JP6473098B2 - Screw for kneading and single screw extruder - Google Patents
Screw for kneading and single screw extruder Download PDFInfo
- Publication number
- JP6473098B2 JP6473098B2 JP2016084208A JP2016084208A JP6473098B2 JP 6473098 B2 JP6473098 B2 JP 6473098B2 JP 2016084208 A JP2016084208 A JP 2016084208A JP 2016084208 A JP2016084208 A JP 2016084208A JP 6473098 B2 JP6473098 B2 JP 6473098B2
- Authority
- JP
- Japan
- Prior art keywords
- screw
- groove
- kneading
- kneaded
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Description
本発明は、熱可塑性樹脂組成物の可塑化混練に用いる単軸押出機用スクリュ及び単軸押出機に関するものである。
The present invention relates to a screw for a single screw extruder and a single screw extruder used for plasticizing and kneading a thermoplastic resin composition.
樹脂同士の混練や樹脂と粉体粒子の混練といった2種類以上の原料を混練する場合、特に原料樹脂として熱可塑性樹脂を使用して、混練物を連続的に製造する場合には、スクリュを備えた押出機を用いて混練がなされる。こうした押出機による混練に対しては、押出機内で溶融された原料を十分に混練し、混練後の樹脂組成物が均一な状態で吐出されるような性能が求められる。不均一なまま押し出されると各成分の濃度の偏りによって混練物の物性が低下する、また異なる色の原料を混練した場合には混練品に色むらが発生する等の不具合が発生する。 When kneading two or more raw materials such as kneading between resins or kneading resin and powder particles, especially when using a thermoplastic resin as the raw material resin to continuously produce a kneaded product, a screw is provided. Kneading is carried out using an extruder. For such kneading by an extruder, a performance is required in which raw materials melted in the extruder are sufficiently kneaded and the kneaded resin composition is discharged in a uniform state. If the material is extruded in a non-uniform manner, the physical properties of the kneaded product are lowered due to the uneven concentration of each component, and when the materials of different colors are kneaded, color unevenness occurs in the kneaded product.
しかし、単軸押出機におけるスクリュは、スクリュを回転させることによって、供給された原料をスクリュの螺旋方向の流路に可塑化しながら強制的に移送する機能を持っているが、螺旋方向が一定方向であるために高い混練作用は得られない問題点があった。
こうした対策として、スクリュの混練部の部品の混練性能を向上させるよう、従来、スクリュに可塑化した原料の流れを分流させるような加工が施されてきた。
例えば、特許文献1では、スクリュの混練部品として、螺旋方向に沿って混練溝を刻設し、混練溝を螺旋方向に沿って浅くて狭い浅狭溝部と深くて広い深広溝部とに交互に連続成形すると共に、浅狭溝とを流通路で各々接続して、乱流により混練を得る構造が挙げられる。
However, the screw in the single-screw extruder has a function of forcibly transferring the supplied raw material to the spiral flow path of the screw by rotating the screw, but the spiral direction is constant. Therefore, there is a problem that a high kneading action cannot be obtained.
In order to improve the kneading performance of the components in the kneading part of the screw, such a measure has been conventionally performed so as to divert the flow of the plasticized material to the screw.
For example, in Patent Document 1, kneading grooves are engraved along the spiral direction as kneading parts of a screw, and the kneading grooves are alternately formed into shallow and narrow shallow groove portions and deep and wide deep groove portions along the spiral direction. There is a structure in which kneading is performed by turbulent flow by continuously forming and connecting shallow narrow grooves with flow paths.
連続製造が可能である押出機による混練は、バッチ式の混練と比べて連続製造による低コスト化に向いた製造方法であるが、近年、製造コストのさらなる低減のために、高吐出条件での製造条件が求められるようになった。 Kneading by an extruder capable of continuous production is a production method suitable for lowering costs by continuous production compared to batch-type kneading, but in recent years, in order to further reduce production costs, Manufacturing conditions are now required.
しかし、こうした混練部品は混練性を上げるために原料流路を複雑にしているため、原料流路の断面積が狭く、特に高吐出の条件では樹脂組成物にかかる剪断力が大きく増加し、混練時の樹脂組成物が発熱する傾向を示す。
この発熱に伴い、溶融している樹脂の粘度および弾性は温度に依存して下がり、樹脂組成物に十分な力が掛からないため、混練性が低下する問題が生じる。また、樹脂組成物の発熱時に樹脂組成物が熱劣化を生じるため、吐出後の樹脂組成物の物性低下も問題として生じるようになった。
However, since these kneaded parts have a complicated raw material flow path in order to improve kneadability, the cross-sectional area of the raw material flow path is narrow, and the shear force applied to the resin composition is greatly increased especially under high discharge conditions. The resin composition at the time tends to generate heat.
Along with this heat generation, the viscosity and elasticity of the molten resin decrease depending on the temperature, and a sufficient force is not applied to the resin composition. In addition, since the resin composition undergoes thermal degradation when the resin composition generates heat, a decrease in physical properties of the resin composition after ejection has also occurred as a problem.
本発明では、熱可塑性樹脂組成物の混練押出を行った際、樹脂温度の上昇を抑えながら、高い混練性能を持つスクリュ及び押出機を提供することを課題とする。
An object of the present invention is to provide a screw and an extruder having high kneading performance while suppressing an increase in the resin temperature when kneading and extruding a thermoplastic resin composition.
本発明者らは、課題を解決するために、スクリュの混練部品の構造について鋭意検討の結果、スクリュの混練部品の溝内に凸部を設けた構造を見出し、本発明を完成するに至った。 In order to solve the problem, the present inventors have intensively studied the structure of the kneaded part of the screw, and as a result, found a structure in which a protrusion is provided in the groove of the kneaded part of the screw, and completed the present invention. .
具体的には、混練部品が、複数条の螺旋状のフライトと溝を備え、前記螺旋状の溝には前記螺旋状の溝の底面から溝の幅方向に渡って延びて隆起した凸部を備え、前記凸部を前記螺旋の方向に溝の底面と垂直に切った断面形状において、斜面に相当する凸部の斜線が、溝の底面から凸部の頂部に向かって凹状に立ち上がる形状であり、前記凸部の頂部部分の幅がスクリュの外径の0.3倍以下であることを特徴の形状とすることで問題が解決される。 Specifically, the kneaded part includes a plurality of spiral flights and grooves, and the spiral grooves have protruding portions that extend from the bottom surface of the spiral grooves in the width direction of the grooves and are raised. A cross-sectional shape in which the convex portion is cut perpendicularly to the bottom surface of the groove in the spiral direction, and the oblique line of the convex portion corresponding to the inclined surface rises in a concave shape from the bottom surface of the groove toward the top of the convex portion. The problem is solved by making the shape of the feature that the width of the top portion of the convex portion is not more than 0.3 times the outer diameter of the screw.
単軸押出機では、螺旋状の溝とシリンダ間を樹脂組成物が螺旋状のフライトに沿って流れるが、本発明の形状の混練部品では、溝とシリンダ間を流れる樹脂組成物の流れを阻害するよう、溝の底面から溝の幅方向に渡って延びて隆起した凸部が形成されている。 In a single screw extruder, the resin composition flows along the spiral flight between the spiral groove and the cylinder. However, in the kneaded part having the shape of the present invention, the flow of the resin composition flowing between the groove and the cylinder is inhibited. Thus, a raised portion is formed extending from the bottom surface of the groove in the width direction of the groove.
