JP6411923B2 - Atypical synthetic fiber multifilament - Google Patents
Atypical synthetic fiber multifilament Download PDFInfo
- Publication number
- JP6411923B2 JP6411923B2 JP2015049631A JP2015049631A JP6411923B2 JP 6411923 B2 JP6411923 B2 JP 6411923B2 JP 2015049631 A JP2015049631 A JP 2015049631A JP 2015049631 A JP2015049631 A JP 2015049631A JP 6411923 B2 JP6411923 B2 JP 6411923B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- atypical
- cross
- multifilament
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Description
本発明は異型合成繊維マルチフィラメントに関し、さらに詳しくは軽量かつ高嵩高性の異型合成繊維マルチフィラメントに関する。 The present invention relates to an atypical synthetic fiber multifilament, and more particularly to a lightweight and bulky atypical synthetic fiber multifilament.
合成繊維は機械的特性をはじめ様々な優れた特性を有しており、各種産業用途・分野に利用されている。さらに最近では単純に強度を要求されるばかりではなく、低密度でありながら強度に優れた、すなわち最終的に繊維製品とした場合に、嵩高性を保ちながら高強度の繊維製品が求められている分野がある。 Synthetic fibers have various excellent properties including mechanical properties and are used in various industrial applications and fields. More recently, not only is the strength simply required, but there is a demand for a high-strength fiber product while maintaining its bulkiness when it is low in density and excellent in strength, that is, finally made into a fiber product. There is a field.
例えばロープやネットなどの産業資材用の分野において、単純に繊維を高強力化した場合、同じ強力を有する最終製品は細い糸条で構成されることになる。しかしその場合には保持した部分に応力が集中する。例えば細くかつ高強力なロープを用いた場合には、太いロープを用いた場合よりも、そのロープを保持する手に食い込み、痛みや怪我をしやすいという問題があった。 For example, in the field of industrial materials such as ropes and nets, if the fibers are simply strengthened, the final product having the same strength is composed of thin yarns. In that case, however, stress concentrates on the held portion. For example, when a thin and high-strength rope is used, there is a problem in that it tends to bite into a hand holding the rope, causing pain and injury more easily than using a thick rope.
そこで繊維を中空化して低密度の繊維製品を得る手法が知られている。例えば紡糸口金を中空形状にして中空繊維を得る方法である。しかしこのような方法により得られる中空繊維は、強い力がかかる産業繊維の用途ではその中空部分で潰れやすく、十分な嵩高性を発揮することができなかった。また複雑な口金形状に変更する製糸方法を採用した場合、口金吐出孔から溶融吐出されるポリマーの高い貼り合せの技術(口金設計)が必要であり、繊維が割れやすいという基本的な問題があった。 Therefore, a technique is known in which fibers are hollowed out to obtain a low-density fiber product. For example, the spinneret is hollow and a hollow fiber is obtained. However, the hollow fiber obtained by such a method is easily crushed in the hollow part in an industrial fiber application where a strong force is applied, and has not been able to exhibit sufficient bulkiness. In addition, when adopting a spinning method that changes to a complicated die shape, a high bonding technology (die design) of the polymer that is melted and discharged from the die discharge hole is required, and there is a basic problem that the fiber is easily broken. It was.
また例えばカーペットの分野では各種の断面形状の繊維が知られているが(例えば特許文献1や特許文献2)、ロープなどの強力が必要とされる産業分野に適用するためには、異形化による強度低下が大きく、また延伸工程等の途中工程における毛羽の発生や、捲縮などの断面形状の変形が大きいという問題があった。産業資材用に適した軽量かつ高嵩高性のマルチフィラメント繊維が待望されていたのである。 In addition, for example, fibers having various cross-sectional shapes are known in the carpet field (for example, Patent Document 1 and Patent Document 2). There is a problem in that the strength is greatly reduced, and fluff is generated in the intermediate process such as the stretching process, and deformation of the cross-sectional shape such as crimping is large. There has been a long-awaited demand for lightweight, high-bulk multifilament fibers suitable for industrial materials.
本発明は、上記従来技術の有する問題点を解消し、軽量かつ高嵩高性でありながら高強力の異型合成繊維マルチフィラメントを提供することにある。 An object of the present invention is to solve the above-described problems of the prior art and to provide a high-strength atypical synthetic fiber multifilament that is lightweight and bulky.
本発明の異型合成繊維マルチフィラメントは、コア部とフィン部からなる異型合成繊維の集合体であって、該異型合成繊維の比重が1.3以下であり、かつ下記要件を満足することを特徴とする。
a)フィン部が、コア部外表面からコア部中心点に対して交差状に突出し、かつコア部の長さ方向に沿って延在していること。
b)異型繊維の繊維軸に直交する断面における下記式(1)の空隙率が5〜20%であり、下記式(2)のコア断面積率が30〜45%であること。
空隙率(%)={(B−A)/B}×100 (1)
コア断面積率(%)=(C/A)×100 (2)
(ここで、A;繊維軸に直交する断面のポリマー部の面積、B;繊維軸に直交する断面の、繊維軸長さ方向に延在するフィン部の頂点を直線で結んだ領域の面積、C;繊維軸に直交する断面の、繊維軸長さ方向に延在するフィン部の付け根を直線で結んだコア部の面積、とする)
c)繊維の強度が5cN/dtex以上であること。
The atypical synthetic fiber multifilament of the present invention is an aggregate of atypical synthetic fibers comprising a core part and a fin part, wherein the specific gravity of the atypical synthetic fiber is 1.3 or less and satisfies the following requirements: And
a) The fin portion protrudes from the outer surface of the core portion so as to intersect the center point of the core portion, and extends along the length direction of the core portion.
b) The porosity of the following formula (1) in the cross section orthogonal to the fiber axis of the atypical fiber is 5 to 20%, and the core cross-sectional area ratio of the following formula (2) is 30 to 45%.
Porosity (%) = {(B−A) / B} × 100 (1)
Core cross-sectional area ratio (%) = (C / A) × 100 (2)
(Here, A: the area of the polymer part in the cross section orthogonal to the fiber axis, B: the area of the cross section orthogonal to the fiber axis, the area of the fin portion extending in the fiber axis length direction and connected in a straight line, C: The area of the core part connecting the bases of the fin part extending in the fiber axis length direction with a straight line in a cross section perpendicular to the fiber axis)
c) The strength of the fiber is 5 cN / dtex or more.
さらには、合成繊維がポリオレフィン系繊維であることや、フィン部の数が4本以上であること、集合体が異形繊維12本以上で構成されたマルチフィラメントであることが好ましい。
そして本発明は、上記の本発明の異型合成繊維マルチフィラメントからなる繊維製品を包含するものである。
Furthermore, it is preferable that the synthetic fiber is a polyolefin fiber, the number of fin portions is 4 or more, and the aggregate is a multifilament composed of 12 or more deformed fibers.
And this invention includes the textiles which consist of the above-mentioned atypical synthetic fiber multifilament of this invention.
本発明によれば、軽量かつ高嵩高性でありながら高強力の異型合成繊維マルチフィラメントが提供される。 According to the present invention, an atypical synthetic fiber multifilament having high strength while being lightweight and bulky is provided.
以下、本発明の実施の形態について詳細に説明する。
本発明の異型合成繊維マルチフィラメントは、コア部とフィン部からなる異型合成繊維の集合体であって、該異型合成繊維の比重が1.3以下であることを必要とする。このように比重が低い合成繊維からなる異型繊維であることにより、軽量性と嵩高性に優れたマルチフィラメントとなるのである。
Hereinafter, embodiments of the present invention will be described in detail.
The atypical synthetic fiber multifilament of the present invention is an aggregate of atypical synthetic fibers comprising a core portion and a fin portion, and the specific gravity of the atypical synthetic fiber is required to be 1.3 or less. Thus, it is a multifilament excellent in lightweight property and bulkiness by using the atypical fiber which consists of a synthetic fiber with low specific gravity.
このような本発明に好ましく用いられる合成繊維として、ポリオレフィン繊維であることが好ましく、さらにはポリプロピレン繊維であることが好ましい。さらに本発明の繊維としては、メルトフローインデックス(MFR)が、20〜22の範囲であることが好ましい。なおここでMFRは温度230℃、載荷荷重2.160kgの下で、JIS K7210に従ったダイを用いた測定によって得られた値である。 The synthetic fiber preferably used in the present invention is preferably a polyolefin fiber, and more preferably a polypropylene fiber. Furthermore, as a fiber of this invention, it is preferable that a melt flow index (MFR) is the range of 20-22. Here, MFR is a value obtained by measurement using a die according to JIS K7210 under a temperature of 230 ° C. and a loading load of 2.160 kg.
また異型合成繊維の比重としては1.3以下が必要であるが、さらには0.8〜1.2、特には0.9〜0.98の範囲であることが好ましい。また融点としては160〜180℃の範囲であることが好ましく、特には164〜165℃であることが好ましい。
さらに合成繊維を形成するポリマー中に必要に応じて、UV吸収剤、難燃剤、原着マスターチップを添加し機能性を持たせることも、好ましい態様である。
Further, the specific gravity of the atypical synthetic fiber is required to be 1.3 or less, more preferably 0.8 to 1.2, and particularly preferably 0.9 to 0.98. Moreover, as melting | fusing point, it is preferable that it is the range of 160-180 degreeC, and it is especially preferable that it is 164-165 degreeC.
Furthermore, it is also a preferable aspect that a UV absorbent, a flame retardant, and an original master chip are added to the polymer forming the synthetic fiber as necessary to provide functionality.
さて本発明の異型合成繊維マルチフィラメントは、上記のような合成繊維からなり、マルチフィラメントを構成する各構成単糸の繊維軸に直交する断面形状がコア部とフィン部を有する異形繊維であることが必要である。 The atypical synthetic fiber multifilament of the present invention is composed of the above-described synthetic fiber, and the cross-sectional shape orthogonal to the fiber axis of each constituent single yarn constituting the multifilament is a deformed fiber having a core portion and a fin portion. is necessary.
そして本発明はさらに下記要件を満たすものである。
a)フィン部が、コア部外表面からコア部中心点に対して交差状に突出し、かつコア部の長さ方向に沿って延在していること。
b)異型繊維の繊維軸に直交する断面における下記式(1)の空隙率が5〜20%であり、下記式(2)のコア断面積率が30〜45%であること。
空隙率(%)={(B−A)/B}×100 (1)
コア断面積率(%)=(C/A)×100 (2)
(ここで、A;繊維軸に直交する断面のポリマー部の面積、B;繊維軸に直交する断面の、繊維軸長さ方向に延在するフィン部の頂点を直線で結んだ領域の面積、C;繊維軸に直交する断面の、繊維軸長さ方向に延在するフィン部の付け根を直線で結んだコア部の面積、とする)
c)繊維の強度が5cN/dtex以上であること。
The present invention further satisfies the following requirements.
a) The fin portion protrudes from the outer surface of the core portion so as to intersect the center point of the core portion, and extends along the length direction of the core portion.
b) The porosity of the following formula (1) in the cross section orthogonal to the fiber axis of the atypical fiber is 5 to 20%, and the core cross-sectional area ratio of the following formula (2) is 30 to 45%.
Porosity (%) = {(B−A) / B} × 100 (1)
Core cross-sectional area ratio (%) = (C / A) × 100 (2)
(Here, A: the area of the polymer part in the cross section orthogonal to the fiber axis, B: the area of the cross section orthogonal to the fiber axis, the area of the fin portion extending in the fiber axis length direction and connected in a straight line, C: The area of the core part connecting the bases of the fin part extending in the fiber axis length direction with a straight line in a cross section perpendicular to the fiber axis)
c) The strength of the fiber is 5 cN / dtex or more.
本発明の異型合成繊維マルチフィラメント繊維は上記のような異型形状を取りながら繊維の高い強力を実現することにより、産業資材に適したマルチフィラメントとなったのである。 The atypical synthetic fiber multifilament fiber of the present invention is a multifilament suitable for industrial materials by realizing the high strength of the fiber while taking the atypical shape as described above.
さらに本発明の異型合成繊維マルチフィラメントを構成する異型繊維としては、コア部外表面からコア部中心点に対して放射状に突出し、かつコア部の長さ方向に沿って延在する複数枚のフィン部が存在することが好ましい。フィン数としては4枚以上であることが好ましく、特には4枚のフィン部からなることが好ましい。フィン部の枚数が少なすぎると上記の空隙率が低くなり過ぎ、フィン部の枚数が多すぎるとコア断面率が大きくなりすぎる傾向にある。そして図1に示されているような紡糸口金各吐出スリットを用いることにより、各吐出ポリマー同士のより高い貼り合せ性を得ることでき、安定して目的の単糸断面形状をえることができる。 Further, the atypical fiber constituting the atypical synthetic fiber multifilament of the present invention includes a plurality of fins that protrude radially from the core portion outer surface with respect to the core portion center point and extend along the length direction of the core portion. Part is preferably present. The number of fins is preferably 4 or more, particularly preferably 4 fin portions. When the number of fin portions is too small, the porosity is too low, and when the number of fin portions is too large, the core cross-sectional ratio tends to be too large. And by using each discharge slit of the spinneret as shown in FIG. 1, it is possible to obtain a higher bonding property between the respective discharge polymers, and to stably obtain the target single yarn cross-sectional shape.
そして本発明では、コア部外表面からコア部中心点に対して放射状に突出し且つ該コア部の長さ方向に沿って延在するフィン部を有する形状にすることでマルチフィラメント状態での単糸間の干渉による高い体積排除効果をえることができ、高い空隙形成率を得ることができるのである。 In the present invention, a single yarn in a multifilament state is formed by having a shape that has a fin portion that protrudes radially from the core portion outer surface to the core portion center point and extends along the length direction of the core portion. A high volume exclusion effect due to the interference between the two can be obtained, and a high void formation rate can be obtained.
また、本発明のマルチフィラメントを構成する単糸数は好ましくは12本以上のマルチフィラメントであることが好ましく、さらには40〜500本、特には60〜250本の単糸から構成されていることが好ましい。このような本発明のマルチフィラメントはフィンを取り付けた事による体積排除効果がより有効に作用し、十分な嵩高さを得ることが可能となる。 The number of single yarns constituting the multifilament of the present invention is preferably 12 or more multifilaments, more preferably 40 to 500, especially 60 to 250 single yarns. preferable. Such a multifilament of the present invention has a more effective volume exclusion effect due to the attachment of the fins, and can obtain a sufficient bulkiness.
本発明の異型合成繊維マルチフィラメントは、各構成単糸の断面において、複数枚のフィン部先端で囲まれた領域内に存在する下記式(1)の単糸の空隙率が5〜20%であることが必要である。さらにはこの空隙率は5〜12%の範囲であることが好ましい。
空隙率(%)={(B−A)/B}×100 (1)
(ここで、A;繊維軸に直交する断面のポリマー部の面積、B;繊維軸に直交する断面の、繊維軸長さ方向に延在するフィン部の頂点を直線で結んだ領域の面積、とする)
In the atypical synthetic fiber multifilament of the present invention, in the cross section of each constituent single yarn, the porosity of the single yarn of the following formula (1) existing in the region surrounded by the tips of the plurality of fin portions is 5 to 20%. It is necessary to be. Furthermore, the porosity is preferably in the range of 5 to 12%.
Porosity (%) = {(B−A) / B} × 100 (1)
(Here, A: the area of the polymer part in the cross section orthogonal to the fiber axis, B: the area of the cross section orthogonal to the fiber axis, the area of the fin portion extending in the fiber axis length direction and connected in a straight line, And)
このように各単糸の空隙率の値を低く抑えることにより、軽量と嵩高性を両立させながら、高強力の物性を得ることができるようになったのである。なおここで空隙率は繊維軸に直交する繊維断面において、複数枚のフィン部先端を結んだ囲まれた領域(B)内に存在する、繊維を構成する高分子の面積(A)以外の空隙が占める割合である。なおこの領域の面積は電子顕微鏡写真から容易に得ることができ、繊維を構成する高分子の横断面にしめる面積は繊度(dtex)と高分子の密度から計算した値を用いることができる。 Thus, by suppressing the value of the porosity of each single yarn to a low value, it has become possible to obtain high-strength physical properties while achieving both light weight and bulkiness. Here, the porosity is a void other than the area (A) of the polymer constituting the fiber, present in the enclosed region (B) connecting the tips of the plurality of fin portions in the fiber cross section orthogonal to the fiber axis. Is the proportion occupied. In addition, the area of this area | region can be easily obtained from an electron micrograph, and the value calculated from the fineness (dtex) and the density of a polymer can be used for the area made into the cross section of the polymer which comprises a fiber.
さらに本発明の異型合成繊維マルチフィラメントは同時に、各構成単糸の断面において、複数枚のフィン部の付け根で囲まれた領域内に存在する下記式(2)の単糸のコア断面積率が30〜45%の範囲であることが必要である。さらにはこのコア断面積率は33〜40%の範囲であることが好ましい。
コア断面積率(%)=(C/A)×100 (2)
(ここで、A;繊維軸に直交する断面のポリマー部の面積、C;繊維軸に直交する断面の、繊維軸長さ方向に延在するフィン部の付け根を直線で結んだコア部の面積、とする)
Furthermore, the atypical synthetic fiber multifilament of the present invention simultaneously has a core cross-sectional area ratio of a single yarn of the following formula (2) existing in a region surrounded by the roots of a plurality of fin portions in the cross section of each constituent single yarn. It is necessary to be in the range of 30 to 45%. Furthermore, the core cross-sectional area ratio is preferably in the range of 33 to 40%.
Core cross-sectional area ratio (%) = (C / A) × 100 (2)
(Here, A: the area of the polymer part in the cross section perpendicular to the fiber axis, C: the area of the core part in the cross section perpendicular to the fiber axis, and connecting the base of the fin part extending in the fiber axis length direction with a straight line) )
このように各単糸のコア断面積率の値を高く設定することにより、上記の空隙率との組み合わせにより、本発明のマルチフィラメントは、高強力の物性と嵩高性をより高い次元で両立させることができるようになったのである。特に空隙率は5〜12%の範囲、コア断面積率は33〜40%の範囲の組み合わせで有ることが好ましい。なおここでコア断面積率は繊維軸に直交する繊維断面において、複数枚のフィン部のコア部に接する根本を結んで囲まれた領域(C)が、繊維を構成する高分子が占める面積(A)に対する割合である。なおこのコア部のC領域の面積は電子顕微鏡写真から容易に得ることができる。 Thus, by setting the value of the core cross-sectional area ratio of each single yarn high, the multifilament of the present invention achieves both high-strength physical properties and bulkiness in a higher dimension by combining with the above void ratio. It became possible to do. In particular, the porosity is preferably in the range of 5 to 12%, and the core cross-sectional area ratio is preferably in the range of 33 to 40%. Here, the core cross-sectional area is the area occupied by the polymer constituting the fiber (C) surrounded by connecting the roots in contact with the core portion of the plurality of fin portions in the fiber cross section perpendicular to the fiber axis ( A ratio to A). The area of the C region of the core part can be easily obtained from an electron micrograph.
この本発明の高強力異型マルチフィラメントの強度としては5cN/dtex以上であることが必要である。さらには5.5〜8cN/dtexの範囲であることが好ましい。このように高強力と高中空を両立させることは極めて困難であり、本発明では後に述べる高強力中空マルチフィラメントの製造方法により始めて得られたのである。
さらにマルチフィラメントの総繊度としては50〜1700dtexであることが好ましく、80〜1600dtexの範囲であることがさらに好ましい。またマルチフィラメントを構成する単糸の繊度としては0.5〜20dtexの範囲であることが好ましく、特には1〜10dtexの範囲であることが好ましい。
The strength of the high strength atypical multifilament of the present invention needs to be 5 cN / dtex or more. Further, it is preferably in the range of 5.5 to 8 cN / dtex. Thus, it is extremely difficult to achieve both high strength and high hollowness. In the present invention, the high strength hollow multifilament manufacturing method described later was obtained for the first time.
Furthermore, the total fineness of the multifilament is preferably 50 to 1700 dtex, more preferably 80 to 1600 dtex. The fineness of the single yarn constituting the multifilament is preferably in the range of 0.5 to 20 dtex, and particularly preferably in the range of 1 to 10 dtex.
さて、このような本発明の異型合成繊維マルチフィラメントは、図1に模式的に示す吐出形状を有する口金と口金下ヒーターを用いて、公知の溶融紡糸、延伸法により得ることが可能である。この際、口金形状に加えて、延伸負荷率を変更すること等により、空隙率やコア部断面積率を調整することができる。 Such an atypical synthetic fiber multifilament of the present invention can be obtained by a known melt spinning and stretching method using a die having a discharge shape schematically shown in FIG. 1 and a heater under the die. At this time, in addition to the die shape, the void ratio and the core cross-sectional area ratio can be adjusted by changing the stretching load factor.
このようにして得られる本発明の異型合成繊維マルチフィラメントは、低比重かつ高強力であるにも関わらず、繊維横断面中に複数の単繊維の間に多くの空隙が多く形成させることができ、その結果繊維の見かけ比重が繊維の比重よりもさらに低下させたマルチフィラメントを得ることができる。例えばこの本発明の高強力異型マルチフィラメントを用いてロープやネットとした場合、適度な嵩や太さが有り取扱い易い製品を得ることが可能となった。高強力繊維を用いた場合、ロープやネットが細くなりすぎて視認性が低下する場合や、人に接する部分において切傷を生じるなどの問題があった。本発明の異型合成繊維マルチフィラメントは嵩高とすることによりこれらの問題を有効に解消しうるのである。 Although the atypical synthetic fiber multifilament of the present invention thus obtained has a low specific gravity and a high strength, many voids can be formed between a plurality of single fibers in the fiber cross section. As a result, it is possible to obtain a multifilament in which the apparent specific gravity of the fiber is further lowered than the specific gravity of the fiber. For example, when a high-strength atypical multifilament of the present invention is used to form a rope or net, it is possible to obtain an easy-to-handle product having an appropriate bulk and thickness. When high-strength fibers are used, there is a problem that the rope or net becomes too thin and the visibility is lowered, or that a cut is caused in a portion in contact with a person. These problems can be effectively solved by making the atypical synthetic fiber multifilament of the present invention bulky.
また本発明の異型合成繊維マルチフィラメントは、海苔の養殖用ネットなどにも有効に適用される。繊維の表面積が増え、よりその有効性が向上するのである。さらにはこの表面積の向上効果は接着性の向上にも寄与するため、各種の樹脂に対する補強用の繊維としても有効である。
この本発明の異型合成繊維マルチフィラメントは、産業資材用ロープ、土木作業シート、ネット、漁網等の幅広い分野に最適に使用することができる。
Moreover, the atypical synthetic fiber multifilament of the present invention is also effectively applied to a nori culture net and the like. The surface area of the fiber increases and its effectiveness is further improved. Furthermore, since the effect of improving the surface area contributes to the improvement of adhesion, it is also effective as a reinforcing fiber for various resins.
The modified synthetic fiber multifilament of the present invention can be optimally used in a wide range of fields such as ropes for industrial materials, civil engineering work sheets, nets, fishing nets and the like.
以下、実施例により、本発明を更に具体的に説明する。なお、実施例における各項目は次の方法で求めた。 Hereinafter, the present invention will be described more specifically with reference to examples. In addition, each item in an Example was calculated | required with the following method.
(1)メルトフローインデックス(MFR)
JIS K7210に準拠し、温度230℃、載荷荷重2.160kgの条件下で、ダイを用いた測定を行い、メルトフローインデックス(MFR)の値を得た。
(1) Melt flow index (MFR)
In accordance with JIS K7210, measurement using a die was performed under conditions of a temperature of 230 ° C. and a loading load of 2.160 kg, and a melt flow index (MFR) value was obtained.
(2)空隙率(%)、コア部断面積率(%)
空隙率は、紡糸捲取したマルチフィラメントのセクションを切り、単糸1本の繊維軸に直交する横断面写真(560倍以上35000倍以下)をSEM(走査電顕写真)により撮影し、写真画像の各単糸の繊維軸に直交する断面のポリマー部の面積を面積Aとした。またフィラメント糸の繊維軸に直交する断面の、繊維軸長さ方向に延在するフィン部の頂点を直線で結んだ領域の面積を面積Bとした。
そしてフィラメント糸の繊維軸に直交する断面の、繊維軸に直交する断面の、繊維軸長さ方向に延在するフィン部の付け根を直線で結んだコア部の面積を面積Cとした。
これら面積A〜Cを用い、以下の式により単糸空隙率およびコア部断面積率を求めた。測定は5箇所の繊維断面にて行い、その平均値を用いた。
空隙率(%)={(B−A)/B}×100 (1)
コア断面積率(%)=(C/A)×100 (2)
A;繊維軸に直交する断面のポリマー部の面積
B;繊維軸に直交する断面の、繊維軸長さ方向に延在するフィン部の頂点を直線で結んだ領域の面積
C;繊維軸に直交する断面の、繊維軸長さ方向に延在するフィン部の付け根を直線で結んだ領域の面積
(2) Porosity (%), core area (%)
The porosity is determined by cutting a section of multifilament that has been spin-cut and taking a cross-sectional photograph (560 to 35000 times) perpendicular to the fiber axis of a single yarn by SEM (scanning electron micrograph). The area of the polymer part in the cross section perpendicular to the fiber axis of each single yarn was defined as area A. Further, an area of a region in which the vertices of the fin portions extending in the fiber axis length direction in a cross section perpendicular to the fiber axis of the filament yarn are connected by a straight line is defined as an area B.
Then, the area of the core portion where the root of the fin portion extending in the fiber axis length direction of the cross section perpendicular to the fiber axis of the filament yarn is connected in a straight line is defined as area C.
Using these areas A to C, the single yarn void ratio and the core part cross-sectional area ratio were determined by the following equations. The measurement was performed at five fiber cross sections, and the average value was used.
Porosity (%) = {(B−A) / B} × 100 (1)
Core cross-sectional area ratio (%) = (C / A) × 100 (2)
A: Area B of the polymer part in a cross section perpendicular to the fiber axis; Area C of the cross section perpendicular to the fiber axis, where the vertices of the fins extending in the fiber axis length direction are connected by straight lines; orthogonal to the fiber axis Area of the section where the base of the fin part extending in the fiber axis length direction is connected by a straight line
[実施例1]
ポリプロピレン樹脂(MFR=22、比重 0.9)を235℃で溶融し、図1に示す吐出孔を72個有する紡糸口金より吐出した。吐出された糸条は、口金下で長さ45mm、温度235℃の加熱紡糸筒にて加熱、その後25℃、0.1Nm/分の風速で冷却しオイリングローラーにてオイル付与し500m/分の速度にて巻き取った。得られた未延伸糸を温度70℃〜100℃で延伸負荷率85%延伸し、次いで温度160℃で熱セットを施し94dtex、強度7.4cN/dtex、伸度25%の異型合成繊維(ポリプロピレン繊維)を得た。フィンの数は4枚であり、コア部中空中心点に対してのフィンの向きは交差状であった。得られた繊維は空隙率11%の軽量感に優れたものであった。繊維軸断面のコア部断面積率が35%であり、延伸ローラー上での単糸切れも少なく、安定性の高い高強力異型マルチフィラメントであった。
[Example 1]
Polypropylene resin (MFR = 22, specific gravity 0.9) was melted at 235 ° C. and discharged from a spinneret having 72 discharge holes shown in FIG. The discharged yarn is heated by a heated spinning cylinder having a length of 45 mm and a temperature of 235 ° C. under a base, and then cooled at 25 ° C. and a wind speed of 0.1 Nm / min, and oil is applied by an oiling roller to 500 m / min. Winded up at speed. The obtained undrawn yarn was drawn at a temperature of 70 ° C. to 100 ° C. and drawn with a draw rate of 85%, and then heat-set at a temperature of 160 ° C. Fiber). The number of fins was four and the direction of the fins with respect to the hollow center point of the core portion was crossed. The obtained fiber was excellent in lightweight feeling with a porosity of 11%. The core part cross-sectional area of the fiber axis cross section was 35%, and there was little breakage of single yarn on the drawing roller, and it was a highly stable, high-strength irregular multifilament.
[実施例2]
延伸負荷率を85%から80%に変更した以外は、実施例1と同様に行い、異型合成繊維を得た。得られた繊維は、99dtex、強度6.3cN/dtex、伸度26%であって、空隙率も7%であった。繊維軸断面のコア部断面積率は39%であり、延伸ローラー上での単糸切れも少なく、安定性の高い高強力異型マルチフィラメントであった。
[Example 2]
Except having changed the draw load factor from 85% to 80%, it carried out similarly to Example 1 and obtained the atypical synthetic fiber. The obtained fiber had 99 dtex, strength 6.3 cN / dtex, elongation 26%, and porosity 7%. The core area cross-sectional area of the fiber axis cross section was 39%, and there was little breakage of single yarn on the drawing roller, and it was a highly stable, high-strength irregular multifilament.
[比較例1]
延伸負荷率を85%から90%に変更した以外は、実施例1と同様に行い、異型合成繊維を得た。得られた繊維は、85dtex、強度7.6cN/dtex、伸度20.0%の物性を有し、空隙率は15%であった。しかし繊維軸断面のコア部断面積率は29%であり、延伸ローラー上での単糸切れが多く安定的な生産には支障があるものとなった。
[Comparative Example 1]
Except having changed the draw load factor from 85% to 90%, it carried out similarly to Example 1 and obtained the atypical synthetic fiber. The obtained fiber had physical properties of 85 dtex, strength 7.6 cN / dtex, elongation 20.0%, and porosity was 15%. However, the core area cross-sectional area of the fiber axis cross section was 29%, and there were many single yarn breaks on the drawing roller, which hindered stable production.
A;繊維軸に直交する断面のポリマー部
B;フィン部の頂点を直線(鎖線)で結んだ領域
C;フィン部の付け根を直線(鎖線)で結んだコア部
A: Polymer part B having a cross section perpendicular to the fiber axis; region C in which the vertices of the fin part are connected by a straight line (chain line); core part in which the root of the fin part is connected by a straight line (chain line)
Claims (5)
a)フィン部が、コア部外表面からコア部中心点に対して交差状に突出し、かつコア部の長さ方向に沿って延在していること。
b)異型繊維の繊維軸に直交する断面における下記式(1)の空隙率が5〜20%であり、下記式(2)のコア断面積率が30〜45%であること。
空隙率(%)={(B−A)/B}×100 (1)
コア断面積率(%)=(C/A)×100 (2)
(ここで、A;繊維軸に直交する断面のポリマー部の面積、B;繊維軸に直交する断面の、繊維軸長さ方向に延在するフィン部の頂点を直線で結んだ領域の面積、C;繊維軸に直交する断面の、繊維軸長さ方向に延在するフィン部の付け根を直線で結んだコア部の面積、とする)
c)繊維の強度が5cN/dtex以上であること。 An atypical synthetic fiber multifilament characterized in that it is an aggregate of atypical synthetic fibers comprising a core portion and a fin portion, wherein the specific gravity of the atypical synthetic fiber is 1.3 or less and satisfies the following requirements.
a) The fin portion protrudes from the outer surface of the core portion so as to intersect the center point of the core portion, and extends along the length direction of the core portion.
b) The porosity of the following formula (1) in the cross section orthogonal to the fiber axis of the atypical fiber is 5 to 20%, and the core cross-sectional area ratio of the following formula (2) is 30 to 45%.
Porosity (%) = {(B−A) / B} × 100 (1)
Core cross-sectional area ratio (%) = (C / A) × 100 (2)
(Here, A: the area of the polymer part in the cross section orthogonal to the fiber axis, B: the area of the cross section orthogonal to the fiber axis, the area of the fin portion extending in the fiber axis length direction and connected in a straight line, C: The area of the core part connecting the bases of the fin part extending in the fiber axis length direction with a straight line in a cross section perpendicular to the fiber axis)
c) The strength of the fiber is 5 cN / dtex or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015049631A JP6411923B2 (en) | 2015-03-12 | 2015-03-12 | Atypical synthetic fiber multifilament |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015049631A JP6411923B2 (en) | 2015-03-12 | 2015-03-12 | Atypical synthetic fiber multifilament |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016169452A JP2016169452A (en) | 2016-09-23 |
JP6411923B2 true JP6411923B2 (en) | 2018-10-24 |
Family
ID=56983124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015049631A Active JP6411923B2 (en) | 2015-03-12 | 2015-03-12 | Atypical synthetic fiber multifilament |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6411923B2 (en) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0280635A (en) * | 1988-09-13 | 1990-03-20 | Toyobo Co Ltd | Covered elastic yarn |
JP2000345456A (en) * | 1999-06-04 | 2000-12-12 | Kuraray Co Ltd | Surface material composed of multilobal polyolefin- based conjugated fiber |
JP5127098B2 (en) * | 2000-02-28 | 2013-01-23 | ユニチカトレーディング株式会社 | Antibacterial polyamide fiber excellent in washing resistance, antibacterial polyamide crimped yarn, antibacterial polyamide woven fabric, and method for producing antibacterial polyamide fiber |
JP2002180340A (en) * | 2000-12-18 | 2002-06-26 | Toray Ind Inc | Aliphatic polyester multifilament crimped yarn for carpet and carpet |
JP2003113532A (en) * | 2001-10-09 | 2003-04-18 | Toray Ind Inc | Deformed cross section polyamide filament yarn |
JP4452859B2 (en) * | 2004-03-22 | 2010-04-21 | 東英産業株式会社 | Conductive multileaf fiber and electrophotographic brush using the same |
JP2007162158A (en) * | 2005-12-13 | 2007-06-28 | Toray Ind Inc | Knitted fabric |
JP2007308822A (en) * | 2006-05-17 | 2007-11-29 | Toray Monofilament Co Ltd | Filament for needle felt base fabric and needle felt |
JP2008214792A (en) * | 2007-03-01 | 2008-09-18 | Teijin Fibers Ltd | Reinforcing fiber for belt and belt |
UA97393C2 (en) * | 2007-03-26 | 2012-02-10 | Курарэй Ко., Лтд. | Polypropylene fiber, method of producing the same, hydraulic composition, rope, sheet-shaped fiber structure, composite material and molded product |
-
2015
- 2015-03-12 JP JP2015049631A patent/JP6411923B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016169452A (en) | 2016-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10808342B2 (en) | Method for manufacturing fishing net | |
KR102319779B1 (en) | Sea-island composite fiber, composite ultra-fine fiber, and fiber product | |
JP7281174B2 (en) | Sheath-core composite thermoadhesive fiber | |
KR20120007173A (en) | Side by side type polyester conjugated filament with excellent crimp property and process of producing thereof | |
JP6411923B2 (en) | Atypical synthetic fiber multifilament | |
JP6176973B2 (en) | Sea island fiber for pile yarn | |
JP6411922B2 (en) | High strength atypical polyester multifilament | |
JP2008266871A (en) | Polypropylene yarn excellent in heat resistance | |
JP2012067407A (en) | Polycarbonate fiber and method for manufacturing the same | |
KR101446623B1 (en) | Multi-divisional hollow nozzle, manufacturing method of hollow fiber using the same and use thereof | |
JP2010084270A (en) | Modified-cross-section polyester fiber | |
KR101807000B1 (en) | High Gravity Polyester Composite Yarn and Fabric | |
JP6142265B2 (en) | Polymethylpentene monofilament and method for producing the same | |
KR101387464B1 (en) | Multilayer multi-divisional hollow fiber, manufacturing method thereof and use using the same | |
JP6359215B1 (en) | Production method of fishing net | |
JP2015121007A (en) | Polymethylpentene-based side-by-side-type composite fiber | |
KR101446622B1 (en) | Multi-divisional hollow fiber, spinning nozzle having slit therefor and manufacturing method thereof | |
JP6359214B1 (en) | Production method of fishing net | |
JP7022976B2 (en) | Plastic-like mesh and its manufacturing method | |
JPS6353282B2 (en) | ||
JP2019007112A (en) | Stretchable nonwoven fabric and method for producing the same | |
JP2018095977A (en) | Bulky yarn having solid crimpability | |
JP6304750B2 (en) | High strength hollow polyester multifilament | |
JP2015089981A (en) | False twisted polyolefin fiber | |
JP2014210990A (en) | Fine-denier porous hollow staple fiber, spun yarn using the same, woven or knitted fabric, and production method for fine-denier porous hollow fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171218 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20180219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180802 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180904 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180927 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6411923 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |