JP6466022B1 - Constant potential electrolytic gas sensor - Google Patents
Constant potential electrolytic gas sensor Download PDFInfo
- Publication number
- JP6466022B1 JP6466022B1 JP2018219738A JP2018219738A JP6466022B1 JP 6466022 B1 JP6466022 B1 JP 6466022B1 JP 2018219738 A JP2018219738 A JP 2018219738A JP 2018219738 A JP2018219738 A JP 2018219738A JP 6466022 B1 JP6466022 B1 JP 6466022B1
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- gas
- electrolytic solution
- silver
- electrolytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007789 gas Substances 0.000 claims abstract description 189
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 121
- -1 lithium halide Chemical class 0.000 claims abstract description 96
- 229910052709 silver Inorganic materials 0.000 claims abstract description 78
- 239000004332 silver Substances 0.000 claims abstract description 78
- 238000006243 chemical reaction Methods 0.000 claims abstract description 69
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims abstract description 61
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims abstract description 61
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 10
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 claims description 55
- 229910021612 Silver iodide Inorganic materials 0.000 claims description 4
- JKFYKCYQEWQPTM-UHFFFAOYSA-N 2-azaniumyl-2-(4-fluorophenyl)acetate Chemical compound OC(=O)C(N)C1=CC=C(F)C=C1 JKFYKCYQEWQPTM-UHFFFAOYSA-N 0.000 claims description 3
- 229940045105 silver iodide Drugs 0.000 claims description 3
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims description 3
- 229910021607 Silver chloride Inorganic materials 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 abstract description 27
- 238000005868 electrolysis reaction Methods 0.000 abstract description 10
- 238000004519 manufacturing process Methods 0.000 description 33
- 239000003792 electrolyte Substances 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 24
- 238000003487 electrochemical reaction Methods 0.000 description 22
- 229940021013 electrolyte solution Drugs 0.000 description 19
- 239000012528 membrane Substances 0.000 description 17
- 229910052736 halogen Inorganic materials 0.000 description 16
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical group [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 16
- 229910052808 lithium carbonate Inorganic materials 0.000 description 16
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 15
- 238000009434 installation Methods 0.000 description 13
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 13
- 229910001947 lithium oxide Inorganic materials 0.000 description 13
- 238000001556 precipitation Methods 0.000 description 10
- 150000002367 halogens Chemical class 0.000 description 9
- 238000005259 measurement Methods 0.000 description 8
- 238000010828 elution Methods 0.000 description 7
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 4
- 229910052794 bromium Inorganic materials 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- XWNSFEAWWGGSKJ-UHFFFAOYSA-N 4-acetyl-4-methylheptanedinitrile Chemical compound N#CCCC(C)(C(=O)C)CCC#N XWNSFEAWWGGSKJ-UHFFFAOYSA-N 0.000 description 3
- 239000004153 Potassium bromate Substances 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 229940094037 potassium bromate Drugs 0.000 description 3
- 235000019396 potassium bromate Nutrition 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000004813 Perfluoroalkoxy alkane Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 208000018459 dissociative disease Diseases 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- OCVXZQOKBHXGRU-UHFFFAOYSA-N iodine(1+) Chemical compound [I+] OCVXZQOKBHXGRU-UHFFFAOYSA-N 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920011301 perfluoro alkoxyl alkane Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Landscapes
- Measuring Oxygen Concentration In Cells (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
【課題】本発明は、フッ化水素ガスに対する感度の経時変化が抑制された定電位電解式ガスセンサを提供することを目的とする。
【解決手段】本発明の定電位電解式ガスセンサは、フッ化水素ガスを検知するための定電位電解式ガスセンサ1であって、フッ化水素ガスを検知するための電極2として、反応極21と、反応極21に対する、銀を含む対極22と、反応極21の電位の基準となる参照極23とを備え、反応極21、対極22および参照極23が接触する電解液3として、ハロゲン化リチウムを含む電解液3を備え、電極2から電解液3中に自然溶解する銀イオンとは別に、電解液3に銀イオンが添加されてなることを特徴とする。
【選択図】図1An object of the present invention is to provide a constant potential electrolysis gas sensor in which a change with time in sensitivity to hydrogen fluoride gas is suppressed.
A constant potential electrolysis gas sensor of the present invention is a constant potential electrolysis gas sensor 1 for detecting hydrogen fluoride gas, and as an electrode 2 for detecting hydrogen fluoride gas, a reaction electrode 21 and A lithium halide as an electrolytic solution 3 that includes a counter electrode 22 containing silver with respect to the reaction electrode 21 and a reference electrode 23 that serves as a reference for the potential of the reaction electrode 21, and contacts the reaction electrode 21, the counter electrode 22, and the reference electrode 23 In addition to the silver ions that spontaneously dissolve in the electrolyte solution 3 from the electrode 2, silver ions are added to the electrolyte solution 3.
[Selection] Figure 1
Description
本発明は、定電位電解式ガスセンサに関する。 The present invention relates to a constant potential electrolytic gas sensor.
検知対象ガスを検知するためのセンサとして、たとえば、特許文献1に開示されるような定電位電解式ガスセンサが用いられる。定電位電解式ガスセンサは、一般的に、検知対象ガスを電気化学反応させる反応極と、反応極に対する対極と、反応極の電位の基準となる参照極と、反応極、対極および参照極に接触する電解液とを備えている。定電位電解式ガスセンサは、参照極に対する反応極の電位を一定に制御して、検知対象ガスの電気化学反応により反応極と対極との間に生じる電解電流を検出することで、検知対象ガスを検知することができる。 As a sensor for detecting the detection target gas, for example, a constant potential electrolytic gas sensor as disclosed in Patent Document 1 is used. In general, a constant potential electrolytic gas sensor is in contact with a reaction electrode for electrochemically reacting a gas to be detected, a counter electrode for the reaction electrode, a reference electrode serving as a reference for the potential of the reaction electrode, and a reaction electrode, a counter electrode, and a reference electrode. An electrolyte solution. The constant potential electrolytic gas sensor controls the potential of the reaction electrode with respect to the reference electrode, and detects the electrolytic current generated between the reaction electrode and the counter electrode due to the electrochemical reaction of the detection target gas. Can be detected.
定電位電解式ガスセンサは、電極や電解液の種類、参照極に対する反応極の電位などを任意に選択することで、様々な種類の検知対象ガスを検知することができる。たとえば、定電位電解式ガスセンサは、対極材料として銀を用い、電解液として臭化リチウムなどのハロゲン化リチウム溶液を用いることで、フッ化水素ガスを検知することができる。 The constant potential electrolytic gas sensor can detect various types of detection target gases by arbitrarily selecting the type of electrode and electrolyte, the potential of the reaction electrode with respect to the reference electrode, and the like. For example, a constant potential electrolytic gas sensor can detect hydrogen fluoride gas by using silver as a counter electrode material and a lithium halide solution such as lithium bromide as an electrolytic solution.
ところが、定電位電解式ガスセンサは、対極材料として銀を用い、電解液としてハロゲン化リチウム溶液を用いることで、フッ化水素ガスを高感度で検出することができる一方で、フッ化水素ガスに対する感度が経時により大きく変化するという問題がある。 However, the constant potential electrolytic gas sensor can detect hydrogen fluoride gas with high sensitivity by using silver as a counter electrode material and a lithium halide solution as an electrolyte solution, while being sensitive to hydrogen fluoride gas. There is a problem that changes with time.
本発明は、上記問題に鑑みなされたもので、フッ化水素ガスに対する感度の経時変化が抑制された定電位電解式ガスセンサを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a constant potential electrolytic gas sensor in which a change with time in sensitivity to hydrogen fluoride gas is suppressed.
本発明の定電位電解式ガスセンサは、フッ化水素ガスを検知するための定電位電解式ガスセンサであって、フッ化水素ガスを検知するための電極として、反応極と、前記反応極に対する、銀を含む対極と、前記反応極の電位の基準となる参照極とを備え、前記反応極、前記対極および前記参照極が接触する電解液として、ハロゲン化リチウムを含む電解液を備え、前記電極から前記電解液中に自然溶解する銀イオンとは別に、前記電解液に銀イオンが添加されてなることを特徴とする。 The constant potential electrolysis gas sensor of the present invention is a constant potential electrolysis gas sensor for detecting hydrogen fluoride gas. As an electrode for detecting hydrogen fluoride gas, a reaction electrode and a silver for the reaction electrode And a reference electrode serving as a reference for the potential of the reaction electrode, and an electrolyte solution containing lithium halide as an electrolyte solution in contact with the reaction electrode, the counter electrode, and the reference electrode, and from the electrode In addition to silver ions that naturally dissolve in the electrolytic solution, silver ions are added to the electrolytic solution.
