JP6437348B2 - Electrode active material, secondary battery electrode, secondary battery - Google Patents
Electrode active material, secondary battery electrode, secondary battery Download PDFInfo
- Publication number
- JP6437348B2 JP6437348B2 JP2015038732A JP2015038732A JP6437348B2 JP 6437348 B2 JP6437348 B2 JP 6437348B2 JP 2015038732 A JP2015038732 A JP 2015038732A JP 2015038732 A JP2015038732 A JP 2015038732A JP 6437348 B2 JP6437348 B2 JP 6437348B2
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- electrode
- active material
- carbon black
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007772 electrode material Substances 0.000 title claims description 37
- 239000006229 carbon black Substances 0.000 claims description 47
- 239000011164 primary particle Substances 0.000 claims description 31
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 23
- 239000003575 carbonaceous material Substances 0.000 claims description 18
- 229930195733 hydrocarbon Natural products 0.000 claims description 10
- 150000002430 hydrocarbons Chemical class 0.000 claims description 10
- 239000004215 Carbon black (E152) Substances 0.000 claims description 9
- 239000004793 Polystyrene Substances 0.000 claims description 8
- 229920002223 polystyrene Polymers 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 5
- 239000006230 acetylene black Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 235000019241 carbon black Nutrition 0.000 description 44
- 229910052799 carbon Inorganic materials 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 13
- 238000000576 coating method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 5
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000000877 morphologic effect Effects 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013292 LiNiO Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 239000011883 electrode binding agent Substances 0.000 description 1
- 239000011267 electrode slurry Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、電極活物質、これを用いた二次電池用電極及び二次電池に関する。 The present invention relates to an electrode active material, an electrode for a secondary battery using the same, and a secondary battery.
近年、二次電池は電気自動車や携帯電話等の非常に広範な分野、業種に用いられるようになり、また、用途の拡大に伴って高エネルギー密度、高出力密度、高速充放電といった性能に対する要求もより高くなってきている。
そして、それらの要求を満たすため各種材料に関する様々な研究開発が行われており、その一つとして電極活物質の導電性向上が挙げられる。
一般的に電極活物質単体では電気伝導性が低いため、電極作製時に導電剤を用いているが、この導電剤は個々の電極活物質粒子間の導電パスを形成するか、又は電極活物質表面を覆って集電効果を高めることにより電極内の導電性を高める効果を有する。
In recent years, secondary batteries have been used in a very wide range of fields and industries such as electric vehicles and mobile phones, and with the expansion of applications, demands for performance such as high energy density, high output density, and high-speed charge / discharge Is getting higher.
In order to satisfy these requirements, various researches and developments on various materials have been conducted, and one of them is to improve the conductivity of the electrode active material.
In general, the electrode active material alone has a low electrical conductivity, and therefore a conductive agent is used at the time of electrode preparation. This conductive agent forms a conductive path between individual electrode active material particles or the surface of the electrode active material. By increasing the current collecting effect by covering the electrode, it has the effect of increasing the conductivity in the electrode.
一方、電極活物質自体を微粒化するか、又は電極活物質に炭素質材料を担持させて導電性を改善する手法も検討されており、例えば気体、液体又は固体の炭素質材料を電極活物質に加えて被覆(カーボンコート)する手法が知られている(非特許文献1、特許文献1〜2)。
しかし、カーボンコート用の炭素質材料として炭化水素は検討されてきたが、その他の好ましい炭素質材料(例えばカーボンブラック等)は未だ検討されておらず、カーボンコートに最適なカーボンブラックの構造なども未検討のままである。
更に今後、従来用いられてきたLCO(LiCoO2)やLNO(LiNiO4)よりも放電容量、コスト、安全性等に優れるが、導電性に劣る傾向にある電極活物質[LFP(LiFePO4)、LVP〔Li3V2(PO4)3〕等]の使用も見込まれるので、より優れた導電性改善方法の開発が望まれている。
On the other hand, methods for improving the conductivity by atomizing the electrode active material itself or supporting a carbonaceous material on the electrode active material have been studied. For example, a gas, liquid or solid carbonaceous material is used as the electrode active material. In addition to the above, a method of coating (carbon coating) is known (Non-patent Document 1, Patent Documents 1 and 2).
However, hydrocarbons have been studied as carbonaceous materials for carbon coats, but other preferred carbonaceous materials (such as carbon black) have not yet been examined, and the structure of carbon black that is optimal for carbon coats is also not available. It remains unexamined.
Further, in the future, an electrode active material [LFP (LiFePO 4 ), which is excellent in discharge capacity, cost, safety, etc., but has a tendency to be inferior to LCO (LiCoO 2 ) and LNO (LiNiO 4 ), which have been conventionally used. Since use of LVP [Li 3 V 2 (PO 4 ) 3 ] and the like] is also expected, development of a better method for improving conductivity is desired.
本発明は、前述したような現状に鑑み、表面が好適な炭素質材料で効率よく被覆され集電効果が向上した電極活物質、これを用いた二次電池用電極、及び電池特性が向上した二次電池の提供を目的とする。 In view of the present situation as described above, the present invention provides an electrode active material whose surface is efficiently coated with a suitable carbonaceous material and has an improved current collecting effect, an electrode for a secondary battery using the same, and improved battery characteristics. The purpose is to provide a secondary battery.
本発明者らは、二次電池の電極活物質を被覆するのに好適な炭素質材料について鋭意検討した結果、特定の凝集体形状のカーボンブラックと炭化水素の併用が有効であり、特にポリスチレンの併用が好適であることを見出し、本発明に至った。
即ち、上記課題は、次の1)〜5)の発明によって解決される。
1) 炭素質材料で被覆された電極活物質であって、前記炭素質材料がカーボンブラック及び炭化水素であり、該カーボンブラックは、その凝集体を形成する一次粒子の数PPA(個)と、一次粒子径d(nm)との比「PPA/d」が8以上であり、前記一次粒子径dが15nm以下であることを特徴とする電極活物質。
2) 前記炭化水素がポリスチレンであることを特徴とする1)に記載の電極活物質。
3) 前記カーボンブラックは、その凝集体を形成する一次粒子の数PPA(個)と、一次粒子径d(nm)との比「PPA/d」が12以下であることを特徴とする1)又は2)に記載の電極活物質。
4) 少なくとも、1)〜3)のいずれかに記載の電極活物質と、導電材のアセチレンブラックを含有する材料からなることを特徴とする二次電池用電極。
5) 正極及び/又は負極が、4)に記載の二次電池用電極で構成されていることを特徴とする二次電池。
As a result of intensive studies on a carbonaceous material suitable for coating the electrode active material of a secondary battery, the present inventors have found that the combined use of carbon black having a specific aggregate shape and a hydrocarbon is effective. The inventors have found that the combined use is suitable and have arrived at the present invention.
That is, the said subject is solved by the following invention 1)-5).
1) An electrode active material coated with a carbonaceous material, wherein the carbonaceous material is carbon black and hydrocarbon, and the carbon black includes a number PPA (number) of primary particles forming the aggregate; An electrode active material , wherein the ratio “PPA / d” to the primary particle diameter d (nm) is 8 or more, and the primary particle diameter d is 15 nm or less .
2) The electrode active material according to 1), wherein the hydrocarbon is polystyrene.
3) The carbon black is characterized in that the ratio “PPA / d” of the number PPA (number) of primary particles forming the aggregate and the primary particle diameter d (nm) is 12 or less 1) Or the electrode active material as described in 2).
4) An electrode for a secondary battery comprising at least an electrode active material according to any one of 1) to 3) and a material containing acetylene black as a conductive material.
5) A secondary battery, wherein the positive electrode and / or the negative electrode comprises the secondary battery electrode according to 4).
本発明によれば、表面が好適な炭素質材料で効率よく被覆され集電効果が向上した電極活物質、これを用いた二次電池用電極、及び電池特性が向上した二次電池を提供できる。 According to the present invention, it is possible to provide an electrode active material whose surface is efficiently coated with a suitable carbonaceous material and has an improved current collecting effect, a secondary battery electrode using the same, and a secondary battery with improved battery characteristics. .
以下、上記本発明について詳しく説明する。
従来、電極用途のカーボンブラックの物性の特定は、比表面積やDBP吸収量により行われている。したがって、本発明のように、カーボンブラック凝集体の形状を、該凝集体を構成する一次粒子の粒子径及び一次粒子の数で評価される凝集体の発達度合の観点から実測し、これらの特性により、二次電池用電極活物質の被覆を行う上で最適なカーボンブラック凝集体の形状自体を規定した例は、本出願人の知る限り存在しない。
即ち、本発明で用いるカーボンブラックは、その凝集体の形状の最適条件を規定したカーボンブラックであり、従来の炭素質材料のみ、或いは本願規定外のカーボンブラックを併用したカーボンコートでは達成できない顕著な効果を奏する。
Hereinafter, the present invention will be described in detail.
