Nothing Special   »   [go: up one dir, main page]

JP6468384B1 - Water treatment equipment - Google Patents

Water treatment equipment Download PDF

Info

Publication number
JP6468384B1
JP6468384B1 JP2018046832A JP2018046832A JP6468384B1 JP 6468384 B1 JP6468384 B1 JP 6468384B1 JP 2018046832 A JP2018046832 A JP 2018046832A JP 2018046832 A JP2018046832 A JP 2018046832A JP 6468384 B1 JP6468384 B1 JP 6468384B1
Authority
JP
Japan
Prior art keywords
water
membrane
water treatment
selective permeable
permeable membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018046832A
Other languages
Japanese (ja)
Other versions
JP2019155293A (en
Inventor
高橋 淳一
淳一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2018046832A priority Critical patent/JP6468384B1/en
Priority to SG11202008563SA priority patent/SG11202008563SA/en
Priority to CN201880072691.2A priority patent/CN111315689B/en
Priority to PCT/JP2018/039489 priority patent/WO2019176156A1/en
Priority to TW108103427A priority patent/TWI757581B/en
Application granted granted Critical
Publication of JP6468384B1 publication Critical patent/JP6468384B1/en
Publication of JP2019155293A publication Critical patent/JP2019155293A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

【課題】有用成分が回収され、系外へ排出する水の処理が容易であり、装置の運転トラブルも防止される水処理装置を提供する。
【解決手段】水系1からの水を受け入れて透過処理する、有用成分非透過性の選択性透過膜(NF膜)を有したNF膜モジュール4と、該NF膜モジュール4の透過水を脱イオン処理するRO装置9と、前記NF膜モジュール4の非透過水と該RO装置9の透過水を前記水系1に戻す手段とを有する水処理装置。
【選択図】図1
Provided is a water treatment apparatus in which useful components are recovered, water discharged outside the system can be easily treated, and operation troubles of the apparatus can be prevented.
An NF membrane module 4 having a selective permeable membrane (NF membrane) that is impermeable to useful components and accepts water from an aqueous system 1 and deionizes the permeated water of the NF membrane module 4 A water treatment device comprising: an RO device 9 to be treated; a non-permeate water of the NF membrane module 4; and a means for returning the permeate water of the RO device 9 to the water system 1.
[Selection] Figure 1

Description

本発明は、水系からの水を処理して該水系に戻す水処理装置に関する。   The present invention relates to a water treatment apparatus that treats water from an aqueous system and returns it to the aqueous system.

開放循環式冷却システムにあっては、冷却塔ブロー水を処理し、処理水を冷却塔に戻す処理が行われている(特許文献1等)。   In the open circulation type cooling system, a process of treating the cooling tower blow water and returning the treated water to the cooling tower is performed (Patent Document 1, etc.).

最近は、水の使用量削減や回収が求められており、水処理を実施している系、例えば冷却水やボイラ等においても、その系外への排出ブロー水を回収することが求められている。しかし、従来の水回収技術は、水処理に有効な成分も除去してしまう。過剰に水中の成分を除去するため、エネルギーや薬品の無駄があった。   Recently, there has been a demand for reduction and recovery of water usage, and in systems where water treatment is performed, such as cooling water and boilers, it is required to recover the blown water discharged outside the system. Yes. However, conventional water recovery techniques also remove components that are effective in water treatment. Energy and chemicals were wasted in order to remove excessive water components.

冷却塔ブロー水を回収するプロセスでは、前処理ろ過(砂ろ過、活性炭、MF膜等)とRO膜やEDR(極性転換方式電気透析装置)との組合せの処理が行われる。従来のブロー水回収プロセスでは、ブロー水の全量を前処理膜やMF膜等で処理した後にRO膜へ供給する。このRO膜等により、水処理薬品や溶存塩類等が濃縮水中に濃縮されて系外に排出され、RO膜等の透過水が回収水として回収される。   In the process of collecting the cooling tower blow water, a combination of pretreatment filtration (sand filtration, activated carbon, MF membrane, etc.) and RO membrane or EDR (polarity conversion electrodialyzer) is performed. In the conventional blow water recovery process, the entire amount of blow water is treated with a pretreatment membrane, MF membrane or the like and then supplied to the RO membrane. With this RO membrane or the like, water treatment chemicals or dissolved salts are concentrated in the concentrated water and discharged out of the system, and the permeated water such as the RO membrane is recovered as recovered water.

特開2003−1255号公報JP 2003-1255 A

上記従来の回収プロセスでは、水処理に有効な成分であるカルシウム、亜鉛、ポリマー、りん酸や、ホスホン酸等の薬剤の成分など、原水中に含まれる各種の有用成分も全て濃縮水に含まれて系外に排出されてしまう。また、従来の回収プロセスでは、RO膜等で、亜鉛やりん酸、有機物(TOC,COD)等も濃縮されるため、RO膜等のファウリングが起きやすくなる。また、濃縮水を排出するに際しては、亜鉛やりん酸、COD,BOD等を除去処理する必要がある。   In the above conventional recovery process, all the useful components contained in the raw water such as calcium, zinc, polymer, phosphoric acid and phosphonic acid, which are effective components for water treatment, are also contained in the concentrated water. Will be discharged outside the system. Further, in the conventional recovery process, zinc, phosphoric acid, organic substances (TOC, COD), etc. are concentrated in the RO membrane or the like, so that fouling of the RO membrane or the like is likely to occur. Further, when discharging concentrated water, it is necessary to remove zinc, phosphoric acid, COD, BOD, and the like.

本発明は、有用成分が回収され、系外へ排出する水の処理が容易であり、装置の運転トラブルも防止される水処理装置を提供することを目的とする。   An object of the present invention is to provide a water treatment apparatus in which useful components are recovered, water discharged from the system is easily treated, and operation troubles of the apparatus are prevented.

本発明の水処理装置は、水系からの水を受け入れて透過処理する、有用成分非透過性の選択性透過膜を有した選択性透過膜装置と、該選択性透過膜装置の透過水を脱イオン処理する脱イオン装置と、前記選択性透過膜装置の非透過水と該脱イオン装置の脱イオン水とを前記水系に戻す手段とを有する。   The water treatment device of the present invention is a permselective membrane device having a selective permeation membrane that is impermeable to useful components and accepts permeate water from an aqueous system, and removes the permeated water of the selective permeation membrane device. A deionizing apparatus for performing ion treatment; and means for returning non-permeated water of the selective permeable membrane apparatus and deionized water of the deionizing apparatus to the water system.

本発明の一態様では、前記水系の水は、防錆剤、スケール防止剤及びスライム防止剤の少なくとも1種を含んでいる。   In one embodiment of the present invention, the aqueous water contains at least one of a rust inhibitor, a scale inhibitor, and a slime inhibitor.

本発明の一態様では、前記水系は冷却水系、水処理装置、もしくは水処理装置に供給する補給水系(防錆剤やスケール防止剤等の薬剤が入っているもの)である。   In one embodiment of the present invention, the water system is a cooling water system, a water treatment apparatus, or a makeup water system (containing a chemical such as a rust inhibitor or a scale inhibitor) supplied to the water treatment apparatus.

本発明の一態様では、前記選択性透過膜はNF膜であり、前記脱イオン装置はRO装置又は電気脱イオン装置である。   In one aspect of the present invention, the selective permeable membrane is an NF membrane, and the deionization device is an RO device or an electrodeionization device.

本発明では、水系からの水を、選択性透過膜(2価以上のイオンの排除率が高い膜、有機物を排除する膜等)で処理し、この選択性透過膜の透過水をRO膜やEDR等の脱イオン装置で処理する。そして、選択性透過膜の非透過水を水系に返送して有用成分を回収する。また、脱イオン装置の脱イオン水を水系に返送して水を回収する。このようにして、有用成分及び水が回収される。   In the present invention, water from an aqueous system is treated with a selective permeable membrane (a membrane with a high exclusion rate of divalent or higher ions, a membrane that excludes organic matter, etc.), and the permeable water of this selective permeable membrane is treated with an RO membrane or a membrane. Process with deionization equipment such as EDR. And the non-permeated water of a selective permeable membrane is returned to an aqueous system, and useful components are collect | recovered. Also, deionized water from the deionizer is returned to the water system to recover the water. In this way, useful components and water are recovered.

また、本発明では、脱イオン装置への給水は選択性透過膜で有用成分が除去されているため、脱イオン装置からの排水には有用成分が含まれておらず、脱イオン装置の排水の処理が容易となる。また、脱イオン装置への給水は、選択性透過膜で処理されているため、不純物濃度が低減されており、脱イオン装置の安定運転が可能となる。   In the present invention, since the useful components are removed from the water supply to the deionizer by the selective permeable membrane, the drainage from the deionizer contains no useful components, and the deionizer drainage Processing becomes easy. Moreover, since the water supply to the deionization apparatus is processed by the selective permeable membrane, the impurity concentration is reduced, and the deionization apparatus can be stably operated.

なお、選択性透過膜として、中空糸タイプの低圧型NF膜を用いる場合、従来の前処理膜の役割を代替することができ、装置を小型化することができる。   When a hollow fiber type low-pressure NF membrane is used as the selective permeable membrane, the role of a conventional pretreatment membrane can be substituted, and the apparatus can be miniaturized.

実施の形態に係る水処理装置のブロック図である。It is a block diagram of the water treatment equipment concerning an embodiment. 実施例で用いた試験装置のブロック図である。It is a block diagram of the test apparatus used in the Example. 実施例で用いた試験装置のブロック図である。It is a block diagram of the test apparatus used in the Example. 比較例で用いた試験装置のブロック図である。It is a block diagram of the testing apparatus used in the comparative example. 試験結果を示すグラフである。It is a graph which shows a test result. 試験結果を示すグラフである。It is a graph which shows a test result. 試験結果を示すグラフである。It is a graph which shows a test result.

以下、図1を参照して実施の形態について説明する。なお、図1では水系は循環冷却水系であるが、本発明はこれに限定されるものではなく、有用成分を含む水を保持した各種水系の処理に適用することができる。   Hereinafter, an embodiment will be described with reference to FIG. In FIG. 1, the water system is a circulating cooling water system, but the present invention is not limited to this, and can be applied to treatment of various water systems holding water containing useful components.

図1の水処理装置では、水系1の水の一部は、ポンプ2によって前処理膜(例えばMF膜や砂濾過、多層濾過(MMF)、2層濾過(DMF)、カートリッジフィルターなど)やストレーナ等よりなる前処理装置3に供給され、粒径の大きな固形物質が除去された後、選択性透過膜装置としてのNF装置4に供給される。NF装置4の非透過水(濃縮水)は、配管5を介して水系1へ返送される。なお、非透過水の一部は、必要に応じ、配管6から系外に排出される。   In the water treatment apparatus of FIG. 1, a part of water in the water system 1 is pretreated by a pump 2 (for example, MF membrane, sand filtration, multilayer filtration (MMF), two-layer filtration (DMF), cartridge filter, etc.) or strainer. After the solid substance having a large particle size is removed, it is supplied to an NF device 4 as a selective permeable membrane device. The non-permeate water (concentrated water) of the NF device 4 is returned to the water system 1 via the pipe 5. In addition, a part of non-permeate water is discharged | emitted out of the system from the piping 6 as needed.

NF装置の透過水は、配管7、ポンプ8を介して脱イオン装置としてのRO装置9に供給される。なお、RO装置の代りにEDRなどの電気透析装置が用いられてもよい。RO装置9の透過水は、配管10を介して水系1に返送される。RO装置9の非透過水(濃縮水)は、配管11から系外に排出されるが、水回収率向上のために、その一部は、配管12を介してRO装置への給水配管7へ返送され、再度RO処理される。   The permeated water of the NF device is supplied to the RO device 9 as a deionization device via the pipe 7 and the pump 8. An electrodialyzer such as EDR may be used instead of the RO device. The permeated water of the RO device 9 is returned to the water system 1 through the pipe 10. The non-permeated water (concentrated water) of the RO device 9 is discharged out of the system from the pipe 11, but part of the non-permeated water (concentrated water) is supplied to the RO water supply pipe 7 through the pipe 12 to improve the water recovery rate. Returned and RO processed again.

この実施の形態では、冷却水系1には、防錆剤、スケール防止剤、スライム防止剤などの水処理薬剤が添加されており、水系1からの水中には、各種有用成分(ポリマー、りん酸塩、有機りん酸化合物、亜鉛イオン、カルシウムイオン等)が含まれているが、これらの有用成分はNF装置4で非透過水に回収され、水系1に戻される。また、RO装置9からの脱イオン水も配管10を介して水系1に回収されるので、水が有効利用され、補給水量が少なくなる。   In this embodiment, the cooling water system 1 is added with water treatment agents such as a rust inhibitor, a scale inhibitor, and a slime inhibitor, and various useful components (polymer, phosphoric acid) are contained in the water from the aqueous system 1. Salt, organophosphate compound, zinc ion, calcium ion, etc.), but these useful components are recovered into non-permeate water by the NF device 4 and returned to the water system 1. In addition, since deionized water from the RO device 9 is also collected in the water system 1 via the pipe 10, the water is effectively used and the amount of makeup water is reduced.

RO装置9の濃縮水には、水処理上不要であったり、その成分によっては水処理の上限が決められてしまうような成分(塩化物イオンやシリカ等)が含まれているが、濃縮水を排出することにより、これらの成分が系外に排出される。このように、塩化物やシリカ等の、水処理上問題を引き起こす可能性のある成分を選択的に除去できるため、このような成分の水系中での濃度を低下させることができる。   The concentrated water of the RO device 9 includes components (such as chloride ions and silica) that are not necessary for water treatment or that determine the upper limit of water treatment depending on the components. These components are discharged out of the system. In this way, components that may cause problems in water treatment, such as chloride and silica, can be selectively removed, so that the concentration of such components in the aqueous system can be reduced.

なお、水系1において有用成分が過剰に濃縮しないように水系1からブローすることも必要に応じて実施するが、図1の場合、NF装置の濃縮水の一部を配管6から系外に排出することにより、水系からのブロー量を削減することができる。   In addition, in order to prevent the useful components from being excessively concentrated in the aqueous system 1, it is also blown from the aqueous system 1 as necessary. In the case of FIG. 1, in the case of FIG. By doing so, the amount of blow from the water system can be reduced.

本発明は、冷却水系以外にも、防錆剤やスケール防止剤などの薬剤を添加している各種水系にも適用可能である。   The present invention is applicable not only to cooling water systems but also to various water systems to which chemicals such as rust inhibitors and scale inhibitors are added.

[実施例1]
<処理1>
実機循環冷却水系から採取したサンプル水を、図2に示すNF膜モジュールを用いた循環処理装置によってNF膜ろ過して濃縮処理した。
[Example 1]
<Process 1>
The sample water collected from the actual circulating cooling water system was subjected to NF membrane filtration and concentration treatment by a circulation processing apparatus using the NF membrane module shown in FIG.

図2では、タンク20内のサンプル水がポンプ21、配管22を介してNF膜モジュール23へ供給される。ポンプ21の吐出水の一部は配管29でタンク20へ返送される。NF膜モジュール23の濃縮水は、定流量弁25を有した配管24を介してタンク20へ返送される。NF膜モジュール23の透過水は、配管26から透過水槽27へ導入され、重量測定器28で水量が測定される。   In FIG. 2, the sample water in the tank 20 is supplied to the NF membrane module 23 via the pump 21 and the pipe 22. A part of the water discharged from the pump 21 is returned to the tank 20 through the pipe 29. The concentrated water of the NF membrane module 23 is returned to the tank 20 through a pipe 24 having a constant flow valve 25. The permeated water of the NF membrane module 23 is introduced from the pipe 26 to the permeated water tank 27, and the amount of water is measured by the weight measuring device 28.

この装置の運転を継続することにより、タンク20内の水が徐々に濃縮される。   By continuing the operation of this apparatus, the water in the tank 20 is gradually concentrated.

NF膜としてはDe.MEM社製のもの(中空糸タイプNF膜)を用いた。入口圧力0.25〜0.3MPaにて、50%回収の条件で膜濾過した。タンク20にサンプル水を5L取り入れ、透過水の水量が2.5Lとなった時点で、通水を終了した。   As the NF film, De. A product manufactured by MEM (hollow fiber type NF membrane) was used. Membrane filtration was performed under conditions of 50% recovery at an inlet pressure of 0.25 to 0.3 MPa. When 5 L of sample water was taken into the tank 20 and the amount of permeated water reached 2.5 L, water flow was terminated.

<処理2>
上記処理1で得られた透過水に対してスケール防止剤(栗田工業社製Kuriverter N−500)を10mg/L添加し、図3に示した、RO膜(Hydranautics社製、PA膜ES−20)を有するROシステムを用いて、透過水の回収率70%、一定透過水量で運転を実施し、膜間差圧(TMP,Trans Membrane Pressure)および、溶液電気伝導率をモニタリングし、溶液浸透圧を補正した膜間差圧0.75MPa、25℃条件の規格化透過流束Normalized Flux(m/m/day)を算出した。
<Process 2>
10 mg / L of a scale inhibitor (Kuriverter N-500, manufactured by Kurita Kogyo Co., Ltd.) was added to the permeated water obtained in the above-mentioned treatment 1, and the RO membrane (Hydranautics, PA membrane ES-20) shown in FIG. ) Using a RO system with a permeate recovery rate of 70% and a constant permeate flow rate, monitoring transmembrane pressure (TMP) and solution electrical conductivity, and solution osmotic pressure. The normalized permeation flux Normalized Flux (m 3 / m 2 / day) under the conditions of the transmembrane differential pressure of 0.75 MPa and 25 ° C. was calculated.

図3のROシステムでは、前記タンク20内の濃縮されたサンプル水を給水としてポンプ30、配管31を介してROユニット32のベッセル33に供給する。ベッセル33内は、平膜よりなるRO膜34によって1次室35と2次室36とに区画されている。ベッセル33は、循環ポンプ38及びヒータ39を備えたウォーターバス37内に配置されている。1次室35内は、マグネチックスターラ40によって撹拌される。1次室35を通液した非透過水(濃縮水)は、配管41、定圧弁42及び電気伝導度計43を経て濃縮水槽44に流入する。濃縮水槽44は重量測定器45上に設置されており、濃縮水槽44に流入する濃縮水量が測定され、そのデータがロガー46に記録される。   In the RO system of FIG. 3, the concentrated sample water in the tank 20 is supplied as feed water to the vessel 33 of the RO unit 32 via the pump 30 and the piping 31. The inside of the vessel 33 is partitioned into a primary chamber 35 and a secondary chamber 36 by an RO membrane 34 made of a flat membrane. The vessel 33 is disposed in a water bath 37 provided with a circulation pump 38 and a heater 39. The inside of the primary chamber 35 is agitated by a magnetic stirrer 40. Non-permeated water (concentrated water) that has passed through the primary chamber 35 flows into the concentrated water tank 44 through the pipe 41, the constant pressure valve 42, and the electric conductivity meter 43. The concentrated water tank 44 is installed on the weight measuring device 45, the amount of concentrated water flowing into the concentrated water tank 44 is measured, and the data is recorded in the logger 46.

RO膜34を透過した2次室36内の透過水は、配管50、電気伝導度計51を経て透過水槽52に流入する。透過水槽52は重量測定器53上に設置されており、透過水槽52に流入する透過水量が測定され、そのデータがロガー54に記録される。   The permeated water in the secondary chamber 36 that has passed through the RO membrane 34 flows into the permeated water tank 52 through the pipe 50 and the electric conductivity meter 51. The permeated water tank 52 is installed on the weight measuring device 53, the amount of permeated water flowing into the permeated water tank 52 is measured, and the data is recorded in the logger 54.

前記配管31,50には圧力センサ60,61が設けられており、水圧データがロガー62に記録される。   The pipes 31 and 50 are provided with pressure sensors 60 and 61, and water pressure data is recorded in the logger 62.

前記サンプル水と、図2のNF膜濃縮水及び透過水と、図3のRO膜透過水及び濃縮水の水質の分析結果を表1に示した。表1には、上記NF膜及びRO膜のリジェクト率も示した。   Table 1 shows the analysis results of the sample water, the NF membrane concentrated water and the permeated water in FIG. 2, and the RO membrane permeated water and the concentrated water in FIG. Table 1 also shows the rejection rates of the NF membrane and the RO membrane.

Figure 0006468384
Figure 0006468384

<考察>
冷却水の水処理において防食やスケール防止に重要となるカルシウム硬度、亜鉛、りん酸イオンやホスホン酸、ポリマー等は、図2のNF膜モジュール23の処理により、65〜100%の高い率でリジェクトされた。一方で、腐食やスケールの因子となる塩化物イオンやシリカのNF膜排除率(リジェクト率)は−1〜11%と低く、NF膜を通過している。
<Discussion>
Calcium hardness, zinc, phosphate ion, phosphonic acid, polymer, etc., which are important for corrosion prevention and scale prevention in cooling water treatment, are rejected at a high rate of 65 to 100% by the treatment of the NF membrane module 23 in FIG. It was done. On the other hand, chloride ions and silica, which are factors of corrosion and scale, have a low NF film rejection rate (rejection rate) of −1 to 11% and pass through the NF film.

図3のROシステムでは、RO膜の閉塞を引き起こす有機物成分は、RO膜処理によってそのほとんどが除去されている。図5に平膜試験によるRO膜の評価試験の結果として、Normalized Fluxの推移を示した。RO膜の透過流束は安定しており、スケールや有機物等のファウリングによる閉塞は確認されなかった。この結果より、RO膜により、不要なイオンが濃縮され、系外へ安定的に排出されることが認められた。   In the RO system of FIG. 3, most of organic components that cause the blockage of the RO membrane are removed by the RO membrane treatment. FIG. 5 shows the transition of normalized flux as a result of the RO membrane evaluation test by the flat membrane test. The permeation flux of the RO membrane was stable, and no clogging due to fouling of scales or organic substances was confirmed. From this result, it was confirmed that unnecessary ions were concentrated by the RO membrane and stably discharged out of the system.

薬品成分(Zn,T−PO,Polymer等)や有機物は、表1の通り、NF膜をほとんど透過せず、系内で再循環されるため、薬品の使用量を削減でき、RO濃縮水中のZn,P,BODを低減できた(Zn=0.7,P=1.3,BOD<20)。このことにより、環境負荷を低減すると共に、追加の処理を必要とせず排水することも可能となる。 Pharmaceutical ingredients (Zn, T-PO 4, Polymer , etc.) and organic matter, as shown in Table 1, hardly transmitted through the NF membrane, to be recycled in the system can reduce the use of chemicals, RO concentrate water Zn, P, and BOD of Zn were reduced (Zn = 0.7, P = 1.3, BOD <20). As a result, the environmental load can be reduced and drainage can be performed without requiring additional treatment.

[比較例1]
<実験条件>
実施例1と同じ実機実冷却水をサンプル水とし、これを図4に示すようにMF膜(クラレ社、PVDF製 孔径0.02μm)を用いて、入口圧力0.25〜0.3MPaの条件にて全量濾過した。図4では、タンク70内のサンプル水がポンプ71、配管72、NF膜モジュール73、配管74の順に流れ、濾過水槽75に導入され、重量測定器76で水量が計測される。ポンプ71の吐出水の一部は配管77でタンク70へ返送される。
[Comparative Example 1]
<Experimental conditions>
The same actual machine cooling water as in Example 1 was used as sample water, and this was used as shown in FIG. 4 using an MF membrane (Kuraray Co., Ltd., PVDF pore size 0.02 μm), conditions of inlet pressure 0.25 to 0.3 MPa. The whole amount was filtered at. In FIG. 4, the sample water in the tank 70 flows in the order of the pump 71, the pipe 72, the NF membrane module 73, and the pipe 74, is introduced into the filtered water tank 75, and the amount of water is measured by the weight measuring device 76. A part of the water discharged from the pump 71 is returned to the tank 70 through a pipe 77.

この濾過水にスケール防止剤(栗田工業社製Kuriverter N−500)を10mg/L添加した検水Aと、硫酸(1N)を3.4mL/L添加しpHを5.6に調整した検水Bを調製した。   Sample water A to which 10 mg / L of a scale inhibitor (Kuriverter N-500 manufactured by Kurita Kogyo Co., Ltd.) was added to this filtered water, and sample water whose pH was adjusted to 5.6 by adding 3.4 mL / L of sulfuric acid (1N). B was prepared.

各検水A,Bを前記図3に示したROシステム(RO膜は前記のものと同一)を用いて、透過水の回収率70%、30℃、一定透過水量で運転を実施し、膜間差圧(TMP,Trans Membrane Pressure)および溶液電気伝導率をモニタリングし、溶液浸透圧を補正した膜間差圧0.75MPa、25℃条件のNormalized Flux(m/m/day)を演算した。 Using the RO system shown in FIG. 3 (RO membrane is the same as that described above), each sample A and B was operated at a permeate recovery rate of 70%, 30 ° C., and a constant permeate amount. Monitors the differential pressure (TMP, Trans Membrane Pressure) and solution conductivity, and calculates Normalized Flux (m 3 / m 2 / day) under the conditions of 0.75 MPa, transmembrane differential pressure corrected for solution osmotic pressure, and 25 ° C. did.

<結果・考察>
検水Aを用いたときの水質分析結果および平膜試験装置によるNormalized Fluxの推移の観察結果をそれぞれ、表2、図6にそれぞれ示した。また、検水Bを用いたときの水質分析結果および平膜試験装置によるNormalized Fluxの推移の観察結果をそれぞれ、表3、図7に示した。
<Results and discussion>
The results of water quality analysis using Sample A and the observation results of Normalized Flux transition using a flat membrane test apparatus are shown in Table 2 and FIG. 6, respectively. Further, Table 3 and FIG. 7 show the results of water quality analysis using Sample B and the observation results of Normalized Flux transition using a flat membrane test apparatus, respectively.

Figure 0006468384
Figure 0006468384

Figure 0006468384
Figure 0006468384

表2、図5の通り、MF膜透過水にスケール防止剤を添加しただけの検水Aでは、カルシウム濃度も高くまた有機物も多く残存していることから、スケール防止剤を添加してMF及びRO処理しても、RO膜に明確なNormalized Fluxの閉塞傾向が確認された。pHを硫酸により調整した検水Bの場合は、スケール傾向が出ないためにFluxの低下は確認されず安定運定が可能となった。   As shown in Table 2 and FIG. 5, in the sample water A in which only the scale inhibitor is added to the MF membrane permeated water, the calcium concentration is high and a large amount of organic matter remains. Even when the RO treatment was performed, a clear normalized flux blocking tendency was confirmed in the RO membrane. In the case of Sample B whose pH was adjusted with sulfuric acid, there was no tendency to scale, so that a decrease in flux was not confirmed and stable operation was possible.

硫酸によるpH調整はRO膜の運転の安定には効果的ではあるが、1mのサンプルを処理するためには、90%硫酸として185gの添加が必要となり、例えば時間10mの装置であれば、1ヶ月当たり1,300kg強の消費になることから、タンクや保管場所の管理が課題となる。 Although the pH adjustment with sulfuric acid there is effective in stabilizing the operation of the RO membrane, to process samples of 1 m 3, the addition of 185g is needed as 90% sulfuric acid, if for example the device time 10 m 3 Since more than 1,300 kg is consumed per month, management of tanks and storage locations becomes an issue.

また、ROの濃縮水には、薬品成分(亜鉛、りん酸、ポリマー等)が含まれる事から、その排出先の基準を満たす事が困難となり、追加の処理もしくは、産廃への排出、回収率の低減等を検討する必要が生じる。   In addition, RO concentrated water contains chemical components (zinc, phosphoric acid, polymer, etc.), making it difficult to meet the standards of the destination, additional treatment or discharge to industrial waste, recovery rate It is necessary to consider reducing the amount of noise.

1 水系
4 NF装置
9 RO装置
1 Water system 4 NF device 9 RO device

Claims (4)

水系からの水を受け入れて透過処理する、有用成分非透過性の選択性透過膜を有した選択性透過膜装置と、
該選択性透過膜装置の透過水を脱イオン処理する脱イオン装置と、
前記選択性透過膜装置の非透過水と該脱イオン装置の脱イオン水とを前記水系に戻す手段と
を有する水処理装置。
A selective permeable membrane device having a selective permeable membrane that is impermeable to useful components and receives and permeates water from an aqueous system;
A deionization device for deionizing the permeated water of the selective permeable membrane device;
A water treatment device comprising means for returning non-permeate water of the selective permeable membrane device and deionized water of the deionization device to the water system.
前記水系の水は、防錆剤、スケール防止剤及びスライム防止剤の少なくとも1種を含んでいることを特徴とする請求項1の水処理装置。   The water treatment apparatus according to claim 1, wherein the water-based water contains at least one of a rust inhibitor, a scale inhibitor, and a slime inhibitor. 前記水系は冷却水系、水処理装置、もしくは水処理装置に供給する補給水系であることを特徴とする請求項1又は2の水処理装置。   The water treatment apparatus according to claim 1 or 2, wherein the water system is a cooling water system, a water treatment apparatus, or a makeup water system supplied to the water treatment apparatus. 前記選択性透過膜はNF膜であり、前記脱イオン装置はRO装置又は電気脱イオン装置であることを特徴とする請求項1〜3のいずれかの水処理装置。   The water treatment device according to any one of claims 1 to 3, wherein the selective permeable membrane is an NF membrane, and the deionization device is an RO device or an electrodeionization device.
JP2018046832A 2018-03-14 2018-03-14 Water treatment equipment Active JP6468384B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018046832A JP6468384B1 (en) 2018-03-14 2018-03-14 Water treatment equipment
SG11202008563SA SG11202008563SA (en) 2018-03-14 2018-10-24 Water treatment apparatus
CN201880072691.2A CN111315689B (en) 2018-03-14 2018-10-24 Water treatment device
PCT/JP2018/039489 WO2019176156A1 (en) 2018-03-14 2018-10-24 Water treatment apparatus
TW108103427A TWI757581B (en) 2018-03-14 2019-01-30 water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018046832A JP6468384B1 (en) 2018-03-14 2018-03-14 Water treatment equipment

Publications (2)

Publication Number Publication Date
JP6468384B1 true JP6468384B1 (en) 2019-02-13
JP2019155293A JP2019155293A (en) 2019-09-19

Family

ID=65356070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018046832A Active JP6468384B1 (en) 2018-03-14 2018-03-14 Water treatment equipment

Country Status (5)

Country Link
JP (1) JP6468384B1 (en)
CN (1) CN111315689B (en)
SG (1) SG11202008563SA (en)
TW (1) TWI757581B (en)
WO (1) WO2019176156A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149950A (en) * 1999-12-01 2001-06-05 Kurita Water Ind Ltd Water treating method and water treating device
JP2003001255A (en) * 2001-06-25 2003-01-07 Kurita Water Ind Ltd Method for treating circulating cooling water
JP2003136065A (en) * 2001-11-05 2003-05-13 Kurita Water Ind Ltd Treatment apparatus of boiler feed water
JP2004149899A (en) * 2002-10-31 2004-05-27 Yuasa Corp Process for recovering electrodeposition paint
JP2008121929A (en) * 2006-11-09 2008-05-29 Miura Co Ltd Boiler system
JP2017104787A (en) * 2015-12-08 2017-06-15 三浦工業株式会社 Method of using concentrated water as circulating cooling water

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3870712B2 (en) * 2000-05-02 2007-01-24 栗田工業株式会社 Circulating cooling water treatment method and treatment apparatus
US6863822B2 (en) * 2002-10-16 2005-03-08 Anthony Pipes Method and apparatus for parallel desalting
KR100796561B1 (en) * 2006-08-16 2008-01-23 지은상 Deionized water system with membrabe separation technology for power plant
JP2015077530A (en) * 2012-01-24 2015-04-23 東レ株式会社 Water production method and water production device
CN105934271A (en) * 2013-04-10 2016-09-07 南洋理工大学 Nanofiltration membrane and method of manufacturing a nanofiltration membrane
KR102027026B1 (en) * 2013-07-24 2019-09-30 쿠리타 고교 가부시키가이샤 Ultrapure water production system, ultrapure water production supply system, and method for cleaning same
CN105461157A (en) * 2014-09-09 2016-04-06 中国石油化工股份有限公司 High-salinity high-organic-matter contentwastewater zero discharge method
JP5852199B1 (en) * 2014-09-12 2016-02-03 旭金属工業株式会社 Drainage treatment apparatus and method for osmotic water washing containing fluorescent solution and developer generated in penetrant inspection
JP6036879B2 (en) * 2015-03-04 2016-11-30 栗田工業株式会社 Selective permeable membrane for water treatment and method for producing the same
JP6305368B2 (en) * 2015-03-31 2018-04-04 栗田工業株式会社 Water treatment method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149950A (en) * 1999-12-01 2001-06-05 Kurita Water Ind Ltd Water treating method and water treating device
JP2003001255A (en) * 2001-06-25 2003-01-07 Kurita Water Ind Ltd Method for treating circulating cooling water
JP2003136065A (en) * 2001-11-05 2003-05-13 Kurita Water Ind Ltd Treatment apparatus of boiler feed water
JP2004149899A (en) * 2002-10-31 2004-05-27 Yuasa Corp Process for recovering electrodeposition paint
JP2008121929A (en) * 2006-11-09 2008-05-29 Miura Co Ltd Boiler system
JP2017104787A (en) * 2015-12-08 2017-06-15 三浦工業株式会社 Method of using concentrated water as circulating cooling water

Also Published As

Publication number Publication date
CN111315689A (en) 2020-06-19
CN111315689B (en) 2024-10-18
TW201938251A (en) 2019-10-01
JP2019155293A (en) 2019-09-19
TWI757581B (en) 2022-03-11
SG11202008563SA (en) 2020-10-29
WO2019176156A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
Koo et al. Recycling of oleochemical wastewater for boiler feed water using reverse osmosis membranes—A case study
AU2015244268B2 (en) Osmotic separation systems and methods
JP5549591B2 (en) Fresh water production method and fresh water production apparatus
Loganathan et al. Pilot-scale study on the treatment of basal aquifer water using ultrafiltration, reverse osmosis and evaporation/crystallization to achieve zero-liquid discharge
CN107406277B (en) Water treatment method and apparatus
CN105408008B (en) The incrustation scale detection means and method and water reuse (treatment processing system of enrichment facility
JP6395844B2 (en) Adhesion monitoring device for water treatment device, water treatment device and operation method thereof, and cleaning method for water treatment device
US9868656B2 (en) Wastewater treatment device
JP2016016384A (en) Evaluation device and evaluation method for osmosis membrane module
KR20180122325A (en) Operation management method of reverse osmosis membrane device and reverse osmosis membrane treatment system
WO2020179594A1 (en) Zero liquid discharge system
Koyuncu et al. Application of the membrane technology to control ammonia in surface water
JP2019081134A (en) Seawater desalination method and sea water desalination system
JPH10272494A (en) Treatment of organic waste water containing salts of high concentration
Gasia-Bruch et al. Field experience with a 20,000 m3/d integrated membrane seawater desalination plant in Cyprus
WO2016035175A1 (en) Water treatment device and operating method for water treatment device
CN117326742B (en) Control method and device for industrial strong brine treatment
JP2012061402A (en) Desalination system
JP6468384B1 (en) Water treatment equipment
TW201838709A (en) Method for managing operation of reverse osmotic membrane device, and reverse osmosis membrane treatment system
JPWO2014007262A1 (en) Fresh water production apparatus and fresh water production method
KR20210069621A (en) Membrane water treatment chemicals and membrane treatment methods
JP2006281174A (en) Method, apparatus and system for recycling wastewater
JP2020032395A (en) Antifouling agent for separation membranes and antifouling method
Kaliappan et al. Recovery and reuse of water from effluents of cooling tower

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181231

R150 Certificate of patent or registration of utility model

Ref document number: 6468384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250