また、前記電解液にハロゲン化銀が添加されてなることが好ましい。 Moreover, it is preferable that silver halide is added to the electrolytic solution.
また、前記ハロゲン化銀が、塩化銀、臭化銀およびヨウ化銀を含む群から選択される1種以上であることが好ましい。 Moreover, it is preferable that the said silver halide is 1 or more types selected from the group containing silver chloride, silver bromide, and silver iodide.
また、前記ハロゲン化銀が、前記電解液中に0.025mol/L以上添加されることが好ましい。 Moreover, it is preferable that 0.025 mol / L or more of the silver halide is added to the electrolytic solution.
本発明によれば、フッ化水素ガスに対する感度の経時変化が抑制された定電位電解式ガスセンサを提供することができる。 According to the present invention, it is possible to provide a constant potential electrolytic gas sensor in which a change with time in sensitivity to hydrogen fluoride gas is suppressed.
以下、添付図面を参照して、本発明の一実施形態に係る定電位電解式ガスセンサを説明する。ただし、以下に示す実施形態は一例であり、本発明の定電位電解式ガスセンサは以下の例に限定されることはない。 Hereinafter, a constant potential electrolytic gas sensor according to an embodiment of the present invention will be described with reference to the accompanying drawings. However, the embodiment shown below is an example, and the constant potential electrolytic gas sensor of the present invention is not limited to the following example.
本実施形態の定電位電解式ガスセンサ1は、フッ化水素ガスを検知するために用いられる。定電位電解式ガスセンサ1は、図1に示されるように、フッ化水素ガスを検知するための電極2と、電極2と接触する電解液3とを備えている。定電位電解式ガスセンサ1は、フッ化水素ガスが関与する電気化学反応によって電極2に生じる電解電流を検知することにより、フッ化水素ガスを検知する。 The constant potential electrolytic gas sensor 1 of the present embodiment is used for detecting hydrogen fluoride gas. As shown in FIG. 1, the constant potential electrolytic gas sensor 1 includes an electrode 2 for detecting hydrogen fluoride gas and an electrolytic solution 3 in contact with the electrode 2. The constant potential electrolytic gas sensor 1 detects hydrogen fluoride gas by detecting an electrolytic current generated in the electrode 2 by an electrochemical reaction involving the hydrogen fluoride gas.
定電位電解式ガスセンサ1は、本実施形態では、図1に示されるように、電極2および電解液3を収容する電解槽4を備えている。電解槽4は、電解液3を収容する電解液収容部41と、電解液収容部41に電解液3を供給するための電解液供給孔42と、フッ化水素ガスを含む測定対象ガスが電解槽4の外部から電解液収容部41内に流入するガス流入孔43と、電気化学反応で生じたガスや未反応の測定対象ガスなどの電解液3中のガスが電解液収容部41から電解槽4の外部に流出するガス流出孔44とを備えている。 In the present embodiment, the constant potential electrolytic gas sensor 1 includes an electrolytic cell 4 that accommodates an electrode 2 and an electrolytic solution 3 as shown in FIG. The electrolytic cell 4 includes an electrolytic solution storage unit 41 that stores the electrolytic solution 3, an electrolytic solution supply hole 42 for supplying the electrolytic solution 3 to the electrolytic solution storage unit 41, and a measurement target gas including hydrogen fluoride gas is electrolyzed. Gas inflow holes 43 flowing from the outside of the tank 4 into the electrolytic solution storage part 41 and gases in the electrolytic solution 3 such as gas generated by electrochemical reaction and unreacted measurement target gas are electrolyzed from the electrolytic solution storage part 41. A gas outflow hole 44 that flows out of the tank 4 is provided.
ただし、電解槽は、電極および電解液を収容可能で、ガスが流入および流出可能に構成されていればよく、図示された構成に限定されることはない。電解槽を構成する材料もまた、特に限定されることはなく、たとえば、ポリカーボネート、塩化ビニル、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレンなどの公知の樹脂材料を採用することができる。 However, the electrolytic cell is not limited to the illustrated configuration as long as it can accommodate the electrode and the electrolytic solution and can be configured to allow gas to flow in and out. The material constituting the electrolytic cell is also not particularly limited, and known resin materials such as polycarbonate, vinyl chloride, polyethylene, polypropylene, and polytetrafluoroethylene can be employed.
定電位電解式ガスセンサ1は、図1に示されるように、フッ化水素ガスを検知するための電極2として、反応極21と、反応極21に対する、銀を含む対極22と、反応極21の電位の基準となる参照極23とを備えている。反応極21、対極22および参照極23は、電解液3に接触するように、電解槽4内に配置される。反応極21、対極22および参照極23は、たとえば、図示しない公知のポテンショスタットなどの制御手段にリード線を介して接続されて、所定の電圧が印加され、電気化学反応の結果として生じる電解電流が測定される。 As shown in FIG. 1, the constant potential electrolytic gas sensor 1 includes a reaction electrode 21, a counter electrode 22 containing silver with respect to the reaction electrode 21, and a reaction electrode 21 as an electrode 2 for detecting hydrogen fluoride gas. A reference electrode 23 serving as a potential reference is provided. The reaction electrode 21, the counter electrode 22 and the reference electrode 23 are arranged in the electrolytic cell 4 so as to be in contact with the electrolytic solution 3. The reaction electrode 21, the counter electrode 22, and the reference electrode 23 are connected to a control means such as a known potentiostat (not shown) via a lead wire, and a predetermined voltage is applied to generate an electrolytic current generated as a result of an electrochemical reaction. Is measured.
反応極21は、参照極23の電位を基準として一定の電圧が印加されて、フッ化水素が関与する電気化学反応を生じさせる電極である。反応極21は、本実施形態では、図1に示されるように、ガス流入側ガス透過膜5上に、電極材料(たとえば、カーボン)により作製されたペーストが塗布・焼成されて、形成される。反応極21は、ガス流入側ガス透過膜5とともに、ガス流入孔43を液密に閉鎖するように配置される。より具体的には、積層された反応極21およびガス流入側ガス透過膜5は、反応極21が電解液収容部41に面し、ガス流入側ガス透過膜5がガス流入孔43に面するように配置されて、Oリング6などの公知の密封手段を介して、ガス流入側蓋部材7によって、電解液収容部41とガス流入孔43との間に固定される。反応極21に印加する電圧は、反応極21においてフッ化水素が関与する電気化学反応を生じさせるように、適宜設定することができる。 The reaction electrode 21 is an electrode that generates an electrochemical reaction involving hydrogen fluoride when a constant voltage is applied based on the potential of the reference electrode 23. In the present embodiment, the reaction electrode 21 is formed by applying and baking a paste made of an electrode material (for example, carbon) on the gas inflow side gas permeable film 5 as shown in FIG. . The reaction electrode 21 and the gas inflow side gas permeable membrane 5 are disposed so as to close the gas inflow hole 43 in a liquid-tight manner. More specifically, in the stacked reaction electrode 21 and gas inflow side gas permeable membrane 5, the reaction electrode 21 faces the electrolyte accommodating portion 41 and the gas inflow side gas permeable membrane 5 faces the gas inflow hole 43. Thus, the gas inflow side cover member 7 is fixed between the electrolyte solution containing portion 41 and the gas inflow hole 43 through a known sealing means such as an O-ring 6. The voltage applied to the reaction electrode 21 can be appropriately set so as to cause an electrochemical reaction involving hydrogen fluoride in the reaction electrode 21.
ガス流入側ガス透過膜5は、電解液収容部41内の電解液3がガス流入孔43を介して電解槽4の外部に流出するのを抑制する一方で、フッ化水素ガスを含む測定対象ガスが電解槽4の外部から電解液収容部41内に流入するのを許容する。ガス流入側ガス透過膜5は、電解液3の流出を抑制し、測定対象ガスの流入を許容するように構成されていればよく、特に限定されることはないが、たとえば、ポリテトラフルオロエチレン、パーフルオロアルコキシアルカン、パーフルオロエチレンプロペンコポリマーなどのフッ素樹脂材料を用いて多孔質に形成されたフィルムを用いることができる。 The gas inflow side gas permeable membrane 5 suppresses the electrolytic solution 3 in the electrolytic solution storage part 41 from flowing out of the electrolytic cell 4 through the gas inflow hole 43, while measuring the hydrogen fluoride gas. Gas is allowed to flow into the electrolyte container 41 from the outside of the electrolytic cell 4. The gas inflow side gas permeable membrane 5 is not particularly limited as long as it is configured to suppress the outflow of the electrolyte solution 3 and to allow the inflow of the measurement target gas. For example, polytetrafluoroethylene A film formed porous using a fluororesin material such as perfluoroalkoxyalkane or perfluoroethylenepropene copolymer can be used.
対極22は、銀を含み、反応極21でのフッ化水素が関与する電気化学反応に対応して、別の電気化学反応を生じさせる電極である。対極22は、本実施形態では、図1に示されるように、ガス流出側ガス透過膜8上に固定された銀線として構成される。対極22は、ガス流出側ガス透過膜8とともにガス流出孔44を液密に閉鎖するように、電解液3を介して反応極21に対向して配置される。 The counter electrode 22 is an electrode containing silver and causing another electrochemical reaction corresponding to the electrochemical reaction involving hydrogen fluoride at the reaction electrode 21. In this embodiment, the counter electrode 22 is configured as a silver wire fixed on the gas outflow side gas permeable membrane 8 as shown in FIG. The counter electrode 22 and the gas outflow side gas permeable membrane 8 are disposed so as to face the reaction electrode 21 through the electrolytic solution 3 so as to close the gas outflow hole 44 in a liquid-tight manner.
参照極23は、反応極21の電位の基準となる電極である。参照極23は、本実施形態では、図1に示されるように、対極22とともに、ガス流出側ガス透過膜8上に固定された銀線として構成される。参照極23は、ガス流出側ガス透過膜8とともにガス流出孔44を液密に閉鎖するように、電解液3を介して反応極21に対向して配置される。 The reference electrode 23 is an electrode serving as a reference for the potential of the reaction electrode 21. In this embodiment, the reference electrode 23 is configured as a silver wire fixed on the gas outflow side gas permeable membrane 8 together with the counter electrode 22 as shown in FIG. The reference electrode 23 is disposed so as to face the reaction electrode 21 through the electrolytic solution 3 so as to liquid-tightly close the gas outflow hole 44 together with the gas outflow side gas permeable membrane 8.
ガス流出側ガス透過膜8は、電解液収容部41内の電解液3がガス流出孔44を介して電解槽4の外部に流出するのを抑制する一方で、電気化学反応で生じたガスや未反応の測定対象ガスなどの電解液3中のガスが電解液収容部41から電解槽4の外部に流出するのを許容する。ガス流出側ガス透過膜8は、図1に示されるように、対極22および参照極23が固定された面とは反対側の面がガス流出孔44に面するように配置されて、Oリング9などの公知の密封手段を介して、ガス流出側蓋部材10によって、電解液収容部41とガス流出孔44との間に固定される。ガス流出側ガス透過膜8は、電解液3の流出を抑制し、電解液3中のガスの流出を許容するように構成されていればよく、特に限定されることはないが、たとえば、ガス流入側ガス透過膜5と同様に、ポリテトラフルオロエチレン、パーフルオロアルコキシアルカン、パーフルオロエチレンプロペンコポリマーなどのフッ素樹脂材料を用いて多孔質に形成されたフィルムを用いることができる。 The gas outflow side gas permeable membrane 8 prevents the electrolyte 3 in the electrolyte container 41 from flowing out of the electrolytic cell 4 through the gas outflow hole 44, while A gas in the electrolyte 3 such as an unreacted measurement target gas is allowed to flow out of the electrolytic cell 4 from the electrolyte container 41. As shown in FIG. 1, the gas outflow side gas permeable membrane 8 is disposed so that the surface opposite to the surface on which the counter electrode 22 and the reference electrode 23 are fixed faces the gas outflow hole 44. It is fixed between the electrolyte solution storage part 41 and the gas outflow hole 44 by the gas outflow side lid member 10 through a known sealing means such as 9. The gas outflow side gas permeable membrane 8 is not particularly limited as long as it is configured to suppress the outflow of the electrolytic solution 3 and allow the outflow of the gas in the electrolytic solution 3. Similarly to the inflow side gas permeable membrane 5, a film formed porous using a fluororesin material such as polytetrafluoroethylene, perfluoroalkoxyalkane, and perfluoroethylene propene copolymer can be used.
定電位電解式ガスセンサ1では、反応極21に、参照極23の電位を基準として一定の電圧が印加され、参照極23との間に一定の電位差が付加される。参照極23との間に一定の電位差が付加された反応極21は、反応極21に接触する電解液3中に流入したフッ化水素が関与する電気化学反応を生じさせる。フッ化水素が関与する電気化学反応が生じると、その電気化学反応に対応して、対極22側においても別の電気化学反応が生じる。反応極21および対極22において生じる電気化学反応の結果として、反応極21と対極22との間に電解電圧が生じ、電解電流を検知することで、フッ化水素ガスを検知することができ、電解電流の大きさに応じてフッ化水素ガスの濃度を求めることができる。 In the constant potential electrolytic gas sensor 1, a constant voltage is applied to the reaction electrode 21 based on the potential of the reference electrode 23, and a constant potential difference is added to the reference electrode 23. The reaction electrode 21 to which a certain potential difference is added between the reference electrode 23 and the reaction electrode 21 causes an electrochemical reaction involving hydrogen fluoride flowing into the electrolytic solution 3 in contact with the reaction electrode 21. When an electrochemical reaction involving hydrogen fluoride occurs, another electrochemical reaction also occurs on the counter electrode 22 side corresponding to the electrochemical reaction. As a result of the electrochemical reaction occurring at the reaction electrode 21 and the counter electrode 22, an electrolysis voltage is generated between the reaction electrode 21 and the counter electrode 22, and by detecting the electrolysis current, hydrogen fluoride gas can be detected. The concentration of hydrogen fluoride gas can be determined according to the magnitude of the current.
定電位電解式ガスセンサ1は、反応極21、対極22および参照極23が接触する電解液3として、ハロゲン化リチウムを含む電解液3を備えている。反応極21、対極22および参照極23が接触する電解液3がハロゲン化リチウムを含むことにより、一定の電圧が印加された反応極21おいて、(1)電解液3中に流入したフッ化水素ガスの解離反応、(2)ハロゲンガスの生成反応、および(3)ハロゲンガスの還元反応が生じ、対極22において、反応極21における上述の電気化学反応に対応して、(4)ハロゲンイオンの酸化反応が生じる。なお、電解液3は、本実施形態では、反応極21における上述の(2)の反応を促進するために、ハロゲン酸イオンが添加される。以下に、ハロゲン化リチウムを含む電解液3にハロゲン酸イオンを添加した場合の上述の(1)〜(4)の反応式を示す。 The constant potential electrolytic gas sensor 1 includes an electrolytic solution 3 containing lithium halide as the electrolytic solution 3 in contact with the reaction electrode 21, the counter electrode 22, and the reference electrode 23. Since the electrolytic solution 3 in contact with the reaction electrode 21, the counter electrode 22, and the reference electrode 23 contains lithium halide, (1) fluorination flowing into the electrolytic solution 3 in the reaction electrode 21 to which a certain voltage is applied. A hydrogen gas dissociation reaction, (2) a halogen gas generation reaction, and (3) a halogen gas reduction reaction occur, and (4) halogen ions at the counter electrode 22 corresponding to the above-described electrochemical reaction at the reaction electrode 21 Oxidation reaction occurs. In addition, in this embodiment, in order to accelerate | stimulate the reaction of above-mentioned (2) in the reaction electrode 21, the electrolyte solution 3 adds a halogenate ion. The reaction formulas (1) to (4) above when a halogen acid ion is added to the electrolytic solution 3 containing lithium halide are shown below.
(反応極)
(1)HF → H+ + F-
(2)6H+ + 5X- + XO3 - → 3X2 +3H2O
(3)X2 + 2e- → 2X-
(対極)
(4)2Ag + 2X- → 2AgX + 2e-
ただし、Xはハロゲン元素を示す。
(Reaction electrode)
(1) HF → H + + F −
(2) 6H + + 5X − + XO 3 − → 3X 2 + 3H 2 O
(3) X 2 + 2e − → 2X −
(Counter electrode)
(4) 2Ag + 2X − → 2AgX + 2e −
However, X shows a halogen element.
電解液3に含まれるハロゲン化リチウムの濃度は、特に限定されることはなく、反応極21および対極22において、フッ化水素ガスの解離反応を含む電気化学反応が生じるように、適宜設定することができる。また、ハロゲン化リチウムに含まれるハロゲン元素としては、いずれのハロゲン元素であっても適用可能であるが、塩素(Cl)、臭素(Br)およびヨウ素(I)を含む群から選択される1種以上であることが好ましく、臭素(Br)であることがさらに好ましい。電解液3へのハロゲン酸イオンの添加は、特に限定されることはないが、たとえばハロゲン酸カリウムの添加によって行なうことができる。ハロゲン酸カリウムに含まれるハロゲン元素としては、いずれのハロゲン元素であっても適用可能であるが、塩素(Cl)、臭素(Br)およびヨウ素(I)を含む群から選択される1種以上であることが好ましく、臭素(Br)であることがさらに好ましい。 The concentration of lithium halide contained in the electrolytic solution 3 is not particularly limited, and is appropriately set so that an electrochemical reaction including a dissociation reaction of hydrogen fluoride gas occurs at the reaction electrode 21 and the counter electrode 22. Can do. In addition, any halogen element is applicable as the halogen element contained in the lithium halide, but one kind selected from the group containing chlorine (Cl), bromine (Br), and iodine (I) Preferably, it is bromine (Br). The addition of the halogenate ion to the electrolytic solution 3 is not particularly limited, but can be performed by adding, for example, potassium halide. As the halogen element contained in the potassium halide, any halogen element is applicable, but one or more selected from the group containing chlorine (Cl), bromine (Br) and iodine (I) Preferably, it is bromine (Br).
定電位電解式ガスセンサ1では、電極2から電解液3中に自然溶解する銀イオンとは別に、電解液3に銀イオンが添加されている。定電位電解式ガスセンサ1は、電解液3に銀イオンが添加されることで、フッ化水素ガスに対する感度の経時変化を抑制することができる。それによって、定電位電解式ガスセンサ1を長寿命化することができる。これは、以下で詳しく述べるように、電解液3に銀イオンを添加することで、フッ化水素ガスに対する感度の経時変化をもたらす炭酸リチウムや酸化リチウムが対極22上に析出するのを抑制することができるからであると考えられる。 In the constant potential electrolytic gas sensor 1, silver ions are added to the electrolytic solution 3 separately from the silver ions that are naturally dissolved from the electrode 2 into the electrolytic solution 3. The constant potential electrolytic gas sensor 1 can suppress a change with time in sensitivity to hydrogen fluoride gas by adding silver ions to the electrolytic solution 3. Thereby, the life of the constant potential electrolytic gas sensor 1 can be extended. As described in detail below, the addition of silver ions to the electrolytic solution 3 suppresses the deposition of lithium carbonate or lithium oxide that causes a change in sensitivity to hydrogen fluoride gas over time on the counter electrode 22. This is thought to be possible.
ここで、参照極23を基準に一定の電圧が反応極21に印加されると、対極22上では、上述したように、対極22に含まれる銀と、電解液3中に含まれるハロゲンイオンとが反応して、ハロゲン化銀が生成する。このハロゲン化銀は、反応極21における電気化学反応に対応して生じる、ハロゲンイオンの電気化学反応(酸化反応)により生成するもので、非常に微量である。一方、対極22上では、電気化学反応により生じるハロゲン化銀とは別に、対極22から溶出する銀イオンと、電解液3中のハロゲンイオンとが化学的に反応することによっても、ハロゲン化銀が生成・析出する。この化学反応によって生成するハロゲン化銀は、電気化学反応により生成するハロゲン化銀よりも多い。化学反応により生成するハロゲン化銀が対極22上に析出すると、炭酸リチウムや酸化リチウムが対極22上に析出する(図3(b)参照)。これは、化学反応により表面に析出したハロゲン化銀が触媒となって、炭酸リチウムや酸化リチウムの析出が促進されるためだと考えられる。対極22上に析出した炭酸リチウムや酸化リチウムは、対極22上での電気化学反応を阻害するだけでなく、電解液3中に溶出して検知対象であるフッ化水素とも反応するため、フッ化水素ガスの検出を阻害する。このように、対極22上では、電気化学反応とは別に、対極22から溶出する銀イオンと電解液3中のハロゲンイオンとの化学反応が経時により進行し、それに伴って炭酸リチウムや酸化リチウムが表面に析出する。その結果、フッ化水素ガスに対する感度に経時変化が生じるものと考えられる。 Here, when a constant voltage is applied to the reaction electrode 21 with reference to the reference electrode 23, the silver contained in the counter electrode 22 and the halogen ions contained in the electrolytic solution 3 on the counter electrode 22 as described above. React to produce silver halide. This silver halide is produced by an electrochemical reaction (oxidation reaction) of halogen ions that occurs in response to the electrochemical reaction at the reaction electrode 21 and is very small. On the other hand, on the counter electrode 22, apart from the silver halide generated by the electrochemical reaction, the silver halide eluted from the counter electrode 22 and the halogen ion in the electrolytic solution 3 are also chemically reacted, so that the silver halide is also formed. Formation and precipitation. The silver halide produced by this chemical reaction is more than the silver halide produced by the electrochemical reaction. When the silver halide produced | generated by a chemical reaction precipitates on the counter electrode 22, lithium carbonate and lithium oxide will precipitate on the counter electrode 22 (refer FIG.3 (b)). This is thought to be because the silver halide deposited on the surface by the chemical reaction serves as a catalyst to promote the precipitation of lithium carbonate and lithium oxide. The lithium carbonate or lithium oxide deposited on the counter electrode 22 not only inhibits the electrochemical reaction on the counter electrode 22 but also elutes in the electrolyte 3 and reacts with hydrogen fluoride to be detected. This hinders detection of hydrogen gas. Thus, on the counter electrode 22, apart from the electrochemical reaction, the chemical reaction between silver ions eluted from the counter electrode 22 and the halogen ions in the electrolytic solution 3 proceeds with time, and accordingly lithium carbonate and lithium oxide are produced. Precipitate on the surface. As a result, it is considered that the sensitivity to hydrogen fluoride gas changes with time.
それに対して、対極22から電解液3中に自然溶解する銀イオンとは別に、電解液3に銀イオンを添加することにより、炭酸リチウムや酸化リチウムの析出が抑制される(図3(a)参照)。これは、電解液3中に銀イオンを添加することで、対極22に含まれる銀が電解液3中に溶出するのが抑制され、対極22から溶出する銀イオンと、電解液3中のハロゲンイオンとの化学反応が抑制され、化学反応によるハロゲン化銀の生成・析出が抑制されるためだと考えられる。その結果、フッ化水素ガスに対する感度の経時変化をもたらす炭酸リチウムや酸化リチウムが対極22上に析出するのが抑制され、フッ化水素ガスに対する感度の経時変化を抑制することができるものと考えられる。 On the other hand, by adding silver ions to the electrolytic solution 3 separately from the silver ions that naturally dissolve in the electrolytic solution 3 from the counter electrode 22, precipitation of lithium carbonate and lithium oxide is suppressed (FIG. 3A). reference). This is because by adding silver ions to the electrolytic solution 3, the silver contained in the counter electrode 22 is suppressed from eluting into the electrolytic solution 3, and the silver ions eluted from the counter electrode 22 and the halogen in the electrolytic solution 3 are reduced. This is probably because the chemical reaction with ions is suppressed, and the formation and precipitation of silver halide due to the chemical reaction is suppressed. As a result, it is considered that lithium carbonate or lithium oxide that causes a change in sensitivity with respect to hydrogen fluoride gas is prevented from being deposited on the counter electrode 22, and that a change in sensitivity with respect to hydrogen fluoride gas can be suppressed over time. .
電解液3中への銀イオンの添加は、特に限定されることはないが、たとえばハロゲン化銀の添加によって行なうことができる。電解液3にハロゲン化銀が添加されることで、ハロゲン化銀が電解液3中で銀イオンとハロゲンイオンとに解離して、電解液3中に銀イオンを含有させることができる。 The addition of silver ions into the electrolytic solution 3 is not particularly limited, but can be performed, for example, by adding silver halide. By adding silver halide to the electrolytic solution 3, the silver halide can be dissociated into silver ions and halogen ions in the electrolytic solution 3, and silver ions can be contained in the electrolytic solution 3.
ハロゲン化銀は、特に限定されることはないが、塩化銀(AgCl)、臭化銀(AgBr)およびヨウ化銀(AgI)を含む群から選択される1種以上であることが好ましく、臭化銀(AgBr)であることがさらに好ましい。また、添加されるハロゲン化銀の量は、特に限定されることはなく、フッ化水素ガスに対する感度の経時変化を抑制するのに必要な銀イオンを添加するように、適宜設定することができる。たとえば、ハロゲン化銀は、電解液3中に0.025mol/L以上添加することができる。ハロゲン化銀を電解液3中に0.025mol/L以上添加することで、フッ化水素ガスに対する感度の経時変化をより安定して抑制することができる。 The silver halide is not particularly limited, but is preferably at least one selected from the group comprising silver chloride (AgCl), silver bromide (AgBr) and silver iodide (AgI). More preferred is silver halide (AgBr). Further, the amount of silver halide to be added is not particularly limited, and can be appropriately set so as to add silver ions necessary for suppressing the change in sensitivity to hydrogen fluoride gas with time. . For example, silver halide can be added to the electrolytic solution 3 in an amount of 0.025 mol / L or more. By adding 0.025 mol / L or more of silver halide to the electrolytic solution 3, it is possible to more stably suppress a change with time in sensitivity to hydrogen fluoride gas.
本実施形態の定電位電解式ガスセンサ1ではさらに、電解液3中に銀イオンを添加することにより、フッ化水素ガスに対する感度の製造ロット間の固体差を低減することができる。これは、以下で詳しく述べるように、電解液3に銀イオンを添加することで、フッ化水素ガスに対する感度に経時変化をもたらす炭酸リチウムや酸化リチウムが対極22上に析出するのを抑制することができるからであると考えられる。 Further, in the constant potential electrolytic gas sensor 1 of the present embodiment, by adding silver ions to the electrolytic solution 3, it is possible to reduce a solid difference between production lots having sensitivity to hydrogen fluoride gas. As described in detail below, the addition of silver ions to the electrolyte 3 suppresses the deposition of lithium carbonate or lithium oxide that causes a change with time in the sensitivity to hydrogen fluoride gas on the counter electrode 22. This is thought to be possible.
炭酸リチウムや酸化リチウムは、すでに述べたように、対極22上での化学反応によるハロゲン化銀の生成に伴って、ハロゲン化銀の触媒作用により対極22上に析出するものと考えられる。対極22上での電気化学反応は、参照極23に対する電位によって制御されるが、対極22上での化学反応は、対極22表面の性状、対極22の純度(不純物濃度)、電解液の純度(不純物の種類、濃度)、電解液の濃度などに影響される。そして、対極22表面の性状などは、製造ロット間で変動する。つまり、化学反応によるハロゲン化銀の生成や、それに伴う炭酸リチウムや酸化リチウムの析出は、対極22表面の性状などに影響され、対極22の製造ロット間の変動の影響を受ける。したがって、対極22の製造ロット間の変動によって、炭酸リチウムや酸化リチウムの析出が変動し、フッ化水素ガスに対する感度の経時変化が変動する。しかし、対極22の表面性状などに製造ロット間の変動があったとしても、電解液3に銀イオンを添加することで、炭酸リチウムや酸化リチウムの析出そのものを抑制することができるので、製造ロット間の変動による炭酸リチウムや酸化リチウムの析出の変動を抑制でき、フッ化水素ガスに対する感度の製造ロット間の固体差を低減することができるものと考えられる。 As described above, it is considered that lithium carbonate and lithium oxide are precipitated on the counter electrode 22 by the catalytic action of silver halide as silver halide is generated by a chemical reaction on the counter electrode 22. The electrochemical reaction on the counter electrode 22 is controlled by the potential with respect to the reference electrode 23, but the chemical reaction on the counter electrode 22 includes the properties of the surface of the counter electrode 22, the purity (impurity concentration) of the counter electrode 22, and the purity of the electrolyte ( It is influenced by the type and concentration of impurities) and the concentration of electrolyte. And the properties of the surface of the counter electrode 22 vary between production lots. That is, the production of silver halide by chemical reaction and the accompanying precipitation of lithium carbonate and lithium oxide are affected by the properties of the surface of the counter electrode 22 and the like, and are affected by fluctuations between production lots of the counter electrode 22. Therefore, the precipitation of lithium carbonate and lithium oxide fluctuates due to the variation between the production lots of the counter electrode 22, and the change with time in sensitivity to hydrogen fluoride gas fluctuates. However, even if the surface property of the counter electrode 22 varies between production lots, the addition of silver ions to the electrolytic solution 3 can suppress the precipitation of lithium carbonate and lithium oxide itself. It is considered that the fluctuation of precipitation of lithium carbonate and lithium oxide due to the fluctuation between the production lots can be suppressed, and the solid difference between production lots having sensitivity to hydrogen fluoride gas can be reduced.
本実施形態の定電位電解式ガスセンサ1ではさらに、電解液3中に銀イオンを添加することで、定電位電解式ガスセンサ1の設置環境における湿度変化によるフッ化水素ガスに対する感度の変動を抑制することができる。一般的に、定電位電解式ガスセンサを通常の湿度環境から異なる湿度環境に移すと、電解液の濃度が変化する。このとき、本実施形態のように、銀を含む対極を用いている場合には、電解液中の銀イオンの溶解度も変化するので、対極からの銀イオンの溶出量も変化することになる。これによって、電解液中のハロゲンイオンとの間で生じる化学反応の量も変動することになり、フッ化水素ガスに対する感度の変動をもたらす。それに対して、本実施形態の定電位電解式ガスセンサ1では、電解液3に銀イオンが添加されているので、対極22からの銀イオンの溶出が抑制される。したがって、定電位電解式ガスセンサ1の設置環境における湿度が変化しても、対極22からの銀イオンの溶出そのものが抑制されるので、銀イオンの溶出の変動が抑制されて、フッ化水素ガスに対する感度の変動が抑制される。 In the constant potential electrolytic gas sensor 1 of the present embodiment, by adding silver ions to the electrolytic solution 3, fluctuations in sensitivity to hydrogen fluoride gas due to humidity change in the installation environment of the constant potential electrolytic gas sensor 1 are suppressed. be able to. In general, when a constant potential electrolytic gas sensor is moved from a normal humidity environment to a different humidity environment, the concentration of the electrolytic solution changes. At this time, when a counter electrode containing silver is used as in the present embodiment, the solubility of silver ions in the electrolytic solution also changes, so that the elution amount of silver ions from the counter electrode also changes. As a result, the amount of chemical reaction that occurs with the halogen ions in the electrolyte also varies, resulting in a variation in sensitivity to hydrogen fluoride gas. On the other hand, in the constant potential electrolytic gas sensor 1 of the present embodiment, since silver ions are added to the electrolytic solution 3, elution of silver ions from the counter electrode 22 is suppressed. Therefore, even if the humidity in the installation environment of the constant potential electrolytic gas sensor 1 changes, the elution of silver ions from the counter electrode 22 itself is suppressed, so that fluctuations in the elution of silver ions are suppressed and Sensitivity fluctuations are suppressed.
以下において、実施例をもとに本実施形態の定電位電解式ガスセンサの優れた効果を説明する。ただし、本発明の定電位電解式ガスセンサは、以下の実施例に限定されるものではない。 Below, the outstanding effect of the constant potential electrolytic gas sensor of this embodiment is demonstrated based on an Example. However, the constant potential electrolytic gas sensor of the present invention is not limited to the following examples.
(定電位電解式ガスセンサ)
図1に示される定電位電解式ガスセンサを、公知の方法により作製した。定電位電解式ガスセンサの電解液を除く基本構成は、以下の通りとした。
反応極:カーボン
対極:銀線
参照極:銀線
透過膜:ポリテトラフルオロエチレン製多孔質膜
(Constant potential electrolysis gas sensor)
The constant potential electrolytic gas sensor shown in FIG. 1 was produced by a known method. The basic configuration of the potentiostatic gas sensor excluding the electrolyte was as follows.
Reaction electrode: Carbon counter electrode: Silver wire Reference electrode: Silver wire permeable membrane: Porous membrane made of polytetrafluoroethylene
(電解液)
定電位電解式ガスセンサにおいて用いる実施例の電解液として、電解液(8mol/L臭化リチウム(LiBr)+0.4mol/L臭素酸カリウム(KBrO3))に、ハロゲン化銀である臭化銀(AgBr)を添加したものを用いた。比較例の電解液として、臭化銀(AgBr)を添加しない電解液(8mol/L臭化リチウム(LiBr)+0.4mol/L臭素酸カリウム(KBrO3))を用いた。
(Electrolyte)
As an electrolytic solution of an example used in a constant potential electrolytic gas sensor, an electrolytic solution (8 mol / L lithium bromide (LiBr) +0.4 mol / L potassium bromate (KBrO 3 )) and silver bromide (silver bromide ( What added (AgBr) was used. As an electrolytic solution of a comparative example, an electrolytic solution (8 mol / L lithium bromide (LiBr) +0.4 mol / L potassium bromate (KBrO 3 )) to which silver bromide (AgBr) was not added was used.
(応答特性測定)
定電位電解式ガスセンサを公知のポテンショスタットに接続し、参照極23を基準にして反応極21に一定電圧を一定時間(300秒)印加し、反応極21と対極22との間に生じる電解電流を測定した。
(Response characteristic measurement)
A constant potential electrolytic gas sensor is connected to a known potentiostat, a constant voltage is applied to the reaction electrode 21 for a certain time (300 seconds) with reference to the reference electrode 23, and an electrolytic current generated between the reaction electrode 21 and the counter electrode 22 Was measured.
(測定対象ガス)
測定対象ガスは、大気中に3.2ppmのフッ化水素ガスを混入したものを用いた。測定対象ガスは、反応極21への一定電圧印加後60秒から240秒に亘って、定電位電解式ガスセンサ1に供給した。
(Measurement target gas)
The measurement target gas used was a mixture of 3.2 ppm of hydrogen fluoride gas in the atmosphere. The measurement target gas was supplied to the constant potential electrolytic gas sensor 1 for 60 to 240 seconds after applying a constant voltage to the reaction electrode 21.
(経時条件)
実施例および比較例の電解液がそれぞれ収容された状態の定電位電解式ガスセンサを、温度が20±3℃、湿度が44〜73%RHの環境で、通電状態を維持した状態で所定期間放置した。
(Aging conditions)
The constant potential electrolytic gas sensor in which the electrolyte solutions of the example and the comparative example are respectively stored is left for a predetermined period in an environment where the temperature is 20 ± 3 ° C. and the humidity is 44 to 73% RH while the energized state is maintained. did.
(実施例1)
定電位電解式ガスセンサを用いて、定電位電解式ガスセンサの製造後から経過する期間(製造後から1ヶ月経過以降)に亘る、フッ化水素ガスに対する応答特性の変化を調べた。電解液としては、上述した実施例の電解液(実施例1)および比較例の電解液(比較例1)を用い、実施例の電解液で添加した臭化銀の量は、0.05mol/Lとした。定電位電解式ガスセンサとしては、実施例1および比較例1ともに、同じ製造ロットで作製した異なる4つの定電位電解式ガスセンサを用いた。実施例1について得られた結果を図2(a)に、比較例1について得られた結果を図2(b)に示す。図中のグラフでは、横軸を、製造後からの経過日数とし、縦軸を、製造後1ヶ月経過後の定電位電解式ガスセンサで得られた電流値の絶対値に対する比とした。図2を見ると、臭化銀を添加していない電解液を用いた比較例1では(図2(b))、製造後1ヶ月経過後からの期間の経過に伴って、同一の製造ロットで製造されたいずれの定電位電解式センサも変化量が大きく変化しているのに対して、臭化銀を添加した電解液を用いた実施例1では(図2(a))、製造後からの期間に亘って、同一の製造ロットで製造されたいずれの定電位電解式センサも変化量がほぼ一定の値を示している。このことから、臭化リチウムを含む電解液に臭化銀によって銀イオンを添加することにより、フッ化水素ガスに対する感度の経時変化を抑制することができることが分かる。
Example 1
Using a constant potential electrolytic gas sensor, changes in response characteristics to hydrogen fluoride gas were investigated over a period after the manufacture of the constant potential electrolytic gas sensor (after one month has elapsed since the manufacture). As the electrolytic solution, the electrolytic solution of the above-described example (Example 1) and the electrolytic solution of the comparative example (Comparative Example 1) were used, and the amount of silver bromide added in the electrolytic solution of the Example was 0.05 mol / L. As the constant potential electrolytic gas sensor, in Example 1 and Comparative Example 1, four different constant potential electrolytic gas sensors manufactured in the same production lot were used. The results obtained for Example 1 are shown in FIG. 2 (a), and the results obtained for Comparative Example 1 are shown in FIG. 2 (b). In the graph in the figure, the horizontal axis is the number of days elapsed after the production, and the vertical axis is the ratio of the current value obtained by the potentiostatic gas sensor after the lapse of one month after production to the absolute value. Referring to FIG. 2, in Comparative Example 1 using an electrolytic solution to which no silver bromide was added (FIG. 2 (b)), the same production lot as the period from one month passed after the production passed. In any of the constant-potential electrolytic sensors manufactured in 1), the amount of change is greatly changed, whereas in Example 1 using the electrolytic solution to which silver bromide was added (FIG. 2 (a)), Over the period, the constant potential electrolysis sensor manufactured in the same manufacturing lot shows a substantially constant change amount. From this, it can be seen that the addition of silver ions by silver bromide to the electrolytic solution containing lithium bromide can suppress the change with time in sensitivity to hydrogen fluoride gas.
図3に、定電位電解式ガスセンサの製造後1ヶ月経過後の対極の表面から得られた走査型電子顕微鏡写真(1、000倍)を示す。図3を見ると、臭化銀を添加していない電解液を用いた比較例1の対極表面には、柱状の粒子が多数観察されているが(図3(b))、臭化銀を添加した電解液を用いた実施例1の対極表面には、そのような柱状の粒子が観察されていない(図3(a))。この柱状の粒子は、他の分析結果から、炭酸リチウムであることが確認されている。このことから、臭化リチウムを含む電解液に臭化銀によって銀イオンを添加することにより、対極上への炭酸リチウムの析出を抑制することができることが分かる。 FIG. 3 shows a scanning electron micrograph (1,000 times) obtained from the surface of the counter electrode after one month has elapsed since the manufacture of the potentiostatic gas sensor. When FIG. 3 is seen, many columnar grains are observed on the counter electrode surface of Comparative Example 1 using an electrolyte solution to which no silver bromide is added (FIG. 3B). Such columnar particles are not observed on the counter electrode surface of Example 1 using the added electrolytic solution (FIG. 3A). This columnar particle is confirmed to be lithium carbonate from other analysis results. This shows that precipitation of lithium carbonate on the counter electrode can be suppressed by adding silver ions by silver bromide to the electrolytic solution containing lithium bromide.
以上の結果から、臭化リチウムを含む電解液に臭化銀によって銀イオンを添加することにより、定電位電解式ガスセンサのフッ化水素ガスに対する感度の経時変化を抑制することができることが分かる。そして、フッ化水素ガスに対する感度の経時変化の抑制は、対極上への炭酸リチウムの析出が抑制されることによるものと考えられる。 From the above results, it can be seen that the addition of silver ions by silver bromide to the electrolytic solution containing lithium bromide can suppress the change in sensitivity of the constant potential electrolytic gas sensor to hydrogen fluoride gas over time. And suppression of the time-dependent change of the sensitivity with respect to hydrogen fluoride gas is considered to be because precipitation of lithium carbonate on a counter electrode is suppressed.
(実施例2)
製造ロットの異なる定電位電解式ガスセンサを複数用いて、フッ化水素ガスに対する応答特性の製造ロット間の違いと、同じ製造ロット内でのセンサ間の違いを調べた。電解液としては、上述した実施例の電解液(実施例2)および比較例の電解液(比較例2)を用い、実施例の電解液で添加した臭化銀の量は、0.05mol/Lとした。定電位電解式ガスセンサとしては、実施例2および比較例2ともに、異なる4回の製造ロットにおいてそれぞれ作製された異なる4つの定電位電解式ガスセンサを用いた。実施例2について得られた結果を図4(a)に、比較例2について得られた結果を図4(b)に示す。図4を見ると、臭化銀を添加していない電解液を用いた比較例2では(図4(b))、製造ロットの違いに応じて、また、同じ製造ロットで製造されたセンサ間でも、電流値が大きく異なり、応答特性が大きく異なっている。それに対して、臭化銀を添加した電解液を用いた実施例2では(図4(a))、製造ロットが違っても、また、同じ製造ロットで製造されたセンサ間でも、電流値がほぼ同じであり、応答特性がほぼ同じである。このことから、臭化リチウムを含む電解液に臭化銀によって銀イオンを添加することにより、フッ化水素ガスに対する感度の製造ロット差および同じ製造ロット内の固体差を低減することができることが分かる。これは、上でも述べたように、対極からの銀イオンの溶出は、対極の性状などに大きく影響を受けるために、製造ロット間や、同一製造ロット内の異なるセンサ間での対極の性状などの違いによる影響を大きく受けるが、電解液中に銀イオンが添加されることで、対極からの銀イオンの溶出そのものが抑制されて、銀イオンの溶出の変動が抑制されるためだと考えられる。
(Example 2)
Using multiple controlled-potential electrolysis gas sensors with different production lots, the differences in response characteristics to hydrogen fluoride gas between production lots and between sensors within the same production lot were investigated. As the electrolytic solution, the electrolytic solution of the above-described example (Example 2) and the electrolytic solution of the comparative example (Comparative Example 2) were used, and the amount of silver bromide added in the electrolytic solution of the Example was 0.05 mol / L. As the constant potential electrolytic gas sensor, in each of Example 2 and Comparative Example 2, four different constant potential electrolytic gas sensors respectively produced in four different production lots were used. The results obtained for Example 2 are shown in FIG. 4 (a), and the results obtained for Comparative Example 2 are shown in FIG. 4 (b). When FIG. 4 is seen, in the comparative example 2 using the electrolyte solution which does not add silver bromide (FIG.4 (b)), according to the difference in a manufacturing lot, and between the sensors manufactured by the same manufacturing lot However, the current values are greatly different and the response characteristics are greatly different. On the other hand, in Example 2 using the electrolytic solution to which silver bromide was added (FIG. 4A), the current value was different even between the sensors manufactured in the same manufacturing lot even if the manufacturing lots were different. The response characteristics are almost the same. From this, it can be seen that the addition of silver ions by silver bromide to the electrolyte containing lithium bromide can reduce the production lot difference in sensitivity to hydrogen fluoride gas and the solid difference in the same production lot. . As described above, the elution of silver ions from the counter electrode is greatly affected by the properties of the counter electrode, so the properties of the counter electrode between different production lots and between different sensors in the same production lot. This is thought to be due to the fact that the addition of silver ions to the electrolyte suppresses the elution of silver ions from the counter electrode and suppresses fluctuations in the elution of silver ions. .
(実施例3)
定電位電解式ガスセンサの設置環境が通常の湿度環境(相対湿度50%RH)から低湿環境(相対湿度30%RH)または高湿環境(相対湿度80%RH)に変化したときの、フッ化水素ガスに対する応答特性の変化を調べた。電解液としては、上述した実施例の電解液(実施例3)および比較例の電解液(比較例3)を用い、実施例の電解液で添加した臭化銀の量は、0.05mol/Lとした。低湿環境への変化について得られた結果を図5に、高湿環境への変化について得られた結果を図6に示す。
(Example 3)
Hydrogen fluoride when the installation environment of the potentiostatic gas sensor changes from normal humidity environment (relative humidity 50% RH) to low humidity environment (relative humidity 30% RH) or high humidity environment (relative humidity 80% RH) The change of response characteristics to gas was investigated. As the electrolytic solution, the electrolytic solution of the above-described example (Example 3) and the electrolytic solution of the comparative example (Comparative Example 3) were used. The amount of silver bromide added in the electrolytic solution of the Example was 0.05 mol / L. The results obtained for the change to the low humidity environment are shown in FIG. 5, and the results obtained for the change to the high humidity environment are shown in FIG.
図5を見ると、設置環境が通常の湿度環境から低湿環境に変化したときの電流値の変化率は、臭化銀が添加されていない電解液を用いた比較例3(図5(b))と比べて、臭化銀を添加した電解液を用いた実施例3(図5(a))の方が小さい。この結果から、電解液に銀イオンを添加することにより、設置環境が低湿環境に変化したとしても、電流値の変化率を小さく抑えることができることが分かる。そもそも、設置環境が低湿環境に変化すると、電解液の濃度が変化するが、その濃度変化による電流値の絶対値の増加量は、臭化銀を添加した電解液を用いた実施例3(図5(a))と、臭化銀が添加されていない電解液を用いた比較例3(図5(b))とで、ほぼ同じである。その一方で、実施例2の結果や、後述する実施例4の結果からも分かるように、電解液に銀イオンを添加することで、電流値の絶対値が増加する。つまり、もともと高い電流値の絶対値を有する実施例3と、もともと低い電流値の絶対値を有する比較例3とを比べたときに、設置環境が低湿環境に変化して両者でほぼ同じ量だけ電流値の絶対値が増加した場合、もともと高い電流値の絶対値を有する実施例3の電流値の絶対値の増加率の方が小さくなる。このことが、図5に示される結果の要因であると考えられる。 When FIG. 5 is seen, the change rate of the electric current value when the installation environment is changed from the normal humidity environment to the low humidity environment is a comparative example 3 using an electrolytic solution to which silver bromide is not added (FIG. 5B). ) Is smaller in Example 3 (FIG. 5A) using an electrolytic solution to which silver bromide is added. From this result, it can be seen that by adding silver ions to the electrolytic solution, even if the installation environment is changed to a low-humidity environment, the rate of change of the current value can be suppressed to a small value. In the first place, when the installation environment changes to a low-humidity environment, the concentration of the electrolytic solution changes. The amount of increase in the absolute value of the current value due to the change in concentration is that of Example 3 using the electrolytic solution to which silver bromide is added (see FIG. 5 (a)) and Comparative Example 3 (FIG. 5 (b)) using an electrolytic solution to which no silver bromide is added are substantially the same. On the other hand, as can be seen from the results of Example 2 and the results of Example 4 described later, the absolute value of the current value increases by adding silver ions to the electrolytic solution. In other words, when Example 3 that originally had an absolute value of a high current value was compared with Comparative Example 3 that originally had an absolute value of a low current value, the installation environment changed to a low-humidity environment, and both were almost the same amount. When the absolute value of the current value increases, the increase rate of the absolute value of the current value of Example 3 that originally has a high absolute value of the current value becomes smaller. This is considered to be a factor of the result shown in FIG.
つぎに、図6を見ると、設置環境が通常の湿度環境から高湿環境に変化したときの電流値の絶対値の変化率は、臭化銀が添加されていない電解液を用いた比較例3(図6(b))と比べて、臭化銀を添加した電解液を用いた実施例3(図6(a))の方が小さい。この結果から、電解液に銀イオンを添加することにより、設置環境が高湿環境に変化したとしても、電流値の絶対値の変化率を小さく抑えることができることが分かる。これは、設置環境が高湿環境に変化することで、電解液中の臭化銀の溶解度が低下することと関連していると考えられる。溶解度が低下した電解液に臭化銀を添加することで、電解液中で臭化銀は溶解度に対して多く溶けている状態になるため、電解液に臭化銀を添加する効果がより大きくなり、設置環境が高湿環境に変化することによる電流値の絶対値の低下が抑制されるものと考えられる。 Next, referring to FIG. 6, the change rate of the absolute value of the current value when the installation environment is changed from a normal humidity environment to a high humidity environment is a comparative example using an electrolyte solution to which silver bromide is not added. 3 (FIG. 6 (b)) is smaller in Example 3 (FIG. 6 (a)) using the electrolytic solution added with silver bromide. From this result, it can be seen that the rate of change of the absolute value of the current value can be kept small by adding silver ions to the electrolytic solution, even if the installation environment is changed to a high humidity environment. This is thought to be related to a decrease in the solubility of silver bromide in the electrolyte due to the installation environment changing to a high humidity environment. By adding silver bromide to the electrolyte with reduced solubility, silver bromide is in a state of being much dissolved in the electrolyte, so the effect of adding silver bromide to the electrolyte is greater. Therefore, it is considered that the decrease in the absolute value of the current value due to the installation environment changing to a high humidity environment is suppressed.
(実施例4)
電解液(8mol/L臭化リチウム(LiBr)+0.4mol/L臭素酸カリウム(KBrO3))中に添加する臭化銀の添加量を変化させたときの、フッ化水素ガスに対する応答特性の変化を調べた。臭化銀の添加量は、0、0.01、0.025、0.05、0.1、0.2mol/Lとした。フッ化水素ガスに対する応答特性としては、製造後1ヶ月経過後の定電位電解式ガスセンサを用いて、反応極と対極との間に生じる電解電流を測定した。得られた結果を図7に示す。図7を見ると、臭化銀の添加量が0〜0.025mol/Lの範囲では、臭化銀の添加量の増加に伴って電流値の絶対値が増加し、臭化銀の添加量が0.025mol/L以上では、臭化銀の添加量の増加に対して電流値がほぼ一定である。この結果は、臭化銀の添加量が0mol/Lでは、フッ化水素ガスに対する感度の経時変化の影響を受けて電流値の絶対値が小さく、臭化銀の添加量の増加に伴って、フッ化水素ガスに対する感度の経時変化の影響が低減されて電流値の絶対値が増加し、臭化銀の添加量が0.025mol/L以上になると、フッ化水素ガスに対する感度の経時変化の影響がほぼ消失して電流値の絶対値が最も高い値(正常値)でほぼ一定となることを示している。以上の結果から、臭化リチウムを含む電解液に臭化銀によって銀イオンを添加することにより、フッ化水素ガスに対する感度の経時変化を抑制することができ、添加量を0.025mol/L以上にすることにより、フッ化水素ガスに対する感度の経時変化をより安定して抑制することができることが分かる。
Example 4
Response characteristics to hydrogen fluoride gas when the amount of silver bromide added in the electrolyte (8 mol / L lithium bromide (LiBr) +0.4 mol / L potassium bromate (KBrO 3 )) was changed We examined changes. The addition amount of silver bromide was 0, 0.01, 0.025, 0.05, 0.1, and 0.2 mol / L. As a response characteristic to the hydrogen fluoride gas, an electrolytic current generated between the reaction electrode and the counter electrode was measured using a constant potential electrolytic gas sensor after one month had elapsed after production. The obtained results are shown in FIG. Referring to FIG. 7, when the addition amount of silver bromide is in the range of 0 to 0.025 mol / L, the absolute value of the current value increases as the addition amount of silver bromide increases, and the addition amount of silver bromide Is 0.025 mol / L or more, the current value is substantially constant with respect to an increase in the amount of silver bromide added. This result shows that when the addition amount of silver bromide is 0 mol / L, the absolute value of the current value is small due to the influence of the change in sensitivity with respect to hydrogen fluoride gas, and as the addition amount of silver bromide increases, When the influence of the sensitivity change with respect to hydrogen fluoride gas is reduced and the absolute value of the current value is increased, and the addition amount of silver bromide is 0.025 mol / L or more, the sensitivity change with time with respect to hydrogen fluoride gas is reduced. This shows that the influence has almost disappeared and the absolute value of the current value is almost constant at the highest value (normal value). From the above results, by adding silver ions by silver bromide to the electrolytic solution containing lithium bromide, it is possible to suppress the change over time in sensitivity to hydrogen fluoride gas, and the addition amount is 0.025 mol / L or more. It can be seen that the change with time in sensitivity to hydrogen fluoride gas can be suppressed more stably.
1 定電位電解式ガスセンサ
2 電極
21 反応極
22 対極
23 参照極
3 電解液
4 電解槽
41 電解液収容部
42 電解液供給孔
43 ガス流入孔
44 ガス流出孔
5 ガス流入側ガス透過膜
6 Oリング
7 ガス流入側蓋部材
8 ガス流出側ガス透過膜
9 Oリング
10 ガス流出側蓋部材
DESCRIPTION OF SYMBOLS 1 Constant potential electrolytic gas sensor 2 Electrode 21 Reaction electrode 22 Counter electrode 23 Reference electrode 3 Electrolytic solution 4 Electrolytic tank 41 Electrolyte accommodating part 42 Electrolyte supply hole 43 Gas inflow hole 44 Gas outflow hole 5 Gas inflow side gas permeable membrane 6 O ring 7 Gas inflow side lid member 8 Gas outflow side gas permeable membrane 9 O-ring 10 Gas outflow side lid member
Claims (4)
フッ化水素ガスを検知するための電極として、反応極と、前記反応極に対する、銀を含む対極と、前記反応極の電位の基準となる参照極とを備え、
前記反応極、前記対極および前記参照極が接触する電解液として、ハロゲン化リチウムを含む電解液を備え、
前記電極から前記電解液中に自然溶解する銀イオンとは別に、前記電解液に銀イオンが添加されてなることを特徴とする定電位電解式ガスセンサ。 A constant potential electrolytic gas sensor for detecting hydrogen fluoride gas,
As an electrode for detecting hydrogen fluoride gas, a reaction electrode, a counter electrode containing silver with respect to the reaction electrode, and a reference electrode serving as a reference for the potential of the reaction electrode,
As an electrolytic solution in contact with the reaction electrode, the counter electrode, and the reference electrode, an electrolytic solution containing lithium halide is provided,
A constant potential electrolytic gas sensor, wherein silver ions are added to the electrolytic solution separately from silver ions that are naturally dissolved in the electrolytic solution from the electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018219738A JP6466022B1 (en) | 2018-11-22 | 2018-11-22 | Constant potential electrolytic gas sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018219738A JP6466022B1 (en) | 2018-11-22 | 2018-11-22 | Constant potential electrolytic gas sensor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019001208A Division JP6510154B1 (en) | 2019-01-08 | 2019-01-08 | Constant potential electrolysis type gas sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6466022B1 true JP6466022B1 (en) | 2019-02-06 |
JP2020085636A JP2020085636A (en) | 2020-06-04 |
Family
ID=65270514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018219738A Active JP6466022B1 (en) | 2018-11-22 | 2018-11-22 | Constant potential electrolytic gas sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6466022B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6990336B1 (en) * | 2021-10-07 | 2022-01-12 | 新コスモス電機株式会社 | Manufacturing method of constant potential electrolytic gas sensor and constant potential electrolytic gas sensor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS649355A (en) * | 1987-07-01 | 1989-01-12 | Fuji Electric Co Ltd | Gas electrode type hydrogen detector |
JPH0843345A (en) * | 1994-07-28 | 1996-02-16 | Fujitsu Ltd | Small-sized oxygen electrode |
US6251244B1 (en) * | 1998-07-18 | 2001-06-26 | DRäGER SICHERHEITSTECHNIK GMBH | Electrochemical measuring cell for detecting hydride gases |
US20020043458A1 (en) * | 2000-10-14 | 2002-04-18 | Dräger Safety AG & Co. KGaA. | Electrochemical measuring cell for detecting hydrocyanic acid |
JP2004226263A (en) * | 2003-01-23 | 2004-08-12 | Dkk Toa Corp | Electrolyte for diaphragm type electrode, the diaphragm type electrode, and method for stabilizing the same |
JP4166104B2 (en) * | 2003-03-05 | 2008-10-15 | 理研計器株式会社 | Constant potential electrolytic acid gas detector |
-
2018
- 2018-11-22 JP JP2018219738A patent/JP6466022B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS649355A (en) * | 1987-07-01 | 1989-01-12 | Fuji Electric Co Ltd | Gas electrode type hydrogen detector |
JPH0843345A (en) * | 1994-07-28 | 1996-02-16 | Fujitsu Ltd | Small-sized oxygen electrode |
US6251244B1 (en) * | 1998-07-18 | 2001-06-26 | DRäGER SICHERHEITSTECHNIK GMBH | Electrochemical measuring cell for detecting hydride gases |
US20020043458A1 (en) * | 2000-10-14 | 2002-04-18 | Dräger Safety AG & Co. KGaA. | Electrochemical measuring cell for detecting hydrocyanic acid |
JP2004226263A (en) * | 2003-01-23 | 2004-08-12 | Dkk Toa Corp | Electrolyte for diaphragm type electrode, the diaphragm type electrode, and method for stabilizing the same |
JP4166104B2 (en) * | 2003-03-05 | 2008-10-15 | 理研計器株式会社 | Constant potential electrolytic acid gas detector |
Also Published As
Publication number | Publication date |
---|---|
JP2020085636A (en) | 2020-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0363703B2 (en) | ||
CN111542752B (en) | Electrochemical gas sensor stabilization of sensor signals of (a) | |
Cornell et al. | Ruthenium based DSA® in chlorate electrolysis—critical anode potential and reaction kinetics | |
US20120103823A1 (en) | Method for detecting individual oxidant species and halide anions in a sample using differential pulse non-stripping voltammetry | |
WO2018230660A1 (en) | Residual chlorine measuring method and residual chlorine measuring apparatus | |
EP1332358B1 (en) | Acid gas measuring sensors and method of making same | |
JP7263458B2 (en) | Fuel cell | |
Hoare | Oxygen Overvoltage Measurements on Bright Platinum in Acid Solutions: I Bright Platinum | |
WO2015060328A1 (en) | Potentiostatic electrolytic gas sensor | |
JP6466022B1 (en) | Constant potential electrolytic gas sensor | |
Mohamedi et al. | Anodic behavior of carbon electrodes in CaO‐CaCl2 melts at 1123 K | |
JP6510154B1 (en) | Constant potential electrolysis type gas sensor | |
JP6426336B2 (en) | Constant potential electrolysis type gas sensor | |
EP1593962B1 (en) | Eletrochemical oxygen sensor | |
Harsanyi et al. | The behaviour of the silver sulphide precipitate-based ion-selective electrode in the low concentration range | |
US11215579B2 (en) | Method for cleaning, conditioning, calibration and/or adjustment of an amperometric sensor | |
JP4594487B2 (en) | Constant potential electrolytic gas sensor | |
JP6990336B1 (en) | Manufacturing method of constant potential electrolytic gas sensor and constant potential electrolytic gas sensor | |
JP4062447B2 (en) | Constant potential oxygen sensor | |
JP6209327B2 (en) | Constant potential electrolytic gas sensor | |
CN109239144B (en) | Current type chlorine dioxide sensor | |
JP5688955B2 (en) | Hydrogen fluoride detector | |
JP2008256604A (en) | Device for measuring dissolved ozone concentration, and method therefor | |
JP6330213B2 (en) | Constant potential electrolytic oxygen gas sensor | |
JP6861416B2 (en) | Chlorine dioxide gas concentration measuring instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181126 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20181126 |
|
TRDD | Decision of grant or rejection written | ||
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20181213 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181225 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190108 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6466022 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |