%の添加率、より好ましくは5〜15%の添加率で繊維物Aを再添加して固液分離性を高めて固液分離処理(脱水処理)する。   When the process of the whole plant is designed in view of the result of the evaluation item of the textile A shown in FIG. 4, the addition rate of the textile A to the sludge MLSS in the aerobic treatment step is 3 to 30%, more preferably 8 to 8 It is preferable to charge at an addition rate of 22%. For example, the sludge introduced into the anaerobic treatment step is mechanically concentrated without chemical injection, or 2.0 to 4.5 times the coagulant content relative to 0.20% or less of the coagulant per sludge SS, more preferably Is concentrated so that it becomes 2.5 to 3.5 times, and assuming that it is carried out about 30 days, there is not much fiber remaining in the sludge after the anaerobic digestion process, so it is put into the anaerobic treatment process The solid matter separation is enhanced by re-adding the fiber material A at an addition rate of 3 to 20%, more preferably 5 to 15%, to the sludge SS to solid / liquid separation treatment (dehydration treatment).

上記処理方式により得られるメリットとしては、低コスト高濃度消化処理により必要とする消化槽容量が小さくできる点、消化槽でのCH4余剰ガス回収量の増加、脱水処理における薬注率軽減、脱水処理後の有料廃棄ケーキ発生量軽減等が挙げられる。 The merits obtained by the above processing method are that the required capacity of the digester can be reduced by low cost high concentration digestion, increase of CH 4 surplus gas recovery amount in digester, reduction of dosage rate in dehydration, dehydration There is a reduction in the amount of chargeable waste cake generated after processing.

繊維物Bの場合、好気処理のAD3は58%と分解率は高く、嫌気処理のDD7も83%と分解率は非常に高い。嫌気処理におけるCH4化率FG7も69%と比較的高い。一方で、好気処理後の繊維物率を示すFI3は11%と比較的低く、この結果から、添加した繊維物がほとんど分解されてしまい、好気処理後に残留する量はわずかであることが分かる。よって、繊維物Bの場合、好気性処理を経た汚泥に対する固液分離濃縮性は比較的悪いと考えられ、このままでは低薬注濃縮及び高濃度消化は困難であると推測できる。嫌気性消化処理後の繊維物率を示すFO7も7%と比較的低く、このままでは消化汚泥の固液分離性能も比較的悪いと推測される。 In the case of the fibrous material B, the decomposition rate is high at 58% in the aerobic treatment AD3 and is very high at 83% on the anaerobic treatment DD7. The CH 4 conversion rate FG7 in anaerobic treatment is also relatively high at 69%. On the other hand, FI3 indicating the percentage of fibrous material after aerobic treatment is relatively low at 11%, and as a result, the added fibrous material is almost decomposed, and the amount remaining after aerobic treatment is small I understand. Therefore, in the case of the fiber material B, the solid-liquid separation-concentration property to sludge subjected to aerobic treatment is considered to be relatively poor, and it can be inferred that low concentration injection and high concentration digestion are difficult as it is. The FO7 indicating the fiber content after anaerobic digestion is also relatively low at 7%, and it is presumed that the solid-liquid separation performance of digested sludge is also relatively poor if this is left as it is.

繊維物Bの評価項目の結果を鑑みてプラント全体のプロセスを設計した場合、好気性処理工程において繊維物Bは生物担体としての名目では好気性処理工程には多量には導入せず、必要に応じて水処理系の脱窒用水素供与体として適宜添加する方式とするか、好気性処理後の最終沈澱池23から得られる余剰汚泥7に添加する方式とし、その際の添加率としては対汚泥MLSSあたり2〜12%が好ましい。さらに、繊維物Bを好気性処理後の嫌気性処理工程に導入する直前の汚泥に対して、対汚泥MLSSあたり6〜30%の添加率、より好ましくは10〜20%で添加し、濃縮処理は行わずに嫌気性消化工程に導入する。30日の嫌気性消化工程後の汚泥中には繊維分がほぼ分解してあまり残留しないため、固液分離直前に対汚泥SSあたり3〜15%の添加率、より好ましくは5〜10%で繊維物Bを再添加して固液分離性を高めて脱水処理する。   When the process of the whole plant is designed in consideration of the result of the evaluation item of the textile material B, the textile material B is not introduced into the aerobic treatment process in large quantities in the nominal as a biological carrier in the aerobic treatment process. Accordingly, the system is appropriately added as a hydrogen donor for denitrification of water treatment system, or added to excess sludge 7 obtained from final settling tank 23 after aerobic treatment, and the addition rate at that time is 2 to 12% per sludge MLSS is preferred. Furthermore, with respect to the sludge immediately before introducing the fiber material B into the anaerobic treatment process after aerobic treatment, the addition rate is 6 to 30% per sludge MLSS, more preferably 10 to 20%, and concentration treatment Into the anaerobic digestion process without Since the fiber content is almost decomposed and hardly remains in the sludge after the 30-day anaerobic digestion process, the addition rate of 3 to 15% per sludge SS, more preferably 5 to 10% just before solid-liquid separation The fiber material B is re-added to enhance solid-liquid separation and dewatered.

上記処理方式により得られるメリットとしては、消化槽でのCH4余剰ガス回収量の増加、脱水処理における薬注率軽減、脱水処理後の有料廃棄ケーキ発生量軽減等が挙げられる。 The merits obtained by the above-mentioned processing method include an increase in the amount of CH 4 surplus gas recovered in the digestion tank, a reduction in chemical injection rate in dehydration processing, and a reduction in the generation amount of tolled waste cake after dehydration processing.

繊維物Cの場合、好気処理のAD3は7%、嫌気処理のDD7も24%と分解率はともに低く、嫌気処理におけるCH4化率FG7も28%と比較的低い。好気処理後の繊維物率FI3は20%と比較的高く、添加した繊維物の多くが残留していることが分かる。そのため好気性処理を経た汚泥に対する固液分離濃縮性は比較的良いと考えられ、低薬注濃縮及び高濃度消化は容易であると推測できる。嫌気性消化処理後の繊維物率FO7は17%と比較的高く、消化汚泥の固液分離性能も比較的良いと推測される。 In the case of the fibrous material C, the decomposition rate is low at 7% in the aerobic treatment AD 7 and at 24% in the anaerobic treatment DD 7 and is relatively low at 28% in the CH 4 conversion rate FG 7 in the anaerobic treatment. It can be seen that the fiber content FI3 after aerobic treatment is relatively high at 20%, and most of the added fibers remain. Therefore, solid-liquid separation and concentration for sludge subjected to aerobic treatment is considered to be relatively good, and it can be inferred that low chemical concentration and high concentration digestion are easy. The fiber content FO7 after anaerobic digestion is relatively high at 17%, and it is speculated that the solid-liquid separation performance of the digested sludge is also relatively good.

繊維物Cの評価項目の結果を鑑みてプラント全体のプロセスを設計した場合、好気性処理工程において繊維物Cを対汚泥MLSSあたり2〜18%の添加率、より好ましくは5〜12%の添加率で活性汚泥中に投入し、嫌気性処理工程に導入する汚泥は無薬注または対汚泥SSあたり凝集剤を0.15%以下の薬注率凝集後1.5〜4.5倍、より好ましくは2.5〜3.5倍に機械濃縮することが効率的には良い。ただし、添加した繊維物からの余剰CH4ガス回収量増加はあまり見込めないことから必要以上に好気性処理工程や嫌気性消化工程に導入する必要性はないと考えられる。 When the process of the whole plant is designed in consideration of the result of the evaluation item of the fiber C, the addition ratio of 2 to 18% of the fiber C per sludge MLSS, more preferably 5 to 12% in the aerobic treatment step. The sludge to be introduced into the activated sludge at a fixed rate and introduced into the anaerobic treatment process is 1.5 to 4.5 times after the chemical rate of less than 0.15% of the chemical injection rate or 0.15% or less of flocculant per sludge SS Preferably, mechanical concentration of 2.5 to 3.5 times is efficiently good. However, since it is unlikely to increase the amount of excess CH 4 gas recovered from the added fiber material, it is considered unnecessary to introduce it into the aerobic treatment step or the anaerobic digestion step more than necessary.

また、繊維物Cはカルシウムイオンと硫酸イオンを比較的多く含むことから、好気性処理工程ではリン酸イオンとカルシウムイオンが結合したリン酸カルシウム粒子が比較的多く発生し、水処理系におけるリン除去に貢献することができる。一方で嫌気性消化工程では繊維物C由来と思われる硫酸イオンが硫化水素化し排ガス中の脱硫処理における薬品使用量増加と石膏スケールの発生により一部トラブルが見られる場合があることから、繊維物Cの好気性処理工程と嫌気性消化工程へ導入する量はそれらのデメリットが出にくい範囲内での調整が必要である。30日の嫌気性消化工程後の汚泥中には繊維分が多く残留しており、このままの汚泥でもケーキ含水率は比較的低いが、さらに対汚泥SSあたり1〜12%、より好ましくは3〜8%の添加率で繊維物Cを再投入することでさらなる脱水性向上が可能である。   Moreover, since the fiber material C contains a relatively large amount of calcium ions and sulfate ions, relatively many calcium phosphate particles in which phosphate ions and calcium ions are combined are generated in the aerobic treatment step, which contributes to phosphorus removal in the water treatment system can do. On the other hand, in the anaerobic digestion process, the sulfate ion considered to be derived from fiber material C becomes hydrogen sulfide, and some problems may be seen due to the increase in the amount of chemicals used in desulfurization treatment in exhaust gas and the generation of gypsum scale. It is necessary to adjust the amount of C introduced into the aerobic treatment step and the anaerobic digestion step within the range where the disadvantages are unlikely to occur. A large amount of fiber remains in the sludge after the 30-day anaerobic digestion process, and even with this sludge, the moisture content of the cake is relatively low, but it is further 1 to 12% per sludge SS, more preferably 3 to 3 It is possible to further improve the dewatering ability by re-introducing the fiber material C at an addition rate of 8%.

上記処理方式により得られるメリットとしては、水処理系におけるリン除去効果によるリン除去用薬品使用量軽減、低コスト高濃度消化処理により必要とする消化槽容量が小さくなる点、消化槽でのCH4余剰ガス回収量の増加、脱水処理における薬注率軽減、脱水処理後の有料廃棄ケーキ発生量軽減等が挙げられる。 Among the advantages obtained by the above treatment method are the reduction in the amount of chemicals used to remove phosphorus by the phosphorus removal effect in water treatment systems, the reduction in digester volume required by low cost high concentration digestion treatment, CH 4 in the digester Examples of the method include an increase in the amount of surplus gas recovered, a reduction in the rate of chemical injection in dehydration processing, and a reduction in the amount of tolled cake generated after dehydration processing.

(処理装置)
本発明の実施の形態に係る処理装置は、有機性廃水または汚泥に対して好気性微生物を用いた好気性処理を行う好気性処理手段と、有機性廃水または汚泥、あるいは好気性処理後の有機性廃水または汚泥に対して生分解性有機系繊維物質を添加する添加手段と、生分解性有機系繊維物質が添加された汚泥に対して嫌気性処理を行う嫌気性処理手段と、嫌気性処理の前段及び/又は後段において固液分離処理する固液分離手段と、嫌気性処理及び固液分離処理の少なくとも1の処理に対して、生分解性有機系繊維物質を更に添加する再添加手段とを備える。
(Processing device)
The treatment apparatus according to the embodiment of the present invention comprises an aerobic treatment means for performing an aerobic treatment using an aerobic microorganism on organic wastewater or sludge, an organic wastewater or sludge, or an organic after aerobic treatment. Additive means for adding biodegradable organic fiber material to anaerobic wastewater or sludge, anaerobic treatment means for performing anaerobic treatment on sludge to which biodegradable organic fiber material is added, anaerobic treatment Solid-liquid separation means for performing solid-liquid separation treatment in the first stage and / or second stage of the treatment, and re-addition means for further adding biodegradable organic fiber material to at least one treatment of anaerobic treatment and solid-liquid separation treatment Equipped with

好気性処理手段としては、例えば、活性汚泥等の好気性微生物を用いて廃水または汚泥を処理するための図1〜図3に示す活性汚泥槽22が好適に用いられる。添加手段は、生分解性有機系繊維物質を所定の添加率で添加することが可能な装置であれば既知の任意の手段が使用できる。嫌気性処理手段としては、嫌気性微生物を用いて嫌気性処理を行い、メタンガス等のバイオガスを発生させるための処理装置であり、例えば図1〜図3の消化槽33が利用できる。嫌気性処理装置の前段には、汚泥を濃縮処理するための濃縮機等の固液分離手段を設けることができる。嫌気性処理装置の後段には、嫌気性処理によって発生した消化汚泥11を脱水処理するための脱水装置等の例えば図1〜図3の固液分離装置36を設けることができる。   As the aerobic treatment means, for example, an activated sludge tank 22 shown in FIGS. 1 to 3 for treating wastewater or sludge using an aerobic microorganism such as activated sludge is suitably used. The addition means may be any known means as long as it is an apparatus capable of adding biodegradable organic fiber material at a predetermined addition rate. The anaerobic treatment means is a treatment device for performing an anaerobic treatment using an anaerobic microorganism to generate biogas such as methane gas. For example, the digestion tank 33 of FIGS. 1 to 3 can be used. At the front stage of the anaerobic treatment apparatus, solid-liquid separation means such as a concentrator for concentrating sludge can be provided. The solid-liquid separator 36 shown in FIGS. 1 to 3 such as a dewatering device for dewatering the digested sludge 11 generated by the anaerobic treatment can be provided downstream of the anaerobic treatment device.

図3に示すように、生分解性有機系繊維物質が添加された汚泥の一部を、嫌気性処理手段である消化槽33を経由せずに消化槽33の後段の固液分離装置36へと迂回させる迂回ライン37を備えていてもよい。また、上述したように、添加される生分解性有機系繊維物質に対して好気性処理、嫌気性処理及び固液分離処理を模した試験を行い、試験により得られた生分解性有機系繊維物質の物性に基づいて、各添加位置における生分解性有機系繊維物質の添加率を調整する制御手段(不図示)を更に備えていても良い。   As shown in FIG. 3, a part of the sludge to which the biodegradable organic fiber material is added is transferred to the solid-liquid separator 36 at the latter stage of the digestion tank 33 without passing through the digestion tank 33 which is an anaerobic treatment means. And a bypass line 37 may be provided. In addition, as described above, the biodegradable organic fiber material obtained by the test is conducted by carrying out a test simulating aerobic treatment, anaerobic treatment and solid-liquid separation treatment to the added biodegradable organic fiber material. Control means (not shown) may be further provided to adjust the addition rate of the biodegradable organic fiber material at each addition position based on the physical properties of the substance.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention are given below together with comparative examples, but these examples are provided to better understand the present invention and its advantages, and are not intended to limit the invention.

F下水処理場に流入する原水を用いたパイロット試験として図5に示す処理フローに基づいて、実施例1〜3の処理を行った。図5の(1)は実施例1における繊維物質の添加位置、(2)は実施例2における繊維物質の添加位置、(3)は実施例3における添加位置をそれぞれ示す。   The treatments of Examples 1 to 3 were performed based on the treatment flow shown in FIG. 5 as a pilot test using raw water flowing into the F sewage treatment plant. (1) of FIG. 5 shows the addition position of the fiber material in Example 1, (2) shows the addition position of the fiber material in Example 2, and (3) shows the addition position in Example 3.

水処理系は嫌気好気法を採用する活性汚泥処理法に準じた運転条件とした。評価項目と関連する運転条件としては、水処理系では活性汚泥処理のHRT:10時間、SRT:72時間とし、汚泥処理系では、初沈汚泥と余剰汚泥の混合生汚泥を消化槽に投入し、消化条件は35℃中温消化、消化槽水理学的滞留日数は25日、汚泥処理ではベルトプレス型脱水機を採用し、単価500円/kgの高分子凝集剤1液処理による脱水後、脱水ケーキを15,000円/tで場外搬送する方式とし、使用電力単価は15円/kwhとして評価した。   The water treatment system was operated under the activated sludge treatment method adopting anaerobic anaerobic method. The operating conditions related to the evaluation items are HRT: 10 hours for activated sludge treatment and SRT: 72 hours for water treatment system, and mixed sludge of primary sludge and excess sludge is put into the digester in the sludge treatment system. Digestion conditions: medium temperature digestion at 35 ° C, digestion tank hydraulic retention days: 25 days, adopts a belt press type dewatering machine for sludge treatment, and dewatering after dewatering by polymer flocculant 1 liquid treatment of unit price 500 yen / kg, dewatering The cake was transported out of the room at 15,000 yen / t, and the power unit price was evaluated as 15 yen / kwh.

実施例1〜3で添加する繊維物質の添加率と添加位置に関しては、上述した5つの評価項目(AD3、DD7、FG7、FI3、FO7)に関する物性データを基に添加率及び添加位置ともにそれぞれ適正値に設定して運転を行った。実施例1〜3におけるプロセスの評価項目は、すべて比較例1における処理対象流入下水処理量あたりの性能数値に対する比較百分率として表記し、項目としては「プラント動力費」「使用薬品費」「プラント設置面積」「余剰CH4ガス回収量」「ケーキ処分費」の5項目とした。結果を表1に示す。 Regarding the addition rate and addition position of the fiber substance to be added in Examples 1 to 3, the addition rate and addition position are respectively appropriate based on the physical property data on the above five evaluation items (AD3, DD7, FG7, FI3 and FO7) The operation was performed with the value set. The evaluation items of the processes in Examples 1 to 3 are all expressed as a comparison percentage to the performance figures per influent sewage treatment amount to be treated in Comparative Example 1, and the items “Plant power cost” “Used chemical cost” “Plant installation The five items were “Area”, “Excess CH 4 gas recovery amount” and “Cake disposal cost”. The results are shown in Table 1.

実施例1では、繊維物Aを好気処理工程の対汚泥MLSSあたり15%の添加率で添加し、嫌気性処理工程に導入する汚泥に対して対汚泥SSあたり0.1%の高分子凝集剤添加後、スクリーン型機械濃縮機を用いて汚泥濃度を2.5倍に濃縮し、濃縮汚泥を滞留日数25日の嫌気性消化工程に導入し、嫌気性消化後の汚泥に対して汚泥SSあたり8%の添加率で繊維物Aを汚泥に再添加して固液分離(脱水工程)に導入し、高分子凝集剤を対汚泥SSあたり1.2%添加することで脱水ケーキを得る方法を採用した。   In Example 1, the fibrous material A is added at an addition rate of 15% per sludge MLSS in the aerobic treatment process, and 0.1% of polymer flocculation per sludge SS is added to the sludge introduced into the anaerobic treatment process. After the addition of the agent, the sludge concentration is concentrated 2.5 times using a screen type mechanical concentrator, and the concentrated sludge is introduced into the anaerobic digestion process for 25 days of retention days, and sludge SS is applied to the sludge after anaerobic digestion. Method to obtain dewatered cake by re-adding the fiber A to sludge with an addition rate of 8% per unit and introducing it into solid-liquid separation (dehydration process) and adding polymer flocculant 1.2% per sludge SS It was adopted.

その結果として、プラント動力費は12pt%削減できた。これは消化槽に投入する汚泥を2.5倍に濃縮したことから消化槽容量が比較例1の2/5に小さくなり、それに伴い攪拌機、ポンプ、加温設備等の付帯設備の動力が小さくなったことが主要因である。使用薬品は、汚泥濃縮用凝集剤として新たに使用したものの、脱水用凝集剤としては比較的低薬注率で良好な脱水が可能となったことから全体としては13pt%削減できた。プラント設置面積は消化槽容量が比較例1の2/5であるため全体としては15pt%減となった。   As a result, the plant power cost could be reduced by 12 pt%. This is because the sludge introduced into the digestion tank is concentrated 2.5 times, and the volume of the digestion tank is reduced to 2/5 of Comparative Example 1. Accordingly, the power of ancillary equipment such as a stirrer, pump and heating equipment is small. Is the main factor. The chemicals used were newly used as flocculants for sludge concentration, but as dewatering flocculants, they could be dewatered at a relatively low injection rate and reduced by 13 pt% as a whole. The plant installation area was reduced by 15 pt% as a whole since the digester capacity was 2/5 of Comparative Example 1.

消化槽でのCH4余剰ガス回収量は有機物として新たに投入した繊維物A由来の発生ガスが追加となった他、消化槽容量が2/5となったことから消化槽加温用の回収CH4燃焼熱エネルギー必要量が大幅に低下した分発電に回されるCH4余剰ガス量が36pt%増加した。ケーキ処分費は13pt%減となった。これは汚泥が繊維物を多く含む脱水性の良い汚泥に変化したことからケーキ含水率が約75%まで低下し比較例1の82%のケーキ含水率と比較して7pt%低下し、ケーキ搬出量としては添加した繊維物Aによる固形物増加分を相殺して余りある効果が得られた。 The amount of CH 4 surplus gas recovered in the digester was the addition of the evolved gas from fiber A that was newly added as organic matter, and the digester capacity was 2/5, so the recovery for digestion tank heating was As CH 4 combustion heat energy requirement decreased significantly, the amount of CH 4 surplus gas sent to power generation increased by 36 pt%. The cost of disposing of the cake decreased by 13pt%. This is because the sludge was changed to a highly dewaterable sludge containing a large amount of fibers, and the moisture content of the cake decreased to about 75%, which was 7 pt% lower than the moisture content of 82% of Comparative Example 1 As for the amount, the effect which was more than offsetting the increase in solids due to the added fiber A was obtained.

実施例2では、繊維物Bを通常時は好気処理工程には導入せず、嫌気好気法における嫌気槽での脱窒反応の水素供与体不足時のみ繊維物Bを必要量分のみ嫌気槽直前のラインに2〜5%(平均3%)添加する方式とした。繊維物Bは嫌気性処理工程に導入する汚泥に対しては対汚泥SSあたり23%の添加率で添加し、滞留日数25日の嫌気性消化工程に導入し、該嫌気性消化後の汚泥に対して汚泥SSあたり5%の添加率で繊維物Bを汚泥に再添加して脱水工程に導入し高分子凝集剤を対汚泥SSあたり1.4%添加することで脱水ケーキを得る方法を採用した。   In Example 2, the fiber B is not usually introduced into the aerobic treatment step, and only the necessary amount of the fiber B is anaerobic only when the hydrogen donor is insufficient in the denitrification reaction in the anaerobic tank in the anaerobic aerobic method. In the line just before the tank, 2 to 5% (average 3%) was added. Fiber B is added to the sludge introduced into the anaerobic treatment process at an addition rate of 23% per sludge SS, introduced into the anaerobic digestion process with a retention period of 25 days, and the sludge after the anaerobic digestion In contrast to this, a method is used to obtain a dewatered cake by re-adding the fiber material B to the sludge at an addition rate of 5% per sludge SS and introducing it into the dewatering step and adding a polymer flocculant 1.4% per sludge SS. did.

その結果として、プラント動力費及びプラント設置面積は装置点数増加によりそれぞれ2〜3%増加したものの、使用薬品は脱水用凝集剤が比較的低薬注率で良好な脱水が可能となったことから全体としては9pt%削減できた。消化槽でのCH4余剰ガス回収量は有機物として新たに投入した繊維物Bが易分解性であったことから繊維物B由来の発生CH4ガスが大幅に増加した結果CH4余剰ガス量が43pt%増加した。ケーキ処分費は9pt%減となった。これは汚泥が繊維分を多く含む脱水性の良い汚泥に変化したことからケーキ含水率が約77%まで低下し比較例1の82%のケーキ含水率と比較して5pt%低下し、ケーキ搬出量としては添加した繊維物Bによる固形物増加分を相殺して余りある効果が得られた。 As a result, although the plant power cost and the plant installation area increased by 2 to 3% each due to the increase in the number of equipments, the chemicals used can be dewatered at a relatively low dosage rate for dewatering coagulant. The overall reduction was 9 pt%. CH 4 excess gas recovery amount results CH 4 excess amount of gas generated CH 4 gas was increased significantly from the fibers thereof B since freshly poured fibers Compound B were readily degradable as organic matter in digester It increased by 43 pt%. The cost of disposing of the cake decreased by 9pt%. This is because the sludge changed to a highly dewaterable sludge containing a large amount of fiber, and the moisture content of the cake decreased to about 77%, which was 5 pt% lower than the moisture content of the cake of 82% of Comparative Example 1, As an amount, an effect which is more than offsetting the increase in solids due to the added fiber B was obtained.

実施例3では、繊維物Cを好気処理工程の対汚泥MLSSあたり11%の添加率で添加し、嫌気性処理工程に導入する汚泥に対して無薬注でスクリーン型機械濃縮機を用いて汚泥濃度を2.5倍に濃縮し、該濃縮汚泥を滞留日数25日の嫌気性消化工程に導入し、該嫌気性消化後の汚泥に対して汚泥SSあたり6%の添加率で繊維物Cを汚泥に再添加して脱水工程に導入し高分子凝集剤を対汚泥SSあたり1.1%添加することで脱水ケーキを得る方法を採用した。   In Example 3, the fiber material C is added at an addition rate of 11% per sludge MLSS in the aerobic treatment step, and a screen type mechanical concentrator is used without sludge to the sludge introduced in the anaerobic treatment step. Sludge concentration is concentrated 2.5 times, and the concentrated sludge is introduced into the anaerobic digestion process with 25 days of retention days, and the sludge after the anaerobic digestion has an addition rate of 6% per sludge SS to the fibrous material C Was added to the sludge, introduced into the dewatering process, and a method of obtaining a dewatered cake by adding a polymer flocculant 1.1% per sludge SS was adopted.

その結果として、プラント動力費は13pt%削減できた。これは消化槽に投入する汚泥を2.5倍に濃縮したことから消化槽容量が比較例1の2/5に小さくなり、それに伴い攪拌機、ポンプ、加温設備等の付帯設備の動力が小さくなったことが主要因である。使用薬品は、脱水用凝集剤としては比較的低薬注率で良好な脱水が可能となったことから全体としては17pt%削減できた。プラント設置面積は消化槽容量が比較例1の2/5であるため全体としては15pt%減となった。消化槽でのCH4余剰ガス回収量は有機物として新たに投入した繊維物C由来の発生ガスが若干追加となった他、消化槽容量が2/5となったことから消化槽加温用の回収CH4燃焼熱エネルギー必要量が大幅に低下した分発電に回されるCH4余剰ガス量が22pt%増加した。ケーキ処分費は25pt%減となった。これは汚泥が繊維分を多く含む脱水性の良い汚泥に変化したことからケーキ含水率が約69%まで低下し比較例1の82%のケーキ含水率と比較して13pt%低下し、ケーキ搬出量としては添加した繊維物Cによる固形物増加分を相殺して余りある効果が得られた。 As a result, the plant power cost has been reduced by 13 pt%. This is because the sludge introduced into the digestion tank is concentrated 2.5 times, and the volume of the digestion tank is reduced to 2/5 of Comparative Example 1. Accordingly, the power of ancillary equipment such as a stirrer, pump and heating equipment is small. Is the main factor. The amount of chemicals used was reduced by 17 pts on the whole, as good dewatering was possible at a relatively low dosage rate as a flocculating agent for dehydration. The plant installation area was reduced by 15 pt% as a whole since the digester capacity was 2/5 of Comparative Example 1. The amount of CH 4 surplus gas recovered in the digester was slightly increased as the volume of the digester tank was 2/5, in addition to a slight addition of the evolved gas derived from fiber material C, which was newly added as an organic substance. The amount of CH 4 surplus gas sent to power generation was increased by 22 pt% as the recovered CH 4 combustion thermal energy requirement decreased significantly. Cake disposal costs were reduced by 25 pt%. This is because the sludge changed to a highly dewaterable sludge containing a large amount of fibers, and the moisture content of the cake decreased to about 69%, which was 13 pt% lower than the moisture content of the cake of 82% of Comparative Example 1, As an amount, an effect more than offsetting the increase in solids due to the added fiber C was obtained.

1…有機性廃水または汚泥
2…水処理系
3…汚泥処理系
4…流出水
5…初沈汚泥
6…活性汚泥混合液
7…余剰汚泥
8…混合生汚泥
11…消化汚泥
21…最初沈澱池
22…活性汚泥槽
23…最終沈澱池
31…混合槽
33…消化槽
36…固液分離装置
37…迂回ライン
1 organic waste water or sludge 2 water treatment system 3 sludge treatment system 4 runoff water 5 primary sedimentation sludge 6 activated sludge mixed liquid 7 surplus sludge 8 mixed raw sludge 11 digested sludge 21 first settling tank 22 ... activated sludge tank 23 ... final settling tank 31 ... mixing tank 33 ... digestion tank 36 ... solid-liquid separation device 37 ... bypass line

Claims (6)

有機性廃水または汚泥を処理対象とし、微生物を利用して有機成分の処理を行う有機性廃水または汚泥の処理方法であって、
好気性微生物を用いた好気性処理を行う前又は好気性処理時の有機性廃水または汚泥に対して、あるいは前記好気性処理により得られる汚泥に対して、生分解性有機系繊維物質を添加し、
前記生分解性有機系繊維物質が添加された汚泥に対して嫌気性微生物を用いた嫌気性処理を行い、
前記嫌気性処理の前段及び/又は後段において固液分離処理し、
前記嫌気性処理及び前記固液分離処理の少なくとも1の処理に対して前記生分解性有機系繊維物質を更に添加することと、
前記生分解性有機系繊維物質の好気性処理及び嫌気性処理における分解率、可燃性ガス増加量、好気性処理後及び嫌気性処理後の繊維物率の評価結果に基づいて、前記生分解性有機系繊維物質の添加位置及び添加率を調整すること
を含むことを特徴とする有機性廃水または汚泥の処理方法。
A method for treating organic wastewater or sludge, which targets organic wastewater or sludge and treats organic components using microorganisms.
A biodegradable organic fiber material is added to organic wastewater or sludge before or during aerobic treatment using aerobic microorganisms, or to sludge obtained by the aerobic treatment. ,
Performing anaerobic treatment using anaerobic microorganisms on the sludge to which the biodegradable organic fiber material is added;
Solid-liquid separation treatment before and / or after the anaerobic treatment,
Further adding the biodegradable organic fiber material to at least one of the anaerobic treatment and the solid-liquid separation treatment ;
The biodegradability is based on the evaluation results of the decomposition rate in the aerobic treatment and the anaerobic treatment of the biodegradable organic fiber material, the increase in the amount of combustible gas, and the fiber ratio after the aerobic treatment and the anaerobic treatment. What is claimed is: 1. A method of treating organic wastewater or sludge comprising adjusting the position and rate of addition of an organic fiber material .
前記生分解性有機系繊維物質が添加された汚泥の一部を、前記嫌気性処理を経由せずに前記嫌気性処理の後段の固液分離処理へ迂回させることを特徴とする請求項1に記載の有機性廃水または汚泥の処理方法。   2. The method according to claim 1, wherein a part of the sludge to which the biodegradable organic fiber material is added is diverted to a solid-liquid separation process subsequent to the anaerobic treatment without passing through the anaerobic treatment. Method of treating organic wastewater or sludge as described. 前記生分解性有機系繊維物質が、比重0.75〜1.15、繊維長6mm以下の繊維状物質を含むことを特徴とする請求項1又は2に記載の有機性廃水または汚泥の処理方法。   The method for treating organic wastewater or sludge according to claim 1 or 2, wherein the biodegradable organic fiber material comprises a fibrous material having a specific gravity of 0.75 to 1.15 and a fiber length of 6 mm or less. . 前記有機性廃水または汚泥に前記生分解性有機系繊維物質を添加した場合における前記好気性処理及び前記嫌気性処理を模した試験を行うことにより前記評価結果を得ることを特徴とする請求項1〜のいずれか1項に記載の有機性廃水または汚泥の処理方法。 Claims, characterized in that to obtain the evaluation result by the aerobic treatment and the anaerobic row Ukoto test that simulates the process in case of adding the biodegradable organic fiber material to said organic waste water or sludge organic waste water or treatment method of sludge according to any one of 1 to 3. 有機性廃水または汚泥に対して好気性微生物を用いた好気性処理を行う好気性処理手段と、
前記好気性処理前又は好気性処理時の有機性排水又は汚泥、あるいは前記好気性処理により得られる汚泥に対して生分解性有機系繊維物質を添加する添加手段と、
前記生分解性有機系繊維物質が添加された汚泥に対して嫌気性処理を行う嫌気性処理手段と、
前記嫌気性処理の前段及び/又は後段において固液分離処理する固液分離手段と、
前記嫌気性処理及び前記固液分離処理の少なくとも1の処理に対して、前記生分解性有機系繊維物質を更に添加する再添加手段とを備え、
前記生分解性有機系繊維物質の好気性処理及び嫌気性処理における分解率、可燃性ガス増加量、好気性処理後及び嫌気性処理後の繊維物率の評価結果に基づいて、前記生分解性有機系繊維物質の添加位置及び添加率を調整することを特徴とする有機性廃水または汚泥の処理装置。
Aerobic treatment means for aerobic treatment of organic wastewater or sludge using aerobic microorganisms;
And adding means for adding the biodegradable organic fiber material relative to the organic waste water or sludge during aerobic treatment before or aerobic treatment, sludge is stomach obtained by prior Symbol aerobic treatment,
Anaerobic treatment means for anaerobically treating the sludge to which the biodegradable organic fiber material is added;
Solid-liquid separation means for performing solid-liquid separation treatment at a stage before and / or after the anaerobic treatment;
Re-adding means for further adding the biodegradable organic fiber material to at least one of the anaerobic treatment and the solid-liquid separation treatment ;
The biodegradability is based on the evaluation results of the decomposition rate in the aerobic treatment and the anaerobic treatment of the biodegradable organic fiber material, the increase in the amount of combustible gas, and the fiber ratio after the aerobic treatment and the anaerobic treatment. An apparatus for treating organic waste water or sludge characterized by adjusting the addition position and the addition rate of the organic fiber material .
前記生分解性有機系繊維物質が添加された汚泥の一部を、前記嫌気性処理手段を経由せずに前記嫌気性処理手段の後段の前記固液分離手段へと迂回させる迂回ラインを備えることを特徴とする請求項に記載の有機性廃水または汚泥の処理装置。 A detour line is provided for diverting a part of the sludge to which the biodegradable organic fiber material is added to the solid-liquid separation means downstream of the anaerobic treatment means without passing through the anaerobic treatment means. The apparatus for treating organic wastewater or sludge according to claim 5 .
JP2018246238A 2018-12-27 2018-12-27 Method and apparatus for treating organic wastewater or sludge Active JP6546688B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018246238A JP6546688B1 (en) 2018-12-27 2018-12-27 Method and apparatus for treating organic wastewater or sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018246238A JP6546688B1 (en) 2018-12-27 2018-12-27 Method and apparatus for treating organic wastewater or sludge

Publications (2)

Publication Number Publication Date
JP6546688B1 true JP6546688B1 (en) 2019-07-17
JP2020104064A JP2020104064A (en) 2020-07-09

Family

ID=67297683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018246238A Active JP6546688B1 (en) 2018-12-27 2018-12-27 Method and apparatus for treating organic wastewater or sludge

Country Status (1)

Country Link
JP (1) JP6546688B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7570902B2 (en) 2020-11-30 2024-10-22 アクアス株式会社 How to prevent scale buildup in drainage systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3373136B2 (en) * 1997-06-25 2003-02-04 株式会社荏原製作所 Water treatment method and sludge treatment method
JP2001070999A (en) * 1999-07-05 2001-03-21 Nkk Corp Method and apparatus for treating wastewater
JP3907152B2 (en) * 2000-02-10 2007-04-18 株式会社荏原製作所 Organic wastewater treatment method and treatment apparatus
JP4631204B2 (en) * 2001-04-27 2011-02-16 栗田工業株式会社 Dry methane fermentation of organic waste
JP6216763B2 (en) * 2014-12-04 2017-10-18 水ing株式会社 Dehydration system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7570902B2 (en) 2020-11-30 2024-10-22 アクアス株式会社 How to prevent scale buildup in drainage systems

Also Published As

Publication number Publication date
JP2020104064A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
Gonzalez-Tineo et al. Performance improvement of an integrated anaerobic-aerobic hybrid reactor for the treatment of swine wastewater
Zhang et al. Organic substrate transformation and sludge characteristics in the integrated anaerobic anoxic oxic–biological contact oxidation (A2/O–BCO) system treating wastewater with low carbon/nitrogen ratio
Velho et al. Anaerobic side-stream reactor for excess sludge reduction: 5-year management of a full-scale plant
SG183480A1 (en) Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
Sodhi et al. Minimization of excess bio-sludge and pollution load in oxic-settling-anaerobic modified activated sludge treatment for tannery wastewater
Collivignarelli et al. Anaerobic-aerobic treatment of municipal wastewaters with full-scale upflow anaerobic sludge blanket and attached biofilm reactors
Paul et al. Technical and economical evaluation of a thermal, and two oxidative techniques for the reduction of excess sludge production
Tong et al. Enhanced alure-type biological system (E-ATBS) for carbon, nitrogen and phosphorus removal from slaughterhouse wastewater: A case study
JP6662424B2 (en) Anaerobic digestion method and apparatus for sewage sludge
Doğan et al. Simultaneous sulfide and nitrite removal from industrial wastewaters under denitrifying conditions
Fan et al. Chemical oxygen demand and nitrogen removal from real membrane-manufacturing wastewater by a pilot-scale internal circulation reactor integrated with partial nitritation-anammox
Jardin et al. Treatment of sludge return liquors: experiences from the operation of full-scale plants
JP6546688B1 (en) Method and apparatus for treating organic wastewater or sludge
JP6432226B2 (en) Method and apparatus for anaerobic digestion of sewage treatment sludge
Tomei et al. Post-aerobic digestion of waste sludge: performance analysis and modelling of nitrogen fate under alternating aeration
KR100304544B1 (en) Method for removing nitrogen and phosphorus using anaerobic digestion
Zhang et al. Achieving advanced nitrogen removal and excess sludge treatment via single nitritation/anammox-fermentation combined system
Bahreini et al. Biological nutrient removal enhancement using fermented primary and rotating belt filter biosolids
Banas et al. SBR technology used for advanced combined municipal and tannery wastewater treatment with high receiving water standards
KR100440748B1 (en) High-Rate Live Stock Wastewater Treatment Method using Advanced Treatment Process Hybrid SBAR
Phillips et al. Nitrogen and phosphorus-rich sidestreams: Managing the nutrient merry-go-round
Fatone et al. Biological short-cut nitrogen removal from anaerobic digestate in a demonstration sequencing batch reactor
Zhao et al. Effects of influent C/N ratio, C/P ratio and volumetric exchange ratio on biological phosphorus removal in UniFed SBR process
KR100983829B1 (en) Wastewater Treatment by Corrosion of Organics Using Methane Fermentation Tank
Mutchamua et al. Sludge management in lagoons: The role of denitrification as a function of carbon biodegradation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181227

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181227

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190621

R150 Certificate of patent or registration of utility model

Ref document number: 6546688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250