Conventionally, the physical properties of carbon black for electrode use are specified by specific surface area and DBP absorption. Therefore, as in the present invention, the shape of the carbon black aggregate is measured from the viewpoint of the development degree of the aggregate evaluated by the particle size of the primary particles constituting the aggregate and the number of primary particles, and these characteristics are measured. Thus, as far as the present applicant knows, there is no example that defines the optimum shape of the carbon black aggregate itself for coating the electrode active material for a secondary battery.
That is, the carbon black used in the present invention is a carbon black that defines the optimum conditions for the shape of the aggregate, and cannot be achieved by using a conventional carbonaceous material alone or a carbon coat that uses a carbon black that is not specified in this application. There is an effect.
図1に、本発明で用いるカーボンブラックの形状の模式図を示す。
カーボンブラック凝集体2は、図のように多数の一次粒子1が凝集したものである。
一次粒子径dは、カーボンブラック凝集体2を構成する一次粒子1の径(nm)を指し、ASTM D3849−13で規定される、電子顕微鏡によるCB形態分析で導出される平均粒子径(規定中のm)である。
また、PPA(Particle number Per Aggregate)は、一つのカーボンブラック凝集体2に含まれる一次粒子1の数を指し、ASTM D3849−13で規定される、電子顕微鏡によるCB形態分析で導出される総粒子数(規定中のnt)を、観察したカーボンブラック凝集体2の数で除した値である。
FIG. 1 shows a schematic diagram of the shape of carbon black used in the present invention.
The carbon black aggregate 2 is obtained by aggregating many primary particles 1 as shown in the figure.
The primary particle diameter d refers to the diameter (nm) of the primary particles 1 constituting the carbon black aggregate 2, and is an average particle diameter derived from CB morphological analysis by an electron microscope as defined in ASTM D3849-13 M).
Further, PPA (Particle number Per Aggregate) indicates the number of primary particles 1 contained in one carbon black aggregate 2 and is a total particle derived by CB morphological analysis by an electron microscope defined by ASTM D3849-13. It is a value obtained by dividing the number (nt in the regulation) by the number of observed carbon black aggregates 2.
本発明では、一次粒子径dを15nm以下とする。一次粒子径dが15nm以下であれば、電極活物質及び併用する炭化水素との接触面積が増加し、表面導電効果が向上する。なお、一次粒子径dの下限については、現在の製造技術では8nm未満のカーボンブラックを製造することは非常に難しく、8nmが製造上の下限となるが、カーボンブラックの特性として8nmが下限になるわけではない。 In the present invention, it shall be the 15nm or less primary particle diameter d. When the primary particle diameter d is 15 nm or less, the contact area with the electrode active material and the hydrocarbon used together increases, and the surface conductive effect is improved. As for the lower limit of the primary particle diameter d, it is very difficult to produce carbon black of less than 8 nm with the current production technology, and 8 nm is the lower limit in production, but 8 nm is the lower limit as a characteristic of carbon black. Do not mean.
本発明では、一次粒子の数PPA(個)と一次粒子径d(nm)との比「PPA/d」を8以上、好ましくは8〜12とする。この範囲であれば、カーボンブラック凝集体が二次電池の電極活物質を効率良く被覆するのに適した形状となり、良好な導電パスを持つ電極の作成が可能となる。
「PPA/d」が8未満の場合、即ち、カーボンブラック凝集体の大きさに比べて一次粒子径dが大きい場合や、一次粒子の数が少なくカーボンブラック凝集体の長さが短かい場合には、カーボンコート工程において剪弾応力がかかり難く、カーボンブラックの分散が難しくなる。また、カーボンブラック同士による強固な炭素骨格が形成されない為に、急速充放電による電極活物質の体積変動に起因するカーボンコートの保持が出来ず、導電性の向上効果を十分に得ることができない。
また、「PPA/d」が12よりも大きい場合には、カーボンブラック凝集体の大きさに比べて一次粒子径dが極度に小さくなり、表面エネルギーが高くなる為、カーボンコート工程においてカーボンブラックが凝縮し易く、やはり分散が難しくなる。
In the present invention, the ratio “PPA / d” of the number PPA (number) of primary particles to the primary particle diameter d (nm) is 8 or more, preferably 8-12. If it is this range, it will become a shape suitable for the carbon black aggregate to coat | cover the electrode active material of a secondary battery efficiently, and the preparation of the electrode which has a favorable conductive path is attained.
When “PPA / d” is less than 8, that is, when the primary particle diameter d is larger than the size of the carbon black aggregate, or when the number of primary particles is small and the length of the carbon black aggregate is short. In the carbon coating process, it is difficult to apply a shearing stress, and it becomes difficult to disperse the carbon black. In addition, since a strong carbon skeleton is not formed between carbon blacks, the carbon coat cannot be retained due to the volume fluctuation of the electrode active material due to rapid charge and discharge, and the conductivity improvement effect cannot be sufficiently obtained.
Further, when “PPA / d” is larger than 12, the primary particle diameter d is extremely smaller than the size of the carbon black aggregate, and the surface energy is increased. It is easy to condense and it becomes difficult to disperse.
上記カーボンブラックは、一般的なカーボンブラック製造炉を用いて製造可能であり、具体的には、上流部より、燃料導入部、原料導入部、狭小円筒部、反応停止用急冷水圧噴霧装置を備えた反応継続兼冷却室が連接したカーボンブラック製造炉を用いて製造することができる。製造条件としては、空気量、空気予熱温度、燃料の量、原料導入量、反応停止水量等があり、これらを適宜制御すればよい。 The carbon black can be produced using a general carbon black production furnace. Specifically, from the upstream part, a fuel introduction part, a raw material introduction part, a narrow cylindrical part, and a quench water pressure spraying device for stopping the reaction are provided. It can be produced using a carbon black production furnace in which the reaction continuation and cooling chamber is connected. Production conditions include air amount, air preheating temperature, fuel amount, raw material introduction amount, reaction stop water amount, and the like, and these may be controlled as appropriate.
上記特定形状のカーボンブラックは被覆性に優れており、電極活物質の被覆用炭素質材料として好適であるが、本発明では更に炭素質材料として炭化水素を併用することにより、表面全体が一層強固にカーボンコートされ、導電性や表面集電効果が向上した電極活物質を得ることができる。炭化水素としては、例えば、ポリスチレン、ポリエチレングリコール、アスコルビン酸、グルコース、ピッチ、アセチレン、メタンなどが挙げられる。
そして、この電極活物質を用いて作製した二次電池用電極を正極及び/又は負極に用いることにより、二次電池の電極安定性が向上し、かつ二次電池の集電効果が高まるため、電池特性(放電容量やレート特性など)の優れた二次電池を作製することができる。
The carbon black having the specific shape has excellent covering properties and is suitable as a carbonaceous material for coating an electrode active material. However, in the present invention, the entire surface is further strengthened by using a hydrocarbon as a carbonaceous material. Thus, an electrode active material that is coated with carbon and has improved conductivity and surface current collection effect can be obtained. Examples of the hydrocarbon include polystyrene, polyethylene glycol, ascorbic acid, glucose, pitch, acetylene, and methane.
And, by using the electrode for a secondary battery produced using this electrode active material for the positive electrode and / or the negative electrode, the electrode stability of the secondary battery is improved and the current collection effect of the secondary battery is increased. A secondary battery having excellent battery characteristics (such as discharge capacity and rate characteristics) can be manufactured.
上記本発明の電極活物質は、例えば次のような2段階焼成法で作製することができる。
即ち、電極活物質LFP(LiFePO4)を、アルゴン:水素=95:5の雰囲気下、320℃で5時間、仮焼成した後、前記特定形状のカーボンブラック及び炭化水素と共に、ボールミルで粉砕混合する。次いで、アルゴン雰囲気下、700℃で10時間、本焼成すれば、カーボンコートされたLFPが得られる。このLFPは粒子成長が抑制され、LFP中の電子及びLiイオン拡散経路が短縮されるので、これを用いた二次電池の放電容量・出力特性(レート特性)を向上させることができる。
また、LVP〔Li3V2(PO4)3〕、LTO(チタン酸リチウム)、LiMnPO4等の他の電極活物質についても、上記と同様に仮焼成、粉砕混合、本焼成を行うことにより、カーボンコートすることができる。
The electrode active material of the present invention can be produced, for example, by the following two-stage firing method.
That is, the electrode active material LFP (LiFePO 4 ) is temporarily fired at 320 ° C. for 5 hours in an atmosphere of argon: hydrogen = 95: 5, and then pulverized and mixed with the specific shape carbon black and hydrocarbon by a ball mill. . Next, if the main baking is performed at 700 ° C. for 10 hours in an argon atmosphere, a carbon-coated LFP can be obtained. In this LFP, particle growth is suppressed, and the electron and Li ion diffusion path in the LFP is shortened. Therefore, the discharge capacity and output characteristics (rate characteristics) of a secondary battery using the LFP can be improved.
In addition, other electrode active materials such as LVP [Li 3 V 2 (PO 4 ) 3 ], LTO (lithium titanate), LiMnPO 4 are also subjected to temporary firing, pulverization mixing, and main firing in the same manner as described above. Can be carbon coated.
以下、実施例及び比較例を示して本発明を更に具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated further more concretely, this invention is not limited by these Examples.
実施例及び比較例で用いたカーボンブラックの製造条件(操作条件)を表1に示す。
表1中のCB1〜CB6が実施例用、CB11〜CB12が比較例用である。
In Table 1, CB1 to CB6 are for examples, and CB11 to CB12 are for comparative examples.
上記表1に示す製造条件で得られたカーボンブラックのDBP吸収量、窒素吸着比表面積(N2SA)、PPA、一次粒子径dを測定した。結果を表2に示す。
なお、表2には、比較のため、従来導電材に用いられているカーボンブラックである、AB(アセチレンブラック:電気化学工業社製、デンカブラック)の特性も併せて示す。
The DBP absorption amount, nitrogen adsorption specific surface area (N2SA), PPA, and primary particle diameter d of carbon black obtained under the production conditions shown in Table 1 were measured. The results are shown in Table 2.
For comparison, Table 2 also shows the characteristics of AB (acetylene black: Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.), which is carbon black conventionally used for conductive materials.
上記DBP吸収量は、カーボンブラック100g当たりに吸収されるジブチルフタレート量(mL/100gカーボンブラック)であり、カーボンブラック凝集体の構造特性を評価する一般的な指標であって、ここでは、JIS K6217−4:2008に記載された方法により測定した。
上記N2SAは、単位重量当たりの比表面積(m2/g)であり、ここでは、JIS K6217−2:2001に記載された方法により測定した。
上記PPA(カーボンブラック凝集体2を構成する一次粒子1の数)と一次粒子径dは、ASTM D3849−13の規定に従い、電界放射走査顕微鏡(JSM−6700F:日本電子社製)でCB形態分析を行って、平均粒子径(規定中のm)と総粒子数(規定中のnt)を導出し、前記mを一次粒子径dとし、前記ntを観察したカーボンブラック凝集体の数で除して求めた値をPPAとした。
The DBP absorption amount is the amount of dibutyl phthalate absorbed per 100 g of carbon black (mL / 100 g carbon black), and is a general index for evaluating the structural characteristics of carbon black aggregates. Here, JIS K6217 is used. -4: measured by the method described in 2008.
The N2SA is a specific surface area per unit weight (m 2 / g), and was measured by the method described in JIS K6217-2: 2001 here.
The PPA (the number of primary particles 1 constituting the carbon black aggregate 2) and the primary particle diameter d are CB morphological analysis with a field emission scanning microscope (JSM-6700F: manufactured by JEOL Ltd.) according to ASTM D3849-13. The average particle size (m in the specification) and the total number of particles (nt in the specification) are derived, the m is the primary particle size d, and the nt is divided by the number of carbon black aggregates observed. The value obtained in this way was defined as PPA.
表2に示すように、CB1〜CB6は本発明における規定を満たし、「PPA/d」が8以上の範囲にあり、且つ一次粒子径dが15nm以下である。
これに対し、CB11〜CB12、及びABは、「PPA/d」が8未満であり、且つ一次粒子径dが15nmよりも大きい。
As shown in Table 2, CB1 to CB6 satisfy the definition of the present invention, “PPA / d” is in the range of 8 or more, and the primary particle diameter d is 15 nm or less.
On the other hand, in CB11 to CB12 and AB, “PPA / d” is less than 8 and the primary particle diameter d is larger than 15 nm.
実施例1〜6、比較例1〜2
表1、表2に示す各カーボンブラック及び/又はポリスチレン(和光純薬工業社製MW=2000)を用いて、炭素質材料で被覆された各電極活物質を作製し、これらの電極活物質を用いて各二次電池用電極を作製し、これらの電極を正極に用いて各二次電池を作製した。作製手順は下記のとおりである。
表3に、使用した炭素質材料の種類、導電材、電極活物質、結着剤の割合(質量%)を示す。なお、表中の「←」は「左に同じ」を意味する。
[カーボンコートされたLFP(電極活物質)の作製]
LFP(LiFePO4)を、アルゴン:水素=95:5の雰囲気下、320℃で5時間、仮焼成した後、各カーボンブラック5〜7質量%をボールミルで乾式混合し、次いでポリスチレン20質量%と有機溶剤のキシレンを添加してボールミルで湿式混合した後、キシレンを蒸発させた。次いで、アルゴン雰囲気下、700℃で10時間、本焼成して、カーボンコートされた各LFPを得た。
[二次電池用電極の作製]
導電材、結着剤(ポリフッ化ビニリデン)及び溶剤(N−メチルピロリドン)を、前記カーボンコートされた各LFPと所定の割合で混合して電極スラリー化した。このスラリーをアルミニウム箔に塗布し乾燥した後、プレスして各二次電池用電極を作製した。
[二次電池の作製]
前記各二次電池用電極を正極に使用し、負極にリチウム金属を使用し、それぞれ評価セルの形状に打ち抜いた。
次いで、上記各正極、負極、セパレータ(ポリオレフィン系多孔フィルム)及び電解液(キシダ化学社製、LBG−00022)を組み合わせて、各二次電池を作製した。
これらの各二次電池について、充放電特性(放電容量、レート特性)の評価を行った。結果を表4に示す。
なお、充放電特性の測定は、充放電バッテリテストシステムPFX2011(菊水電子工業社製)を用いて行った。測定条件は、温度25℃、カットオフ電圧2.0−4.0Vで、Cレートを、0.5、1、2、5、10、20、30、40、50、60と段階的に上昇させた。初期容量は0.5Cでの測定値、レート特性は0.5Cを100とした場合の各レートの値である。
Examples 1-6, Comparative Examples 1-2
Using each carbon black and / or polystyrene (MW = 2000 manufactured by Wako Pure Chemical Industries, Ltd.) shown in Table 1 and Table 2, each electrode active material coated with a carbonaceous material is prepared, and these electrode active materials are Each secondary battery electrode was fabricated using these electrodes, and each secondary battery was fabricated using these electrodes as positive electrodes. The production procedure is as follows.
Table 3 shows the types of carbonaceous materials used, the ratio of conductive materials, electrode active materials, and binders (% by mass). In the table, “←” means “same on the left”.
[Production of carbon-coated LFP (electrode active material)]
LFP (LiFePO 4 ) was calcined at 320 ° C. for 5 hours in an atmosphere of argon: hydrogen = 95: 5, 5-5% by mass of each carbon black was dry-mixed with a ball mill, and then 20% by mass of polystyrene. After adding xylene as an organic solvent and wet mixing with a ball mill, xylene was evaporated. Next, this was fired at 700 ° C. for 10 hours under an argon atmosphere to obtain each carbon-coated LFP.
[Production of secondary battery electrode]
A conductive material, a binder (polyvinylidene fluoride), and a solvent (N-methylpyrrolidone) were mixed with the carbon-coated LFP at a predetermined ratio to form an electrode slurry. The slurry was applied to an aluminum foil, dried, and then pressed to prepare each secondary battery electrode.
[Production of secondary battery]
Each of the secondary battery electrodes was used as a positive electrode, lithium metal was used as a negative electrode, and each was punched into the shape of an evaluation cell.
Subsequently, each secondary battery was produced by combining each positive electrode, negative electrode, separator (polyolefin-based porous film), and electrolytic solution (manufactured by Kishida Chemical Co., Ltd., LBG-00022).
For each of these secondary batteries, charge / discharge characteristics (discharge capacity, rate characteristics) were evaluated. The results are shown in Table 4.
The charge / discharge characteristics were measured using a charge / discharge battery test system PFX2011 (manufactured by Kikusui Electronics Co., Ltd.). The measurement conditions are a temperature of 25 ° C., a cut-off voltage of 2.0 to 4.0 V, and the C rate is gradually increased to 0.5, 1, 2, 5, 10, 20, 30, 40, 50, 60. I let you. The initial capacity is a measured value at 0.5C, and the rate characteristic is a value of each rate when 0.5C is 100.
参照例1〜4
参照例1〜2は、カーボンコート用の炭素質材料としてポリスチレンのみを用いた例であり、実施例の[カーボンコートされたLFPの作製]におけるカーボンブラックの乾式混合工程を省略した点以外は、実施例と同様にして、カーボンコートされたLFPを作製し、次いで、二次電池用電極、及び二次電池を作製した。
また、参照例3〜4は、カーボンコート用の炭素質材料としてCB1又はABのみを用いた例であり、実施例の[カーボンコートされたLFPの作製]におけるポリスチレンの湿式混合工程を省略した点以外は、実施例と同様にして、カーボンコートされたLFPを作製し、次いで、二次電池用電極、及び二次電池を作製した。
上記各二次電池について、実施例と同様にして充放電特性(放電容量、レート特性)の評価を行った。結果を表4に示す。
Reference examples 1-4
Reference Examples 1 and 2 are examples using only polystyrene as a carbonaceous material for carbon coating, except that the dry mixing step of carbon black in [Production of carbon coated LFP] in the example was omitted. In the same manner as in the example, a carbon-coated LFP was produced, and then a secondary battery electrode and a secondary battery were produced.
Reference Examples 3 to 4 are examples in which only CB1 or AB was used as the carbonaceous material for carbon coating, and the wet mixing step of polystyrene in [Production of carbon-coated LFP] in the example was omitted. Except for the above, a carbon-coated LFP was produced in the same manner as in the example, and then a secondary battery electrode and a secondary battery were produced.
About each said secondary battery, it carried out similarly to the Example, and evaluated charge / discharge characteristics (discharge capacity, rate characteristics). The results are shown in Table 4.
上記表4の結果から、実施例の二次電池は、比較例の二次電池に比べて高いレート特性を維持しており、また高い充放電容量を示すことが分かる。即ち、本発明に係る特定形状のカーボンブラックとポリスチレンを併用したカーボンコートにより、優れた電池特性を有する二次電池が得られることが分かる。 From the results of Table 4 above, it can be seen that the secondary batteries of the examples maintain higher rate characteristics than the secondary batteries of the comparative examples, and exhibit a high charge / discharge capacity. That is, it can be seen that the secondary battery having excellent battery characteristics can be obtained by the carbon coating using the specific shape of carbon black and polystyrene according to the present invention.
1 一次粒子
2 カーボンブラック凝集体
1 Primary particle 2 Carbon black aggregate
Claims (5)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015038732A JP6437348B2 (en) | 2015-02-27 | 2015-02-27 | Electrode active material, secondary battery electrode, secondary battery |
PCT/JP2015/003107 WO2016135783A1 (en) | 2015-02-27 | 2015-06-22 | Electrode active material, electrode for secondary batteries, and secondary battery |
CN201580076814.6A CN107251289B (en) | 2015-02-27 | 2015-06-22 | Electrode active material covered with carbonaceous material, electrode for secondary battery, and secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015038732A JP6437348B2 (en) | 2015-02-27 | 2015-02-27 | Electrode active material, secondary battery electrode, secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016162548A JP2016162548A (en) | 2016-09-05 |
JP6437348B2 true JP6437348B2 (en) | 2018-12-12 |
Family
ID=56789404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015038732A Active JP6437348B2 (en) | 2015-02-27 | 2015-02-27 | Electrode active material, secondary battery electrode, secondary battery |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6437348B2 (en) |
CN (1) | CN107251289B (en) |
WO (1) | WO2016135783A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102311252B1 (en) * | 2017-06-15 | 2021-10-12 | 캐보트 코포레이션 | Electrodes containing carbon black particles and related methods |
CN111211296B (en) * | 2018-11-22 | 2022-03-18 | 杭州长凯能源科技有限公司 | Battery active material containing micro-nano conductive network structure |
CN111211297B (en) * | 2018-11-22 | 2022-03-18 | 杭州长凯能源科技有限公司 | Preparation of battery active material containing micro-nano conductive network structure |
CN114284465B (en) * | 2021-12-22 | 2024-07-19 | 蜂巢能源科技股份有限公司 | Preparation method of positive electrode slurry, positive electrode plate and lithium ion battery |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4772254B2 (en) * | 2000-05-31 | 2011-09-14 | 昭和電工株式会社 | Conductive fine carbon composite powder, catalyst for polymer electrolyte fuel cell and fuel cell |
JP4818498B2 (en) * | 2000-07-25 | 2011-11-16 | シャープ株式会社 | Nonaqueous electrolyte secondary battery |
JP2003308845A (en) * | 2002-04-17 | 2003-10-31 | Mikuni Color Ltd | Electrode for lithium secondary battery and lithium secondary battery using it |
JP2003346804A (en) * | 2002-05-28 | 2003-12-05 | Sony Corp | Negative electrode material, non-aqueous electrolyte battery, and method for manufacturing the negative electrode material |
JP4163142B2 (en) * | 2004-04-23 | 2008-10-08 | 電気化学工業株式会社 | Carbon black, method for producing the same, and composition containing the same |
JP4826877B2 (en) * | 2005-01-25 | 2011-11-30 | 三菱化学株式会社 | Electrode for electrochemical device and lithium secondary battery using the same |
JP2007165079A (en) * | 2005-12-13 | 2007-06-28 | Matsushita Electric Ind Co Ltd | Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it |
JP2010086955A (en) * | 2008-09-04 | 2010-04-15 | Toyo Ink Mfg Co Ltd | Composite material for battery electrode |
JP5628503B2 (en) * | 2009-09-25 | 2014-11-19 | 御国色素株式会社 | Conductive material dispersion, electrode paste and conductive material-coated active material |
CN102544586B (en) * | 2010-12-10 | 2016-04-27 | 深圳市比克电池有限公司 | preparation method of lithium ion battery and lithium ion battery |
US20140342231A1 (en) * | 2011-11-15 | 2014-11-20 | Denki Kagaku Kogyo Kabushiki Kaisha | Composite particles, method for producing same, electrode material for secondary batteries, and secondary battery |
JP6088418B2 (en) * | 2013-12-24 | 2017-03-01 | 旭カーボン株式会社 | Carbon black and secondary battery using the carbon black as a conductive agent |
JP2016046130A (en) * | 2014-08-25 | 2016-04-04 | 旭カーボン株式会社 | Electrode for secondary battery, secondary battery |
-
2015
- 2015-02-27 JP JP2015038732A patent/JP6437348B2/en active Active
- 2015-06-22 CN CN201580076814.6A patent/CN107251289B/en active Active
- 2015-06-22 WO PCT/JP2015/003107 patent/WO2016135783A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2016162548A (en) | 2016-09-05 |
WO2016135783A1 (en) | 2016-09-01 |
CN107251289B (en) | 2020-07-28 |
CN107251289A (en) | 2017-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10193148B2 (en) | Carbon-silicon composite and manufacturing method thereof | |
KR101267351B1 (en) | Composite material for positive electrode of lithium battery | |
JP6017432B2 (en) | Slurry composition for forming lithium secondary battery electrode containing cellulose fiber as binder and electrode for lithium secondary battery | |
JP5684226B2 (en) | Fluorinated binder composites and carbon nanotubes for lithium battery positive electrodes | |
JP7209089B2 (en) | Negative electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same | |
KR102373313B1 (en) | Lithium Secondary Battery Comprising Liquid Inorganic Electrolyte | |
KR101637068B1 (en) | Composite for anode active material and manufacturing method thereof | |
EP2503626A1 (en) | Positive-electrode material for a lithium ion secondary battery, and manufacturing method therefor | |
CN108807933B (en) | Positive electrode material and preparation method thereof | |
US20160006019A1 (en) | Carbon-silicon composite and manufacturing mehtod of the same | |
JP6437348B2 (en) | Electrode active material, secondary battery electrode, secondary battery | |
KR102485284B1 (en) | Negative electrode and secondary battery comprising the negative electrode | |
KR20200099872A (en) | Lithium secondary battery | |
CN110571406B (en) | Preparation method of carbon material cathode for lithium ion battery | |
KR101795778B1 (en) | Silicon carbon composite for anode active material, method for preparing the same and lithium secondary battery the same | |
CN110870114A (en) | Method for producing negative electrode material for lithium ion secondary battery, and negative electrode material for lithium ion secondary battery | |
CN114424364A (en) | Negative electrode active material, method for preparing same, and negative electrode and secondary battery comprising same | |
KR102684809B1 (en) | Anode and Lithium Secondary Battery Comprising the Same | |
JP6088418B2 (en) | Carbon black and secondary battery using the carbon black as a conductive agent | |
CN108807903B (en) | Preparation method of composite modified lithium battery negative electrode material for lithium battery | |
JP2015120822A5 (en) | ||
US11271206B2 (en) | Method for controllable synthesis of carbon based battery electrode material | |
KR101673171B1 (en) | Negative electrode active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same | |
CN114789996B (en) | High-dispersity carbon nano tube, preparation method thereof and secondary battery | |
WO2022257372A1 (en) | Graphite negative electrode material, preparation method therefor and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181009 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181023 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181114 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6437348 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |