Nothing Special   »   [go: up one dir, main page]

JP6492702B2 - Optical element measuring apparatus and measuring method - Google Patents

Optical element measuring apparatus and measuring method Download PDF

Info

Publication number
JP6492702B2
JP6492702B2 JP2015017982A JP2015017982A JP6492702B2 JP 6492702 B2 JP6492702 B2 JP 6492702B2 JP 2015017982 A JP2015017982 A JP 2015017982A JP 2015017982 A JP2015017982 A JP 2015017982A JP 6492702 B2 JP6492702 B2 JP 6492702B2
Authority
JP
Japan
Prior art keywords
support
substrate
measurement
measurement object
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015017982A
Other languages
Japanese (ja)
Other versions
JP2016142605A (en
Inventor
孝 近内
孝 近内
大 阿久津
大 阿久津
俊哉 瀧谷
俊哉 瀧谷
橋本 直樹
直樹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2015017982A priority Critical patent/JP6492702B2/en
Publication of JP2016142605A publication Critical patent/JP2016142605A/en
Application granted granted Critical
Publication of JP6492702B2 publication Critical patent/JP6492702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、微小な薄板状の光学素子の測定装置及び測定方法に関し、特に非球面光学面が格子状に並んだ薄板複眼光学系に適する測定装置及び測定方法に関する。   The present invention relates to a measuring device and a measuring method for a minute thin plate-like optical element, and more particularly to a measuring device and a measuring method suitable for a thin compound eye optical system in which aspheric optical surfaces are arranged in a lattice shape.

測定対象の光学素子を高精度に保持し偏心測定を行うため、外形基準とする球の球面部を光学素子の外縁部に直接押し当てた状態とする方法が公知となっている(特許文献1)。この方法では、外形基準とする球の球面部を測定対象に付勢しつつ当てているため、この球を外形基準として測定することで外形形状の高精度な測定が可能となる。また、外形基準を突き当てたまま治具全体を反転させて同様の測定を実施することで高精度な偏心測定が可能となる。測定器は触針を直接接触させた上でその触針の変位量を測定する三次元形状測定器を対象としている。
また、薄板形状の表面に変形を生じさせることなく表面形状の測定を行うため、測定対象を垂直方向に自立させた状態とする方法が公知となっている(特許文献2)。この方法において、測定器は光干渉法、レーザー反射法等であり、触針による三次元形状測定器は対象とされていない。
In order to hold an optical element to be measured with high accuracy and perform eccentricity measurement, a method is known in which a spherical surface portion of a sphere serving as an outer shape reference is directly pressed against an outer edge portion of the optical element (Patent Document 1). ). In this method, since the spherical surface portion of the sphere serving as the outer shape reference is urged against the object to be measured, the outer shape can be measured with high accuracy by measuring the sphere as the outer shape reference. Further, by performing the same measurement while inverting the entire jig while keeping the outer shape reference, the highly accurate eccentric measurement can be performed. The measuring instrument is intended for a three-dimensional shape measuring instrument that measures the displacement of the stylus after directly contacting the stylus.
Moreover, in order to measure the surface shape without causing deformation on the surface of the thin plate shape, a method of making the measurement object self-standing in the vertical direction is known (Patent Document 2). In this method, the measuring instrument is an optical interference method, a laser reflection method, or the like, and a three-dimensional shape measuring instrument using a stylus is not intended.

前者の特許文献1に記載の方法については、触針による三次元形状測定に限らず、光干渉法、レーザー反射法等の測定に適用可能で、装置反転による両面測定にも対応しているが、外形基準装置に対し付勢を行って対象に押し当てているため、薄板形状に対しては表面に変形を生じさせる原因となり得る。   The former method disclosed in Patent Document 1 is applicable not only to three-dimensional shape measurement using a stylus, but also to measurement using an optical interference method, laser reflection method, etc. Since the outer shape reference device is urged and pressed against the object, the thin plate shape may cause deformation on the surface.

前者の特許文献2に記載の方法については、薄板を垂直に自立させた状態で倒れ防止の支持をしているので、この状態の薄板に対して光干渉法による測定は可能であっても、触針による三次元形状測定法の場合、その両面のいずれも測定することができない。   As for the method described in the former Patent Document 2, since the thin plate is supported in a state where it is vertically freestanding, the thin plate in this state can be measured by the optical interference method. In the case of a three-dimensional shape measuring method using a stylus, neither of the two surfaces can be measured.

特開2011−232348号公報JP 2011-232348 A 特開2008−275468号公報JP 2008-275468 A

本発明は、上記背景技術の課題に鑑みてなされたものであり、薄板状であっても表面に変形を生じさせることなく、触針による三次元形状測定その他の方法で測定対象の両面の形状測定を可能にする光学素子の測定装置及び測定方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the background art. Even if it is a thin plate, the shape of both surfaces of a measurement object is measured by a three-dimensional shape measurement using a stylus or the like without causing deformation of the surface. It is an object of the present invention to provide an optical element measuring apparatus and measuring method that enable measurement.

上記目的を達成するため、本発明に係る光学素子の測定装置は、測定対象の第1面を露出させて表側に配置するため第1面の反対の第2面側から測定対象を支持する3つの支持突起と、裏側から第2面側の測定も可能になるように3つの支持突起に囲まれた領域の少なくとも一部と重なるように形成された観察孔とを有する基板と、基板に対して固定されるとともに、測定対象の支持方向に関して測定対象を挟んで3つの支持突起に対向する荷重発生位置において、測定対象を第1面側から基板側に付勢する付勢部材と、基板の表側において支持方向に垂直な方向に移動可能な状態で測定対象の側部に当接可能であるとともに、支持方向への押圧力を受けて発生する摩擦力によって支持方向に垂直な方向への移動が抑制される側方支持部材を含む保持機構とを備える。   In order to achieve the above object, the optical element measuring apparatus according to the present invention supports the measuring object from the second surface side opposite to the first surface in order to expose the first surface of the measuring object and arrange it on the front side. A substrate having two support protrusions and an observation hole formed so as to overlap at least a part of the region surrounded by the three support protrusions so that measurement from the back side to the second surface side is possible. An urging member that urges the measurement object from the first surface side to the substrate side at a load generation position facing the three support protrusions across the measurement object with respect to the support direction of the measurement object, It is possible to abut on the side of the object to be measured while being movable in the direction perpendicular to the support direction on the front side, and to move in the direction perpendicular to the support direction by the frictional force generated by the pressing force in the support direction. Side support member that is suppressed And a non-holding mechanism.

上記測定装置では、基板に固定された付勢部材が、支持方向に関して測定対象を挟んで3つの支持突起に対向する荷重発生位置において、測定対象を第1面側から基板側に付勢するので、測定対象に対して局所的な回転力を与えることを防止でき、測定対象内に発生する撓み等の変形を生じさせる応力を低減できる。また、側方支持部材が基板の表側において支持方向に垂直な方向に移動可能な状態で測定対象の側部に当接可能であるとともに、支持方向への押圧力を受けて発生する摩擦力によって支持方向に垂直な方向への移動が抑制されるので、測定対象の側部に殆ど荷重を掛けない状態で、測定対象を基板の表側において支持方向に垂直な方向に関して移動しないように保持することができる。これにより、測定対象を支持方向や横方向に関して安定した状態で支持又は保持できるだけでなく、支持による歪み等の発生を低減して、測定対象を表裏から高精度で形状測定することができる。   In the measurement apparatus, the biasing member fixed to the substrate biases the measurement target from the first surface side to the substrate side at the load generation position facing the three support protrusions across the measurement target with respect to the support direction. Further, it is possible to prevent a local rotational force from being applied to the measurement target, and to reduce stress that causes deformation such as bending generated in the measurement target. In addition, the side support member can be brought into contact with the side portion of the object to be measured while being movable in a direction perpendicular to the support direction on the front side of the substrate, and by the frictional force generated by receiving the pressing force in the support direction. Since the movement in the direction perpendicular to the support direction is suppressed, the measurement object should be held so as not to move in the direction perpendicular to the support direction on the front side of the substrate with little load applied to the side of the measurement object. Can do. Thereby, not only can the measurement object be supported or held in a stable state in the support direction or the lateral direction, but also the occurrence of distortion due to the support can be reduced, and the shape of the measurement object can be measured from the front and back with high accuracy.

本発明の具体的な側面によれば、上記測定装置において、付勢部材は、支持突起が円錐台状である場合は測定対象を挟んで3つの支持突起にそれぞれ対向して点支持又は線支持を可能にする3つの付勢突起を含み、支持突起が半球状である場合は面支持を可能にする1つ以上の部材を含む。この場合、点又は短い線分状の支持と面支持とが組み合わさって複数箇所で安定した支持が可能になる。   According to a specific aspect of the present invention, in the measurement apparatus, when the support protrusion is a truncated cone, the urging member is point-supported or line-supported so as to face each of the three support protrusions across the measurement target. Including three biasing projections that enable the surface support, and one or more members that enable surface support when the support projection is hemispherical. In this case, the support in the form of a point or short line segment and the surface support are combined to enable stable support at a plurality of locations.

本発明の別の側面によれば、3つの支持突起は、二等辺三角形又は正三角形を形成するよう配置されている。この場合、測定対象を安定して3点支持することができる。   According to another aspect of the present invention, the three support protrusions are arranged to form an isosceles triangle or an equilateral triangle. In this case, the measurement object can be stably supported at three points.

本発明のさらに別の側面によれば、側方支持部材は、当該側方支持部材の被支持面と基板の平坦面との圧接による摩擦によって支持状態を保持又は維持している。この場合、被支持面と平坦面との間に付与される圧力を調整するだけで、側方支持部材の移動に対する摩擦抵抗を設定でき、測定対象への影響を抑制しつつ測定対象の支持方向に垂直な方向への移動を確実に防止できる。   According to still another aspect of the present invention, the side support member holds or maintains the support state by friction between the supported surface of the side support member and the flat surface of the substrate. In this case, the frictional resistance against the movement of the side support member can be set only by adjusting the pressure applied between the supported surface and the flat surface, and the measurement object support direction is suppressed while suppressing the influence on the measurement object. It is possible to reliably prevent movement in a direction perpendicular to.

本発明のさらに別の側面によれば、側方支持部材は、測定対象の側面に略垂直な方向から当接するスライダーと、スライダーを基板上で測定対象に対して進退する方向に移動することを許容するガイドと、ガイドに付随して設けられてスライダーをスライダーの軸方向に垂直な方向に付勢するボールプランジャーとを有する。この場合、小型で簡単な機構によって保持機構を構成することができる。

According to still another aspect of the present invention, the side support member is configured to move the slider in contact with the side surface of the measurement target from a direction substantially perpendicular to the measurement target, and the slider to move in the direction of moving back and forth on the measurement target. And a ball plunger provided along with the guide and biasing the slider in a direction perpendicular to the axial direction of the slider . In this case, the holding mechanism can be configured by a small and simple mechanism.

本発明のさらに別の側面によれば、測定対象は、一辺5mm以上15mm以下で厚み1mm以下の外形を有するとともに、ガラス又はプラスチック樹脂で形成され非球面光学面が格子状に並んだ薄板複眼光学系である。このような薄板複眼光学系は、外力に対して敏感であり、外力を可能な限り低減する必要があるが、上記のような付勢部材や保持機構を用いることで、外力による歪み等の発生を抑制して高精度の測定が可能になる。   According to yet another aspect of the present invention, the measurement object has an outer shape having a side of 5 mm or more and 15 mm or less and a thickness of 1 mm or less, and is formed of glass or plastic resin. It is a system. Such a thin compound eye optical system is sensitive to external force, and it is necessary to reduce the external force as much as possible. By using the biasing member and the holding mechanism as described above, distortion due to the external force is generated. This makes it possible to measure with high accuracy.

本発明のさらに別の側面によれば、付勢部材は、測定対象を基板側に付勢する板バネを有し、板バネによる支持方向への押圧力は、板バネの支持点から荷重点までの距離、板バネのヤング率、板バネの断面2次モーメント、及び板バネの撓み量に基づいて設定される。   According to still another aspect of the present invention, the urging member has a plate spring that urges the measurement target toward the substrate side, and the pressing force in the support direction by the plate spring is changed from the support point of the plate spring to the load point. Is set based on the distance up to, the Young's modulus of the leaf spring, the sectional moment of inertia of the leaf spring, and the amount of deflection of the leaf spring.

本発明のさらに別の側面によれば、側方支持部材と当該側方支持部材を支持する基板側の部材との接触領域において対向する一対の面の表面粗さRaが以下の条件
0.4μm≦Ra≦1.6μm
を満たす。この場合、側方支持部材の支持方向に垂直な方向への移動の抑制が、薄板複眼光学系のような軽い測定対象に対して容易になり、かかる測定対象の保持が確実になる。
According to still another aspect of the present invention, the surface roughness Ra of the pair of surfaces facing each other in the contact region between the side support member and the substrate side member supporting the side support member is as follows: 0.4 μm ≦ Ra ≦ 1.6μm
Meet. In this case, the movement of the side support member in the direction perpendicular to the support direction can be easily suppressed for a light measurement target such as a thin compound eye optical system, and the measurement target can be reliably held.

本発明のさらに別の側面によれば、側方支持部材に付与される支持方向への押圧力は、5N以下である。   According to still another aspect of the present invention, the pressing force applied to the side support member in the support direction is 5N or less.

上記目的を達成するため、本発明に係る光学素子の測定方法は、測定対象の第1面の反対の第2面側から測定対象を支持する3つの支持突起と、測定対象の支持方向に関して測定対象を挟んで3つの支持突起に対向する荷重発生位置において測定対象を第1面側から基板側に付勢する付勢部材とを用いて、測定対象を基板の表側において支持方向に関して支持し、基板の表側において支持方向に垂直な方向に移動可能な状態で測定対象の側部に当接可能であるとともに、支持方向への押圧力を受けて発生する摩擦力によって支持方向に垂直な方向への移動が抑制される側方支持部材を用いて、測定対象を基板の表側において支持方向に垂直な方向に関して支持する。   In order to achieve the above object, an optical element measurement method according to the present invention measures three support protrusions that support a measurement object from the second surface side opposite to the first surface of the measurement object, and a support direction of the measurement object. Using a biasing member that biases the measurement target from the first surface side to the substrate side at the load generation position facing the three support protrusions across the target, the measurement target is supported in the support direction on the front side of the substrate, It is possible to contact the side of the measurement object while being movable in the direction perpendicular to the support direction on the front side of the substrate, and in the direction perpendicular to the support direction by the frictional force generated by the pressing force in the support direction. The measurement object is supported in the direction perpendicular to the support direction on the front side of the substrate using the side support member in which the movement of the substrate is suppressed.

上記測定方法では、支持方向に関して測定対象を挟んで3つの支持突起に対向する荷重発生位置において、付勢部材によって測定対象を第1面側から基板側に付勢するので、測定対象に対して局所的な回転力を与えることを防止でき、測定対象内に発生する応力を低減できる。また、支持方向に垂直な方向に移動可能な状態で測定対象の側部に当接可能な側方支持部材が、支持方向への押圧力を受けて発生する摩擦力によって支持方向に垂直な方向への移動が抑制されるので、測定対象の側部に殆ど荷重を掛けない状態で、測定対象を基板の表側において支持方向に垂直な方向に関して移動しないように保持することができる。これにより、測定対象を支持方向や横方向に関して安定した状態で支持又は保持できるだけでなく、支持による歪み等の発生を低減して、測定対象を表裏から高精度で形状測定することができる。   In the measurement method, the measurement object is urged from the first surface side to the substrate side by the urging member at the load generation position facing the three support protrusions across the measurement object with respect to the support direction. A local rotational force can be prevented from being applied, and the stress generated in the measurement object can be reduced. In addition, the side support member that can contact the side of the object to be measured while being movable in the direction perpendicular to the support direction is perpendicular to the support direction due to the frictional force generated by the pressing force in the support direction. Therefore, the measurement object can be held so as not to move in the direction perpendicular to the support direction on the front side of the substrate in a state where a load is hardly applied to the side portion of the measurement object. Thereby, not only can the measurement object be supported or held in a stable state in the support direction or the lateral direction, but also the occurrence of distortion due to the support can be reduced, and the shape of the measurement object can be measured from the front and back with high accuracy.

(A)及び(B)は、測定装置を説明する正面図及び側面図である。(A) And (B) is the front view and side view explaining a measuring apparatus. 測定装置にセットされる測定用ジグを説明する平面図である。It is a top view explaining the jig for measurement set to a measuring device. 図2に示す測定用ジグの裏面図である。FIG. 3 is a rear view of the measuring jig shown in FIG. 2. 図2に示す測定用ジグのうち基板中央部を説明する部分拡大斜視図である。It is a partial expansion perspective view explaining the board | substrate center part among the jigs for a measurement shown in FIG. (A)及び(B)は、測定対象を説明する平面図及び断面図である。(A) And (B) is the top view and sectional drawing explaining a measuring object. 図2に示す基板中央部に固定される付勢部材を説明する斜視図である。It is a perspective view explaining the biasing member fixed to the board | substrate center part shown in FIG. 支持部材と付勢部材とによる測定対象の支持を説明する部分拡大断面図である。It is a partial expanded sectional view explaining the support of the measuring object by a supporting member and a biasing member. 基板において付勢部材の外側に設けられる保持機構を説明する斜視図である。It is a perspective view explaining the holding mechanism provided in the outer side of a biasing member in a board | substrate. 図8の保持機構を説明する側方断面図である。FIG. 9 is a side sectional view for explaining the holding mechanism of FIG. 8.

以下、本発明の一実施形態に係る測定装置及び方法を、図面を参照しつつ具体的に説明する。   Hereinafter, a measurement apparatus and method according to an embodiment of the present invention will be specifically described with reference to the drawings.

図1(A)及び1(B)は、後に詳述する測定用ジグ10を搭載した測定装置200の構造を説明する正面及び側面の概念図である。
この測定装置200は、触針による3次元形状測定装置であり、測定用ジグ10を利用して測定対象WOであるレンズアレイを構成する多数の光学面形状を一括して測定できる。測定装置200は、定盤81上に、XYステージ装置82と、Z駆動装置84とを固定した構造を有する。XYステージ装置82やZ駆動装置84の動作は、制御装置99によって制御されている。
FIGS. 1A and 1B are front and side conceptual views illustrating the structure of a measuring apparatus 200 equipped with a measuring jig 10 to be described in detail later.
This measuring apparatus 200 is a three-dimensional shape measuring apparatus using a stylus, and can measure a large number of optical surface shapes constituting a lens array that is a measurement object WO by using the measuring jig 10. The measuring device 200 has a structure in which an XY stage device 82 and a Z driving device 84 are fixed on a surface plate 81. The operations of the XY stage device 82 and the Z drive device 84 are controlled by the control device 99.

XYステージ装置82は、説明を省略する駆動機構に駆動されて動作し、XYステージ装置82の上部に固定された載置台89に載置された測定用ジグ10を、水平なXY面内で2次元的に任意の位置に滑らかに移動させることができる。測定用ジグ10の位置は、載置台82に設けたXミラー83aとYミラー83bとを利用して検出される。すなわち、Xミラー83aに対向して定盤81上に取り付けたレーザー干渉計83dを利用して載置台82のX軸方向の位置が分かる。また、Yミラー83bに対向して定盤81上に取り付けたレーザー干渉計83eを利用して載置台82のY軸方向の位置が分かる。   The XY stage device 82 operates by being driven by a driving mechanism that is not described, and the measurement jig 10 placed on the placement table 89 fixed to the upper portion of the XY stage device 82 is moved in the horizontal XY plane. It can be smoothly moved to an arbitrary position in dimension. The position of the measuring jig 10 is detected using an X mirror 83a and a Y mirror 83b provided on the mounting table 82. That is, the position of the mounting table 82 in the X-axis direction can be determined by using the laser interferometer 83d mounted on the surface plate 81 so as to face the X mirror 83a. Further, the position of the mounting table 82 in the Y-axis direction can be determined by using a laser interferometer 83e mounted on the surface plate 81 so as to face the Y mirror 83b.

Z駆動装置84は、フレーム85上に昇降機構86を固定したものであり、昇降機構86は、フレーム85上部に固定されZ方向に延びる支持軸86aと、支持軸86aに支持されてZ軸方向に移動する昇降部材86bと、昇降部材86bを昇降させる昇降駆動手段(不図示)と、昇降部材86bに支持された触針保持部86dと、触針保持部86dに昇降可能に支持された触針PRとを備える。   The Z drive device 84 has a lifting mechanism 86 fixed on a frame 85. The lifting mechanism 86 is fixed to the upper part of the frame 85 and extends in the Z direction, and is supported by the support shaft 86a to be in the Z axis direction. Elevating member 86b that moves up and down, elevating drive means (not shown) that elevates and lowers elevating member 86b, stylus holding portion 86d supported by elevating member 86b, and touch supported by elevating member holding portion 86d so that it can be raised and lowered A needle PR.

昇降機構86では、昇降部材86bが支持軸86aに非接触で支持されて滑らかに昇降運動する。触針保持部86dは、触針PRを保持しており、これに伴って滑らかに昇降運動する。なお触針PRについては、先端に一定の負荷を掛けた状態で高精度で滑らかに昇降することができるように、フィードバックをかけて不図示の昇降駆動手段を動作させている。結果的に、触針PRを低負荷で昇降させつつ、XYステージ装置82を適宜動作させて測定用ジグ10上に載置した測定対象WO上の全体又は複数の局所的な領域を2次元的に走査するように移動させるならば、触針PRの先端を測定用ジグ10上に載置した測定対象WOに設けた多数の光学面に沿って2次元的に移動させることができる。この際、触針PRの先端位置は、触針PRとともに昇降する部材の上端に設けたZミラー91aを利用して検出される。すなわち、Zミラー91aに対向してフレーム85上に取り付けたレーザー干渉計91bを利用して触針PR下端のZ軸方向の位置が分かる。   In the elevating mechanism 86, the elevating member 86b is supported by the support shaft 86a in a non-contact manner and smoothly moves up and down. The stylus holding portion 86d holds the stylus PR and moves up and down smoothly along with this. As for the stylus PR, a raising / lowering drive means (not shown) is operated by applying feedback so that the tip can be raised and lowered smoothly with high accuracy in a state where a constant load is applied to the tip. As a result, the whole or a plurality of local regions on the measurement target WO placed on the measurement jig 10 by appropriately operating the XY stage device 82 while raising and lowering the stylus PR with a low load are two-dimensionally displayed. If it is moved so as to scan, the tip of the stylus PR can be moved two-dimensionally along a number of optical surfaces provided on the measuring object WO placed on the measuring jig 10. At this time, the tip position of the stylus PR is detected by using a Z mirror 91a provided at the upper end of a member that moves up and down together with the stylus PR. That is, the position of the lower end of the stylus PR in the Z-axis direction can be determined by using the laser interferometer 91b mounted on the frame 85 so as to face the Z mirror 91a.

図2及び図3を参照して、図1(A)等に示す測定装置200の載置台89上に設置された測定用ジグ10の構造について説明する。
測定用ジグ10は、基板20と、一体的な部材である付勢装置30と、複数の独立した部分からなる保持機構40と、複数の独立した部分からなる基準部50とを備える。ここで、付勢装置30と保持機構40と基準部50とは、基板20の表面20a側に固定されている。測定用ジグ10は、表側の中央に測定対象WOを支持しており、裏返すことができる。つまり、測定用ジグ10を図示のように表面20aを上にすることで、測定対象WOの第1面1aに形成された複数の光学面を測定することができ、測定用ジグ10を反転させて裏面20bを上にすることで、測定対象WOの第2面1bに形成された複数の光学面を測定することができる。
With reference to FIG.2 and FIG.3, the structure of the jig | tool 10 for a measurement installed on the mounting base 89 of the measuring apparatus 200 shown to FIG. 1 (A) etc. is demonstrated.
The measuring jig 10 includes a substrate 20, an urging device 30 that is an integral member, a holding mechanism 40 that includes a plurality of independent portions, and a reference portion 50 that includes a plurality of independent portions. Here, the urging device 30, the holding mechanism 40, and the reference portion 50 are fixed to the surface 20 a side of the substrate 20. The measuring jig 10 supports the measuring object WO in the center on the front side and can be turned upside down. That is, when the measuring jig 10 is placed with the surface 20a facing upward as shown in the drawing, a plurality of optical surfaces formed on the first surface 1a of the measuring object WO can be measured, and the measuring jig 10 is inverted. By making the back surface 20b up, it is possible to measure a plurality of optical surfaces formed on the second surface 1b of the measurement object WO.

図2〜図4に示す基板20は、金属製の板状体であり、全体の輪郭と一致する矩形(正方形を含む)の輪郭を有する支持枠21と、支持枠21の中央に配置された支持部材22とを備える。支持部材22は、支持枠21の中央に設けた貫通孔21aに嵌め込むように固定されている。   The substrate 20 shown in FIGS. 2 to 4 is a metal plate-like body, and is disposed at the center of the support frame 21 having a rectangular (including square) outline that matches the entire outline. And a support member 22. The support member 22 is fixed so as to be fitted into a through hole 21 a provided in the center of the support frame 21.

基板20のうち、支持部材22には、全体として略矩形の観察孔22aが形成されており、支持部材22上に支持した測定対象WOを表裏から観察できるようになっている。観察孔22aの周囲には、観察孔22aの内側に向けて突起する部分として3つの支持張出部22cが形成されている。各支持張出部22c上には、基板20の表面20a側から法線方向に突起する円錐台状の支持台又は支持突起22dが形成されている。3つの支持突起22dは、正三角形又は二等辺三角形の頂点位置に配置されており、測定対象WOの外周部2fを裏の第2面1b側からバランス良く3点支持する。ここで、基板20又は支持突起22dによる測定対象WOの支持方向は、基板20の表面20aに対して垂直なz方向となっている。観察孔22aには、2つの切欠き22bが形成されている。これらの切欠き22bは、後述する支持球62を表裏から測定できるようにしている。   Of the substrate 20, the support member 22 is formed with a substantially rectangular observation hole 22 a as a whole so that the measurement object WO supported on the support member 22 can be observed from the front and back sides. Around the observation hole 22a, three support projecting portions 22c are formed as portions protruding toward the inside of the observation hole 22a. A frustoconical support base or a support protrusion 22 d that protrudes in the normal direction from the surface 20 a side of the substrate 20 is formed on each support protrusion 22 c. The three support protrusions 22d are arranged at the apex positions of an equilateral triangle or an isosceles triangle, and support the outer peripheral portion 2f of the measurement target WO from the back second surface 1b side with three points in a balanced manner. Here, the support direction of the measurement object WO by the substrate 20 or the support protrusion 22d is the z direction perpendicular to the surface 20a of the substrate 20. Two notches 22b are formed in the observation hole 22a. These notches 22b allow a support ball 62 described later to be measured from the front and back.

図5(A)及び5(B)は、図2に示す測定用ジグ10において基板20上に支持される測定対象WOの一例を説明する平面図及び断面図である。測定対象WOは、矩形板状の外形を有するレンズアレイ、すなわち薄板複眼光学系であり、γ方向に延びる光軸OAに垂直なα方向及びβ方向に2次元的に配列された複数の個眼レンズ2aを備えている。測定対象WOは、プラスチック樹脂製であり、一辺が5〜15mm程度で、厚み1mm以下となっている。このレンズアレイのように、小型で薄い測定対象WOの場合、僅かな外力で撓み変形等が生じるので、測定用ジグ10上に支持する際には細心の注意が必要となる。なお、測定対象WOのレンズアレイは、プラスチック樹脂製に限らず、ガラス製であってもよい。   5A and 5B are a plan view and a cross-sectional view illustrating an example of the measurement object WO supported on the substrate 20 in the measurement jig 10 shown in FIG. The measurement object WO is a lens array having a rectangular plate-shaped outer shape, that is, a thin-plate compound eye optical system, and a plurality of single eyes arranged two-dimensionally in the α direction and the β direction perpendicular to the optical axis OA extending in the γ direction. A lens 2a is provided. The measurement object WO is made of plastic resin, and has a side of about 5 to 15 mm and a thickness of 1 mm or less. In the case of a small and thin measuring object WO like this lens array, bending deformation or the like occurs with a slight external force, and therefore, it is necessary to pay close attention when supporting it on the measuring jig 10. The lens array of the measurement object WO is not limited to plastic resin but may be glass.

測定対象WOのレンズアレイを構成する個眼レンズ2aの数は、図示の例では4×4の格子点に対応して16個となっている。測定対象WO内の各個眼レンズ2aは、繋がった状態で一体に成形されている。換言すれば、測定対象WOは、レンズ本体部2cとフランジ部2dとを一組とする多数の個眼レンズ2aを配列したものであり、隣接する各個眼レンズ2aのフランジ部2dが一体に成形されている。これらのすべてのフランジ部2dを合わせた部分は、レンズ本体部2cを支持する支持体2gとなっている。支持体2gは、平板状であり、γ方向に平行な光軸OAに垂直なαβ面に平行に延びる。レンズ本体部2cは、物体側すなわち第1面1a側に凸形状の非球面である第1光学面2iを有し、像側すなわち第2面1b側に凹形状の非球面である第2光学面2jを有する。両光学面2i,2jは、非球面であるが、球面とすることもできる。フランジ部2dは、第1光学面2iの周囲に平坦な第1フランジ面2mを有し、第2光学面2jの周囲に平坦な第2フランジ面2nを有する。第1及び第2フランジ面2m,2nは、レンズ有効面以外の面であり、αβ面に対して平行に配置されている。測定対象WOの外周部2fは、図2に示す測定用ジグ10に支持される部分である。外周部2fは、位置決めに利用される4つの側面2tと1つの枠底面2uとを有し、4つの側面2tは、測定対象WOの側部として、αγ面又はβγ面に平行に延びている。
なお、測定対象WOを図2に示す測定用ジグ10に取り付ける際には、測定対象WOの側面2tや枠底面2uを利用して、測定対象WOのαβγ軸が測定用ジグ10のxyz軸と略平行になるように設置される。
In the illustrated example, the number of single-lens lenses 2a constituting the lens array of the measurement object WO is 16 corresponding to 4 × 4 lattice points. Each individual lens 2a in the measuring object WO is integrally molded in a connected state. In other words, the measurement object WO is an array of a large number of single-lens lenses 2a each having a lens body 2c and a flange 2d as a set, and the flanges 2d of the adjacent single-lens 2a are integrally molded. Has been. A portion obtained by combining all the flange portions 2d serves as a support body 2g that supports the lens body portion 2c. The support 2g has a flat plate shape and extends parallel to an αβ plane perpendicular to the optical axis OA parallel to the γ direction. The lens body 2c has a first optical surface 2i that is a convex aspheric surface on the object side, that is, the first surface 1a side, and a second optical surface that is a concave aspheric surface on the image side, that is, the second surface 1b side. It has surface 2j. Both optical surfaces 2i and 2j are aspherical surfaces, but may be spherical surfaces. The flange portion 2d has a flat first flange surface 2m around the first optical surface 2i, and a flat second flange surface 2n around the second optical surface 2j. The first and second flange surfaces 2m and 2n are surfaces other than the lens effective surface, and are arranged in parallel to the αβ surface. The outer peripheral part 2f of the measuring object WO is a part supported by the measuring jig 10 shown in FIG. The outer peripheral portion 2f has four side surfaces 2t used for positioning and one frame bottom surface 2u, and the four side surfaces 2t extend in parallel to the αγ surface or βγ surface as side portions of the measurement object WO. .
When the measurement object WO is attached to the measurement jig 10 shown in FIG. 2, the αβγ axis of the measurement object WO is aligned with the xyz axis of the measurement jig 10 using the side surface 2t and the frame bottom surface 2u of the measurement object WO. It is installed so as to be substantially parallel.

図2及び図6に示す付勢装置30は、全体的な輪郭が環状部材31からなっており、測定対象WOの第1面1aを露出させるため中央を開放している。付勢装置30は、複数の取付け部38を利用して、基板20の表面20a側に支持部材22を囲むような状態で固定される。付勢装置30は、基板20の支持部材22上に載置された測定対象WOの脱落を防止する役割を有している。このため、付勢装置30は、測定対象WOの支持方向に関して(すなわちz方向に関して)測定対象WOを挟んで支持部材22の3つの支持突起22dに対向する荷重発生位置において、測定対象WOを第1面1a側から基板20側に付勢する。具体的には、付勢装置30は、内側に延びる3つの付勢部材32を有する。各付勢部材32は、直線的に延びる細長い板バネであり、根元側で環状部材31に固定され、先端側において半球状の付勢突起32aを有する。   The urging device 30 shown in FIGS. 2 and 6 has an overall contour formed of an annular member 31 and is open at the center to expose the first surface 1a of the measurement object WO. The biasing device 30 is fixed in a state of surrounding the support member 22 on the surface 20a side of the substrate 20 using a plurality of attachment portions 38. The urging device 30 has a role of preventing the measurement object WO placed on the support member 22 of the substrate 20 from dropping off. For this reason, the urging device 30 sets the measurement target WO at the load generation position facing the three support protrusions 22d of the support member 22 across the measurement target WO with respect to the support direction of the measurement target WO (that is, with respect to the z direction). The first surface 1a is biased toward the substrate 20 side. Specifically, the urging device 30 has three urging members 32 extending inward. Each urging member 32 is an elongated leaf spring extending linearly, is fixed to the annular member 31 on the base side, and has a hemispherical urging protrusion 32a on the tip side.

図7に部分的に拡大して示すように、付勢部材32の付勢突起32aは、測定対象WOのうち支持突起22dに対向する荷重発生位置P1に当接している。ここで、付勢突起32aと支持突起22dとは、z方向に関して測定対象WOの外周部2fを挟んで対向しており、測定対象WOを挟むように保持して測定対象WOをz方向に関して支持するが、測定対象WOに回転モーメントを与えないようになっている。具体的には、支持突起22dが円錐台状であり、付勢突起32aの下端が半球状であり、付勢突起32aは、測定対象WOの外周部2fを点支持している。これにより、測定対象WOを3点支持しつつ、測定対象WOに撓み変形のような歪を生じさせることを簡易に防止できる。なお、付勢突起32aは、半球状に限らず短い円筒面とすることもでき、この場合も上記と同様に、測定対象WOに撓み変形のような歪を生じさせることを簡易に防止できる。   As shown in a partially enlarged view in FIG. 7, the urging protrusion 32a of the urging member 32 is in contact with the load generation position P1 facing the support protrusion 22d in the measurement object WO. Here, the biasing protrusion 32a and the support protrusion 22d are opposed to each other with the outer peripheral portion 2f of the measurement object WO in the z direction, and are supported so as to sandwich the measurement object WO to support the measurement object WO in the z direction. However, no rotational moment is applied to the measurement object WO. Specifically, the support protrusion 22d has a truncated cone shape, the lower end of the urging protrusion 32a is hemispherical, and the urging protrusion 32a supports the outer peripheral portion 2f of the measurement target WO in a point manner. Accordingly, it is possible to easily prevent the measurement target WO from being distorted such as bending deformation while supporting the measurement target WO at three points. Note that the biasing protrusion 32a is not limited to a hemispherical shape, and may be a short cylindrical surface. In this case, similarly to the above, it is possible to easily prevent distortion such as bending deformation from occurring in the measurement target WO.

図2に戻って、保持機構40は、測定対象WOのx方向の位置決めを可能にする第1保持機構41と、測定対象WOのy方向の位置決めを可能にする第2保持機構42とを有する。   Returning to FIG. 2, the holding mechanism 40 includes a first holding mechanism 41 that enables positioning of the measurement object WO in the x direction, and a second holding mechanism 42 that enables positioning of the measurement object WO in the y direction. .

図2及び図4に示す第1保持機構41は、側方支持部材41aと制限部材41bとからなる。側方支持部材41aは、先端に支持球62を固定したロッド状のスライダー45と、スライダー45をその軸方向に案内するガイド46と、スライダー45を軸方向に垂直な横方向から基板20側に付勢する直交付勢部材47とを有する。制限部材41bは、基板20に固定された支持基部58aと、支持基部58aから基板20の表面20aに沿ってx方向に延びるロッド状の当接部材58bとを備える。この当接部材58bは、測定対象WOの位置を整える役割を有する。なお、当接部材58bは、基板20と環状部材31との間に形成された挿通孔(不図示)に隙間を有して挿入されている。スライダー45の後端を−x方向に適当な力で軽く押すと、支持球62が測定対象WOの側面2tに当接し、測定対象WOを−x方向に押すことができ、押された測定対象WOは、その反対側の側面2tが当接部材58bの支持球62を設けた先端部58dに当接するまで−x方向に移動する。スライダー45の後端を−x方向に押すことを止めると、側方支持部材41aによって測定対象WOに付与される力又は荷重が殆どなくなるが、測定対象WOは、側方支持部材41aと制限部材41bとに挟まれてx方向に関して位置決めされ、大きな外力を与えなければ位置決めされたままの位置に安定して保持される。以上において、支持球62は、測定対象WOの側面2tのx座標を測定又は決定するために用いることができる。   The first holding mechanism 41 shown in FIGS. 2 and 4 includes a side support member 41a and a limiting member 41b. The side support member 41a includes a rod-shaped slider 45 having a support sphere 62 fixed at the tip, a guide 46 for guiding the slider 45 in the axial direction, and the slider 45 from the lateral direction perpendicular to the axial direction to the substrate 20 side. And an orthogonal urging member 47 for urging. The limiting member 41b includes a support base 58a fixed to the substrate 20 and a rod-shaped contact member 58b extending from the support base 58a along the surface 20a of the substrate 20 in the x direction. The contact member 58b has a role of adjusting the position of the measurement target WO. The contact member 58b is inserted in a through hole (not shown) formed between the substrate 20 and the annular member 31 with a gap. When the rear end of the slider 45 is lightly pressed with an appropriate force in the −x direction, the support ball 62 comes into contact with the side surface 2t of the measurement object WO, and the measurement object WO can be pressed in the −x direction. The WO moves in the −x direction until the opposite side surface 2t comes into contact with the tip 58d provided with the support ball 62 of the contact member 58b. When the pushing of the rear end of the slider 45 in the −x direction is stopped, the force or load applied to the measurement target WO by the side support member 41a is almost eliminated. However, the measurement target WO includes the side support member 41a and the limiting member. It is positioned in the x direction between 41b and is stably held in the position where it is positioned unless a large external force is applied. In the above, the support sphere 62 can be used to measure or determine the x coordinate of the side surface 2t of the measurement target WO.

第2保持機構42は、側方支持部材141aと制限部材141bとからなる。各側方支持部材141aは、上述した第1保持機構41の側方支持部材41aを2つ平行に配置した構造を有し、先端に支持球62を固定した2つのロッド状のスライダー45と、これらスライダー45をその軸方向に案内するガイド46と、スライダー45を軸方向に垂直な横方向から基板20側に付勢する2つの直交付勢部材47とを有する。制限部材141bは、上述した第1保持機構41の制限部材41bを2点支持可能にしたものであり、基板20に固定された支持基部58aと、支持基部58aから基板20の表面20aに沿ってy方向に延びる一対のロッド状の当接部材58b,58bとを備える。これらの当接部材58b,58bは、測定対象WOの位置を整える役割を有する。一対のスライダー45の後端を+y方向に適当な力で軽く押すと、2つの支持球62が測定対象WOの側面2tに当接し、測定対象WOを+y方向に押すことができ、押された測定対象WOは、その反対側の側面2tが一対の当接部材58b,58bの支持球62を設けた先端部58jに当接するまで+y方向に移動する。両スライダー45の後端を+y方向に押すことを止めると、測定対象WOは、側方支持部材141aと制限部材141bとに挟まれて、y方向に関して位置決めされるとともにz軸に平行な中心軸の周りに関しての回転姿勢も調整され、大きな外力を与えなければ位置決めされたままの位置に安定して保持される。以上において、支持球62は、測定対象WOの側面2tのy座標やz軸のまわりの傾き回転角を測定又は決定するために用いることができる。   The second holding mechanism 42 includes a side support member 141a and a limiting member 141b. Each side support member 141a has a structure in which two side support members 41a of the first holding mechanism 41 described above are arranged in parallel, and two rod-shaped sliders 45 each having a support ball 62 fixed to the tip, A guide 46 that guides the slider 45 in the axial direction, and two orthogonal urging members 47 that urge the slider 45 toward the substrate 20 from a lateral direction perpendicular to the axial direction. The limiting member 141b is capable of supporting the limiting member 41b of the first holding mechanism 41 described above at two points, and includes a support base 58a fixed to the substrate 20 and a surface 20a of the substrate 20 from the support base 58a. a pair of rod-shaped contact members 58b, 58b extending in the y direction. These contact members 58b and 58b have a role of adjusting the position of the measurement object WO. When the rear ends of the pair of sliders 45 are lightly pushed in the + y direction with an appropriate force, the two support balls 62 come into contact with the side surface 2t of the measurement object WO, and the measurement object WO can be pushed in the + y direction. The measurement object WO moves in the + y direction until the opposite side surface 2t comes into contact with the tip portion 58j provided with the support balls 62 of the pair of contact members 58b and 58b. When pressing the rear ends of both sliders 45 in the + y direction is stopped, the measuring object WO is sandwiched between the side support member 141a and the limiting member 141b, and is positioned with respect to the y direction and is a central axis parallel to the z axis. The rotation posture with respect to the periphery of the lens is also adjusted, and if it is not given a large external force, it is stably held at the position where it is positioned. In the above, the support sphere 62 can be used to measure or determine the y coordinate of the side surface 2t of the measurement object WO and the tilt rotation angle around the z axis.

図8及び図9を参照して、第1保持機構41の側方支持部材41aの具体的な構造について説明する。
側方支持部材41aは、上述したスライダー45、ガイド46、及び直交付勢部材47の他に、係止部74を有する。側方支持部材41aのうち、スライダー45は、先端に支持球62を固定したロッド状の部材である。ガイド46は、スライダー45を軸方向に案内するため一対のガイド部材72a,72bで構成される。直交付勢部材47は、スライダー45をその長手方向に垂直な側方から押圧するもものであり、スライダー45を基板20の表面20aのうちの対向する部分である平坦面20sに押し付けるように付勢するバネ73aを内蔵する。係止部74は、スライダー45を側面側から支持するとともに直交付勢部材47を基板20上に固定する。
With reference to FIG.8 and FIG.9, the specific structure of the side support member 41a of the 1st holding mechanism 41 is demonstrated.
The side support member 41a includes a locking portion 74 in addition to the slider 45, the guide 46, and the orthogonal biasing member 47 described above. Of the side support members 41a, the slider 45 is a rod-shaped member having a support ball 62 fixed at the tip. The guide 46 includes a pair of guide members 72a and 72b for guiding the slider 45 in the axial direction. The orthogonal urging member 47 presses the slider 45 from the side perpendicular to the longitudinal direction thereof, and is applied so as to press the slider 45 against the flat surface 20 s which is the opposite portion of the surface 20 a of the substrate 20. A spring 73a is provided. The locking portion 74 supports the slider 45 from the side surface side and fixes the orthogonal biasing member 47 on the substrate 20.

スライダー45は、基板20の支持部材22上に載置された測定対象WOをその側面2tに垂直な−x方向に向けて支持する。スライダー45は、支持球62を支持するロッドである先端側保持部材71aと、係止部74によって形成される窪みに対して遊嵌状態で保持される根元側摺動部71bとを有する。根元側摺動部71bの外周側面(上下面及び側面)については、摺動性及び耐摩耗性を向上させるため、DLCなどの表面処理を施すことができる。根元側摺動部71bには、その移動を係止部74と協働して案内するため、長穴状の溝71fが形成されており、この溝71fの内面についても、摺動性及び耐摩耗性を向上させるため、DLCなどの表面処理を施すことができる。
スライダー45に支持された支持球62は、高硬度の材料、例えばルビー、窒化珪素、超硬合金などの材料で形成される。支持球62は、比較的小さく、Φ0.33〜2mm程度の真球である。
The slider 45 supports the measurement object WO placed on the support member 22 of the substrate 20 in the −x direction perpendicular to the side surface 2t. The slider 45 includes a tip-side holding member 71 a that is a rod that supports the support ball 62, and a root-side sliding portion 71 b that is held in a loose fit with respect to a recess formed by the locking portion 74. The outer peripheral side surfaces (upper and lower surfaces and side surfaces) of the base side sliding portion 71b can be subjected to a surface treatment such as DLC in order to improve slidability and wear resistance. The root-side sliding portion 71b is formed with an elongated hole 71f in order to guide its movement in cooperation with the locking portion 74, and the inner surface of the groove 71f is also slidable and resistant. In order to improve the wearability, a surface treatment such as DLC can be performed.
The support sphere 62 supported by the slider 45 is formed of a material having high hardness, such as ruby, silicon nitride, or cemented carbide. The support sphere 62 is a relatively small sphere having a diameter of about 0.33 to 2 mm.

一対のガイド部材72a,72bは、円柱状の外形をそれぞれ有し、基板20にそれぞれ固定されて表面20aから突起する案内ピンであり、スライダー45が延びるx方向に配列されている。一対のガイド部材72a,72bは、根元側摺動部71bの下面側に形成されてx方向に延びる長穴状の溝71fに摺動可能に嵌合している。つまり、根元側摺動部71bは、基板20の表面20aに支持されて−z方向の移動が規制され、一対のガイド部材72a,72b及び係止部74に案内されてx方向の移動が許容される。   Each of the pair of guide members 72a and 72b has a cylindrical outer shape, is a guide pin that is fixed to the substrate 20 and protrudes from the surface 20a, and is arranged in the x direction in which the slider 45 extends. The pair of guide members 72a and 72b is slidably fitted in a slot 71f formed in the bottom surface of the base side sliding portion 71b and extending in the x direction. That is, the root side sliding portion 71b is supported by the surface 20a of the substrate 20 and is restricted from moving in the −z direction, and is guided by the pair of guide members 72a and 72b and the locking portion 74 to allow movement in the x direction. Is done.

直交付勢部材47は、係止部74の上部にねじ込んで埋め込むように固定されている。直交付勢部材47の下端は、スライダー45の根元側摺動部71bの上面に当接して根元側摺動部71bを対向する基板20の平坦面20sに付勢しており、スライダー45の状態保持とともにスライダー45の精密で安定した摺動を可能にしている。直交付勢部材47は、バネ73aの圧縮力により先端部に所望の付勢力又は押圧力を発生させる。直交付勢部材47の先端はスライダー45の側面と摺動するように接触するので、直交付勢部材47の先端の接触部には、滑らかに転動するボールやローラーを設ける。つまり、直交付勢部材47は、ボールプランジャーにより構成される。   The orthogonal urging member 47 is fixed so as to be screwed and embedded in the upper portion of the locking portion 74. The lower end of the orthogonal urging member 47 abuts on the upper surface of the base side sliding portion 71b of the slider 45 and urges the base side sliding portion 71b to the flat surface 20s of the opposing substrate 20, and the state of the slider 45 The holding allows the slider 45 to slide precisely and stably. The orthogonal urging member 47 generates a desired urging force or pressing force at the tip portion by the compression force of the spring 73a. Since the tip of the orthogonal urging member 47 contacts the side surface of the slider 45 so as to slide, a ball or roller that rolls smoothly is provided at the contact portion of the tip of the orthogonal urging member 47. That is, the orthogonal urging member 47 is configured by a ball plunger.

以上のようなガイド部材72a,72bや直交付勢部材47により、スライダー45は、長手方向つまり±x方向の位置を調整可能に固定されており、支持球62が測定対象WOの側面2tを適度に押圧又はこれに当接する位置を調整できるようになっている。つまり、スライダー45は、直交付勢部材47によって基板20上に弱く係止されており、外力が与えられなければ、基板20の平坦面20sと根元側摺動部71bの被支持面である下面71kとの圧接による摩擦力により、基板20上における±x方向の位置を維持しようとする。一方、スライダー45に±x方向の外力が与えられた場合、その外力が基板20の表面20aと根元側摺動部71bの下面(被支持面)71kとの摩擦力を超えるときは、スライダー45は、摩擦力に抗して外力に応じた±x方向に移動しその±x方向の位置が変化する。   The slider 45 is fixed by the guide members 72a and 72b and the orthogonal urging member 47 as described above so that the position in the longitudinal direction, that is, the ± x direction can be adjusted, and the support ball 62 appropriately adjusts the side surface 2t of the measurement object WO. It is possible to adjust the position where it is pressed or abutted against this. That is, the slider 45 is weakly locked on the substrate 20 by the orthogonal urging member 47, and if no external force is applied, the flat surface 20s of the substrate 20 and the lower surface that is the supported surface of the root side sliding portion 71b. The position in the ± x direction on the substrate 20 is maintained by the frictional force generated by the pressure contact with 71k. On the other hand, when an external force in the ± x direction is applied to the slider 45, when the external force exceeds the frictional force between the surface 20a of the substrate 20 and the lower surface (supported surface) 71k of the root side sliding portion 71b, the slider 45 Moves in the ± x direction according to the external force against the frictional force, and the position in the ± x direction changes.

なお、第2保持機構42の側方支持部材141aの構造は、第1保持機構41のものと同様であるので、説明を省略する。   Since the structure of the side support member 141a of the second holding mechanism 42 is the same as that of the first holding mechanism 41, the description thereof is omitted.

結果的に、測定対象WOの4つの側面2tは、側方支持部材41aの1つの支持球62に支持される面、側方支持部材141aの2つの支持球62に支持される面、制限部材41bの1つの支持球62に支持される面、制限部材141bの2つの支持球62に支持される面が並んだものとなる。つまり、測定対象WOは、均等な箇所で周囲から保持されている。   As a result, the four side surfaces 2t of the measurement object WO are a surface supported by one support sphere 62 of the side support member 41a, a surface supported by the two support spheres 62 of the side support member 141a, and a limiting member. The surface supported by one support sphere 62 of 41b and the surface supported by the two support spheres 62 of the limiting member 141b are arranged side by side. That is, the measurement object WO is held from the periphery at an equal location.

図2等に戻って、基準部50は、3つの基準球51と、3つの球保持部52とを有する。基準球51は、球保持部52に安定した状態で保持され、球保持部52を介して基板20に固定される。この際、3つの基準球51は、基板20上に載置された測定対象WOの中心を重心とする正三角形の頂点位置に配置され、この正三角形の1辺は、x方向に平行であり、測定装置200にセットされた後は、測定装置200の水平方向の駆動軸に対応するX軸又はY軸と平行に設定される。球保持部52は、一対の開口52aを有し、基板20の表面20a及び裏面20b側からの基準球51を観察可能にしている。基準球51は、高硬度の材料、例えばルビー、窒化珪素、超硬合金などの材料で形成される。基準球51は、比較的大きく、Φ3〜10mm程度の真球である。   Returning to FIG. 2 and the like, the reference portion 50 includes three reference spheres 51 and three sphere holding portions 52. The reference sphere 51 is held in a stable state by the sphere holder 52 and is fixed to the substrate 20 via the sphere holder 52. At this time, the three reference spheres 51 are arranged at the vertex positions of an equilateral triangle having the center of gravity of the measurement object WO placed on the substrate 20 as a center of gravity, and one side of the equilateral triangle is parallel to the x direction. After being set in the measuring apparatus 200, the X axis or the Y axis corresponding to the horizontal drive axis of the measuring apparatus 200 is set. The sphere holding part 52 has a pair of openings 52a so that the reference sphere 51 can be observed from the front surface 20a side and the back surface 20b side of the substrate 20. The reference sphere 51 is formed of a high hardness material, for example, a material such as ruby, silicon nitride, or cemented carbide. The reference sphere 51 is relatively large and is a true sphere having a diameter of about 3 to 10 mm.

測定用ジグ10に測定対象WOをセットする際には、まず付勢装置30を基板20から取り外し、第1及び第2保持機構41,42のスライダー45を後退させて、基板20の支持部材22上の空間を開放する。その後、支持部材22上の適所に測定対象WOを載置し、第1及び第2保持機構41,42を構成する3つのスライダー45を前進させて測定対象WOの側面2tを軽く押す。これにより、支持部材22上で測定対象WOが位置決めされる。次に、ネジ止め等によって付勢装置30を基板20の表面20a側に固定する。これにより、3つの付勢部材32の付勢突起32aが測定対象WOの外周部2fを下方に付勢し、これに正対する3つの支持突起22dが測定対象WOの外周部2fを同じ箇所で受けることになる。その後は、再度スライダー45を軽く押して前進させることで、測定対象WOの横方向の位置決めがより確実になる。   When setting the measuring object WO on the measuring jig 10, first, the urging device 30 is removed from the substrate 20, and the slider 45 of the first and second holding mechanisms 41, 42 is moved backward to support the supporting member 22 of the substrate 20. Free up the space above. Thereafter, the measurement object WO is placed at an appropriate position on the support member 22, the three sliders 45 constituting the first and second holding mechanisms 41 and 42 are advanced, and the side surface 2t of the measurement object WO is lightly pressed. Thereby, the measuring object WO is positioned on the support member 22. Next, the urging device 30 is fixed to the surface 20a side of the substrate 20 by screwing or the like. Thereby, the urging protrusions 32a of the three urging members 32 urge the outer peripheral portion 2f of the measurement object WO downward, and the three support protrusions 22d that are directly opposed to the urging protrusions 32a have the outer peripheral portion 2f of the measurement object WO at the same location. Will receive. After that, the slider 45 is lightly pushed again to advance, so that the positioning of the measurement object WO in the lateral direction becomes more reliable.

以下、図1に示す測定装置200や図2に示す測定用ジグ10を用いた光学素子の測定方法について説明する。   Hereinafter, a method for measuring an optical element using the measuring apparatus 200 shown in FIG. 1 and the measuring jig 10 shown in FIG. 2 will be described.

最初に、測定対象WOであるレンズアレイ(光学素子)を支持する測定用ジグ10を、測定装置200に予め取り付けられている載置台89上にセットする。この際、基板20の表面20aについて、上側からの観察が可能になるようにする。次に、基板20の周辺部に配置された3つの基準球51の表面形状を計測することによって、それらの球芯に対応する座標系(表側座標系)を決定する。この際、測定対象WOであるレンズアレイの周囲に配置された3つの支持球62の表面形状を計測することによってこれらの球芯の座標を測定し、測定対象WOの側面2tの配置に関する情報を得ることができる。次に、測定対象WOであるレンズアレイの表面20aのうち、複数の第1光学面2iの表面形状を順次測定する。この際、レンズアレイの表面20aに位置決めの基準となる形状があれば、この基準形状の測定を行うこともできる。第1光学面2iの測定は、第1光学面2iの上方に触針PRを配置した状態で、XYステージ装置82を動作させて第1光学面2iに対して触針PRを2次元的に走査移動させつつ、Z駆動装置84を動作させて触針PR先端を第1光学面2iから離れないように移動させる。これにより、2次元的な表面形状データが得られる。複数の第1光学面2i以外の基準形状の測定も同様である。なお、測定対象WOの第1面1aが滑らかであれば、複数の第1光学面2i等を一括して測定することもできる。   First, the measurement jig 10 that supports the lens array (optical element) that is the measurement target WO is set on a mounting table 89 that is attached in advance to the measurement apparatus 200. At this time, the surface 20a of the substrate 20 can be observed from above. Next, by measuring the surface shapes of the three reference spheres 51 arranged on the periphery of the substrate 20, a coordinate system (front side coordinate system) corresponding to the spherical cores is determined. At this time, the coordinates of these spherical cores are measured by measuring the surface shapes of the three support spheres 62 arranged around the lens array which is the measurement target WO, and information regarding the arrangement of the side surface 2t of the measurement target WO is obtained. Can be obtained. Next, the surface shapes of the plurality of first optical surfaces 2i are sequentially measured among the surface 20a of the lens array that is the measurement object WO. At this time, if the surface 20a of the lens array has a shape as a positioning reference, the reference shape can be measured. The first optical surface 2i is measured in a two-dimensional manner by operating the XY stage device 82 in a state where the stylus PR is disposed above the first optical surface 2i and moving the stylus PR to the first optical surface 2i. While moving the scanning, the Z driving device 84 is operated to move the tip of the stylus PR so as not to leave the first optical surface 2i. Thereby, two-dimensional surface shape data is obtained. The same applies to the measurement of reference shapes other than the plurality of first optical surfaces 2i. In addition, if the 1st surface 1a of the measuring object WO is smooth, the some 1st optical surface 2i etc. can also be measured collectively.

次に、測定用ジグ10に反転させることで裏返をした状態として載置台89上に再度セットする。つまり、基板20の裏面20bについて、上側からの観察が可能になるようにする。次に、基板20の周辺部に配置された3つの基準球51の表面形状を計測することによって、それらの球芯に対応する座標系(裏側座標系)を決定する。次に、反転前に得た球芯の座標系(表側座標系)と、反転後に得た球芯の座標系(裏側座標系)とを比較して、表側座標系と裏側座標系との関係を算出する。この際、測定対象WOであるレンズアレイの周囲に配置された3つの支持球62の表面形状を計測することによってこれらの球芯の座標を測定し、測定対象WOの側面2tの配置に関する情報を追加的に得ることができる。次に、測定対象WOであるレンズアレイの裏面20bのうち、複数の第2光学面2jの表面形状を順次測定する。この際、レンズアレイの裏面20bに位置決めの基準となる形状があれば、この基準形状の測定を行うこともできる。次に、複数の第2光学面2jの表面形状の形状情報についてレンズアレイの表面20aを基準とする座標変換を行って、第1光学面2iと第2光学面2jとを直接比較できるようにする。これにより、一対の対向する第1光学面2iと第2光学面2jとについて、フィッティングを行うなどして偏芯量を決定することができる。また、一対の対向する第1光学面2iと第2光学面2jとを有する複数のレンズ本体部2cについて、光軸AXの偏芯量を決定することができる。   Next, it is set again on the mounting table 89 in an inverted state by being inverted to the measuring jig 10. In other words, the back surface 20b of the substrate 20 can be observed from above. Next, by measuring the surface shapes of the three reference spheres 51 arranged in the peripheral part of the substrate 20, a coordinate system (back side coordinate system) corresponding to the spherical cores is determined. Next, the relationship between the front-side coordinate system and the back-side coordinate system is compared with the coordinate system (front-side coordinate system) of the sphere core obtained before inversion and the coordinate system (back-side coordinate system) of the sphere core obtained after inversion. Is calculated. At this time, the coordinates of these spherical cores are measured by measuring the surface shapes of the three support spheres 62 arranged around the lens array which is the measurement target WO, and information regarding the arrangement of the side surface 2t of the measurement target WO is obtained. It can be obtained additionally. Next, among the back surface 20b of the lens array that is the measurement target WO, the surface shapes of the plurality of second optical surfaces 2j are sequentially measured. At this time, if the rear surface 20b of the lens array has a shape that serves as a positioning reference, the reference shape can be measured. Next, the first optical surface 2i and the second optical surface 2j can be directly compared by performing coordinate conversion with respect to the shape information of the surface shape of the plurality of second optical surfaces 2j with reference to the surface 20a of the lens array. To do. As a result, the amount of eccentricity can be determined by fitting the pair of first optical surface 2i and second optical surface 2j facing each other. Further, the eccentricity of the optical axis AX can be determined for a plurality of lens main bodies 2c having a pair of opposing first optical surface 2i and second optical surface 2j.

以上で説明した実施形態の測定装置200では、基板20に固定された直交付勢部材47が、支持方向であるz方向に関して測定対象WOを挟んで3つの支持突起22dに対向する荷重発生位置P1において、測定対象WOを第1面1a側から基板20側に付勢するので、測定対象WOに対して局所的な回転力等を与えることを防止でき、測定対象WO内に発生する応力を低減できる。また、側方支持部材41a,141aが基板20の表面20a側において支持方向であるz方向に垂直な方向に移動可能な状態で測定対象WOの側面2tに当接可能であるとともに、支持方向であるz方向への押圧力を受けて発生する摩擦力によって支持方向に垂直な方向への移動が抑制されるので、測定対象WOの側面2tに殆ど荷重を掛けない状態で、測定対象WOを基板20の表面20a側において支持方向に垂直な方向(具体的には横方向であるx方向やy方向)に関して移動しないように保持することができる。これにより、測定対象WOを支持方向や横方向に関して安定した状態で支持又は保持できるだけでなく、支持による歪み等の発生を低減して、測定対象WOを表裏から高精度で形状測定することができる。   In the measurement apparatus 200 of the embodiment described above, the orthogonal biasing member 47 fixed to the substrate 20 is the load generation position P1 that faces the three support protrusions 22d across the measurement object WO with respect to the z direction that is the support direction. Since the measurement object WO is biased from the first surface 1a side to the substrate 20 side, it is possible to prevent a local rotational force or the like from being applied to the measurement object WO and to reduce stress generated in the measurement object WO it can. Further, the side support members 41a and 141a can be in contact with the side surface 2t of the measurement object WO in a state in which the side support members 41a and 141a are movable in the direction perpendicular to the z direction, which is the support direction, on the surface 20a side of the substrate 20 Since the movement in the direction perpendicular to the support direction is suppressed by the frictional force generated by the pressing force in a certain z direction, the measurement target WO is placed on the substrate in a state where almost no load is applied to the side surface 2t of the measurement target WO. It can hold | maintain so that it may not move regarding the surface 20a side of 20 about the direction (specifically x direction and y direction which are horizontal directions) perpendicular | vertical to a support direction. As a result, not only can the measurement object WO be supported or held in a stable state with respect to the support direction or the lateral direction, but the occurrence of distortion due to the support can be reduced, and the shape of the measurement object WO can be measured from the front and back with high accuracy. .

以下、具体的な測定条件や測定方法について説明する。図1等に示す測定装置200として、パナソニック社UA3P、ミツトヨ社STRATO−Apex 574等を用いた。測定用ジグ10上に支持される測定対象WOは、4×4の非球面光学面を有するレンズアレイであり、外周の一辺が12mm程度の正方形輪郭を有し、厚み0.6〜0.7mm程度であり、重量0.1g程度であった。付勢装置30に設けた各付勢部材32は、0.1〜0.5Nの荷重又は押圧力を発生する板バネとした。なお、付勢部材32が板バネである場合、目標とする加重を測定対象WOに与えるためには、以下のような換算式を利用して、板バネの撓み量から荷重を計算できる。
δ=pl/3EI … (1)
ここで、δ…板バネの撓み量(mm)、p…板バネに掛かる荷重(測定対象の荷重+板バネの自重)(N)、l…支点から荷重点までの距離(mm)、E…板バネの材料のヤング率(N/mm)、I…断面2次モーメント(mm)である。
特に板バネの断面形状が四角形の場合、以下のような換算式を利用できる。
δ=4pl/Ebt×(1−ν) … (2)
ここで、b…板幅(mm)、t…板厚(mm)、ν…ポアソン比である。
側方支持部材41a,141aについては、基板20の表面20aとスライダー45の下面71kとの接触領域の表面粗さRaを共に0.4μm≦Ra≦1.6μmとした。なお、スライダー45の側面は、係止部74の内面と接触させていないが、係止部74の内面と接触させる場合、これらの接触領域の表面粗さRaも0.4μm≦Ra≦1.6μmとする。また、直交付勢部材47であるボールプランジャーによってスライダー45に対して与えられる荷重又は押圧力Fは、1.0N≦F≦5.0N程度とした。
以上のような条件で測定装置200を用いレンズアレイの光学面形状等を測定し、その結果を金型作製にフィードバックした。すなわち、測定装置200による測定形状から形状補正を実施し、レンズ性能の向上を確認した。レンズアレイの平面部を白色干渉で測定した結果、測定対象WOを何も拘束していない時と治具で拘束した時とで、第1面1aに生じたゆがみ量の差は目標値から0.1μm以下に収まった。
Hereinafter, specific measurement conditions and measurement methods will be described. As the measuring apparatus 200 shown in FIG. 1 and the like, Panasonic UA3P, Mitutoyo Strato-Apex 574, and the like were used. The measurement object WO supported on the measurement jig 10 is a lens array having a 4 × 4 aspherical optical surface, and has a square outline with an outer side of about 12 mm and a thickness of 0.6 to 0.7 mm. The weight was about 0.1 g. Each urging member 32 provided in the urging device 30 is a leaf spring that generates a load or pressing force of 0.1 to 0.5 N. When the urging member 32 is a leaf spring, the load can be calculated from the amount of deflection of the leaf spring using the following conversion formula in order to give a target weight to the measurement object WO.
δ = pl 3 / 3EI (1)
Where δ is the amount of deflection of the leaf spring (mm), p is the load applied to the leaf spring (the load to be measured + the weight of the leaf spring) (N), l is the distance from the fulcrum to the load point (mm), E ... Young's modulus (N / mm 2 ) of the material of the leaf spring, I ... Second moment of inertia (mm 4 ).
In particular, when the cross-sectional shape of the leaf spring is a square, the following conversion formula can be used.
δ = 4 pl 3 / Ebt × (1−ν 2 ) (2)
Here, b: plate width (mm), t: plate thickness (mm), ν: Poisson's ratio.
For the side support members 41a and 141a, the surface roughness Ra of the contact area between the surface 20a of the substrate 20 and the lower surface 71k of the slider 45 is set to 0.4 μm ≦ Ra ≦ 1.6 μm. The side surface of the slider 45 is not in contact with the inner surface of the locking portion 74, but when contacting the inner surface of the locking portion 74, the surface roughness Ra of these contact areas is also 0.4 μm ≦ Ra ≦ 1. 6 μm. Further, the load or pressing force F applied to the slider 45 by the ball plunger which is the orthogonal urging member 47 was set to about 1.0N ≦ F ≦ 5.0N.
Under the conditions as described above, the optical surface shape and the like of the lens array were measured using the measuring apparatus 200, and the results were fed back to the mold fabrication. That is, shape correction was performed from the shape measured by the measuring apparatus 200, and improvement in lens performance was confirmed. As a result of measuring the planar portion of the lens array by white interference, the difference in the amount of distortion generated on the first surface 1a is 0 from the target value between when the measurement object WO is not restrained and when it is restrained by a jig. It was within 1 μm.

以上では、実施形態に即して測定装置や測定方法について説明したが、本発明の測定装置や測定方法は、上記に例示されるものに限らず、種々の変形が可能である。測定装置200は、触針による3次元形状測定装置に限らず、光干渉法を用いた装置とすることができ、この場合、例えば平面部の表面粗さ、平面部全体のうねり等を測定する際に有用である。また、測定装置200は、触針による3次元形状測定装置に限らず、レーザー反射法を用いた装置、具体的にはレーザー変位計、形状測定器等とすることができる。   Although the measurement apparatus and the measurement method have been described above according to the embodiment, the measurement apparatus and the measurement method of the present invention are not limited to those exemplified above, and various modifications can be made. The measuring apparatus 200 is not limited to a three-dimensional shape measuring apparatus using a stylus, and can be an apparatus using an optical interference method. In this case, for example, the surface roughness of the flat surface portion, the undulation of the entire flat surface portion, and the like are measured. Useful in some cases. The measuring device 200 is not limited to a three-dimensional shape measuring device using a stylus, and may be a device using a laser reflection method, specifically, a laser displacement meter, a shape measuring device, or the like.

上記実施形態では、支持部材22の支持突起22dを円錐台状とし、付勢部材32の付勢突起32aを半球状としているが、支持部材22の支持突起22dを半球状とし、付勢部材32の付勢突起32aを円錐台状とすることもできる。   In the above embodiment, the support protrusion 22d of the support member 22 has a truncated cone shape, and the biasing protrusion 32a of the biasing member 32 has a hemispherical shape. However, the support protrusion 22d of the support member 22 has a hemispherical shape, and the biasing member 32 has a hemispherical shape. The urging protrusion 32a can be formed into a truncated cone shape.

制限部材41b,141bを構成する当接部材58bの先端部58jは、支持球62を取り付けたものに限らず、点接触を簡易に実現できる半円状のものとでき、さらに精度的な許容度が高い場合、直線状又は平面状とすることもできる。この場合も、当接部材58bの横幅が狭ければ精度の劣化は特に大きくならない。   The front end 58j of the abutting member 58b constituting the restricting members 41b and 141b is not limited to the one provided with the support ball 62, but can be a semicircular shape that can easily realize point contact, and has a more accurate tolerance. When is high, it can be linear or planar. Also in this case, if the lateral width of the contact member 58b is narrow, the deterioration in accuracy is not particularly large.

付勢装置30は、環状部材31のような共通の支持体に3つの付勢部材32を組み付けて一括して固定するものに限らず、付勢部材32を基板20に対して個別に固定するものであってもよい。   The urging device 30 is not limited to one in which the three urging members 32 are assembled and fixed together on a common support such as the annular member 31, and the urging members 32 are individually fixed to the substrate 20. It may be a thing.

図8及び図9に示す側方支持部材41aの構造は、単なる一例であり、様々な変形や代替が可能である。例えばガイド部材72a,72bを省略し、根元側摺動部71bを係止部74の内面に横方向からボールプランジャーによって押し付けるような構造とすることもできる。   The structure of the side support member 41a shown in FIGS. 8 and 9 is merely an example, and various modifications and alternatives are possible. For example, the guide members 72a and 72b may be omitted, and the base side sliding portion 71b may be pressed against the inner surface of the locking portion 74 from the lateral direction by a ball plunger.

基板20の支持部材22や付勢装置30は、測定対象WOのサイズや輪郭形状に応じて交換することができる。   The support member 22 and the biasing device 30 of the substrate 20 can be exchanged according to the size and contour shape of the measurement object WO.

基板20の支持部材22に形成される観察孔22aは、矩形に限らず3つの支持突起22d又は支持張出部22cに囲まれる様々な形状とできる。   The observation hole 22a formed in the support member 22 of the substrate 20 is not limited to a rectangular shape, and may have various shapes surrounded by the three support protrusions 22d or the support overhang portions 22c.

1a…第1面、 1b…第2面、 2a…個眼レンズ、 2c…レンズ本体部、 2f…外周部、 2i,2j…光学面、 2t…側面、 10…測定用ジグ、 20…基板、 20a…表面、 20b…裏面、 21…支持枠、 22…支持部材、 22a…観察孔、 22c…支持張出部、 22d…支持突起、 30…付勢装置、 31…環状部材、 32…付勢部材、 32a…付勢突起、 40…保持機構、 41,42…保持機構、 41a,141a…側方支持部材、 41b,141b…制限部材、 45…スライダー、 46…ガイド、 47…直交付勢部材、 50…基準部、 51…基準球、 52…球保持部、 58b…当接部材、 58j…先端部、 62…支持球、 71a…先端側保持部材、 71b…根元側摺動部、 71f…溝、 71k…下面、 72a,72b…ガイド部材、 74…係止部、 82…XYステージ装置、 84…Z駆動装置、 86…昇降機構、 86d…触針保持部、 99…制御装置、 200…測定装置、 OA…光軸、 PR…触針、 WO…測定対象   DESCRIPTION OF SYMBOLS 1a ... 1st surface, 1b ... 2nd surface, 2a ... Individual lens, 2c ... Lens main-body part, 2f ... Outer peripheral part, 2i, 2j ... Optical surface, 2t ... Side surface, 10 ... Jig for measurement, 20 ... Board | substrate, 20a ... front surface, 20b ... back surface, 21 ... support frame, 22 ... support member, 22a ... observation hole, 22c ... support overhang, 22d ... support projection, 30 ... biasing device, 31 ... annular member, 32 ... biasing 32a ... biasing protrusion, 40 ... holding mechanism, 41, 42 ... holding mechanism, 41a, 141a ... side support member, 41b, 141b ... limiting member, 45 ... slider, 46 ... guide, 47 ... orthogonal biasing member 50 ... Reference part, 51 ... Reference sphere, 52 ... Sphere holding part, 58b ... Abutting member, 58j ... Tip part, 62 ... Supporting ball, 71a ... Tip side holding member, 71b ... Root side sliding part, 71f ... groove, 71k ... lower surface, 72a, 72b ... guide member, 74 ... locking part, 82 ... XY stage device, 84 ... Z drive device, 86 ... elevating mechanism, 86d ... stylus holding part, 99 ... control device, 200 ... measuring device OA: Optical axis, PR: Stylus, WO: Measurement object

Claims (10)

測定対象の第1面を露出させて表側に配置するため前記第1面の反対の第2面側から測定対象を支持する3つの支持突起と、裏側から前記第2面側の測定も可能になるように前記3つの支持突起に囲まれた領域の少なくとも一部と重なるように形成された観察孔とを有する基板と、
前記基板に対して固定されるとともに、測定対象の支持方向に関して測定対象を挟んで前記3つの支持突起に対向する荷重発生位置において、測定対象を前記第1面側から前記基板側に付勢する付勢部材と、
前記基板の表側において前記支持方向に垂直な方向に移動可能な状態で測定対象の側部に当接可能であるとともに、前記支持方向への押圧力を受けて発生する摩擦力によって前記支持方向に垂直な方向への移動が抑制される側方支持部材を含む保持機構と
を備える光学素子の測定装置。
Since the first surface of the measurement object is exposed and arranged on the front side, three support protrusions that support the measurement object from the second surface side opposite to the first surface, and measurement on the second surface side from the back side are also possible. A substrate having an observation hole formed so as to overlap with at least a part of a region surrounded by the three support protrusions,
The measurement object is urged from the first surface side to the substrate side at a load generation position that is fixed to the substrate and faces the three support protrusions with the measurement object sandwiched in the support direction of the measurement object. A biasing member;
The front side of the substrate can contact the side of the measurement object in a state of being movable in a direction perpendicular to the support direction, and in the support direction by a frictional force generated by a pressing force in the support direction. An optical element measurement device comprising: a holding mechanism including a side support member that is inhibited from moving in a vertical direction.
前記付勢部材は、前記支持突起が円錐台状である場合は測定対象を挟んで前記3つの支持突起にそれぞれ対向して点支持又は線支持を可能にする3つの付勢突起を含み、前記支持突起が半球状である場合は面支持を可能にする1つ以上の部材を含むことを特徴とする請求項1に記載の光学素子の測定装置。   The urging member includes three urging protrusions that enable point support or line support so as to be opposed to the three support protrusions with the measurement target interposed therebetween when the support protrusion has a truncated cone shape, The optical element measuring apparatus according to claim 1, further comprising one or more members that enable surface support when the support protrusion is hemispherical. 前記3つの支持突起は、二等辺三角形又は正三角形を形成するよう配置されていることを特徴とする請求項1に記載の光学素子の測定装置。   The optical element measuring apparatus according to claim 1, wherein the three support protrusions are arranged to form an isosceles triangle or an equilateral triangle. 前記側方支持部材は、当該側方支持部材の被支持面と前記基板の平坦面との圧接による摩擦によって支持状態を保持していることを特徴とする請求項1〜3のいずれか一項に記載の光学素子の測定装置。   The said side support member is maintaining the support state by the friction by the press-contact of the to-be-supported surface of the said side support member, and the flat surface of the said board | substrate. The optical element measuring apparatus according to 1. 前記側方支持部材は、測定対象の側面に略垂直な方向から当接するスライダーと、前記スライダーを前記基板上で測定対象に対して進退する方向に移動することを許容するガイドと、前記ガイドに付随して設けられて前記スライダーを前記スライダーの軸方向に垂直な方向に付勢するボールプランジャーとを有することを特徴とする請求項1〜4のいずれか一項に記載の光学素子の測定装置。 The side support member includes a slider that abuts from a direction substantially perpendicular to a side surface of the measurement target, a guide that allows the slider to move in a direction that moves forward and backward with respect to the measurement target on the substrate, and the guide 5. The optical element measurement according to claim 1, further comprising a ball plunger which is provided along with and biases the slider in a direction perpendicular to an axial direction of the slider. apparatus. 測定対象は、一辺5mm以上15mm以下で厚み1mm以下の外形を有するとともに、ガラス又はプラスチック樹脂で形成され非球面光学面が格子状に並んだ薄板複眼光学系であることを特徴とする請求項1〜5のいずれか一項に記載の光学素子の測定装置。   The measurement object is a thin compound eye optical system having an outer shape with a side of 5 mm or more and 15 mm or less and a thickness of 1 mm or less, and formed of glass or plastic resin, and aspherical optical surfaces arranged in a lattice shape. The measuring device of the optical element as described in any one of -5. 前記付勢部材は、測定対象を前記基板側に付勢する板バネを有し、前記板バネによる前記支持方向への押圧力は、前記板バネの支持点から荷重点までの距離、前記板バネのヤング率、前記板バネの断面2次モーメント、及び前記板バネの撓み量に基づいて設定されることを特徴とする請求項1〜6のいずれか一項に記載の光学素子の測定装置。   The urging member has a plate spring that urges a measurement object toward the substrate, and the pressing force in the support direction by the plate spring is a distance from a support point of the plate spring to a load point, the plate The optical element measuring device according to any one of claims 1 to 6, wherein the optical element measuring device is set based on a Young's modulus of a spring, a cross-sectional secondary moment of the leaf spring, and a deflection amount of the leaf spring. . 前記側方支持部材と当該側方支持部材を支持する前記基板側の部材との接触領域において対向する一対の面の表面粗さRaが以下の条件
0.4μm≦Ra≦1.6μm
を満たすことを特徴とする請求項1〜7のいずれか一項に記載の光学素子の測定装置。
The surface roughness Ra of the pair of surfaces facing each other in the contact region between the side support member and the substrate side member supporting the side support member is as follows: 0.4 μm ≦ Ra ≦ 1.6 μm
The optical element measuring device according to claim 1, wherein:
前記側方支持部材に付与される前記支持方向への押圧力は、5N以下であることを特徴とする請求項1〜8のいずれか一項に記載の光学素子の測定装置。   The optical element measuring apparatus according to any one of claims 1 to 8, wherein a pressing force in the support direction applied to the side support member is 5N or less. 測定対象の第1面の反対の第2面側から測定対象を支持する3つの支持突起と、測定対象の支持方向に関して測定対象を挟んで前記3つの支持突起に対向する荷重発生位置において測定対象を前記第1面側から前記基板側に付勢する付勢部材とを用いて、測定対象を前記基板の表側において前記支持方向に関して支持し、
前記基板の表側において前記支持方向に垂直な方向に移動可能な状態で測定対象の側部に当接可能であるとともに、前記支持方向への押圧力を受けて発生する摩擦力によって前記支持方向に垂直な方向への移動が抑制される側方支持部材を用いて、測定対象を前記基板の表側において前記支持方向に垂直な方向に関して支持することを特徴とする光学素子の測定方法。
Measurement target at three load projections that support the measurement target from the second surface side opposite to the first surface of the measurement target, and at the load generation position facing the three support projections with the measurement target in the support direction of the measurement target Using a biasing member that biases the first surface side toward the substrate side, and supports the measurement object on the front side of the substrate with respect to the support direction,
The front side of the substrate can contact the side of the measurement object in a state of being movable in a direction perpendicular to the support direction, and in the support direction by a frictional force generated by a pressing force in the support direction. A method for measuring an optical element, characterized in that a measurement object is supported in a direction perpendicular to the support direction on the front side of the substrate by using a side support member in which movement in a vertical direction is suppressed.
JP2015017982A 2015-01-30 2015-01-30 Optical element measuring apparatus and measuring method Active JP6492702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015017982A JP6492702B2 (en) 2015-01-30 2015-01-30 Optical element measuring apparatus and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015017982A JP6492702B2 (en) 2015-01-30 2015-01-30 Optical element measuring apparatus and measuring method

Publications (2)

Publication Number Publication Date
JP2016142605A JP2016142605A (en) 2016-08-08
JP6492702B2 true JP6492702B2 (en) 2019-04-03

Family

ID=56570277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015017982A Active JP6492702B2 (en) 2015-01-30 2015-01-30 Optical element measuring apparatus and measuring method

Country Status (1)

Country Link
JP (1) JP6492702B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009102A (en) * 2019-07-02 2021-01-28 パナソニックIpマネジメント株式会社 Holding jig and measurement jig

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659476B2 (en) * 2005-02-08 2011-03-30 富士フイルム株式会社 Interferometer lens support device
JP2007170930A (en) * 2005-12-20 2007-07-05 Konica Minolta Opto Inc Fixture for measuring optical element, and apparatus and method for measuring surface profile of optical element
US20090148256A1 (en) * 2007-12-10 2009-06-11 Nanometrics Incorporated Support Pin with Dome Shaped Upper Surface

Also Published As

Publication number Publication date
JP2016142605A (en) 2016-08-08

Similar Documents

Publication Publication Date Title
JP6358327B2 (en) Jig for measuring optical element, eccentricity measuring device and eccentricity measuring method
EP2742315B1 (en) Kinematic fixture for transparent part
EP2233248A1 (en) Grinding device for manufacturing optical element, method for manufacturing optical element and precise measurement device for precisely measuring shape and size of die assembly or optical element used for manufacturing optical element
US20060137465A1 (en) Tri-axial bending load testing jig
JP6492702B2 (en) Optical element measuring apparatus and measuring method
JP2019152554A (en) Lens thickness measuring device
WO2018097099A1 (en) Base material evaluation method and curved glass evaluation device
JP4584029B2 (en) Calibration jig and calibration method for CMM
JP2009258098A (en) Lens measuring apparatus, method for measuring lens, and method for manufacturing lens
JP6361729B2 (en) Aspherical eccentricity measurement method and shape analysis method
TWI732206B (en) Shape measuring probe
JP4835149B2 (en) Optical element measuring jig, and optical element shape measuring apparatus and method
RU2348952C2 (en) Device for precision linear travel of optical devices
JP2013178156A (en) Measuring object support device and shape measuring device
JP4839798B2 (en) Optical element shape measurement method
JP5103775B2 (en) Detector, shape measuring device, and shape measuring method
KR20210096139A (en) table
JP5333531B2 (en) Optical element measuring jig, and optical element shape measuring apparatus and method
JP2012081570A (en) Positioning implement for long object to be measured
KR20070104064A (en) Ftheta LENS ECCENTRICITY SENSING APPARATUS
JP2015027768A (en) Production method of molding die, mark processing device, and optical element
CN117589616A (en) Indentation head for indentation instrument
JP2006090719A (en) Shape-measuring apparatus and shape-measuring method using it
JP2012181021A (en) Contact type probe and shape measurement device
JP2007170930A (en) Fixture for measuring optical element, and apparatus and method for measuring surface profile of optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6492702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150