前記凸部の頂部は溝の深さより低いため、凸部の頂部と単軸押出機のシリンダの間には狭い原料流路となる幅狭部が形成されている。凸部は溝の幅方向に渡って形成されているため、スクリュ溝を螺旋方向に流れる樹脂組成物は、前記幅狭部へ流入する際に圧縮され、また幅狭部から流出後には、圧縮されていた樹脂組成物は開放される。 Since the top of the convex portion is lower than the depth of the groove, a narrow portion serving as a narrow raw material flow path is formed between the top of the convex portion and the cylinder of the single-screw extruder. Since the convex part is formed over the width direction of the groove, the resin composition flowing in the spiral direction through the screw groove is compressed when flowing into the narrow part, and after flowing out from the narrow part, it is compressed. The formed resin composition is released.
本発明では、前記凸部を前記螺旋の方向に溝の底面と垂直に切った断面形状において、斜面に相当する凸部の斜線が、溝の底面から凸部の頂部に向かって凹状に立ち上がる形状にした場合、前記幅狭部への流入直前の流路断面積と幅狭部の流路断面積の差、ならびに幅狭部の流路断面積と流出後の流路断面積の差が大きくなる。前記の結果、幅狭部では樹脂組成物の急激な圧縮、開放が与えられる。 In the present invention, in the cross-sectional shape in which the convex portion is cut perpendicularly to the bottom surface of the groove in the spiral direction, the oblique line of the convex portion corresponding to the inclined surface rises in a concave shape from the bottom surface of the groove toward the top of the convex portion. In this case, the difference between the channel cross-sectional area immediately before inflowing into the narrow part and the channel cross-sectional area of the narrow part, and the difference between the channel cross-sectional area of the narrow part and the channel cross-sectional area after outflow are large. Become. As a result, the resin composition is rapidly compressed and released in the narrow portion.
本発明者らは、樹脂組成物が流入する凸部の斜面の形状を前記形状とすることで、幅狭部へ樹脂組成物が流入する際の圧縮による混練効果が大きく、前記凸部の頂部の幅を狭くして、流路断面積が小さい幅狭部の区間が少ない場合にも、十分な混練効果は得られながら、幅狭部での樹脂の剪断発熱は抑えられることを見出した。
口径の異なる押出機ならびにスクリュの場合、スクリュの単位断面積あたりに占める樹脂組成物の量が異なるため、本発明者らは口径の異なるスクリュで、さらに検討した結果、前記凸部の頂部の幅が、スクリュ外径の0.3倍以下であれば、樹脂の剪断発熱を抑えられることを見出した。
The inventors have made the shape of the slope of the convex portion into which the resin composition flows into the shape as described above, so that the kneading effect by compression when the resin composition flows into the narrow portion is large, and the top of the convex portion. It was found that even when the width of the narrow portion is narrowed and there are few sections of the narrow portion where the channel cross-sectional area is small, the shear heat generation of the resin in the narrow portion can be suppressed while obtaining a sufficient kneading effect.
In the case of extruders and screws with different calibers, the amount of the resin composition occupying per unit cross-sectional area of the screw is different, so that the present inventors further investigated with screws with different calibers, and as a result, the width of the top of the convex portion However, it was found that the shear heat generation of the resin can be suppressed if the screw outer diameter is 0.3 times or less.
また、本発明者らは、樹脂組成物が前記幅狭部から流出する側の凸部の斜面も前記形状とすることで、急激な開放による吸熱により、樹脂の剪断発熱は抑えられることを見出した。 In addition, the present inventors have found that by forming the slope of the convex portion on the side from which the resin composition flows out from the narrow portion also has the above shape, the shear heat generation of the resin can be suppressed due to heat absorption due to rapid opening. It was.
また、本発明者らは、前記の圧縮と開放による混練効果は、凸部の溝からの高さを低くし、凸部の頂部とシリンダとの距離を長くとり、幅狭部の断面積が広くなった場合にも本発明は有効に作用することも見出し、幅狭部の断面積が広くなった結果、樹脂の剪断発熱をさらに抑えられることも見出した。 Further, the present inventors have found that the kneading effect by the compression and release reduces the height of the convex portion from the groove, increases the distance between the top of the convex portion and the cylinder, and reduces the cross-sectional area of the narrow portion. It has also been found that the present invention works effectively even when the width is widened, and that the shear heat generation of the resin can be further suppressed as a result of the wide cross-sectional area of the narrow portion.
また、十分な混練を得るためには混練部品内に前記凸部の数を多く設けることが好ましいが、本発明者らは、凸部で圧縮、及び開放を受けた樹脂組成物が、一定の間、開放された状態で溝の流路を流動することで、圧縮時に樹脂組成物内にかかった力を十分に緩和された後、次の凸部で圧縮、ならびに開放を受けることで、発熱を抑制しながら、有効に混練されることを見出した。
この観点から、混練部品の螺旋部分の条数を複数条とすることで各条に凸部を多数設けることが望ましく、本発明者らは、前記螺旋部分の条数について検討した結果、2〜6条であれば、混練効果を有効に得られ、かつ樹脂の剪断発熱を抑えられることを見出した。
Further, in order to obtain sufficient kneading, it is preferable to provide a large number of the convex portions in the kneaded part, but the present inventors have determined that the resin composition that has been compressed and released by the convex portions has a certain amount. During this time, the flow in the groove in an open state is sufficiently relaxed, and the force applied in the resin composition during compression is sufficiently relaxed. It has been found that kneading is effectively carried out while suppressing.
From this point of view, it is desirable to provide a plurality of convex portions on each strip by setting the number of spiral portions of the kneaded part to be a plurality of strips. It has been found that if it is 6, the kneading effect can be obtained effectively and the shearing heat generation of the resin can be suppressed.
また、発明者らは、スクリュの螺旋状のフライトに切れ込みを設けることで、幅狭部へ流入する樹脂組成物の圧力を任意に調整することで、樹脂温度の上昇をさらに抑えられる事を見出した。 Further, the inventors have found that the rise in the resin temperature can be further suppressed by arbitrarily adjusting the pressure of the resin composition flowing into the narrow portion by providing a notch in the spiral flight of the screw. It was.
また、本発明は、上記構造を混練部品として備えたスクリュ、ならびにそのスクリュを備えた押出機を提供する。
Moreover, this invention provides the screw provided with the said structure as a kneading component, and the extruder provided with the screw.
本発明では、熱可塑性樹脂組成物の混練押出を高吐出の製造条件で行った際、樹脂温度の上昇を抑えながら、高い混練性能を持つスクリュ及び単軸押出機が得られる。 In the present invention, when kneading and extruding the thermoplastic resin composition under high discharge production conditions, a screw and a single screw extruder having high kneading performance can be obtained while suppressing an increase in the resin temperature.
すなわち、スクリュの混練部品が、複数条の螺旋状のフライトと溝を備え、前記螺旋状の溝には前記螺旋状の溝の底面から溝の幅方向に渡って延びて隆起した凸部を備え、前記凸部を前記螺旋の方向に溝の底面と垂直に切った断面形状において、斜面に相当する凸部の斜線が、溝の底面から凸部の頂部に向かって凹状に立ち上がる形状であり、前記凸部の頂部部分の幅がスクリュの外径の0.3倍以下であることを特徴とした、単軸押出機用スクリュとすることで、原材料の発熱を抑えながら優れた混練効果を持つスクリュ及び押出機が得られる。
That is, the screw kneading component includes a plurality of spiral flights and grooves, and the spiral groove includes a raised portion extending from the bottom surface of the spiral groove in the width direction of the groove. In the cross-sectional shape in which the convex portion is cut perpendicularly to the bottom surface of the groove in the spiral direction, the oblique line of the convex portion corresponding to the slope is a shape that rises in a concave shape from the bottom surface of the groove toward the top portion of the convex portion, By having a screw for a single screw extruder characterized in that the width of the top part of the convex part is 0.3 times or less of the outer diameter of the screw, it has an excellent kneading effect while suppressing heat generation of the raw materials. A screw and an extruder are obtained.
本発明は、混練部品を備えた単軸押出機に使用されるスクリュであって、前記混練部品が、複数条の螺旋状のフライトと溝を備え、前記螺旋状の溝には前記螺旋状の溝の底面から溝の幅方向に渡って延びて隆起した凸部を備え、前記凸部を前記螺旋の方向に溝の底面と垂直に切った断面形状において、斜面に相当する凸部の斜線が、溝の底面から凸部の頂部に向かって凹状に立ち上がる形状であり、前記凸部の頂部部分の幅がスクリュの外径の0.3倍以下であることを特徴とした、単軸押出機用スクリュである。以下、図面を用いて、本発明の実施形態について説明する。 The present invention is a screw used in a single-screw extruder provided with a kneading part, wherein the kneading part includes a plurality of spiral flights and grooves, and the spiral groove has the spiral shape. In the cross-sectional shape in which a convex portion extending from the bottom surface of the groove and extending in the width direction of the groove is provided, and the convex portion is cut perpendicularly to the bottom surface of the groove in the spiral direction, the oblique line of the convex portion corresponding to the slope is A single-screw extruder characterized in that it has a shape that rises in a concave shape from the bottom of the groove toward the top of the convex portion, and the width of the top portion of the convex portion is not more than 0.3 times the outer diameter of the screw. It is a screw for. Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1に示すように、単軸押出機では、内部が空洞となったシリンダ2とシリンダ内に収容された回転可能なスクリュ3を有している。スクリュは螺旋状のフライト5と溝6を有し、スクリュを回転させることで、ホッパー4から供給された原料を、加熱されたシリンダ2と溝6の間に定量供給しながら押出口方向7へと移送する。このシリンダ2と溝6の間で移送される原料は、押出口方向7へ移送されるに伴い、シリンダに巻かれたヒーター8からの熱、ならびに原料とシリンダ及び原料とスクリュの剪断熱により加温されて樹脂が溶融して原料は可塑化される。 As shown in FIG. 1, the single-screw extruder has a cylinder 2 having a hollow inside and a rotatable screw 3 accommodated in the cylinder. The screw has a spiral flight 5 and a groove 6, and by rotating the screw, the raw material supplied from the hopper 4 is supplied in a fixed amount between the heated cylinder 2 and the groove 6 in the extrusion port direction 7. And transport. The raw material transferred between the cylinder 2 and the groove 6 is heated by the heat from the heater 8 wound around the cylinder and the shear heat of the raw material, the cylinder, the raw material, and the screw as it is transferred in the extrusion port direction 7. When heated, the resin melts and the raw material is plasticized.
スクリュ3は、前記のようにホッパー4から供給された材料を定量供給する供給部31、原料中の樹脂が溶融して原料が可塑化される圧縮部32、可塑化された材料を計量する計量部33の3箇所のゾーンに分けられる。 As described above, the screw 3 includes a supply unit 31 for quantitatively supplying the material supplied from the hopper 4 as described above, a compression unit 32 for melting the resin in the raw material to plasticize the raw material, and a metering for measuring the plasticized material. The zone 33 is divided into three zones.
本発明となる混練部品は、図2及び図5に示すように、螺旋状に多条の溝6を有し、溝6内の原料の螺旋方向への流れを阻害するよう、前記螺旋状の溝の底面から溝の幅方向に渡って延びて隆起した凸部10が設けられ、凸部の頂部14とシリンダ2の間には狭い原料流路となる幅狭部18が存在する。 As shown in FIGS. 2 and 5, the kneading part according to the present invention has a multi-groove 6 in a spiral shape, and the helical shape is used to inhibit the flow of the raw material in the groove 6 in the spiral direction. A protruding portion 10 is provided which extends from the bottom surface of the groove in the width direction of the groove and is raised, and a narrow portion 18 serving as a narrow material flow path exists between the top portion 14 of the protruding portion and the cylinder 2.
本発明では、急激な圧縮、開放を得るため、図5及び図6に示すように、流入前の原料流路16と前記幅狭部18との、また幅狭部18と流入後の原料流路17との流路断面積の差が大きいことが必要である。この観点、ならびに原料の流れの停滞箇所がないようにする観点から、前記凸部を前記螺旋の方向に溝の底面と垂直に切った断面形状において、斜面に相当する凸部の斜線が、溝の底面から凸部の頂部に向かって凹状に立ち上がる形状とすることが好ましい。 In the present invention, in order to obtain rapid compression and release, as shown in FIGS. 5 and 6, the raw material flow path 16 before inflow and the narrow portion 18 and the narrow portion 18 and the raw material flow after inflow are shown. It is necessary that the difference in channel cross-sectional area with the channel 17 is large. From this point of view, and from the viewpoint of eliminating the stagnation part of the flow of the raw material, in the cross-sectional shape in which the convex part is cut perpendicularly to the bottom surface of the groove in the spiral direction, the oblique line of the convex part corresponding to the slope is the groove. It is preferable to have a shape that rises in a concave shape from the bottom surface to the top of the convex portion.
前記凸部の斜線の形状は、図6に示すように、凸部の頂点20−aと、凸部の斜面が溝の底面15から立ち上がり始める点21−aとを結んだ仮想直線22−aより、溝の底面側に凹んでいる形状を示し、また同様に凸部の頂点20−bと、凸部の斜面が溝の底面15から立ち上がり始める点21−bとを結んだ仮想直線22−bより、溝の底面側に凹んでいる形状を示す。 As shown in FIG. 6, the shape of the oblique line of the convex portion is an imaginary straight line 22-a connecting the vertex 20-a of the convex portion and the point 21-a where the slope of the convex portion starts rising from the bottom surface 15 of the groove. Further, a virtual line 22- showing a shape that is recessed toward the bottom surface side of the groove, and similarly connecting a vertex 20-b of the convex portion and a point 21-b where the slope of the convex portion starts rising from the bottom surface 15 of the groove. The shape which is dented in the bottom face side of a groove | channel is shown from b.
前記凸部の斜面12の曲率は、前記のように凹となっていることで、凸部前後の前記原料流入側と幅狭部、また原料流出側と幅狭部の間の断面積に差が生まれるので、任意の曲率としてよい。また、幅狭部への流入側の斜面12−aと流出側の斜面12−bの曲率を別としてもよい。 The curvature of the slope 12 of the convex portion is concave as described above, so that there is a difference in the cross-sectional area between the raw material inflow side and the narrow portion and the raw material outflow side and the narrow portion before and after the convex portion. Since it is born, any curvature may be used. Further, the curvature of the slope 12-a on the inflow side and the slope 12-b on the outflow side to the narrow portion may be different.
樹脂温度の上昇を抑えるために、図3、図5及び図6に示すように、前記凸部10の頂部14の幅19は、幅が0mmとなるような頂部が尖った形状が望ましいが、前記形状の場合、頂部が刃物状の突起となり製造時に作業者の接触による傷害が生じたり、また長期使用時に樹脂との摩擦により突起部分の摩耗が生じる。このため、樹脂の発熱に影響しない範囲で、図4に示すように、頂部の幅は0mm以上としても良い。
この観点から、凸部の頂部の幅19は、好ましくはスクリュ口径の0〜0.3倍、より好ましくは0〜0.15倍とすることができる。
In order to suppress an increase in the resin temperature, as shown in FIGS. 3, 5 and 6, the width 19 of the top 14 of the convex portion 10 is preferably a shape with a sharp top so that the width is 0 mm. In the case of the above-mentioned shape, the top portion becomes a blade-like protrusion, causing injury due to the contact of the worker at the time of manufacture, and wear of the protruding portion due to friction with the resin during long-term use. For this reason, as shown in FIG. 4, the width | variety of a top part is good also as 0 mm or more in the range which does not affect the heat_generation | fever of resin.
From this point of view, the width 19 of the top of the convex portion can be preferably 0 to 0.3 times the screw diameter, more preferably 0 to 0.15 times.
十分な混練性能を得るためには、混練部品内に前記凸部10の数を多く設けることが好ましいが、凸部で圧縮、及び開放を受けた樹脂組成物は、一定の間、開放された状態で溝の流路を流動する中で、圧縮時に樹脂組成物内にかかった力を十分に緩和された後、次の凸部で圧縮、ならびに開放を受けることで、有効に混練される。
この観点から、混練部品の螺旋部分の条数を複数条とすることで凸部を多数設けることができる。ただし、条数が増えるに従い、溝の断面積は小さくなり溝を流れる樹脂組成物も剪断発熱するため、条数は2〜6条とすることが好ましい。
In order to obtain sufficient kneading performance, it is preferable to provide a large number of the convex portions 10 in the kneaded part, but the resin composition that has been compressed and released by the convex portions is released for a certain period of time. In the state of flowing through the flow path of the groove, after the force applied in the resin composition at the time of compression is sufficiently relaxed, it is kneaded effectively by being compressed and released at the next convex portion.
From this point of view, a large number of convex portions can be provided by setting the number of spiral portions of the kneaded part to a plurality of strips. However, as the number of strips increases, the cross-sectional area of the grooves decreases and the resin composition flowing through the grooves also generates shear heat. Therefore, the number of strips is preferably 2 to 6.
混練部品の全長は、長くすることで凸部を多数設置できる。樹脂の発熱を抑えた適度な樹脂温度で成形するためには、スクリュの全長の1/20〜1/2が好ましく、より好ましくは1/10〜1/2が望ましい。 By increasing the total length of the kneaded part, a large number of convex portions can be installed. In order to mold at an appropriate resin temperature while suppressing heat generation of the resin, 1/20 to 1/2 of the total length of the screw is preferable, and 1/10 to 1/2 is more preferable.
前記凸部の頂部14の溝の底面12からの高さは、高い程、幅狭部の断面積が狭くなるため、混練効果が得られ、低い程、幅狭部の断面積は広くなるため、樹脂の剪断発熱が抑えられる。
凸部頂部の溝の底面からの高さは、溝深さの1/10〜9/10であることが好ましく、より好ましくは1/10〜6/10であることが好ましい。
The higher the height from the bottom surface 12 of the groove of the top portion 14 of the convex portion, the narrower the cross-sectional area of the narrow portion, so that the kneading effect is obtained, and the lower, the cross-sectional area of the narrow portion becomes wider. The shear heat generation of the resin can be suppressed.
The height from the bottom of the groove at the top of the convex portion is preferably 1/10 to 9/10 of the groove depth, more preferably 1/10 to 6/10.
各凸部の幅狭部へ流入する樹脂組成物の圧力は、各々の凸部で異なるため、効率的に樹脂組成物の発熱を抑制できるよう、各凸部の幅狭部14へ流入する樹脂組成物の圧力を任意に調整するためにフライト部に複数の切れ込み11を設けることができる。 Since the pressure of the resin composition flowing into the narrow part of each convex part is different in each convex part, the resin flowing into the narrow part 14 of each convex part is able to efficiently suppress the heat generation of the resin composition. In order to arbitrarily adjust the pressure of the composition, a plurality of notches 11 can be provided in the flight portion.
本発明のスクリュは、混練部品を原料が可塑化された箇所であれば、混練効果ならびに、樹脂の剪断発熱を抑えた効果が発現されるので、混練部品は、図2に示すスクリュの計量部31、または圧縮部32のいずれか、あるいは両方に備えることができる。 Since the screw of the present invention exhibits the kneading effect and the effect of suppressing the shear heat generation of the resin as long as the raw material of the kneaded part is plasticized, the kneaded part is the screw weighing unit shown in FIG. 31, or the compression unit 32, or both.
本発明の単軸押出機は、図1に示すように、前記スクリュ3を備えたものであればよく、シリンダの形状は一般的な円筒状のものでもよく、任意にシリンダに溝を設けたものでもよい。 As shown in FIG. 1, the single-screw extruder of the present invention may be any one provided with the screw 3, and the shape of the cylinder may be a general cylindrical shape, and a groove is arbitrarily provided in the cylinder. It may be a thing.
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.
以下、本発明を実施例および比較例により具体的に説明するが、本発明はこれらに限定されるものではない。また、実施例などにおいて「部」および「%」は特に断りのない限り、「質量部」および「質量%」を表わす。 EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these. In Examples and the like, “parts” and “%” represent “parts by mass” and “mass%” unless otherwise specified.
(原料)
実施例及び比較例に説明する、原料として使用した原料樹脂組成物は、混練時の色を確認するために、以下のように熱可塑性樹脂と顔料とが混合されているペレットを使用した。
・原料Aは、直鎖状低密度ポリエチレン(製品名 ノバテックLL UF230、メルトフローレート 1g/10min(JIS K7210:1999)、日本ポリエチレン株式会社製)80部と酸化チタン(製品名 R−103:製造元 ケマーズ株式会社製)20部の混合物。
・原料B 直鎖状低密度ポリエチレン(製品名 ノバテックLL UJ790、メルトフローレート 50g/10min(JIS K7210:1999)、日本ポリエチレン株式会社製)90部とシアニンブルー(製品名 Lionol Blue SL:製造元 トーヨーカラー株式会社)10部の混合物。
・原料C 直鎖状低密度ポリエチレン(製品名 ノバテックLL UF230、メルトフローレート 1g/10min(JIS K7210:1999)、日本ポリエチレン株式会社製)90部とカーボンブラック(製品名 BP880:製造元 Cabot社)10部の混合物。
・原料D 直鎖状低密度ポリエチレン(製品名 ノバテックLL UJ480、メルトフローレート 30g/10min(JIS K7210:1999)、日本ポリエチレン株式会社製)90部と酸化チタン(製品名 R−103:製造元 ケマーズ株式会社製)10部の混合物。
(material)
The raw material resin composition used as a raw material described in Examples and Comparative Examples used pellets in which a thermoplastic resin and a pigment were mixed as follows in order to confirm the color at the time of kneading.
Raw material A is linear low density polyethylene (product name: Novatec LL UF230, melt flow rate 1 g / 10 min (JIS K7210: 1999), manufactured by Nippon Polyethylene Corporation) and titanium oxide (product name R-103: manufacturer) 20 parts mixture).
Raw material B: Linear low density polyethylene (product name: Novatec LL UJ790, melt flow rate 50 g / 10 min (JIS K7210: 1999), manufactured by Nippon Polyethylene Corporation) and cyanine blue (product name: Lionol Blue SL: manufacturer Toyocolor) Ltd.) 10 parts mixture.
Raw material C: Linear low density polyethylene (product name: Novatec LL UF230, melt flow rate: 1 g / 10 min (JIS K7210: 1999), manufactured by Nippon Polyethylene Co., Ltd.) and carbon black (product name: BP880: manufacturer: Cabot) Part mixture.
Raw material D: Linear low-density polyethylene (product name: Novatec LL UJ480, melt flow rate 30 g / 10 min (JIS K7210: 1999), manufactured by Nippon Polyethylene Co., Ltd.) and titanium oxide (product name: R-103: manufacturer Chemers Co., Ltd.) 10 parts mixture.
(混練樹脂組成物の作成方法)
混練樹脂組成物の作成は以下のようにして行った。作成に使用する機械は、各実施例及び比較例に記載した構造のスクリュを、各実施例及び比較例に記載した単軸押出機に装着し、単軸押出機の吐出部にダイ穴径3mm、ダイ穴数5個のダイを装着したものを使用した。
サンプルの作成は、単軸押出機の押出温度が供給部80℃、圧縮部150℃、計量部240℃となるよう設定し、各実施例及び比較例で指定した2種類の原料のペレット各50部をハンドブレンドにより混ぜ合わせたうえで、単軸押出機のホッパーに投入し、各実施例及び比較例に記載したスクリュ回転で混練押出し、得られたストランドを長さ3mmとなるようストランドカットして、混練樹脂組成物のペレットを得た。
(Method for preparing kneaded resin composition)
The kneaded resin composition was prepared as follows. The machine used for the production was equipped with a screw having the structure described in each example and comparative example in the single screw extruder described in each example and comparative example, and a die hole diameter of 3 mm in the discharge part of the single screw extruder. A die equipped with a die having 5 die holes was used.
Samples were prepared so that the extrusion temperature of the single-screw extruder was 80 ° C. for the supply unit, 150 ° C. for the compression unit, and 240 ° C. for the weighing unit. After mixing the parts by hand blending, it is put into a hopper of a single screw extruder, kneaded and extruded by screw rotation described in each example and comparative example, and the obtained strand is cut into strands so that the length becomes 3 mm. Thus, pellets of the kneaded resin composition were obtained.
(混練性の評価)
混練樹脂組成物の混練の状態の評価は以下のようにして実施した。
まず、各実施例及び比較例で得られた混練樹脂組成物のペレットを、熱プレスを用いて潰して20×20×0.1cmのシートを作成した。このシートの色ムラを目視により確認して、1〜3の3段階の状態で評価した。数値が低い程、シート全体に色ムラが見られない均一な混練物が得られたことを表し、シート全面に渡り色が均一なシートを1、潰されたペレット内に微小な色ムラが見られるシートを2、潰されたペレットによりシート全面に渡って色ムラが見られるシートを3とした。数値が低いほど、均一に混練が得られていることを表す。結果を表1に示す。
(Evaluation of kneadability)
Evaluation of the kneaded state of the kneaded resin composition was carried out as follows.
First, the pellets of the kneaded resin compositions obtained in each Example and Comparative Example were crushed using a hot press to prepare a 20 × 20 × 0.1 cm sheet. The color unevenness of this sheet was visually confirmed and evaluated in three stages of 1 to 3. The lower the numerical value, the more uniform the kneaded material with no color unevenness was obtained on the entire sheet. 1 sheet with uniform color over the entire sheet, 1 minute color unevenness was observed in the crushed pellets The number of sheets to be obtained was 2, and the number of sheets in which color unevenness was observed over the entire surface of the crushed pellets was designated 3. The lower the value, the more uniformly kneaded. The results are shown in Table 1.
(混練時の樹脂温度の上昇の評価)
実施例と比較例における混練樹脂組成物作成時の樹脂温度の上昇の評価は、押出機ダイより吐出される溶融樹脂を温度計により測定して、押出機の設定温度の240℃に対する樹脂温度の上昇分を評価し、押出機の設定温度+15℃以上となる樹脂温度255℃以上を×(不良)、それ以下を○(良好)とした。
(Evaluation of increase in resin temperature during kneading)
The evaluation of the rise in the resin temperature at the time of preparing the kneaded resin compositions in Examples and Comparative Examples was performed by measuring the molten resin discharged from the extruder die with a thermometer, and the resin temperature relative to the set temperature of the extruder of 240 ° C. The rise was evaluated, and a resin temperature of 255 ° C. or higher at which the extruder set temperature + 15 ° C. or higher was evaluated as x (defect), and a lower temperature was evaluated as ◯ (good).
各実施例と比較例で使用した押出機は、シリンダ口径の異なるものを比較するため、下記の2種類を使用した。
押出機A PSV−30押出機(タニフジエンジニアリング製、シリンダ口径30mm)
押出機B SPM−45押出機(タニフジエンジニアリング製、シリンダ口径45mm)
The following two types of extruders used in each example and comparative example were used in order to compare those having different cylinder diameters.
Extruder A PSV-30 Extruder (Tanifuji Engineering Co., Ltd., cylinder diameter 30mm)
Extruder B SPM-45 Extruder (manufactured by Tanifuji Engineering, cylinder diameter 45mm)
<実施例1、2>
スクリュ外径30mm、スクリューの長さとスクリュー外径の比(L/D)=36のスクリュの、圧縮部に下記混練部品を設けたスクリュを押出機Aの単軸押出機を使用した。
(a)条数 3条
(b)凸部の設置箇所 各溝の1ピッチ周期に1箇所
(c)凸部の斜面 図6に示すように、凸部の斜面が溝の底面から凸部の頂部に向かって凹状に立ち上がる形状
(d)凸部の頂部の幅 1mm(スクリュ外径との比 0.03)
(e)凸部頂部の溝の底面からの高さ 混練部の溝深さに対して3/10
(f)混練部品の長さ 360mm(スクリュー全長の1/3)
前記単軸押出機を使用して、原料A 50部と原料B 50部を、実施例1ではスクリュ回転150rpm、実施例2では高速とした200rpmの条件下で混練し、評価を行った。スクリュの構成は、混練部品以外の箇所は1条のフルフライトの構成とした。
各評価結果を表1に示す。実施例1及び実施例2とも、混練性の評価及び樹脂温度の上昇の評価ともに良好な結果が得られた。
<Examples 1 and 2>
A single screw extruder of Extruder A was used for a screw having a screw outer diameter of 30 mm and a screw having a ratio of screw length to screw outer diameter (L / D) = 36 and having the following kneaded parts in the compression section.
(A) Number of strips 3 strips (b) Locations of projections 1 location per pitch period of each groove (c) Slope of projections As shown in FIG. Shape that rises in a concave shape toward the top (d) Width of the top of the convex 1 mm (ratio with screw outer diameter 0.03)
(E) Height from the bottom of the groove at the top of the convex part 3/10 to the groove depth of the kneading part
(F) Length of the kneaded part 360 mm (1/3 of the total screw length)
Using the single screw extruder, 50 parts of raw material A and 50 parts of raw material B were kneaded under the conditions of a screw rotation of 150 rpm in Example 1 and a high speed of 200 rpm in Example 2, and evaluation was performed. The configuration of the screw was a single full flight configuration except for the kneaded parts.
Each evaluation result is shown in Table 1. In both Example 1 and Example 2, good results were obtained for both evaluation of kneadability and evaluation of increase in resin temperature.
<実施例3、4>
実施例1及び2と同じスクリュと押出機を使用し、原料として原料C 50部と原料D 50部に変更し、実施例3ではスクリュ回転150rpm、実施例4では高速とした200rpmの条件下で混練し、評価を行った。
各評価結果を表1に示す。実施例3及び実施例4とも、実施例1及び実施例2から原料を変更した場合も、混練性の評価及び樹脂温度の上昇の評価ともに良好な結果が得られた。
<Examples 3 and 4>
Using the same screw and extruder as in Examples 1 and 2, the raw material was changed to 50 parts of raw material C and 50 parts of raw material D. In Example 3, the screw rotation was 150 rpm, and in Example 4, high speed was 200 rpm. Kneading and evaluation were performed.
Each evaluation result is shown in Table 1. In both Example 3 and Example 4, even when the raw materials were changed from Example 1 and Example 2, good results were obtained for both evaluation of kneadability and evaluation of increase in resin temperature.
<実施例5、6>
スクリュの構成として、実施例1及び2から、混練部品をスクリュ内に備える箇所を計量部に変更し、混練部品以外の箇所は1条のフルフライトの構成とした。混練部品の構成、及び単軸押出機は実施例1及び2と同様とした。
前記構成で、実施例1及び2と同様、原料A 50部と原料B 50部を、実施例5ではスクリュ回転150rpm、実施例6では高速とした200rpmの条件下で混練し、評価を行った。
各評価結果を表1に示す。実施例5及び実施例6とも、混練性の評価及び樹脂温度の上昇の評価とも良好な結果が得られた。
<Examples 5 and 6>
As the configuration of the screw, from Examples 1 and 2, the place where the kneaded part was provided in the screw was changed to a measuring section, and the part other than the kneaded part was configured as a single full flight. The configuration of the kneaded parts and the single screw extruder were the same as those in Examples 1 and 2.
In the same manner as in Examples 1 and 2, 50 parts of the raw material A and 50 parts of the raw material B were kneaded and evaluated under the conditions of a screw rotation of 150 rpm in Example 5 and a high speed of 200 rpm in Example 6. .
Each evaluation result is shown in Table 1. In both Example 5 and Example 6, good results were obtained for both evaluation of kneadability and evaluation of increase in resin temperature.
<実施例7、8>
混練部品の条数を、実施例1及び2から変更し、6条とした。混練部品及びスクリュのその他の構成、及び単軸押出機は実施例1及び2と同様とした。
前記構成で、実施例1及び2と同様、原料A 50部と原料B 50部を、実施例7ではスクリュ回転150rpm、実施例8では高速とした200rpmの条件下で混練し、評価を行った。
各評価結果を表1に示す。実施例7及び実施例8とも、混練性の評価及び樹脂温度の上昇の評価とも良好な結果が得られた。
<Examples 7 and 8>
The number of kneaded parts was changed from those in Examples 1 and 2 to be 6. The other components of the kneading part and screw, and the single screw extruder were the same as those in Examples 1 and 2.
In the same manner as in Examples 1 and 2, 50 parts of the raw material A and 50 parts of the raw material B were kneaded and evaluated under the conditions of a screw rotation of 150 rpm in Example 7 and a high speed of 200 rpm in Example 8. .
Each evaluation result is shown in Table 1. In both Example 7 and Example 8, good results were obtained in both evaluation of kneadability and evaluation of increase in resin temperature.
<実施例9、10>
混練部品の凸部の頂部の幅を実施例1及び2から変更し、9mm(スクリュ外径との比0.3)とした。混練部品及びスクリュのその他の構成、及び単軸押出機は実施例1及び2と同様とした。
前記構成で、実施例1及び2と同様、原料A 50部と原料B 50部を、実施例9ではスクリュ回転150rpm、実施例10では高速とした200rpmの条件下で混練し、評価を行った。
各評価結果を表1に示す。実施例9及び実施例10とも、混練性の評価及び樹脂温度の上昇の評価とも良好な結果が得られた。
<Examples 9 and 10>
The width of the top of the convex part of the kneaded part was changed from Examples 1 and 2 to 9 mm (ratio with screw outer diameter 0.3). The other components of the kneading part and screw, and the single screw extruder were the same as those in Examples 1 and 2.
In the above-described configuration, as in Examples 1 and 2, 50 parts of raw material A and 50 parts of raw material B were kneaded and evaluated under the conditions of a screw rotation of 150 rpm in Example 9 and a high speed of 200 rpm in Example 10. .
Each evaluation result is shown in Table 1. In both Example 9 and Example 10, good results were obtained in both evaluation of kneadability and evaluation of increase in resin temperature.
<実施例11、12>
スクリュ外径を変更するため、単軸押出機を押出機Bに変更し、スクリュとして外径45mm、L/D=36、圧縮部に下記混練部品を設けたものを使用した。
(a)条数 3条
(b)凸部の設置箇所 各溝の1ピッチ周期に1箇所
(c)凸部の斜面 図6に示すように、凸部の斜面が溝の底面から凸部の頂部に向かって凹状に立ち上がる形状
(d)凸部の頂部の幅 13mm(スクリュ外径との比 0.29)
(e)凸部頂部の溝の底面からの高さ 混練部の溝深さに対して3/10
(f)混練部品の長さ 540mm(スクリュ全長の1/3)
前記スクリュを押出機に備え、原料A 50部と原料B 50部を、実施例1ではスクリュ回転150rpm、実施例2では高速とした200rpmの条件下で混練し、評価を行った。スクリュの構成は、混練部品以外の箇所は1条のフルフライトの構成とした。
各評価結果を表1に示す。実施例11及び実施例12とも、混練性の評価及び樹脂温度の上昇の評価とも良好な結果が得られた。
<Examples 11 and 12>
In order to change the screw outer diameter, the single screw extruder was changed to the extruder B, and a screw having an outer diameter of 45 mm, L / D = 36, and the following kneading parts provided in the compression part was used.
(A) Number of strips 3 strips (b) Locations of projections 1 location per pitch period of each groove (c) Slope of projections As shown in FIG. Shape that rises in a concave shape toward the top (d) Width of the top of the convex 13 mm (ratio with screw outer diameter 0.29)
(E) Height from the bottom of the groove at the top of the convex part 3/10 to the groove depth of the kneading part
(F) Length of kneaded parts 540 mm (1/3 of the total length of the screw)
The screw was provided in an extruder, and 50 parts of raw material A and 50 parts of raw material B were kneaded and evaluated under the conditions of a screw rotation of 150 rpm in Example 1 and a high speed of 200 rpm in Example 2. The configuration of the screw was a single full flight configuration except for the kneaded parts.
Each evaluation result is shown in Table 1. In both Example 11 and Example 12, good results were obtained in both evaluation of kneadability and evaluation of increase in resin temperature.
<実施例13、14>
実施例1及び2のスクリュの混練部品のフライトに、各凸部から半ピッチ先の箇所に、長さ6mm、スクリュ頂部からの深さ3mmの切れ込みを設けた。混練部品及びスクリュのその他の構成、及び単軸押出機は実施例1及び2と同様とした。
前記構成で、実施例1及び2と同様、原料A 50部と原料B 50部を、実施例13ではスクリュ回転150rpm、実施例14では高速とした200rpmの条件下で混練し、評価を行った。
各評価結果を表1に示す。実施例13及び実施例14とも、混練性の評価及び樹脂温度の上昇の評価とも良好な結果が得られた。
<Examples 13 and 14>
The flight of the kneaded parts of the screws of Examples 1 and 2 was provided with a notch having a length of 6 mm and a depth of 3 mm from the top of the screw at a position half a pitch away from each convex portion. The other components of the kneading part and screw, and the single screw extruder were the same as those in Examples 1 and 2.
In the same manner as in Examples 1 and 2, 50 parts of the raw material A and 50 parts of the raw material B were kneaded and evaluated under the conditions of a screw rotation of 150 rpm in Example 13 and a high speed of 200 rpm in Example 14. .
Each evaluation result is shown in Table 1. In both Example 13 and Example 14, good results were obtained for both evaluation of kneadability and evaluation of increase in resin temperature.
<比較例1、2>
混練部品の凸部の頂部の幅を実施例1及び2から変更し、13mm(スクリュ外径との比0.43)とした。混練部品及びスクリュのその他の構成、及び単軸押出機は実施例1及び2と同様とした。
前記構成で、実施例1及び2と同様、原料A 50部と原料B 50部を、比較例1ではスクリュ回転150rpm、比較例2では高速とした200rpmの条件下で混練し、評価を行った。
各評価結果を表1に示す。比較例1及び比較例2では、混練性評価及び樹脂温度の上昇の評価とも不良であった。
<Comparative Examples 1 and 2>
The width of the top of the convex part of the kneaded part was changed from Examples 1 and 2 to 13 mm (ratio 0.43 with respect to the screw outer diameter). The other components of the kneading part and screw, and the single screw extruder were the same as those in Examples 1 and 2.
In the above-described configuration, as in Examples 1 and 2, 50 parts of raw material A and 50 parts of raw material B were kneaded and evaluated under the conditions of a screw rotation of 150 rpm in Comparative Example 1 and a high speed of 200 rpm in Comparative Example 2. .
Each evaluation result is shown in Table 1. In Comparative Example 1 and Comparative Example 2, both the kneadability evaluation and the evaluation of the resin temperature increase were poor.
<比較例3、4>
混練部品の凸部の頂部の幅を実施例3及び4から変更し、13mm(スクリュ外径との比0.43)とした。混練部品及びスクリュのその他の構成、及び単軸押出機は実施例3及び4と同様とした。
前記構成で、実施例3及び4と同様、原料C 50部と原料D 50部を、比較例3ではスクリュ回転150rpm、比較例4では高速とした200rpmの条件下で混練し、評価を行った。
各評価結果を表1に示す。比較例3及び比較例4では、混練性評価及び樹脂温度の上昇の評価とも不良であった。
<Comparative Examples 3 and 4>
The width of the top of the convex part of the kneaded part was changed from Examples 3 and 4 to 13 mm (ratio with screw outer diameter 0.43). The other components of the kneading part and screw, and the single screw extruder were the same as those in Examples 3 and 4.
In the above configuration, as in Examples 3 and 4, 50 parts of raw material C and 50 parts of raw material D were kneaded and evaluated under the conditions of a screw rotation of 150 rpm in Comparative Example 3 and a high speed of 200 rpm in Comparative Example 4. .
Each evaluation result is shown in Table 1. In Comparative Example 3 and Comparative Example 4, both the kneadability evaluation and the evaluation of the increase in the resin temperature were poor.
<比較例5、6>
混練部品の凸部の斜面の断面形状を、図7に示すように、前記凸部の頂部14の頂点20−aならびに20−bと、溝の底面から立ち上がる点21−aならびに21−bとを結ぶ、凸部の斜面に相当する斜線が直線となる形状とした。その他の混練部品及びスクリュのその他の構成、及び単軸押出機は実施例1及び2と同様とした。
前記構成で、実施例1及び2と同様、原料A 50部と原料B 50部を、比較例5ではスクリュ回転150rpm、比較例6では高速とした200rpmの条件下で混練し、評価を行った。
各評価結果を表1に示す。比較例5及び比較例6では、混練性評価及び樹脂温度の上昇の評価とも不良であった。
<Comparative Examples 5 and 6>
As shown in FIG. 7, the cross-sectional shape of the slope of the convex part of the kneaded part is as follows: apexes 20-a and 20-b of the top part 14 of the convex part, and points 21-a and 21-b rising from the bottom of the groove The slanting line corresponding to the slope of the convex portion is a straight line. The other kneading parts and other configurations of the screw and the single screw extruder were the same as those in Examples 1 and 2.
In the above-described configuration, as in Examples 1 and 2, 50 parts of raw material A and 50 parts of raw material B were kneaded and evaluated under the conditions of a screw rotation of 150 rpm in Comparative Example 5 and a high speed of 200 rpm in Comparative Example 6. .
Each evaluation result is shown in Table 1. In Comparative Example 5 and Comparative Example 6, both the kneadability evaluation and the evaluation of the resin temperature increase were poor.
<比較例7、8>
混練部品の条数を実施例1及び2から変更し、1条とした。混練部品及びスクリュのその他の構成、及び単軸押出機は実施例1及び2と同様とした。
前記構成で、実施例1及び2と同様、原料A 50部と原料B 50部を、比較例7ではスクリュ回転150rpm、比較例8では高速とした200rpmの条件下で混練し、評価を行った。
各評価結果を表1に示す。比較例7及び比較例8では、混練性の評価が不良であった。
The number of kneaded parts was changed from those in Examples 1 and 2 to one. The other components of the kneading part and screw, and the single screw extruder were the same as those in Examples 1 and 2.
In the above-described configuration, as in Examples 1 and 2, 50 parts of raw material A and 50 parts of raw material B were kneaded and evaluated under the conditions of a screw rotation of 150 rpm in Comparative Example 7 and a high speed of 200 rpm in Comparative Example 8. .
Each evaluation result is shown in Table 1. In Comparative Example 7 and Comparative Example 8, the kneadability evaluation was poor.
本発明は、単軸押出機に関し、特に樹脂組成物の溶融混練について、その処理量を増大させることに関するものである。
The present invention relates to a single screw extruder, and more particularly to increasing the throughput of a resin composition for melt kneading.
1 混練部品
2 シリンダ
3 スクリュ
4 ホッパー
5 スクリュのフライト
6 スクリュの溝
7 押出口方向
8 単軸押出機のヒーター
9 ダイ
10 凸部
11 フライトの切れ込み
12 凸部の斜面に相当する斜線
12−a 原料流入側の凸部の斜面に相当する斜線
12―b 原料流出側の凸部の斜面に相当する斜線
14 凸部の頂部
15 溝の底面
16 原料流入側の樹脂の流れ
17 原料流出側の樹脂の流れ
18 シリンダと凸部頂部の間の幅狭部流路
19 凸部の頂部の幅
20−a 原料流入側の凸部の斜線12の頂点
20−b 原料流出側の凸部の斜線12の頂点
21−a 原料流入側の凸部の斜線の立ち上がり始める点
21−b 原料流出側の凸部の斜線の立ち上がり始める点
22−a 原料流入側の凸部の頂点と立ち上がりを始める点を結ぶ仮想直線
22−b 原料流出側の凸部の頂点と立ち上がりを始める点を結ぶ仮想直線
31 スクリュの供給部
32 スクリュの圧縮部
33 スクリュの計量部
41 凸部の頂部の溝からの高さ
DESCRIPTION OF SYMBOLS 1 Kneading part 2 Cylinder 3 Screw 4 Hopper 5 Screw flight 6 Screw groove 7 Direction of extrusion port 8 Heater of single screw extruder 9 Die 10 Protruding part 11 Flight notch 12 Diagonal line 12-a equivalent to convex slope The oblique line 12-b corresponding to the slope of the convex part on the inflow side The oblique line 14 corresponding to the slope of the convex part on the raw material outflow side 14 The top part 15 of the convex part 16 The bottom of the groove 16 The flow of the resin on the raw material inflow side 17 Flow 18 Narrow part flow path 19 between the cylinder and the top of the convex part 19 Width of the top part of the convex part 20-a Vertex 20-b of the convex part on the raw material inflow side Apex of the oblique line 12 of the convex part on the raw material outflow side 21-a Point at which rising of the oblique line of the convex part on the raw material inflow side starts 21-b Point at which the oblique line of the convex part on the raw material outflow side starts to rise 22-a Virtual line connecting the apex of the convex part on the raw material inflow side and the point at which the rising starts 22 Height from the groove of the top portion of the metering section 41 the convex portion of the compression section 33 the screw of the supply portion 32 screw imaginary straight line 31 screw connecting points starting vertices and rising of the convex portion of the b material outflow side
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016084208A JP6473098B2 (en) | 2016-04-20 | 2016-04-20 | Screw for kneading and single screw extruder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016084208A JP6473098B2 (en) | 2016-04-20 | 2016-04-20 | Screw for kneading and single screw extruder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017193096A JP2017193096A (en) | 2017-10-26 |
JP6473098B2 true JP6473098B2 (en) | 2019-02-20 |
Family
ID=60155812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016084208A Active JP6473098B2 (en) | 2016-04-20 | 2016-04-20 | Screw for kneading and single screw extruder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6473098B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102231964B1 (en) * | 2020-12-30 | 2021-03-25 | 농업회사법인(주) 해보리 | Tool assembly for imprinting in nc-machine |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT520198B1 (en) * | 2017-11-16 | 2019-02-15 | Univ Linz | plasticizing |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE790582A (en) * | 1971-10-26 | 1973-04-26 | Hoechst Ag | EXTRUSION PROCESS OF HIGHLY VISCOUS THERMOPLASTIC MATERIALS BY MEANS OF A SINGLE SCREW COOKING MACHINE |
JPS51119370U (en) * | 1975-03-25 | 1976-09-28 | ||
JPS5780037A (en) * | 1980-11-05 | 1982-05-19 | Mitsubishi Heavy Ind Ltd | High degree kneading type screw |
JPS61141512A (en) * | 1984-12-14 | 1986-06-28 | Toshiba Mach Co Ltd | Screw for molding plastic |
JPH0615014Y2 (en) * | 1989-01-25 | 1994-04-20 | 株式会社石中鉄工所 | Rotary screw for kneading |
US6136246A (en) * | 1997-11-07 | 2000-10-24 | Rauwendaal Extrusion Engineering | Screw extruder with improved dispersive mixing elements |
JP2009096072A (en) * | 2007-10-17 | 2009-05-07 | Sekisui Chem Co Ltd | Screw for resin molding |
-
2016
- 2016-04-20 JP JP2016084208A patent/JP6473098B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102231964B1 (en) * | 2020-12-30 | 2021-03-25 | 농업회사법인(주) 해보리 | Tool assembly for imprinting in nc-machine |
Also Published As
Publication number | Publication date |
---|---|
JP2017193096A (en) | 2017-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6136246A (en) | Screw extruder with improved dispersive mixing elements | |
JP2011189737A (en) | Projection type extruder screw | |
JP4555351B2 (en) | Kneading degree adjusting device, extruder, and continuous kneader | |
US7618180B2 (en) | Kneading disk apparatus | |
JP6473098B2 (en) | Screw for kneading and single screw extruder | |
JP2011230419A (en) | Method for manufacturing composite pellet for extrusion molding and composite pellet for extrusion molding, manufactured by method | |
EP3194141B1 (en) | Extrusion method and underwater-pelletizer for producing hollow pellets | |
JP5536705B2 (en) | Method for producing glass fiber reinforced thermoplastic resin composition pellets | |
JP2004284195A (en) | Screws of twin-screw extruder | |
JP5507939B2 (en) | Extrusion equipment | |
JP5841499B2 (en) | Screw for extrusion machine | |
US10307952B2 (en) | Cylindrical extruding die and method for producing seamless tube | |
WO2005051526A1 (en) | Dynamic mixer screw tip | |
CN205075313U (en) | A screw rod combination for processing of nanometer powder master batch | |
WO2012137665A1 (en) | Process for producing pellets of glass-fiber-reinforced thermoplastic resin composition | |
JP2018161860A (en) | Production method of pellets of thermoplastic resin composition | |
JP2019089250A (en) | Breaker plate, strand manufacturing apparatus, pellet manufacturing apparatus and pellet manufacturing method | |
CN109070426B (en) | Screw extruder | |
CN216782604U (en) | Special screw rod for polyvinyl chloride cast film extruder | |
JPS608935B2 (en) | Screw for single screw extrusion molding machine | |
JP2002355879A (en) | Conical screw for twin-screw extruder and extrusion molding method using the same | |
US9815223B2 (en) | Method and device for extrusion of hollow pellets | |
JP7335466B1 (en) | Screw for single screw extruder and single screw extruder | |
JPH05228920A (en) | Screw type kneader | |
JPS5892545A (en) | Extruder for molding thermoplastic resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180731 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20180927 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190124 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6473098 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |