JP6462172B1 - Heat sink and manufacturing method thereof - Google Patents
Heat sink and manufacturing method thereof Download PDFInfo
- Publication number
- JP6462172B1 JP6462172B1 JP2018145822A JP2018145822A JP6462172B1 JP 6462172 B1 JP6462172 B1 JP 6462172B1 JP 2018145822 A JP2018145822 A JP 2018145822A JP 2018145822 A JP2018145822 A JP 2018145822A JP 6462172 B1 JP6462172 B1 JP 6462172B1
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- layer
- heat sink
- composite
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 86
- 239000002131 composite material Substances 0.000 claims abstract description 253
- 239000000463 material Substances 0.000 claims abstract description 61
- 230000017525 heat dissipation Effects 0.000 claims abstract description 21
- 239000011159 matrix material Substances 0.000 claims abstract description 14
- 238000005096 rolling process Methods 0.000 claims description 163
- 238000005097 cold rolling Methods 0.000 claims description 59
- 239000000843 powder Substances 0.000 claims description 59
- 238000000034 method Methods 0.000 claims description 46
- 238000007747 plating Methods 0.000 claims description 26
- 239000011812 mixed powder Substances 0.000 claims description 22
- 238000005245 sintering Methods 0.000 claims description 21
- 239000004065 semiconductor Substances 0.000 claims description 18
- 238000009792 diffusion process Methods 0.000 claims description 16
- 238000003825 pressing Methods 0.000 claims description 15
- 238000005304 joining Methods 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 230000001590 oxidative effect Effects 0.000 claims description 9
- 238000010030 laminating Methods 0.000 claims description 5
- 230000001965 increasing effect Effects 0.000 abstract description 11
- 239000010949 copper Substances 0.000 description 322
- 239000002245 particle Substances 0.000 description 26
- 238000012546 transfer Methods 0.000 description 19
- 229910017315 Mo—Cu Inorganic materials 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 11
- 230000007423 decrease Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000001764 infiltration Methods 0.000 description 9
- 230000008595 infiltration Effects 0.000 description 9
- 238000000280 densification Methods 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 238000005482 strain hardening Methods 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000005219 brazing Methods 0.000 description 4
- 238000005253 cladding Methods 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 238000002490 spark plasma sintering Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000452 restraining effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- BPJYAXCTOHRFDQ-UHFFFAOYSA-L tetracopper;2,4,6-trioxido-1,3,5,2,4,6-trioxatriarsinane;diacetate Chemical compound [Cu+2].[Cu+2].[Cu+2].[Cu+2].CC([O-])=O.CC([O-])=O.[O-][As]1O[As]([O-])O[As]([O-])O1.[O-][As]1O[As]([O-])O[As]([O-])O1 BPJYAXCTOHRFDQ-UHFFFAOYSA-L 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Metal Rolling (AREA)
- Laminated Bodies (AREA)
- Powder Metallurgy (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
【課題】Cu−Mo複合材とCu材のクラッド構造を有する低熱膨張率、高熱伝導率の放熱板を提供する。
【解決手段】板厚方向において、Cu層とCu−Mo複合体層が交互に積層することで3層以上のCu層と2層以上のCu−Mo複合体層で構成されるとともに、両面の最外層がCu層からなる放熱板であって、Cu−Mo複合体層は、Cuマトリクス中に扁平なMo相が分散した板厚断面組織を有する。板厚と密度が同じである3層クラッド構造の放熱板と較べて、低熱膨張率であり、且つ最外層のCu層の厚さが薄くなるため板厚方向の熱伝導率が高くなる。
【選択図】図1A heat dissipation plate having a low thermal expansion coefficient and a high thermal conductivity, having a clad structure of a Cu-Mo composite material and a Cu material.
In the sheet thickness direction, Cu layers and Cu-Mo composite layers are alternately stacked to form three or more Cu layers and two or more Cu-Mo composite layers, The outermost layer is a heat radiating plate made of a Cu layer, and the Cu-Mo composite layer has a plate thickness cross-sectional structure in which a flat Mo phase is dispersed in a Cu matrix. Compared to a heat sink with a three-layer clad structure having the same plate thickness and density, the thermal conductivity in the plate thickness direction is increased because the coefficient of thermal expansion is low and the thickness of the outermost Cu layer is reduced.
[Selection] Figure 1
Description
本発明は、半導体素子などの発熱体から発生する熱を効率的に放散させるために用いる放熱板とその製造方法に関する。 The present invention relates to a heat radiating plate used for efficiently dissipating heat generated from a heating element such as a semiconductor element and a method for manufacturing the same.
半導体素子から発生する熱を半導体機器から効率的に放散させるために、放熱板(ヒートシンク)が用いられている。この放熱板は、その機能上高い熱伝導率が求められるとともに、半導体やセラミック回路基板、金属パッケージ部材などにはんだ付けやろう付けで接合されるため、接合される部材に近い熱膨張率(低熱膨張率)であることが求められる。 In order to efficiently dissipate heat generated from the semiconductor element from the semiconductor device, a heat sink (heat sink) is used. This heat sink is required to have high thermal conductivity in terms of its function, and since it is joined to a semiconductor, ceramic circuit board, metal package member, etc. by soldering or brazing, it has a thermal expansion coefficient close to that of the member to be joined (low heat Expansion coefficient).
従来、高熱伝導率、低熱膨張率の放熱板として、Mo−Cu複合材が用いられている(例えば、特許文献1)。一般に、放熱板に用いるMo−Cu複合材は、Mo粉末又はMo粉末とCu粉末の混合粉末を加圧成形して圧粉体とし、この圧粉体に必要に応じて還元焼結を施した後、Cu溶浸或いは緻密化処理を施すことによりMo−Cu複合材とし、このMo−Cu複合材を圧延することで製造される。MoはCuとはほとんど固溶しないことから、このMo−Cu複合材はMoとCuの2相組織となり、低熱膨張率であるMoと高熱伝導率であるCuの特性を活かした放熱板とすることができる。
特許文献2には、上記のようなMo−Cu複合材をベースとした放熱板として、特定の圧延工程を経て得られたMo−Cu複合材の両面にCu板を圧着したものが示されており、この放熱板は、[Cu/Mo/Cu]クラッド材よりも高い熱伝導率を有し、プレス打ち抜き性にも優れているとしている。
Conventionally, a Mo-Cu composite material has been used as a heat dissipation plate having high thermal conductivity and low thermal expansion coefficient (for example, Patent Document 1). In general, the Mo-Cu composite material used for the heat sink is formed by pressing Mo powder or a mixed powder of Mo powder and Cu powder into a green compact, and this green compact is subjected to reduction sintering as necessary. Thereafter, Cu infiltration or densification treatment is performed to obtain a Mo—Cu composite material, and the Mo—Cu composite material is rolled. Since Mo hardly dissolves with Cu, this Mo-Cu composite material has a two-phase structure of Mo and Cu, and a heat sink utilizing the characteristics of Mo having a low thermal expansion coefficient and Cu having a high thermal conductivity. be able to.
また、Mo−Cu複合材は、圧延することにより熱膨張率が低下することが定性的に知られており、このため上記のように圧延工程を経て製造される。従来、Mo粒子は硬くて1次粒子が小さいことから、圧延で変形されにくいと考えられており、このためMo−Cu複合材の圧延は、200〜400℃程度の温間圧延で実施されている(特許文献1)。また、特許文献2には、一次圧延で温間圧延を実施し、二次圧延で冷間圧延を実施する製造方法が示されているが、この製造方法においても、Mo粒子は変形されにくいという前提で、温間圧延(一次圧延)を必須の工程としている。
近年、半導体の高出力化により放熱板の放熱性がより重要になっている。一方、半導体モジュールの小型化へのニーズも高く、放熱板もより小さな面積からの放熱が求められている。そのため、板面方向での放熱よりも、厚さ方向での放熱性がより重要となってきている。
Moreover, it is qualitatively known that the coefficient of thermal expansion is reduced by rolling, and the Mo—Cu composite material is manufactured through the rolling process as described above. Conventionally, since Mo particles are hard and primary particles are small, it is considered that they are not easily deformed by rolling. For this reason, rolling of a Mo—Cu composite material is performed by warm rolling at about 200 to 400 ° C. (Patent Document 1). Further,
In recent years, heat dissipation of a heat sink has become more important due to higher output of semiconductors. On the other hand, there is a high need for miniaturization of semiconductor modules, and the heat radiating plate is also required to radiate heat from a smaller area. Therefore, heat dissipation in the thickness direction is more important than heat dissipation in the plate surface direction.
しかし、本発明者が検討したところによれば、特許文献2に記載された放熱板は、確かに、特許文献1に記載のMo−Cu複合材単体などに較べて優れた熱特性(低熱膨張性)を有しているが、Mo−Cu複合材とCu材を積層させたクラッド構造において、特許文献2に記載されたCu/(Cu−Mo)/Cu構造よりも優れた熱特性(特に板厚方向での熱伝導率)が得られる最適なクラッド構造があることが判った。
したがって本発明の目的は、Mo−Cu複合材とCu材のクラッド構造を有する低熱膨張率、高熱伝導率の放熱板を提供することにある。
また、本発明の他の目的は、そのような優れた熱特性を有する放熱板を安定して且つ低コストに製造することができる製造方法を提供することにある。
However, according to the study by the present inventor, the heat dissipation plate described in
Accordingly, an object of the present invention is to provide a heat dissipation plate having a low thermal expansion coefficient and a high thermal conductivity, which has a clad structure of a Mo—Cu composite material and a Cu material.
Another object of the present invention is to provide a manufacturing method capable of stably and inexpensively manufacturing a heat sink having such excellent heat characteristics.
特許文献2に記載されたCu/(Cu−Mo)/Cu構造を有するクラッド材に対して、本発明者らは、Mo−Cu複合材とCu材の積層数を多層化することにより、Mo−Cu複合体層によるCu層の拘束性を高め、熱膨張率を低減させるという着想の下に5層以上のクラッド材について検討を行うこととしたが、熱伝導性については特に改善されるとは考えていなかった。しかし、検討を進めた結果、そのような当初の予想に反して、Mo−Cu複合材とCu材の積層数を5層以上とすること、すなわち、Cu/(Cu−Mo)/Cu/(Cu−Mo)/Cu構造(5層クラッド構造)やCu/(Cu−Mo)/Cu/(Cu−Mo)/Cu/(Cu−Mo)/Cu構造(7層クラッド構造)とすることにより、同じ板厚と密度を有するCu/(Cu−Mo)/Cu構造(3層クラッド構造)に較べて、板面内熱膨張率が低くなるだけでなく、板厚方向の熱伝導率が相当程度高くなることを見出した。また、特に最外層のCu層の厚さを中間層のCu層の厚さよりも小さくすることにより、熱伝導率が特に顕著に改善されることが判った。また、以上のようなクラッド材を製造する際に、材料を高圧下率(総圧下率)で冷間圧延若しくは表面が顕著に酸化しない250℃程度以下の温度で温間圧延することにより、熱膨張率がより効果的に低下することが判った。
In contrast to the clad material having a Cu / (Cu—Mo) / Cu structure described in
本発明は、以上のような知見に基づきなされたもので、以下を要旨とするものである。
[1]板厚方向において、Cu層とCu−Mo複合体層が交互に積層することで3層以上のCu層と2層以上のCu−Mo複合体層で構成されるとともに、両面の最外層がCu層からなる放熱板であって、
Cu−Mo複合体層は、Cuマトリクス中に扁平なMo相が分散した板厚断面組織を有することを特徴とする放熱板。
[2]上記[1]の放熱板において、両面の最外層のCu層(1a)の厚さt1と中間層のCu層(1b)の厚さt2がt1≦t2を満足することを特徴とする放熱板。
The present invention has been made on the basis of the above-described findings and has the following gist.
[1] In the plate thickness direction, Cu layers and Cu-Mo composite layers are alternately stacked to form three or more Cu layers and two or more Cu-Mo composite layers. The outer layer is a heat sink made of a Cu layer,
The Cu—Mo composite layer has a plate thickness cross-sectional structure in which a flat Mo phase is dispersed in a Cu matrix.
[2] In the heat sink of [1], the thickness t 1 of the outermost Cu layer (1a) on both sides and the thickness t 2 of the Cu layer (1b) of the intermediate layer satisfy t 1 ≦ t 2 . A heat sink characterized by that.
[3]上記[2]の放熱板において、両面の最外層のCu層(1a)の厚さt1と板厚Tがt1/T≦0.2を満足することを特徴とする放熱板。
[4]上記[2]又は[3]の放熱板において、両面の最外層のCu層(1a)の厚さt1と中間層のCu層(1b)の厚さt2がt1<t2を満足することを特徴とする放熱板。
[5]上記[4]の放熱板において、Cu層とCu−Mo複合体層の全層数が9層以上の放熱板であって、中間層の複数のCu層(1b)は、板厚中心に近いCu層(1b)ほど厚さt2が厚いことを特徴とする放熱板。
[6]上記[1]〜[5]のいずれかの放熱板において、Cu−Mo複合体層は、複数の単位Cu−Mo複合体層が厚さ75μm以下の接合用のCu層を介して積層した構造を有することを特徴とする放熱板。
[3] The heat radiating plate according to the above [2], wherein the thickness t 1 and the plate thickness T of the outermost Cu layers (1a) on both sides satisfy t 1 /T≦0.2. .
[4] In the heat radiating plate of the [2] or [3], the thickness t 2 is t 1 of the Cu layer of the outermost layer of double-sided Cu layer of (1a) thickness t 1 and the intermediate layer (1b) <t 2 is satisfied.
[5] In the heat sink of [4] above, the total number of Cu layers and Cu—Mo composite layers is 9 or more, and the plurality of intermediate Cu layers (1b) have a thickness of radiator plate, wherein a Cu layer (1b) as the thickness t 2 is thicker closer to the center.
[6] In the heat dissipation plate of any one of [1] to [5], the Cu—Mo composite layer includes a plurality of unit Cu—Mo composite layers via a joining Cu layer having a thickness of 75 μm or less. A heat sink having a laminated structure.
[7]上記[1]〜[6]のいずれかの放熱板において、Cu−Mo複合体層はCu含有量が10〜50質量%であることを特徴とする放熱板。
[8]上記[1]〜[6]のいずれかの放熱板において、Cu−Mo複合体層はCu含有量が20〜30質量%であることを特徴とする放熱板。
[9]上記[1]〜[8]のいずれかの放熱板において、板厚方向の熱伝導率が200W/m・K以上、50℃から800℃までの板面内平均熱膨張率が8.0ppm/K以下であることを特徴とする放熱板。
[10]上記[1]〜[9]のいずれかの放熱板において、積層したCu層とCu−Mo複合体層とからなる放熱板本体の片面又は両面にめっき皮膜が形成されたことを特徴とする放熱板。
[7] The radiator plate according to any one of [1] to [6], wherein the Cu-Mo composite layer has a Cu content of 10 to 50% by mass.
[8] The radiator plate according to any one of [1] to [6], wherein the Cu-Mo composite layer has a Cu content of 20 to 30% by mass.
[9] In the heat dissipation plate of any one of [1] to [8], the thermal conductivity in the thickness direction is 200 W / m · K or more, and the average in-plane thermal expansion coefficient from 50 ° C. to 800 ° C. is 8 A heat radiating plate characterized by being 0.0 ppm / K or less.
[10] The radiator plate according to any one of the above [1] to [9], wherein a plating film is formed on one side or both sides of a radiator plate body composed of a laminated Cu layer and a Cu-Mo composite layer. A heat sink.
[11]上記[1]〜[10]のいずれかの放熱板の製造方法であって、Cuマトリクス中にMo相が分散した板厚断面組織を有するCu−Mo複合材(a)とCu材(b)を積層させ、該積層体を拡散接合した後、冷間圧延(x)を施すことにより、Cu−Mo複合材(a)によるCu−Mo複合体層とCu材(b)によるCu層が積層した放熱板を得ることを特徴とする放熱板の製造方法。
[12]上記[11]の製造方法において、Cu−Mo複合材(a)は、Mo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程を経て得られたものであることを特徴とする放熱板の製造方法。
[13]上記[11]の製造方法において、Cu−Mo複合材(a)は、Mo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体を緻密化処理する工程を経て得られたものであることを特徴とする放熱板の製造方法。
[11] A method for manufacturing a heat radiating plate according to any one of [1] to [10], wherein a Cu—Mo composite material (a) and a Cu material having a plate thickness cross-sectional structure in which a Mo phase is dispersed in a Cu matrix After laminating (b) and diffusion-bonding the laminated body, cold rolling (x) is performed to thereby form a Cu-Mo composite layer made of Cu-Mo composite (a) and Cu made of Cu material (b). A method of manufacturing a heat sink, characterized in that a heat sink having laminated layers is obtained.
[12] In the manufacturing method of [11], the Cu—Mo composite material (a) is formed by pressing a mixed powder of Mo powder and Cu powder into a green compact, and reducing the green compact. A heat-radiating plate manufacturing method characterized by being obtained through a step of sintering in a neutral atmosphere or vacuum to form a sintered body.
[13] In the manufacturing method of [11], the Cu—Mo composite material (a) is formed by pressing a mixed powder of Mo powder and Cu powder into a green compact, and reducing the green compact. A heat-radiating plate manufacturing method characterized by being obtained through a step of sintering in a neutral atmosphere or vacuum to form a sintered body and a step of densifying the sintered body.
[14]上記[11]の製造方法において、Cu−Mo複合材(a)は、Mo粉末又はMo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体に非酸化性雰囲気中又は真空中で溶融したCuを含浸させる工程を経て得られたものであることを特徴とする放熱板の製造方法。
[15]上記[11]〜[14]のいずれかの製造方法において、冷間圧延(x)の圧下率が70〜99%であることを特徴とする放熱板の製造方法。
[16]上記[15]の製造方法において、冷間圧延(x)の圧下率が90〜96%であることを特徴とする放熱板の製造方法。
[17]上記[11]〜[16]のいずれかの製造方法において、冷間圧延(x)をクロス圧延で行うことを特徴とする放熱板の製造方法。
[14] In the manufacturing method of [11], the Cu—Mo composite material (a) is a step of pressing a Mo powder or a mixed powder of Mo powder and Cu powder into a green compact; It was obtained through a step of sintering the body in a reducing atmosphere or vacuum to obtain a sintered body, and a step of impregnating the sintered body with Cu melted in a non-oxidizing atmosphere or vacuum. A manufacturing method of a heat sink characterized by being.
[15] The method for manufacturing a heat sink according to any one of [11] to [14], wherein the rolling reduction of cold rolling (x) is 70 to 99%.
[16] The method for manufacturing a heat sink according to [15], wherein the rolling reduction of cold rolling (x) is 90 to 96%.
[17] The method for manufacturing a heat sink according to any one of [11] to [16], wherein the cold rolling (x) is performed by cross rolling.
[18]上記[11]の製造方法において、Cu−Mo複合材(a)は、Mo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体を緻密化処理する工程と、前記緻密化処理されたCu−Mo複合材に圧延(y)を施す工程を経て得られたものであることを特徴とする放熱板の製造方法。
[19]上記[11]の製造方法において、Cu−Mo複合材(a)は、Mo粉末又はMo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体に非酸化性雰囲気中又は真空中で溶融したCuを含浸させる工程と、前記Cuを含浸させたCu−Mo複合材に圧延(y)を施す工程を経て得られたものであることを特徴とする放熱板の製造方法。
[20]上記[18]又は[19]の製造方法において、冷間圧延(x)と圧延(y)を合わせたCu−Mo複合材(a)の総圧下率が70〜99%であることを特徴とする放熱板の製造方法。
[18] In the manufacturing method of [11], the Cu—Mo composite material (a) is formed by pressing a mixed powder of Mo powder and Cu powder into a green compact, and reducing the green compact. A step of sintering in a neutral atmosphere or vacuum to obtain a sintered body, a step of densifying the sintered body, and a step of rolling (y) the densified Cu-Mo composite material A method of manufacturing a heat sink, characterized by being obtained through the process.
[19] In the manufacturing method of [11] above, the Cu—Mo composite material (a) is a step of pressing a Mo powder or a mixed powder of Mo powder and Cu powder into a green compact; A step of sintering the body in a reducing atmosphere or vacuum to form a sintered body, a step of impregnating the sintered body with Cu melted in a non-oxidizing atmosphere or vacuum, and impregnating the Cu A heat-radiating plate manufacturing method characterized by being obtained through a step of rolling (y) the Cu-Mo composite.
[20] In the production method of [18] or [19], the total rolling reduction of the Cu-Mo composite (a) obtained by combining the cold rolling (x) and the rolling (y) is 70 to 99%. The manufacturing method of the heat sink characterized by these.
[21]上記[20]の製造方法において、冷間圧延(x)と圧延(y)を合わせたCu−Mo複合材(a)の総圧下率が90〜96%であることを特徴とする放熱板の製造方法。
[22]上記[18]〜[21]のいずれかの製造方法において、圧延(y)をクロス圧延で行うことを特徴とする放熱板の製造方法。
[23]上記[18]〜[22]のいずれかの製造方法において、圧延(y)でCu−Mo複合材(a)を一方向圧延した場合に、冷間圧延(x)では、Cu−Mo複合材を圧延(y)の圧延方向と直交する方向に圧延することを特徴とする放熱板の製造方法。
[24]上記[11]〜[23]のいずれかの製造方法において、Cu−Mo複合材(a)は、複数の単位Cu−Mo複合材(au)が積層したものであることを特徴とする放熱板の製造方法。
[25]上記[11]〜[23]のいずれかの製造方法において、Cu−Mo複合材(a)は、複数の単位Cu−Mo複合材(au)が接合用のCu薄板を介して積層したものであることを特徴とする放熱板の製造方法。
[21] In the production method of [20], the total rolling reduction of the Cu—Mo composite (a) obtained by combining the cold rolling (x) and the rolling (y) is 90 to 96%. Manufacturing method of heat sink.
[22] The method for manufacturing a heat sink according to any one of [18] to [21], wherein the rolling (y) is performed by cross rolling.
[23] In the manufacturing method according to any one of [18] to [22] above, when the Cu—Mo composite material (a) is unidirectionally rolled by rolling (y), in cold rolling (x), Cu— A method of manufacturing a heat sink, comprising rolling a Mo composite material in a direction orthogonal to a rolling direction of rolling (y).
[24] In the production method according to any one of [11] to [23], the Cu—Mo composite material (a) is a laminate of a plurality of unit Cu—Mo composite materials (a u ). The manufacturing method of a heat sink.
[25] In the manufacturing method according to any one of [11] to [23], the Cu—Mo composite material (a) includes a plurality of unit Cu—Mo composite materials (a u ) via a Cu thin plate for bonding. A method of manufacturing a heat sink, characterized by being laminated.
[26]上記[11]〜[25]のいずれかの製造方法において、Cu材(b)は、複数の単位Cu材(bu)が積層したものであることを特徴とする放熱板の製造方法。
[27]上記[11]〜[26]のいずれかの製造方法において、Cu−Mo複合材(a)はCu含有量が10〜50質量%であることを特徴とする放熱板の製造方法。
[28]上記[11]〜[26]のいずれかの製造方法において、Cu−Mo複合材(a)はCu含有量が20〜30質量%であることを特徴とする放熱板の製造方法。
[29]上記[27]の製造方法において、Cu−Mo複合材(a)のCu含有量が20mass%未満であり、冷間圧延(x)と圧延(y)を合わせたCu−Mo複合材(a)の総圧下率が70%以上である製造方法(但し、Cu−Mo複合材(a)の圧延(y)を行わない製造方法を含む。)であって、
下記(1)又は/及び(2)の温間圧延を行うことを特徴とする放熱板の製造方法。
(1)冷間圧延(x)に代えて温間圧延を行う。
(2)圧延(y)を温間圧延で行う。
[26] In the manufacturing method according to any one of [11] to [25], the Cu material (b) is a laminate of a plurality of unit Cu materials (b u ). Method.
[27] The method for manufacturing a heat sink according to any one of [11] to [26], wherein the Cu-Mo composite material (a) has a Cu content of 10 to 50% by mass.
[28] The method for manufacturing a heat sink according to any one of [11] to [26], wherein the Cu-Mo composite material (a) has a Cu content of 20 to 30% by mass.
[29] In the manufacturing method of [27], the Cu-Mo composite material (a) has a Cu content of less than 20 mass% and is a combination of cold rolling (x) and rolling (y). A manufacturing method (including a manufacturing method in which the rolling (y) of the Cu—Mo composite material (a) is not performed) in which the total rolling reduction of (a) is 70% or more,
The manufacturing method of a heat sink characterized by performing the following (1) or / and (2) warm rolling.
(1) Perform warm rolling instead of cold rolling (x).
(2) Rolling (y) is performed by warm rolling.
[30]上記[28]の製造方法において、冷間圧延(x)と圧延(y)を合わせたCu−Mo複合材(a)の総圧下率が96%以上である製造方法(但し、Cu−Mo複合材(a)の圧延(y)を行わない製造方法を含む。)であって、
下記(1)又は/及び(2)の温間圧延を行うことを特徴とする放熱板の製造方法。
(1)冷間圧延(x)に代えて温間圧延を行う。
(2)圧延(y)を温間圧延で行う。
[31]上記[11]〜[30]のいずれかの製造方法において、積層したCu−Mo複合体層とCu層とからなる放熱板本体の片面又は両面にめっき皮膜を形成することを特徴とする放熱板の製造方法。
[32]上記[1]〜[10]のいずれかの放熱板を備えたことを特徴とする半導体パッケージ。
[33]上記[32]の半導体パッケージを備えたことを特徴とする半導体モジュール。
[30] In the manufacturing method according to [28], the total rolling reduction of the Cu—Mo composite (a) obtained by combining cold rolling (x) and rolling (y) is 96% or more (provided that Cu -Including a manufacturing method in which the rolling (y) of the Mo composite (a) is not performed.
The manufacturing method of a heat sink characterized by performing the following (1) or / and (2) warm rolling.
(1) Perform warm rolling instead of cold rolling (x).
(2) Rolling (y) is performed by warm rolling.
[31] The method according to any one of [11] to [30], wherein a plating film is formed on one side or both sides of a heat sink main body composed of a laminated Cu—Mo composite layer and a Cu layer. The manufacturing method of the heat sink.
[32] A semiconductor package comprising the radiator plate of any one of [1] to [10].
[33] A semiconductor module comprising the semiconductor package of [32].
本発明の放熱板は、低熱膨張率、高熱伝導率の優れた熱特性を有する。また、本発明の製造方法によれば、そのような優れた熱特性を有する放熱板を安定して且つ低コストに製造することができる。 The heat sink of the present invention has excellent thermal characteristics such as low thermal expansion coefficient and high thermal conductivity. Moreover, according to the manufacturing method of this invention, the heat sink which has such the outstanding thermal characteristic can be manufactured stably and at low cost.
本発明の放熱板は、板厚方向において、Cu層とCu−Mo複合体層が交互に積層することで3層以上のCu層と2層以上のCu−Mo複合体層で構成されるとともに、両面の最外層がCu層からなる放熱板であって、Cu−Mo複合体層は、Cuマトリクス中に扁平なMo相が分散した板厚断面組織を有する。図1は、5層クラッド構造(図1(A))及び7層クラッド構造(図1(B))を有する本発明の放熱板の板厚断面を模式的に示している。図において、1aが両面の最外層のCu層、1bが中間層のCu層である。 The heat sink of the present invention is composed of three or more Cu layers and two or more Cu-Mo composite layers by alternately stacking Cu layers and Cu-Mo composite layers in the thickness direction. The outermost layer on both sides is a heat sink made of a Cu layer, and the Cu-Mo composite layer has a plate thickness cross-sectional structure in which a flat Mo phase is dispersed in a Cu matrix. FIG. 1 schematically shows a thickness cross section of a heat sink of the present invention having a five-layer clad structure (FIG. 1A) and a seven-layer clad structure (FIG. 1B). In the figure, 1a is the outermost Cu layer on both sides, and 1b is the intermediate Cu layer.
本発明の放熱板のCu−Mo複合体層とCu層は、積層させたCu−Mo複合材とCu材を拡散接合させることにより構成されるものであり、両層間には拡散接合部を有するが、両部材のCuどうし(Cu−Mo複合材のCuとCu材)が拡散接合したものであるため、健全な拡散接合部が得られる。例えば、Mo(Mo材)とCu(Cu材)をクラッドする場合を考えると、MoとCuは合金化しないため、両部材の接合は拡散接合ではなく機械的接合になるが、このような接合では、接合界面に酸化膜や微細な空隙が残存しやすく、これらを起点として割れなどを生じやすい。これに対して本発明のように両部材のCuどうし(Cu−Mo複合材のCuとCu材)が拡散接合することにより、接合界面に酸化膜や微細な空隙が残存するようなことがなく、健全な接合部が得られる。 The Cu—Mo composite layer and the Cu layer of the heat dissipation plate of the present invention are formed by diffusion bonding the laminated Cu—Mo composite material and the Cu material, and have a diffusion bonding portion between both layers. However, since Cu of both members (Cu and Cu material of a Cu-Mo composite material) is diffusion bonded, a sound diffusion bonded portion can be obtained. For example, considering the case of clad Mo (Mo material) and Cu (Cu material), since Mo and Cu are not alloyed, the bonding of both members is not diffusion bonding but mechanical bonding. Then, oxide films and fine voids are likely to remain at the bonding interface, and cracks and the like are likely to occur starting from these. On the other hand, as in the present invention, Cu of both members (Cu and Cu material of the Cu-Mo composite material) is diffusion bonded so that no oxide film or fine voids remain at the bonding interface. Sound joints can be obtained.
以上のような5層以上のクラッド構造で且つ両面の最外層がCu層からなる本発明の放熱板(例えばCu/(Cu−Mo)/Cu/(Cu−Mo)/Cu構造の放熱板)は、特許文献2に示されるCu/(Cu−Mo)/Cu構造の放熱板に較べて高い熱伝導率を有するが、これは、以下のような理由によるものと考えられる。すなわち、Cu層とCu−Mo複合体層を交互に積層させ且つ両面の最外層がCu層からなるクラッド構造の場合、熱伝導率が外層(Cu層)>内層(Cu−Mo複合体層)であるため、外層(Cu層)に入った熱が外層・内層間の界面で反射・散乱して熱流が乱れるため、熱が内層(Cu−Mo複合体層)側にうまく伝わらず、外層・内層間の界面による高い伝熱抵抗が発生し、その分、板厚方向の熱伝導率は低くなると考えられる。このような原因による板厚方向の熱伝導性の低下は、最外層のCu層の厚さに依存し、最外層のCu層が薄くなるほど内層との界面で反射・散乱する熱の量が少なくなるため、熱伝導性が低下する度合いは小さくなる。したがって、5層以上のクラッド構造を有する本発明の放熱板と、特許文献2に記載された3層クラッド構造の放熱板を較べた場合、板厚と密度が同じであれば、本発明の放熱板の方が最外層のCu層の厚さが薄くなるため、3層クラッド構造の放熱板に較べて板厚方向の熱伝導率が高くなるものと考えられる。また、5層以上のクラッド構造の場合、中間層のCu層の厚さを大きくすることで最外層のCu層をより薄くすることができるので、最外層のCu層の厚さを中間層のCu層の厚さよりも小さくすることにより、板厚方向の熱伝導率をより高くすることができる。
また、本発明の放熱板は、Mo−Cu複合材とCu材の積層数を多層化することにより、Mo−Cu複合体層によるCu層の拘束性が高められるため、板厚と密度が同じであれば、3層クラッド構造の放熱板よりも熱膨張率が低くなる。
The heat sink of the present invention having a clad structure of five or more layers as described above and the outermost layers on both sides being Cu layers (for example, a heat sink of Cu / (Cu—Mo) / Cu / (Cu—Mo) / Cu structure). Has a higher thermal conductivity than the heat dissipation plate having a Cu / (Cu—Mo) / Cu structure disclosed in
In addition, the heat dissipation plate of the present invention has the same thickness and density because the number of layers of the Mo—Cu composite material and the Cu material is increased so that the Cu layer is restricted by the Mo—Cu composite layer. If so, the coefficient of thermal expansion is lower than that of the heat sink with a three-layer clad structure.
クラッド構造における積層数(Cu層とCu−Mo複合体層の全層数)は特に制限はなく、積層数が多い方が熱膨張率が低くなり、また、硬度が高く延性が低いCu−Mo複合体層の厚さが薄いほどプレス加工性も良くなるのでプレス加工には有利になる。放熱板に熱が入る際に、最外層がCu層の場合にはCuの高い熱伝導により熱が入るが、上述したように、次の熱伝導率の低いCu−Mo複合体層との界面で熱の反射、散乱が生じるため、Cu−Mo複合体層に入る熱量は制限される。また、それより下層側でも、Cu層からCu−Mo複合体層に熱が伝わる際には、同様に界面で熱の反射、散乱が生じるが、すでに熱量は制限されており、その制限された熱量が伝わるので、その界面での熱伝導率の低下は少ない。したがって、積層数が7層以上でも、最外層のCu層の厚さの比率が小さければ(一般に7層以上では最外層のCu層の厚さの比率は小さいと言える)、積層数が増えると厚さ方向の熱伝導率は若干低下傾向になるものの熱膨張率の低下やプレス加工性に寄与できること、Cu−Mo複合体層の各層の厚さ比率が小さくなりその層の伝熱抵抗も低下すること、などを勘案すれば、特段問題はないと言える。したがって、積層数に特別な制限はなく、用途や製品厚さに応じて積層数を決定すればよい。例えば、後述する実施例の発明例1(5層)と発明例11(7層)、発明例2(5層)と発明例12(7層)をそれぞれ較べた場合、7層の方が熱伝導率が高くなっているのは、図8に示すように、発明例1よりも発明例11の方が、また発明例2よりも発明例12の方が、それぞれ最外層のCu層の厚さ比率が小さいためであると考えられる。 The number of stacked layers in the clad structure (the total number of Cu layers and Cu—Mo composite layers) is not particularly limited, and the larger the number of stacked layers, the lower the coefficient of thermal expansion, and the higher the hardness and the lower the ductility. The thinner the composite layer, the better the press workability, which is advantageous for press work. When heat enters the heat sink, when the outermost layer is a Cu layer, heat enters due to the high heat conduction of Cu, but as described above, the interface with the Cu-Mo composite layer having the following low thermal conductivity. Therefore, the amount of heat entering the Cu—Mo composite layer is limited. In addition, when heat is transferred from the Cu layer to the Cu-Mo composite layer on the lower layer side, heat reflection and scattering occur at the interface as well, but the amount of heat has already been limited, and the heat was limited. Since the amount of heat is transmitted, there is little decrease in thermal conductivity at the interface. Therefore, even if the number of stacked layers is 7 or more, if the ratio of the thickness of the outermost Cu layer is small (generally, the ratio of the thickness of the Cu layer of the outermost layer is small for 7 or more layers), the number of stacked layers increases. Although the thermal conductivity in the thickness direction tends to decrease slightly, it can contribute to the decrease in thermal expansion coefficient and press workability, the thickness ratio of each layer of the Cu-Mo composite layer is reduced, and the heat transfer resistance of the layer is also reduced. Considering what to do, it can be said that there is no particular problem. Therefore, there is no special limitation on the number of layers, and the number of layers may be determined according to the application and product thickness. For example, when Invention Example 1 (5 layers) and Invention Example 11 (7 layers), Invention Example 2 (5 layers) and Invention Example 12 (7 layers) of Examples described later are compared, respectively, 7 layers are more heat-resistant. As shown in FIG. 8, the conductivity is higher in Invention Example 11 than in Invention Example 1, and in Invention Example 12 than in Invention Example 2, respectively. This is probably because the thickness ratio is small.
Cu−Mo複合体層のCu含有量は特に制限はないが、一般には10〜50質量%程度が適当である。Cu含有量が高い方が高圧下率で冷間圧延する場合に冷間圧延性が向上し、高圧下率で冷間圧延することによる熱膨張率の低下効果が得られやすい。一方、中間層のCu層の熱膨張を拘束する効果(中間層のCu層を両側から挟んで物理的に拘束する効果)を高める点では、圧延の圧下率だけでなく、Mo含有量が多いほうが好ましいが、熱伝導率がトレードオフの関係にあり、また、Mo含有量が多すぎると冷間圧延が難しくなる。このためCu−Mo複合体層のCu含有量は10〜50質量%程度が好ましい。また、放熱板の熱特性の観点からは、Cu−Mo複合体層のCu含有量は30質量%以下が好ましく、一方、Cu−Mo複合体層(Cu−Mo複合材)のCu含有量が20質量%未満では冷間圧延性に問題を生じる可能性もあるので、放熱板の熱特性と冷間圧延性の観点からは、Cu−Mo複合体層のCu含有量は20〜30質量%程度とすることがより好ましい。 Although there is no restriction | limiting in particular in Cu content of a Cu-Mo composite layer, Generally 10-50 mass% is suitable. The higher the Cu content, the better the cold rolling property when cold rolling is performed at a high pressure rate, and the effect of reducing the thermal expansion coefficient by cold rolling at a high pressure rate is likely to be obtained. On the other hand, in terms of enhancing the effect of restraining the thermal expansion of the Cu layer of the intermediate layer (the effect of physically restraining the Cu layer of the intermediate layer from both sides), not only the rolling reduction ratio but also the Mo content is large. However, the thermal conductivity is in a trade-off relationship, and if the Mo content is too large, cold rolling becomes difficult. For this reason, about 10-50 mass% of Cu content of a Cu-Mo composite layer is preferable. Further, from the viewpoint of the thermal characteristics of the heat sink, the Cu content of the Cu—Mo composite layer is preferably 30% by mass or less, while the Cu content of the Cu—Mo composite layer (Cu—Mo composite material) is low. If it is less than 20% by mass, there is a possibility of causing a problem in cold rollability. From the viewpoint of the heat characteristics of the heat sink and the cold rollability, the Cu content of the Cu—Mo composite layer is 20 to 30% by mass. More preferably, it is about.
Cu−Mo複合体層は、全体が一体のCu−Mo複合体で構成される構造としてもよいが、複数の単位Cu−Mo複合体層がごく薄い接合用のCu層を介して積層した構造としてもよい。この接合用のCu層は厚さが75μm以下程度であれば放熱板の熱特性に殆ど影響を与えないので、その厚さは75μm以下とすることが好ましく、さらに25μm以下とすることがより好ましい。なお、この接合用のCu層はCu−Mo複合体層の一部を構成するものであり、したがって、本発明の放熱板においてCu−Mo複合体層と交互に積層されるCu層とは異なり、このCu層には含まれない。 The Cu-Mo composite layer may have a structure composed entirely of an integral Cu-Mo composite, but a structure in which a plurality of unit Cu-Mo composite layers are stacked via a very thin bonding Cu layer. It is good. If the thickness of the bonding Cu layer is about 75 μm or less, it hardly affects the thermal characteristics of the heat sink. Therefore, the thickness is preferably 75 μm or less, and more preferably 25 μm or less. . In addition, this Cu layer for joining comprises a part of Cu-Mo composite layer, therefore, it differs from the Cu layer laminated | stacked alternately with a Cu-Mo composite layer in the heat sink of this invention. This Cu layer is not included.
後述するように、本発明の放熱板は、Cu−Mo複合材(a)とCu材(b)を交互に積層させ、この積層体を拡散接合した後、圧延することにより製造されるが、この製造において用いるCu−Mo複合材(a)としては、単体の板材ではなく、積層した複数枚の薄いCu−Mo複合材(単位Cu−Mo複合材)からなるものでもよい。これは、Cu−Mo複合材は圧延の圧下率を大きくした場合に薄くなる可能性があるためである。Cu−Mo複合材(a)を積層した複数枚の薄い単位Cu−Mo複合材で構成する場合、特にCu−Mo複合材のCu含有量が比較的少ない場合には、単位Cu−Mo複合材どうしの接合性を高めるために、複数枚の単位Cu−Mo複合材をCu薄板(Cu箔の場合を含む)を介して積層させ(すなわち、各単位Cu−Mo複合材間に薄いCu板を介装する)、このCu薄板を介して拡散接合することが好ましい。上述した放熱板のCu−Mo複合体層中の接合用のCu層は、そのCu薄板が圧延によりさらに薄く延伸されたものである。Cu−Mo複合体層を構成するこの接合用のCu層は、ごく薄い中間層のCu層であるため、伝熱抵抗が無視できるほど小さく、放熱板の熱特性に殆ど影響を与えない。すなわち、Cu−Mo複合体層中に接合用のCu層を有する放熱板と接合用のCu層を有しない放熱板は、熱特性はほとんど変わらない。 As will be described later, the heat sink of the present invention is manufactured by alternately laminating the Cu-Mo composite material (a) and the Cu material (b), diffusion bonding the laminated body, and then rolling. The Cu—Mo composite material (a) used in this production may not be a single plate material but may be composed of a plurality of laminated thin Cu—Mo composite materials (unit Cu—Mo composite material). This is because the Cu—Mo composite material may become thin when the rolling reduction ratio is increased. When it is composed of a plurality of thin unit Cu-Mo composites laminated with a Cu-Mo composite (a), especially when the Cu content of the Cu-Mo composite is relatively low, the unit Cu-Mo composite In order to enhance the bondability between the unit Cu-Mo composites, a plurality of unit Cu-Mo composites are laminated via Cu thin plates (including Cu foil) (that is, a thin Cu plate is formed between each unit Cu-Mo composites). It is preferable to perform diffusion bonding via the Cu thin plate. The Cu layer for joining in the Cu-Mo composite layer of the heat sink described above is obtained by further thinning the Cu thin plate by rolling. The bonding Cu layer constituting the Cu-Mo composite layer is a very thin intermediate layer, and therefore has a heat transfer resistance that is negligibly small and hardly affects the thermal characteristics of the heat sink. That is, the heat characteristics of the heat radiating plate having the bonding Cu layer in the Cu-Mo composite layer and the heat radiating plate not having the bonding Cu layer are almost the same.
図2及び図3は、後述する実施例の放熱板の一部について、それらの熱特性を整理して示したものであり、図2は板厚方向の熱伝導率(室温での熱伝導率)と50℃から800℃までの板面内平均熱膨張率を、図3は板厚方向の熱伝導率(室温での熱伝導率)と50℃から400℃までの板面内平均熱膨張率を、それぞれ示している。ここで、板面内熱膨張率は押棒式変位検出法で測定されたものであり、例えば、「50℃から400℃までの板面内平均熱膨張率」は、50℃と400℃での伸び量の差を求め、その値を温度差350℃(=400℃−50℃)で割り算して求めた。同様にして、50℃から800℃までの板面内平均熱膨張率を求めた。また、板厚方向の熱伝導率(室温での熱伝導率)はフラッシュ法で測定した。この熱特性の測定・算出方法は、後述する図4〜図8の熱特性についても同様である。 FIG. 2 and FIG. 3 show the thermal characteristics of some of the heat radiating plates of the examples described later. FIG. 2 shows the thermal conductivity in the plate thickness direction (thermal conductivity at room temperature). ) And the average thermal expansion coefficient in the plate surface from 50 ° C. to 800 ° C., FIG. 3 shows the thermal conductivity in the thickness direction (thermal conductivity at room temperature) and the average thermal expansion in the plate surface from 50 ° C. to 400 ° C. Each rate is shown. Here, the coefficient of thermal expansion in the plate surface is measured by a push rod type displacement detection method. For example, “the average coefficient of thermal expansion in the plate surface from 50 ° C. to 400 ° C.” is 50 ° C. and 400 ° C. The difference in elongation was obtained, and the value was divided by a temperature difference of 350 ° C. (= 400 ° C.-50 ° C.). Similarly, the in-plane average thermal expansion coefficient from 50 ° C. to 800 ° C. was determined. Further, the thermal conductivity in the plate thickness direction (thermal conductivity at room temperature) was measured by a flash method. The method for measuring and calculating the thermal characteristics is the same for the thermal characteristics shown in FIGS.
図2及び図3には、Cu−Mo複合材単体からなる放熱板(比較例7〜10、13)、特許文献2のCu/(Cu−Mo)/Cu構造の3層クラッド材からなる放熱板(比較例1、2)、本発明の5層及び7層クラッド材からなる放熱板(発明例1、2、11、12)について、それらの熱特性を示している。図中、丸で囲い、矢印でつないだものが、ほぼ同等の密度を有する放熱板である。これによれば、ほぼ同等の密度を有する放熱板の熱特性を較べた場合、特許文献2のCu/(Cu−Mo)/Cu構造の放熱板は、Cu−Mo複合材単体の放熱板に較べて板厚方向の熱伝導率が若干低いが、板面内熱膨張率が大きく低下している。そして、このCu/(Cu−Mo)/Cu構造の放熱板の熱特性に対して、本発明の放熱板は、板面内熱膨張率がさらに低く、しかも、板厚方向の熱伝導率が高くなっている。
2 and 3, a heat dissipation plate made of a single Cu—Mo composite material (Comparative Examples 7 to 10 and 13) and a heat dissipation made of a three-layer clad material of Cu / (Cu—Mo) / Cu structure of
図4及び図5は、図2及び図3のグラフにCu含有量が異なるCu−Mo複合材単体の比較例を加えたものであり、図4は板厚方向の熱伝導率(室温での熱伝導率)と50℃から800℃までの板面内平均熱膨張率を、図5は板厚方向の熱伝導率(室温での熱伝導率)と50℃から400℃までの板面内平均熱膨張率を、それぞれ示している。図中の破線は、Cu−Mo複合材単体はCu含有量が低いほど(Mo含有量が高いほど)板厚方向の熱伝導率が低く、且つ板面内熱膨張率は低くなる傾向を示している。そして、図中の矢印に示すように、このようなCu−Mo複合材単体の熱特性の傾向に対して、特許文献2のCu/(Cu−Mo)/Cu構造の放熱板(比較例1、2)の熱特性は、高熱伝導率(板厚方向の熱伝導率)・低熱膨張率(板面内熱膨張率)側にシフトしているが、本発明の放熱板の熱特性は、さらに高熱伝導率(板厚方向の熱伝導率)・低熱膨張率(板面内熱膨張率)側にシフトしている。 4 and 5 are graphs of FIG. 2 and FIG. 3 in which a comparative example of a Cu—Mo composite material having a different Cu content is added, and FIG. 4 shows the thermal conductivity in the plate thickness direction (at room temperature). Figure 5 shows the thermal conductivity in the plate thickness direction (thermal conductivity at room temperature) and the plate surface from 50 ° C to 400 ° C. The average coefficient of thermal expansion is shown respectively. The broken line in the figure shows that the Cu—Mo composite material alone has a tendency that the lower the Cu content (the higher the Mo content), the lower the thermal conductivity in the plate thickness direction and the lower the in-plane thermal expansion coefficient. ing. And as shown by the arrow in a figure, with respect to the tendency of the thermal characteristic of such Cu-Mo composite material single-piece | unit, the heat sink of the Cu / (Cu-Mo) / Cu structure of patent document 2 (Comparative example 1). The thermal characteristics of 2) are shifted to high thermal conductivity (thermal conductivity in the plate thickness direction) and low thermal expansion coefficient (in-plane thermal expansion coefficient), but the thermal characteristics of the heat sink of the present invention are: Furthermore, it has shifted to the high thermal conductivity (thermal conductivity in the plate thickness direction) and low thermal expansion rate (in-plane thermal expansion rate) side.
また、図6及び図7は、図4及び図5のグラフにさらに、最外層のCu層の厚さやCu−Mo複合体層のCu含有量などが異なる他の発明例等を加えたものであり、図6は板厚方向の熱伝導率(室温での熱伝導率)と50℃から800℃までの板面内平均熱膨張率を、図7は板厚方向の熱伝導率(室温での熱伝導率)と50℃から400℃までの板面内平均熱膨張率を、それぞれ示している。これによれば、本発明の放熱板は、最外層のCu層の厚さやCu−Mo複合体層のCu含有量などの違いに関わりなく、板厚及び密度が同等のCu−Mo複合材単体や特許文献2のCu/(Cu−Mo)/Cu構造の放熱板(比較例1、2)の熱特性に較べて、高熱伝導率(板厚方向の熱伝導率)・低熱膨張率(板面内熱膨張率)であることが判る。
FIGS. 6 and 7 are graphs of FIGS. 4 and 5 in which other examples of the invention in which the thickness of the outermost Cu layer and the Cu content of the Cu-Mo composite layer are different are added. 6 shows the thermal conductivity in the thickness direction (thermal conductivity at room temperature) and the average thermal expansion coefficient in the plate surface from 50 ° C. to 800 ° C., and FIG. 7 shows the thermal conductivity in the thickness direction (at room temperature). ) And the average in-plane thermal expansion coefficient from 50 ° C. to 400 ° C., respectively. According to this, the heat sink of the present invention is a single Cu-Mo composite material having the same plate thickness and density regardless of the difference in the thickness of the outermost Cu layer or the Cu content of the Cu-Mo composite layer. Compared with the thermal characteristics of the heat sink (Comparative Examples 1 and 2) of Cu / (Cu-Mo) / Cu structure of
本発明の放熱板は、さきに説明した原理からして、最外層のCu層の厚さが小さいほど板厚方向の熱伝導率が高くなる。この観点から、両面の最外層のCu層1aの厚さt1と板厚Tがt1/T≦0.2を満足することが好ましい。
図8は、実施例の放熱板について、最外層のCu層1aの厚さt1と板厚T(図1参照)の比率t1/Tと板厚方向の熱伝導率との関係を整理したものであり、図中、実線でつないだものが、密度がほぼ同等の放熱板である。これによれば、最外層のCu層の厚さt1の比率が小さいほど板厚方向の熱伝導率が高くなっており、t1/T≦0.2が好ましいことが判る。
Based on the principle described above, the heat dissipation plate of the present invention has a higher thermal conductivity in the plate thickness direction as the thickness of the outermost Cu layer is smaller. From this viewpoint, it is preferable that the thickness t 1 and the plate thickness T of the outermost Cu layer 1a on both sides satisfy t 1 /T≦0.2.
8, the heat radiating plate of Example organize the relationship between the ratio t 1 / T and the plate thickness direction of the heat conductivity of the thickness t 1 and the thickness T of the outermost layer of the Cu layer 1a (see FIG. 1) In the figure, what is connected by a solid line is a heat dissipation plate having substantially the same density. According to this, it can be seen that the smaller the ratio of the thickness t 1 of the outermost Cu layer, the higher the thermal conductivity in the plate thickness direction, and t 1 /T≦0.2 is preferable.
また、上記と同様の観点から、両面の最外層のCu層1aの厚さt1と中間層のCu層1bの厚さt2がt1≦t2を満足することが好ましい。上述したように、両面の最外層のCu層1aの厚さt1は、なるべく薄い方が熱伝導率を高くできるので好ましい。t1>t2では3層クラッド構造の最外層のCu層の厚さに近づくことになり、本発明における熱伝導率の改善効果が低下してしまう。
また、さらに好ましい条件としては、両面の最外層のCu層1aの厚さt1と中間層のCu層1bの厚さt2がt1<t2を満足することが好ましい。また、Cu層とCu−Mo複合体層の全層数(積層数)が9層以上の放熱板(中間層のCu層1bを3層以上有する放熱板)の場合には、板厚中心に近いCu層1bほど厚さt2が厚いことが好ましい。これらの理由は以下のように考えられる。
From the same viewpoint as above, it is preferable that the thickness t 2 of the
Still Preferred conditions, it is preferable that the thickness t 2 of the
厚さLの材料において、厚さ方向に熱が流れる際の熱流は次の式で表される。
熱流q(W)=CA(θ1−θ2)[θ;温度、C;点1から点2までの熱コンダクタンス、A:熱流の流れる材料の断面積]
C=λ/L[λ:熱伝導率(W/m・K)、L:材料の厚さ(m)]
熱コンダクタンスとは、材料両面の温度差が1℃の時、一定面積、一定時間当たり流れる熱量のことで、熱の伝わりやすさを表す。ここで、伝熱抵抗RはCの逆数となる。
5層クラッド材全体の伝熱抵抗RCLADは次の式で与えられる。
RCLAD=(L1/λCu)+(L2/λCu-Mo)+(L3/λCu)+(L4/λCu-Mo)+(L5/λCu)+R12+R23+R34+R45
=R1+R2+R3+R4+R5+R12+R23+R34+R45
ここで、L1〜L5は1層目〜5層目までの各層の厚さ、λCuはCu層の熱伝導率、λCu-MoはCu−Mo複合体層の熱伝導率、R1,R2,R3,R4,R5は各層の伝熱抵抗、R12,R23,R34,R45は各層界面の伝熱抵抗、12、23、23、45はそれぞれ上からの各層間を示す。
ここでR12,R23,R34,R45は、材料ではなく界面での熱反射、熱散乱による熱流の乱れの度合い、すなわち負荷(抵抗)である。
In the material of thickness L, the heat flow when heat flows in the thickness direction is expressed by the following equation.
Heat flow q (W) = CA (θ 1 −θ 2 ) [θ; temperature, C; thermal conductance from
C = λ / L [λ: thermal conductivity (W / m · K), L: material thickness (m)]
The thermal conductance is the amount of heat that flows per fixed area and fixed time when the temperature difference between both surfaces of the material is 1 ° C., and expresses the ease of heat transfer. Here, the heat transfer resistance R is the reciprocal of C.
The heat transfer resistance R CLAD of the entire five-layer clad material is given by the following equation.
R CLAD = (L 1 / λ Cu ) + (L 2 / λ Cu-Mo ) + (L 3 / λ Cu ) + (L 4 / λ Cu-Mo ) + (L 5 / λ Cu ) + R 12 + R 23 + R 34 + R 45
= R 1 + R 2 + R 3 + R 4 + R 5 + R 12 + R 23 + R 34 + R 45
Here, L 1 to L 5 are the thicknesses of the first to fifth layers, λ Cu is the thermal conductivity of the Cu layer, λ Cu-Mo is the thermal conductivity of the Cu-Mo composite layer, R 1 , R 2 , R 3 , R 4 , R 5 are the heat transfer resistance of each layer, R 12 , R 23 , R 34 , R 45 are the heat transfer resistance at the interface of each layer, 12 , 23 , 23 , 45 are from the top Each layer of is shown.
Here, R 12 , R 23 , R 34 , and R 45 are not the material but the degree of heat flow turbulence due to heat reflection and heat scattering at the interface, that is, the load (resistance).
ここで、5層クラッド材の1層目から5層目までの熱流を考えると、1層目(最外層)の低いR1のCu層から、2層目の高いR2のCu−Mo複合体層に入る際に熱流は絞られることになり、その1層目のCu層では、本来の伝熱抵抗R1だけでなく、界面のR12分の伝熱抵抗が付加される。1層目(最外層)のCu層の厚さL1が小さいとR1も小さくなり、熱反射や熱散乱によりCu層内に付加される量も少なくなり、それに応じてR12も小さくなる。厚さがゼロに近づけばR1とR12もゼロに近づく。2層目のCu−Mo複合体層から3層目のCu層の界面は、伝熱抵抗の高い層から低い層に熱が入ることから、また、Cu−Mo複合体層中のCu相とCu層とは完全に拡散接合して一体となっており、そのCuの連続性があることから、R23はほぼゼロと考えてよい。R45も同様にゼロと考えてよい。3層目のCu層の伝熱抵抗R3には、4層目のCu−Mo複合体層との界面のR34分の伝熱抵抗が付加される。ただ、2層目のCu−Mo複合体層を通過して絞られた後の熱流が3層目のCu層に流れるので、1層目のCu層の厚さL1が3層目のCu層の厚さL3と同じであるとしても、R34はR12より小さくなる。より具体的に説明すると(但し、説明中の熱流量は仮の値)、5層クラッド材のCu−Mo複合体層とCu層がそれぞれ同じ厚さであるとした場合、最初に100の熱流が1層目のCu層に入ると、この1層目のCu層で(L1/λCu)+R12の伝熱抵抗があり、熱流が80に絞られるとする。その後、2層目のCu−Mo複合体層では(L2/λCu-Mo)+R23(R23≒0)の伝熱抵抗があり、熱流が60に絞られて3層目のCu層の入口に入る。この3層目のCu層から4層目のCu−Mo複合体層に入る際のR34は、熱流100からの伝熱抵抗ではなく、熱流60からの伝熱抵抗であるためR12>R34となる。以上のことから、最外層のCu層を内部(中間層)のCu層より薄くすることにより、クラッド材全体の伝熱抵抗RCLADは小さくなる。 Here, considering the heat flow from the first layer to the fifth layer of the five-layer clad material, the lower R 1 Cu layer of the first layer (outermost layer) to the higher R 2 Cu—Mo composite of the second layer. The heat flow is reduced when entering the body layer, and in the first Cu layer, not only the original heat transfer resistance R 1 but also the heat transfer resistance of R 12 at the interface is added. When the thickness L 1 of the first layer (outermost layer) Cu layer is small, R 1 also becomes small, and the amount added to the Cu layer by heat reflection or heat scattering decreases, and R 12 also decreases accordingly. . As the thickness approaches zero, R 1 and R 12 also approach zero. The interface between the second Cu-Mo composite layer and the third Cu layer is that heat enters the lower layer from the high heat transfer resistance layer, and the Cu phase in the Cu-Mo composite layer Since the Cu layer is completely diffusion-bonded and integrated, and the Cu is continuous, R 23 may be considered to be almost zero. R 45 may be considered to be zero as well. A third layer of Cu layer heat transfer resistance R 3 of is added the heat transfer resistance R 34 minutes at the interface between the fourth layer Cu-Mo composite layer. However, since the heat flow after being squeezed through the second Cu-Mo composite layer flows to the third Cu layer, the thickness L 1 of the first Cu layer is equal to the third Cu layer. even the same as the thickness L 3 of the layer, R 34 is smaller than R 12. More specifically (however, the heat flow in the description is a tentative value), assuming that the Cu-Mo composite layer and the Cu layer of the five-layer cladding material have the same thickness, the first heat flow of 100 Enters the first Cu layer, the first Cu layer has a heat transfer resistance of (L 1 / λ Cu ) + R 12 , and the heat flow is limited to 80. Thereafter, the second Cu—Mo composite layer has a heat transfer resistance of (L 2 / λ Cu—Mo ) + R 23 (R 23 ≈0), the heat flow is reduced to 60, and the third Cu layer Enter the layer entrance. Since R 34 when entering from the third Cu layer to the fourth Cu—Mo composite layer is not the heat transfer resistance from the heat flow 100 but the heat transfer resistance from the heat flow 60, R 12 > R 34 . From the above, the heat transfer resistance R CLAD of the entire cladding material is reduced by making the outermost Cu layer thinner than the inner (intermediate) Cu layer.
また、以上述べたような理由から、全層数が9層以上の放熱板(中間層のCu層1bを3層以上有する放熱板)の場合には、Cu層の厚さは板内部(板厚中心)にいくに従い厚くすることが好ましい。さらに、Cu層とCu−Mo複合体層の組み合わせは、外層側(熱の入口側)の薄いCu層と薄いCu−Mo複合体層の組み合わせから、板内部(板厚中心)にいくに従って厚い組み合わせにすることにより、熱流の界面での反射、散乱が少なくなると考えられるので、Cu層の厚さだけでなく、Cu−Mo複合体層の厚さについても、板内部(板厚中心)にいくに従い厚くすることが好ましい。
なお、後述する実施例の5層クラッド材(発明例)は、いずれも両面の最外層のCu層1aの厚さt1と中間層のCu層1bの厚さt2がt1<t2であるが、そのt1<t2の程度は、発明例3〜10、13〜21がt1/t2≦0.4、発明例3〜8、13〜17、19〜21がt1/t2≦0.1、発明例3〜6、13〜16、19〜21がt1/t2≦0.06となっている。
For the reason described above, in the case of a heat radiating plate having nine or more layers (a heat radiating plate having three or more intermediate Cu layers 1b), the thickness of the Cu layer is the inside of the plate (the plate It is preferable to increase the thickness as it goes to (thickness center). Furthermore, the combination of the Cu layer and the Cu—Mo composite layer is thicker from the combination of the thin Cu layer on the outer layer side (heat inlet side) and the thin Cu—Mo composite layer toward the inside of the plate (plate thickness center). Since it is considered that reflection and scattering at the interface of the heat flow are reduced by the combination, not only the thickness of the Cu layer but also the thickness of the Cu-Mo composite layer is inside the plate (plate thickness center). It is preferable to increase the thickness as the time goes.
In the five-layer clad material (invention example) of Examples described later, the thickness t 1 of the outermost Cu layer 1a on both sides and the thickness t 2 of the
Cu−Mo複合体層とCu層の各厚さ、Cu−Mo複合体層とCu層の層厚比、放熱板の板厚なども特に制限はないが、熱特性を確保するとともに、圧延時や実用時に反りやゆがみ等が発生しないように、厚さ方向中央のCu層を中心として厚さ方向で対称形の構造(Cu層とCu−Mo複合体層の厚さが対称形の構造)が好ましい。また、放熱板の板厚は1mm前後の場合が多いが、特に制限はない。
なお、最外層のCu層1aの厚さt1の下限は特にないが、厚さt1が極端に小さいとクラッド材としての製造が難しくなり、また、中間層のCu層の厚さが大きくなって熱膨張率が高くなるので、0.01mm程度が事実上の下限となる。
The thickness of each of the Cu-Mo composite layer and the Cu layer, the layer thickness ratio of the Cu-Mo composite layer and the Cu layer, the thickness of the heat sink, etc. are not particularly limited. In order to prevent warping or distortion during practical use, the structure is symmetrical in the thickness direction with the Cu layer at the center in the thickness direction as the center (structure in which the thickness of the Cu layer and the Cu-Mo composite layer is symmetrical). Is preferred. Further, the thickness of the heat sink is often around 1 mm, but is not particularly limited.
Although the lower limit is not particularly thickness t 1 of the outermost Cu layers 1a, the manufacture of the thickness t 1 is extremely small as the cladding material is difficult, also, the thickness of the Cu layer of the intermediate layer is larger Since the coefficient of thermal expansion becomes high, about 0.01 mm is the practical lower limit.
Cu−Mo複合体層とCu層の層厚比については、Cu−Mo複合体層に対してCu層の層厚比が大きいと、熱伝導率は高くなるが、Cu−Mo複合体層による中間のCu層の拘束が弱くなるので熱膨張率が高くなり、一方、Cu層の層厚比が小さいと、熱膨張率は低くなるが、熱伝導率が低くなる。したがって、得ようとする熱特性(熱伝導率、熱膨張率)に応じて、Cu−Mo複合体層とCu層の層厚比を適宜選択すればよいが、低温(例えば200℃、400℃)での熱膨張率を低くするという観点からは、Cu−Mo複合体層に対してCu層をあまり厚くしない方がよい。
また、Cu−Mo複合体層のCu含有量やCu−Mo複合体層とCu層の層厚比は放熱板の密度にリンクするので、この密度は9.25〜9.55g/cm3程度であることが好ましく、9.30〜9.45g/cm3程度であることが特に好ましい。
Regarding the layer thickness ratio between the Cu-Mo composite layer and the Cu layer, when the layer thickness ratio of the Cu layer is large with respect to the Cu-Mo composite layer, the thermal conductivity increases, but it depends on the Cu-Mo composite layer. Since the restraint of the intermediate Cu layer becomes weak, the coefficient of thermal expansion becomes high. On the other hand, when the layer thickness ratio of the Cu layer is small, the coefficient of thermal expansion becomes low, but the thermal conductivity becomes low. Therefore, the layer thickness ratio between the Cu-Mo composite layer and the Cu layer may be appropriately selected according to the thermal characteristics (thermal conductivity, thermal expansion coefficient) to be obtained. From the viewpoint of lowering the coefficient of thermal expansion at (), it is better not to make the Cu layer too thick with respect to the Cu-Mo composite layer.
Further, since the Cu content of the Cu-Mo composite layer or the layer thickness ratio of the Cu-Mo composite layer and the Cu layer is linked to the density of the heat sink, this density is about 9.25 to 9.55 g / cm 3. It is preferable that it is about 9.30-9.45 g / cm < 3 >.
本発明の放熱板は、事前に製作されたCu−Mo複合材とCu材を拡散接合した後、圧延することにより製造され、また、Cu−Mo複合材の製造工程でも圧延が行われることがあるので、全体が圧延組織であり、また、Cu−Mo複合体層のCuマトリクス中に分散するMo相は扁平に延伸された形態を有し、通常、板厚断面組織中でのMo相のアスペクト比(圧延方向でのアスペクト比)は2超となる。ここで、アスペクト比とは、圧延方向における板厚断面組織中でのMo相の長軸/短軸(長さ比)であり、例えば、圧延方向での板厚断面組織(イオンミリング仕上げした板厚断面組織)をSEMなどで観察し、任意の1視野に含まれる各Mo相の長軸/短軸を求め、それらの平均値をもって規定することができる。 The heat sink of the present invention is manufactured by performing diffusion bonding after a Cu-Mo composite material and a Cu material manufactured in advance are subjected to diffusion bonding, and rolling may also be performed in the manufacturing process of the Cu-Mo composite material. Therefore, the whole is a rolled structure, and the Mo phase dispersed in the Cu matrix of the Cu-Mo composite layer has a flatly stretched form, and usually the Mo phase in the plate thickness cross-sectional structure. The aspect ratio (aspect ratio in the rolling direction) exceeds 2. Here, the aspect ratio is the major axis / minor axis (length ratio) of the Mo phase in the sheet thickness sectional structure in the rolling direction. For example, the sheet thickness sectional structure in the rolling direction (ion milled sheet) A thick cross-sectional structure) is observed with an SEM or the like, and the major axis / minor axis of each Mo phase included in an arbitrary visual field can be obtained and defined by an average value thereof.
なお、Cu−Mo複合体層のCuマトリクス中に分散するMo相は、Cu−Mo複合体層のMo含有量や圧延の形態(一方向圧延、クロス圧延)などにより、扁平に延伸された形態が異なり、例えば、Cu−Mo複合体層のMo含有量が比較的少ない場合には、扁平に延伸されたMo相は、個々が独立した島状に近い形態を有するが、Mo含有量が多くなると、扁平に延伸されたMo相どうしが繋がり、このようなMo相とCuマトリクスが混在した縞状なしはマーブル状のような形態(圧延組織)となる。したがって、後者の場合には、アスペクト比は明らかに2超となるが、具体的に定量化することができない場合がある。 In addition, the Mo phase dispersed in the Cu matrix of the Cu-Mo composite layer is a flat stretched form depending on the Mo content of the Cu-Mo composite layer, the form of rolling (unidirectional rolling, cross rolling), and the like. For example, when the Mo content of the Cu-Mo composite layer is relatively low, the flatly stretched Mo phase has a form that is close to an individual island, but has a large Mo content. Then, the flatly stretched Mo phases are connected to each other, and the absence of stripes in which such a Mo phase and a Cu matrix are mixed has a marbled form (rolling structure). Therefore, in the latter case, the aspect ratio clearly exceeds 2, but there are cases where it cannot be specifically quantified.
本発明の放熱板が主に適用される半導体パッケージは、半導体が作動と休止を繰り返すことから、常温(寒冷地の場合には−50℃程度の場合もある)から半導体作動時の200℃程度までの昇温を繰り返す。このため放熱板は、熱疲労対応のために熱膨張率が低いことが必要である。また、ロウ付け接合を行う用途では800℃程度、はんだ付け接合を行う用途では400℃程度までの熱膨張率が低いことが重要である。一方、放熱板は、高い放熱性を得るために高い熱伝導率、特に板厚方向での高い熱伝導率を有することが必要である。
本発明の放熱板は、高熱伝導率と低熱膨張率を兼ね備えた優れた熱特性を有するものであるが、具体的には、板厚方向での熱伝導率(室温での熱伝導率)が200W/m・K以上であることが好ましく、250W/m・K以上であることがより好ましい。また、50℃から800℃までの板面内平均熱膨張率が10.0ppm/K以下であることが好ましく、8.0ppm/K以下であることがより好ましい。
Since the semiconductor package to which the heat sink of the present invention is mainly applied repeats the operation and the rest of the semiconductor, it is from room temperature (may be about −50 ° C. in a cold region) to about 200 ° C. during semiconductor operation. Repeat until the temperature rises. For this reason, the heat sink needs to have a low coefficient of thermal expansion in order to cope with thermal fatigue. In addition, it is important that the thermal expansion coefficient is as low as about 800 ° C. for use in brazing and about 400 ° C. for use in soldering. On the other hand, the heat sink needs to have a high thermal conductivity, in particular, a high thermal conductivity in the thickness direction in order to obtain high heat dissipation.
Although the heat sink of the present invention has excellent thermal characteristics that have both high thermal conductivity and low thermal expansion coefficient, specifically, the thermal conductivity in the plate thickness direction (thermal conductivity at room temperature) is It is preferably 200 W / m · K or more, and more preferably 250 W / m · K or more. Moreover, it is preferable that the plate | board surface average thermal expansion coefficient from 50 degreeC to 800 degreeC is 10.0 ppm / K or less, and it is more preferable that it is 8.0 ppm / K or less.
本発明の放熱板は、防食目的や他の部材との接合(ロウ付け接合やはんだ付け接合)のために、その表面にNiめっきなどのめっきを施してもよい。この場合、めっき皮膜は放熱板の熱特性に大きく影響しない程度の膜厚で形成される。めっきの種類に特別な制限はなく、例えば、Niめっき、Auめっき、Agめっきなどが適用でき、これらの中から選ばれるめっきを単独で或いは2層以上を組み合わせて施すことができる。めっき皮膜は、放熱板の片面(最外層である両Cu層のうちの一方の表面)のみに設けてもよいし、放熱板の両面に設けてもよい。
なお、放熱板の材質によっては、放熱板表面にNiめっきなどのめっきを施す際のめっき性の改善のために、その下地としてCuめっきを施す場合があるが、本発明の放熱板は、最外層がCu層であるため、そのような下地めっきを施す必要はない。
The heat sink of the present invention may be plated with Ni plating or the like on the surface thereof for the purpose of anticorrosion or for joining with other members (brazing joining or soldering joining). In this case, the plating film is formed with a thickness that does not significantly affect the thermal characteristics of the heat sink. There is no special restriction | limiting in the kind of plating, For example, Ni plating, Au plating, Ag plating etc. can be applied, and plating chosen from these can be given individually or in combination of 2 or more layers. A plating film may be provided only on one side (one surface of both Cu layers which are outermost layers) of a heat sink, and may be provided on both surfaces of a heat sink.
Depending on the material of the heat sink, Cu plating may be applied as the base for improving the plating property when plating such as Ni plating on the surface of the heat sink. Since the outer layer is a Cu layer, it is not necessary to perform such base plating.
次に、以上述べた本発明の放熱板の製造方法について説明する。
本発明の放熱板の製造方法の一実施形態では、Cuマトリクス中にMo相が分散した板厚断面組織を有するCu−Mo複合材(a)とCu材(b)を積層させ、この積層体を拡散接合した後、冷間圧延(x)を施すことにより、Cu−Mo複合材(a)によるCu−Mo複合体層とCu材(b)によるCu層が積層した放熱板を得る。ここで、Cu−Mo複合材(a)は予め製作されたものであるが、このCu−Mo複合材(a)は圧延を行わない方法(例えば、後述する(i)〜(iii)の方法)で製作したものでもよいし、圧延(y)を行う方法(例えば、後述する(iv)、(v)の方法)で製作したものでもよい。
また、本発明の放熱板の製造方法の他の実施形態では、Cu−Mo複合材(a)のCu含有量が比較的低い場合に、冷間圧延による耳ワレなどを防止するために下記(1)又は/及び(2)の温間圧延を行う。なお、この製造方法については、後に詳述する。
(1)冷間圧延(x)に代えて温間圧延を行う。
(2)圧延(y)を温間圧延で行う。
Next, the manufacturing method of the heat sink of the present invention described above will be described.
In one embodiment of the heat sink manufacturing method of the present invention, a Cu-Mo composite material (a) and a Cu material (b) having a plate thickness cross-sectional structure in which a Mo phase is dispersed in a Cu matrix are stacked, and this stacked body. Then, cold rolling (x) is performed to obtain a heat sink in which a Cu—Mo composite layer made of Cu—Mo composite (a) and a Cu layer made of Cu material (b) are laminated. Here, the Cu-Mo composite material (a) is manufactured in advance, but this Cu-Mo composite material (a) is a method in which rolling is not performed (for example, the methods (i) to (iii) described later). ) Or a method of rolling (y) (for example, methods (iv) and (v) described later).
Moreover, in other embodiment of the manufacturing method of the heat sink of this invention, when Cu content of Cu-Mo composite material (a) is comparatively low, in order to prevent the crack by cold rolling, etc. Perform warm rolling of 1) and / or (2). This manufacturing method will be described in detail later.
(1) Perform warm rolling instead of cold rolling (x).
(2) Rolling (y) is performed by warm rolling.
Cu−Mo複合材(a)とCu材(b)の厚さは、製造しようとする放熱板のCu−Mo複合体層とCu層の厚さに応じて適宜選択される。
なお、Cu−Mo複合材(a)とCu材(b)は、それぞれ単体の板材で構成してもよいが、Cu−Mo複合材(a)を積層した複数枚の薄いCu−Mo複合材(単位Cu−Mo複合材(au))で構成してもよいし、Cu材(b)を積層した複数枚の薄いCu材(単位Cu材(bu))で構成してもよい。これは、Cu−Mo複合材やCu材は圧延の圧下率を大きくした場合に薄くなる可能性があるためである。したがって、その場合には、(1)複数枚の単位Cu−Mo複合材(au)からなるCu−Mo複合材(a)と単体のCu材(b)を積層させる、(2)単体のCu−Mo複合材(a)と複数枚の単位Cu材(bu)からなるCu材(b)を積層させる、(3)複数枚の単位Cu−Mo複合材(au)からなるCu−Mo複合材(a)と複数枚の単位Cu材(bu)からなるCu材(b)を積層させる、のいずれかによる積層体とし、この積層体を拡散接合する。
The thicknesses of the Cu—Mo composite material (a) and the Cu material (b) are appropriately selected according to the thicknesses of the Cu—Mo composite layer and the Cu layer of the heat sink to be manufactured.
In addition, although Cu-Mo composite material (a) and Cu material (b) may each be comprised with a single board | plate material, several thin Cu-Mo composite material which laminated | stacked Cu-Mo composite material (a) was used. (Unit Cu-Mo composite material (a u )) may be used, or a plurality of thin Cu materials (unit Cu material (b u )) in which the Cu material (b) is stacked may be used. This is because the Cu—Mo composite material and the Cu material may be thin when the rolling reduction ratio is increased. Therefore, in that case, (1) the Cu—Mo composite material (a) composed of a plurality of unit Cu—Mo composite materials (a u ) and the single Cu material (b) are laminated, A Cu-Mo composite material (a) and a Cu material (b) made of a plurality of unit Cu materials (b u ) are laminated, and (3) Cu— made of a plurality of unit Cu-Mo composite materials (a u ). A laminate is formed by either laminating the Mo composite (a) and the Cu material (b) made of a plurality of unit Cu materials (b u ), and the laminate is diffusion-bonded.
ここで、上記のようにCu−Mo複合材(a)を積層した複数枚の単位Cu−Mo複合材(au)で構成する場合、単位Cu−Mo複合材(au)どうしの接合性を高めるために、複数枚の単位Cu−Mo複合材(au)をCu薄板(Cu箔の場合を含む)を介して積層させ(すなわち、各単位Cu−Mo複合材(au)間に薄いCu板を介装する)、このCu薄板を介して拡散接合することが好ましい。上述した放熱板のCu−Mo複合体層中の接合用のCu層は、そのCu薄板が圧延によりさらに薄く延伸されたものである。したがって、このCu薄板は、放熱板のCu−Mo複合体層中の接合用のCu層の厚さが75μm以下(より好ましくは25μm以下)となるような厚さのものが好ましい。
積層体の拡散接合を行う方法に特に制限はないが、放電プラズマ焼結(SPS)、ホットプレスによる拡散接合が好ましい。
Cu−Mo複合材(a)は、下記のようなものを用いることができる。また、Cu材(b)としては、通常、純Cu板(純Cu箔を含む)を用いる。
Here, when configuring in Cu-Mo composite material as described above plurality of unit Cu-Mo composite material obtained by laminating (a) (a u), the unit Cu-Mo composite material (a u) if and bondability In order to increase the thickness, a plurality of unit Cu—Mo composite materials (a u ) are laminated via Cu thin plates (including the case of Cu foil) (that is, between each unit Cu—Mo composite material (a u )). A thin Cu plate is interposed), and diffusion bonding is preferably performed through this Cu thin plate. The Cu layer for joining in the Cu-Mo composite layer of the heat sink described above is obtained by further thinning the Cu thin plate by rolling. Therefore, this Cu thin plate is preferably of such a thickness that the thickness of the bonding Cu layer in the Cu—Mo composite layer of the heat radiating plate is 75 μm or less (more preferably 25 μm or less).
Although there is no restriction | limiting in particular in the method of performing the diffusion bonding of a laminated body, The diffusion bonding by discharge plasma sintering (SPS) and hot press is preferable.
The following can be used for the Cu-Mo composite material (a). Further, as the Cu material (b), a pure Cu plate (including a pure Cu foil) is usually used.
さきに述べたように、Cu−Mo複合材は、圧延することにより熱膨張率が低下することが定性的に知られており、従来技術でもCu−Mo複合材の圧延が行われているが、Mo粒子は硬くて1次粒子が小さいことから、圧延で変形されにくいと考えられており、このためCu−Mo複合材の圧延は、専ら200〜400℃程度の温間圧延で実施されている。また、65mass%Mo−35mass%Cu複合材について二次圧延で冷間圧延を実施する方法も提案されているが、一次圧延では温間圧延を行っている。 As described above, it is qualitatively known that the Cu-Mo composite material has a reduced coefficient of thermal expansion by rolling, and the Cu-Mo composite material is also rolled in the prior art. Since the Mo particles are hard and the primary particles are small, it is considered that the Mo particles are difficult to be deformed by rolling. For this reason, the rolling of the Cu—Mo composite material is performed exclusively by warm rolling at about 200 to 400 ° C. Yes. Moreover, although the method of implementing cold rolling by secondary rolling about 65 mass% Mo-35mass% Cu composite material is also proposed, warm rolling is performed by primary rolling.
しかし、以上のような従来の認識とこれに基づく製造方法に対して、Cu−Mo複合材(特にCu含有量がそれほど低くないCu−Mo複合材)の圧延を温間圧延で行うと、Mo粒子の変形が適切に進まないため熱膨張率を低下させる効果が乏しいこと、これに対して圧延を冷間圧延で行うと、Mo粒子の変形が適切に進行して熱膨張率が効果的に低下することが判った。また、Cu−Mo複合材のCu含有量が比較的低い(例えば20質量%未満)場合は、冷間圧延を行うと圧下率によっては耳ワレなどを生じるおそれがあるため、一部又は全部の圧延を温間圧延とした方がよい場合があるが、Cu含有量が20質量%以上で且つ圧下率が極端に高くない場合は、Cu−Mo複合材の圧延を冷間圧延だけで行っても、大きな耳ワレが生じることもなく良好な圧延板が得られることが判った。このように温間圧延と冷間圧延でMo粒子の塑性変形形態が大きく異なるのは、次のような理由によるものと考えられる。 However, in contrast to the conventional recognition as described above and the manufacturing method based thereon, when rolling of Cu—Mo composite material (particularly Cu—Mo composite material with a Cu content not so low) is performed by warm rolling, Mo Since the deformation of the particles does not proceed properly, the effect of reducing the coefficient of thermal expansion is poor. On the other hand, when rolling is performed by cold rolling, the deformation of the Mo particles proceeds appropriately and the coefficient of thermal expansion is effectively improved. It turns out that it falls. In addition, when the Cu content of the Cu-Mo composite material is relatively low (for example, less than 20% by mass), when cold rolling is performed, there is a risk of causing cracks or the like depending on the rolling reduction. In some cases, it is better to make the rolling warm. However, when the Cu content is 20% by mass or more and the rolling reduction is not extremely high, the Cu-Mo composite material is rolled only by cold rolling. However, it was found that a good rolled sheet can be obtained without causing large cracks. Thus, it is thought that the reason why the plastic deformation mode of the Mo particles is greatly different between the warm rolling and the cold rolling is as follows.
Cu−Mo複合材を圧延した場合、MoとCuの降伏応力の違いから、圧延初期には、Mo粒子は変形するよりも、Cuマトリックス内での相対位置を変化させ、圧延が進んで板厚方向でMo粒子どうしが接触していくと変形を生じる傾向にある。冷間圧延では、Cuの加工硬化が生じることから、圧延の進行に伴ってMo粒子をCu相により変形させることができるようになっていき、このためMo粒子の変形が適切に進行するものと考えられる。これに対して、温間圧延ではMo粒子のCuマトリックス内での相対位置変化がより容易となり、Cuの加工硬化も生じにくいため、冷間圧延に較べてMo粒子をCu相によって変形させる作用が十分に得られず、このためMo粒子の変形が適切に進行しないものと考えられる。 When rolling a Cu-Mo composite, due to the difference in yield stress between Mo and Cu, at the initial stage of rolling, the Mo particles are not deformed, but the relative position in the Cu matrix is changed, and the rolling progresses and the plate thickness is increased. When the Mo particles come into contact with each other in the direction, the deformation tends to occur. In cold rolling, work hardening of Cu occurs, so that Mo particles can be deformed by the Cu phase as the rolling progresses, and therefore the deformation of Mo particles proceeds appropriately. Conceivable. On the other hand, since the relative position change of the Mo particles in the Cu matrix becomes easier in the warm rolling and the work hardening of Cu is less likely to occur, the action of deforming the Mo particles by the Cu phase is less than that in the cold rolling. Therefore, it is considered that the deformation of the Mo particles does not proceed properly.
このようなCu−Mo複合材におけるMo粒子の塑性変形形態の違いは、Cu−Mo複合材のCu含有量が多くなるほど顕著になる。これは、温間圧延ではCuの加工硬化を利用できないことに加えて、Cuが多い分、Mo粒子がCuマトリックス内で相対位置を変化させやすくなるのに対して、冷間圧延では、Cuが多い分、Cuの加工硬化の影響をより多く受けるためであると考えられる。Cuは熱伝導率が高いが熱膨張率も高いため、Cu−Mo複合材のCu含有量が多くなると熱膨張率の面で問題を生じやすいが、所定の高圧下率で冷間圧延を行うことにより、Cu−Mo複合材の熱膨張率を効果的に低下させることができることが判った。また、後述するように、圧延の一部に温間圧延を取り入れ、冷間圧延と温間圧延を併用する場合でも、その冷間圧延により熱膨張率の低下効果が期待できる。
また、Cu−Mo複合材のCu含有量が比較的少ない場合(例えば、Cu含有量30%質量以下)でも、その程度は相対的に小さくなるものの、上記と同様の効果が得られる。一方、Cu−Mo複合材のCu含有量が比較的少ない場合には、上述したようにMoによる拘束が強化されるので、この面からの熱膨張率の低下効果が期待できる。
The difference in the plastic deformation mode of Mo particles in such a Cu-Mo composite becomes more prominent as the Cu content of the Cu-Mo composite increases. In addition to the fact that the work hardening of Cu cannot be used in warm rolling, the amount of Cu tends to change the relative position in the Cu matrix, while in the cold rolling, the Cu is not easily used. This is considered to be due to the greater influence of Cu work hardening. Cu has a high thermal conductivity but also a high coefficient of thermal expansion. Therefore, if the Cu content of the Cu-Mo composite is increased, a problem is likely to occur in terms of the coefficient of thermal expansion, but cold rolling is performed at a predetermined high pressure ratio. Thus, it was found that the coefficient of thermal expansion of the Cu—Mo composite material can be effectively reduced. In addition, as will be described later, even when warm rolling is incorporated in a part of rolling and cold rolling and warm rolling are used in combination, the effect of lowering the thermal expansion coefficient can be expected by the cold rolling.
Further, even when the Cu content of the Cu—Mo composite material is relatively small (for example, Cu content of 30% or less), the same effect as described above can be obtained although the degree thereof is relatively small. On the other hand, when the Cu content of the Cu—Mo composite material is relatively small, since the constraint by Mo is strengthened as described above, the effect of reducing the thermal expansion coefficient from this surface can be expected.
Cu−Mo複合材(a)は事前に製作されるものであるが、Cu−Mo複合材(a)としては、例えば、下記(i)〜(iii)のいずれかの方法で得られたものを用いることができる。
(i)Mo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程を経て得られたCu−Mo複合材(a)
(ii)Mo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体を緻密化処理する工程を経て得られたCu−Mo複合材(a)
(iii)Mo粉末又はMo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体に非酸化性雰囲気中又は真空中で溶融したCuを含浸させる工程を経て得られたCu−Mo複合材(a)
The Cu-Mo composite material (a) is manufactured in advance, but as the Cu-Mo composite material (a), for example, one obtained by any of the following methods (i) to (iii) Can be used.
(I) through a step of pressing a mixed powder of Mo powder and Cu powder to form a green compact, and a step of sintering the green compact in a reducing atmosphere or vacuum to form a sintered body Obtained Cu-Mo composite (a)
(Ii) a step of pressing a mixed powder of Mo powder and Cu powder into a green compact, a step of sintering the green compact in a reducing atmosphere or vacuum to form a sintered body, Cu-Mo composite material (a) obtained through the step of densifying the sintered body
(Iii) A step of pressure-molding Mo powder or a mixed powder of Mo powder and Cu powder to form a green compact, and sintering the green compact in a reducing atmosphere or vacuum to obtain a sintered body Cu-Mo composite material (a) obtained through a process and a process of impregnating the sintered body with Cu melted in a non-oxidizing atmosphere or in a vacuum
以上の(i)〜(iii)のいずれかの方法で得られたCu−Mo複合材(a)は、冷間圧延が施されていないため、クラッド材の冷間圧延(x)では、圧下率70〜99%、より好ましくは80〜99%、特に好ましくは90〜96%で圧延することが望ましい。この圧下率はCu−Mo複合材(a)の圧下率でもある。このように高圧下率で冷間圧延することにより熱膨張率を低下させる効果が得られ、また、圧下率が過剰に高いと熱伝導率が低下する傾向があるため、圧下率の上限を99%、好ましくは96%とすることにより、熱伝導率の低下を抑制しつつ熱膨張率を効果的に低下させることができる。冷間圧延(x)は複数パスで実施される。
冷間圧延(x)は、一方向圧延としてもよいが、板面内で直交する2方向(X軸方向、Y軸方向)間の熱膨張率の差を小さくして面内異方性を減ずるために、直交する2方向で圧延を行うクロス圧延を行ってもよい。ここで、直交する2方向での圧延は、異なる圧下率で行ってもよいが、X軸方向とY軸方向で熱膨張率差のない均一な熱特性を有する圧延板を得たい場合には、同じ圧下率で圧延するのが好ましい。
Since the Cu-Mo composite material (a) obtained by any one of the above methods (i) to (iii) is not cold-rolled, the cold rolling (x) of the clad material is a reduction. It is desirable to roll at a rate of 70 to 99%, more preferably 80 to 99%, particularly preferably 90 to 96%. This rolling reduction is also the rolling reduction of the Cu—Mo composite material (a). Thus, the effect of lowering the thermal expansion coefficient is obtained by cold rolling at a high pressure reduction rate, and if the reduction rate is excessively high, the thermal conductivity tends to decrease. %, Preferably 96%, it is possible to effectively reduce the thermal expansion coefficient while suppressing a decrease in thermal conductivity. Cold rolling (x) is performed in multiple passes.
Cold rolling (x) may be unidirectional rolling, but the in-plane anisotropy is reduced by reducing the difference in coefficient of thermal expansion between two directions (X-axis direction and Y-axis direction) orthogonal to each other in the plate surface. In order to reduce, cross rolling which performs rolling in two orthogonal directions may be performed. Here, rolling in two orthogonal directions may be performed at different reduction ratios, but when it is desired to obtain a rolled sheet having uniform thermal characteristics with no difference in thermal expansion coefficient between the X-axis direction and the Y-axis direction. It is preferable to roll at the same rolling reduction.
また、Cu−Mo複合材(a)としては、下記(iv)又は(v)の方法で得られたものを用いてもよい。
(iv)Mo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体を緻密化処理する工程と、前記緻密化処理されたCu−Mo複合材に圧延(y)を施す工程を経て得られたCu−Mo複合材(a)
(v)Mo粉末又はMo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体に非酸化性雰囲気中又は真空中で溶融したCuを含浸させる工程と、前記Cuを含浸させたCu−Mo複合材に圧延(y)を施す工程を経て得られたCu−Mo複合材(a)
Moreover, as a Cu-Mo composite material (a), you may use what was obtained by the method of the following (iv) or (v).
(Iv) a step of pressing a mixed powder of Mo powder and Cu powder into a green compact, a step of sintering the green compact in a reducing atmosphere or vacuum to form a sintered body, Cu-Mo composite material (a) obtained through a step of densifying the sintered body and a step of rolling (y) the densified Cu-Mo composite material
(V) A step of pressure-molding Mo powder or a mixed powder of Mo powder and Cu powder to form a green compact, and sintering the green compact in a reducing atmosphere or vacuum to obtain a sintered body Obtained through a step, a step of impregnating the sintered body with Cu melted in a non-oxidizing atmosphere or in a vacuum, and a step of rolling (y) the Cu-Mo composite material impregnated with Cu. Cu-Mo composite (a)
圧延(y)は冷間圧延で行うことできる。Cu−Mo複合材(a)のCu含有量が30質量%以下の場合も圧延(y)を冷間圧延で行うことができるが、場合によっては温間圧延で行ってもよい。また、圧延(y)は、一方向圧延としてもよいが、板面内で直交する2方向(X軸方向、Y軸方向)間の熱膨張率の差を小さくして面内異方性を減ずるために、直交する2方向で圧延を行うクロス圧延を行ってもよい。ここで、直交する2方向での圧延は、異なる圧下率で行ってもよいが、X軸方向とY軸方向で熱膨張率差のない均一な熱特性を有するCu−Mo複合材(a)を得たい場合には、同じ圧下率で圧延するのが好ましい。 Rolling (y) can be performed by cold rolling. Even when the Cu content of the Cu-Mo composite material (a) is 30% by mass or less, the rolling (y) can be performed by cold rolling, but in some cases, it may be performed by warm rolling. The rolling (y) may be unidirectional rolling, but the in-plane anisotropy is reduced by reducing the difference in thermal expansion coefficient between two directions (X-axis direction and Y-axis direction) orthogonal to each other in the plate surface. In order to reduce, cross rolling which performs rolling in two orthogonal directions may be performed. Here, the rolling in the two orthogonal directions may be performed at different reduction ratios, but the Cu—Mo composite material (a) having uniform thermal characteristics with no difference in thermal expansion coefficient between the X-axis direction and the Y-axis direction. When it is desired to obtain the same, it is preferable to roll at the same rolling reduction.
以上の(iv)又は(v)の方法で得られたCu−Mo複合材(a)は、圧延(y)が施されているため、クラッド材の冷間圧延(x)では、冷間圧延(x)と圧延(y)を合わせたCu−Mo複合材(a)の総圧下率が70〜99%、より好ましくは80〜99%、特に好ましくは90〜96%となるような圧下率で圧延することが望ましい。その理由は上記と同様である。また、上述したクロス圧延と同様に理由から、圧延(y)でCu−Mo複合材(a)を一方向圧延した場合には、冷間圧延(x)では、Cu−Mo複合材を圧延(y)の圧延方向と直交する方向に圧延してもよい。 Since the Cu-Mo composite material (a) obtained by the above method (iv) or (v) is subjected to rolling (y), cold rolling (x) of the clad material is cold rolling. The total rolling reduction of the Cu-Mo composite (a) combining (x) and rolling (y) is 70 to 99%, more preferably 80 to 99%, and particularly preferably 90 to 96%. It is desirable to roll at. The reason is the same as above. For the same reason as the above-described cross rolling, when the Cu—Mo composite material (a) is unidirectionally rolled by rolling (y), the cold rolling (x) is performed by rolling the Cu—Mo composite material ( You may roll in the direction orthogonal to the rolling direction of y).
また、本発明の放熱板の製造において、Cu−Mo複合材(a)のCu含有量が比較的低い場合には、材料の総圧下率にもよるが、冷間圧延による耳ワレなどを防止するために、温間圧延を取り入れた製造方法(但し、Cu−Mo複合材(a)の圧延(y)を行わない製造方法を含む。)とすることが好ましく、この製造方法では、例えば、次のような条件で温間圧延を行うことが好ましい。
すなわち、材料の総圧下率(Cu−Mo複合材単体での圧下率とクラッド材圧延時のCu−Mo複合材の圧下率を合わせた総圧下率)が70%以上であって、Cu−Mo複合材(a)のCu含有量が20mass%未満の場合には、下記(1)又は/及び(2)の温間圧延を行うことが好ましく、特にCu含有量が15mass%以下の場合には、下記(1)及び(2)の温間圧延を行うことが好ましい。また、Cu−Mo複合材(a)のCu含有量が20〜30mass%であって、材料の総圧下率が特に高い場合(例えば総圧下率96%以上)にも、下記(1)又は/及び(2)の温間圧延を行うことが好ましい。
(1)上記冷間圧延(x)に代えて温間圧延を行う。
(2)上記圧延(y)を温間圧延で行う。
Moreover, in the manufacture of the heat sink of the present invention, when the Cu content of the Cu-Mo composite (a) is relatively low, it prevents cracks caused by cold rolling depending on the total rolling reduction of the material. Therefore, it is preferable to use a production method incorporating warm rolling (however, including a production method in which the rolling (y) of the Cu-Mo composite (a) is not performed). In this production method, for example, It is preferable to perform warm rolling under the following conditions.
That is, the total reduction ratio of the material (total reduction ratio combining the reduction ratio of the Cu-Mo composite alone and the reduction ratio of the Cu-Mo composite during rolling of the clad material) is 70% or more, and the Cu-Mo When the Cu content of the composite (a) is less than 20 mass%, it is preferable to perform the following (1) or / and (2) warm rolling, particularly when the Cu content is 15 mass% or less. The following (1) and (2) warm rolling is preferably performed. Even when the Cu content of the Cu-Mo composite (a) is 20 to 30 mass% and the total rolling reduction of the material is particularly high (for example, a total rolling reduction of 96% or more), the following (1) or / And it is preferable to perform the warm rolling of (2).
(1) In place of the cold rolling (x), warm rolling is performed.
(2) The rolling (y) is performed by warm rolling.
さきに述べたように、温間圧延ではMo粒子のCuマトリックス内での相対位置変化がより容易となり、Cuの加工硬化も生じにくいため、冷間圧延に較べてMo粒子をCu相によって変形させる作用が十分に得られず、圧延による熱膨張率の低下の割合が冷間圧延に較べて低くなる傾向にあるが、低Cu含有量のCu−Mo複合材の場合には、Mo粒子間距離が短くなることからCu相とMo粒子の相対位置変化が生じにくいため、Mo粒子が変形されやすく、このため上記のような条件で温間圧延を行っても、冷間圧延した場合と大差ない熱特性を有する放熱板が得られる。
温間圧延は200〜300℃程度の温度で行うことが好ましい。温間圧延の温度が300℃超では、Moが酸化して表面酸化物が生成しやすくなり、それが圧延中に剥離して製品の品質に悪影響を及ぼすなどの問題を生じやすい。
なお、上記(1)、(2)のいずれか一方の温間圧延を行う場合、Cu−Mo複合材(a)のCu含有量や厚さなどに応じて圧延性を考慮し、いずれか一方が選択される。
As described above, since the relative position change of the Mo particles in the Cu matrix becomes easier and the work hardening of Cu hardly occurs in the warm rolling, the Mo particles are deformed by the Cu phase as compared with the cold rolling. In the case of a Cu-Mo composite with a low Cu content, the distance between the Mo particles is not sufficient, and the rate of decrease in the coefficient of thermal expansion due to rolling tends to be lower than that in cold rolling. Since the relative position change between the Cu phase and the Mo particles is less likely to occur due to the shortened length of the Mo particles, the Mo particles are easily deformed. For this reason, even if warm rolling is performed under the above conditions, there is no great difference from the case of cold rolling. A heat sink having thermal properties is obtained.
The warm rolling is preferably performed at a temperature of about 200 to 300 ° C. When the temperature of the warm rolling exceeds 300 ° C., Mo is easily oxidized to form a surface oxide, which tends to cause problems such as peeling during rolling and adversely affecting product quality.
In addition, when performing the warm rolling of any one of the above (1) and (2), considering the rollability according to the Cu content or thickness of the Cu-Mo composite material (a), either one of them Is selected.
次に、Cu−Mo複合材(a)を得るための上記(i)〜(v)の方法の工程について説明する。
以下の説明において、Mo粉末又はMo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程を工程(A)、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程を工程(B)、前記焼結体に非酸化性雰囲気中又は真空中で溶融したCuを含浸させる工程を工程(C1)、前記焼結体を緻密化処理する工程を工程(C2)、Cu溶浸又は緻密化処理したCu−Mo複合材に圧延(y)を施す工程を工程(D)という。
Next, the steps of the methods (i) to (v) for obtaining the Cu—Mo composite material (a) will be described.
In the following description, the step of pressing the Mo powder or a mixed powder of Mo powder and Cu powder to form a green compact is the step (A), and the green compact is sintered in a reducing atmosphere or vacuum. The step of forming a sintered body is step (B), the step of impregnating the sintered body with Cu melted in a non-oxidizing atmosphere or vacuum is the step (C1), and the step of densifying the sintered body Step (C2), and the step of rolling (y) the Cu-Mo composite material subjected to Cu infiltration or densification treatment is referred to as Step (D).
工程(A)では、常法に従いMo粉末又はMo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする。上述したCu−Mo複合材(a)の製造方法では、圧粉体の焼結後にCuの溶浸を行う場合(工程(C1))と、圧粉体の焼結後にCuの溶浸を行うことなく、緻密化処理を行う場合(工程(C1))とがあるが、後者の場合には、Cu−Mo複合材(a)のCu含有量に見合う量のCu粉末を配合する。
Mo粉末やCu粉末の純度や粒径は特に限定しないが、通常、Mo粉末としては、純度が99.95質量%以上、FSSS平均粒径が1〜8μm程度のものが用いられる。また、Cu粉末としては、通常、電解銅粉やアトマイズ銅粉末などの純Cuであって、平均粒径D50が5〜50μm程度のものが用いられる。
In the step (A), Mo powder or a mixed powder of Mo powder and Cu powder is pressure-formed into a green compact according to a conventional method. In the manufacturing method of the Cu-Mo composite (a) described above, Cu is infiltrated after the green compact is sintered (step (C1)) and Cu is infiltrated after the green compact is sintered. In some cases, the densification treatment is performed (step (C1)). In the latter case, an amount of Cu powder corresponding to the Cu content of the Cu-Mo composite (a) is blended.
The purity and particle size of the Mo powder and Cu powder are not particularly limited. Usually, the Mo powder having a purity of 99.95% by mass or more and an FSSS average particle size of about 1 to 8 μm is used. The Cu powder is usually pure Cu such as electrolytic copper powder or atomized copper powder and has an average particle diameter D50 of about 5 to 50 μm.
工程(A)では、Mo粉末又はMo粉末とCu粉末の混合粉末を型に充填し、使用する混合粉末の充填性や圧粉体の成形密度の目標値に応じて圧力を調整しながら加圧成形し、圧粉体を得る。
工程(B)では、工程(A)で得られた圧粉体を還元性雰囲気(水素雰囲気など)中又は真空中で焼結して焼結体とする。この焼結も通常の条件で行えばよく、Mo粉末とCu粉末の混合粉末の圧粉体の場合には、900〜1050℃(好ましくは950〜1000℃)程度の温度で30〜1000分程度保持する条件で行うことが好ましい。また、Mo粉末の圧粉体の場合には、1100〜1400℃(好ましくは1200〜1300℃)程度の温度で30〜1000分程度保持する条件で行うことが好ましい。
In step (A), Mo powder or a mixed powder of Mo powder and Cu powder is filled into a mold, and pressure is adjusted while adjusting the pressure according to the target value of the filling property of the mixed powder to be used and the molding density of the green compact. Molding to obtain a green compact.
In the step (B), the green compact obtained in the step (A) is sintered in a reducing atmosphere (such as a hydrogen atmosphere) or in a vacuum to obtain a sintered body. This sintering may be performed under normal conditions. In the case of a green compact mixed powder of Mo powder and Cu powder, the temperature is about 900 to 1050 ° C. (preferably 950 to 1000 ° C.) for about 30 to 1000 minutes. It is preferable to carry out under the condition of holding. In the case of a Mo powder green compact, it is preferably carried out at a temperature of about 1100 to 1400 ° C. (preferably 1200 to 1300 ° C.) for about 30 to 1000 minutes.
工程(C1)では、工程(B)で得られた焼結体(多孔質体)に非酸化性雰囲気中又は真空中で溶融したCuを含浸(Cuの溶浸)させてCu−Mo複合材(a)を得る。この工程(C1)を行う場合には、Cu溶浸によって所望のCu含有量となる。
Cuの溶浸も通常の条件で行えばよい。例えば、焼結体の上面及び/又は下面にCu板やCu粉末を配置し、1083〜1300℃(好ましくは1150〜1250℃)程度の温度で20〜600分保持する。非酸化性雰囲気は特に限定しないが、水素雰囲気が好ましい。また、溶浸した後の加工性向上の観点からは、真空中で溶浸するのが好ましい。
In the step (C1), the sintered body (porous body) obtained in the step (B) is impregnated with Cu melted in a non-oxidizing atmosphere or vacuum (Cu infiltration) to form a Cu-Mo composite material. (A) is obtained. When this step (C1) is performed, a desired Cu content is obtained by Cu infiltration.
Infiltration of Cu may be performed under normal conditions. For example, a Cu plate or Cu powder is disposed on the upper surface and / or lower surface of the sintered body, and held at a temperature of about 1083 to 1300 ° C. (preferably 1150 to 1250 ° C.) for 20 to 600 minutes. The non-oxidizing atmosphere is not particularly limited, but a hydrogen atmosphere is preferable. Further, from the viewpoint of improving workability after infiltration, infiltration in a vacuum is preferable.
ここで、工程(B)と工程(C1)を順次行う場合に、工程(A)で得られた圧粉体にCu溶浸用のCu板やCu粉末を配置した状態で、まず焼結温度に加熱して工程(B)を実施し、しかる後、温度をCu溶浸温度まで上昇させて工程(C1)を実施するようにしてもよい。
なお、この工程(C1)で得られたCu−Mo複合材(溶浸体)は、次工程での冷間圧延に先立ち、表面に残留した余剰の純Cuを除去するために表面研削(例えば、フライス盤や砥石などによる表面研削加工)を施すことが好ましい。
Here, when the step (B) and the step (C1) are sequentially performed, a sintering temperature is first set in a state in which a Cu plate or Cu powder for Cu infiltration is arranged on the green compact obtained in the step (A). The step (B) may be carried out by heating to a temperature, and then the temperature may be raised to the Cu infiltration temperature to carry out the step (C1).
The Cu—Mo composite material (infiltrated) obtained in this step (C1) is subjected to surface grinding (for example, in order to remove excess pure Cu remaining on the surface prior to cold rolling in the next step. It is preferable to perform surface grinding using a milling machine or a grindstone.
また、工程(C1)に代えて行う工程(C2)では、工程(B)で得られた焼結体を緻密化処理してCu−Mo複合材(a)を得る。この場合、工程(B)の焼結後に、さらに温度を上げてCuを溶解する処理(1200〜1300℃程度で20〜120分程度保持する処理)を行った後、工程(C2)の緻密化処理を行ってもよい。
この緻密化処理には高い温度と圧力が必要であり、ホットプレス、放電プラズマ焼結(SPS)、加熱圧延などの方法で行うことができる。この緻密化処理により、焼結体中の空隙を減らし緻密化させ、相対密度を高める。
工程(D)では、Cu−Mo複合材(a)の熱膨張率を低下させることを目的として、工程(C1)又は(C2)で得られたCu−Mo複合材に所定の圧下率で圧延(y)を施す。
なお、工程(C1)又は(C2)で得られたCu−Mo複合材を圧延する前に、必要に応じて800〜1000℃程度の温度で均質化時効熱処理を施してもよい。
Moreover, in the process (C2) performed instead of the process (C1), the sintered body obtained in the process (B) is densified to obtain the Cu—Mo composite material (a). In this case, after the sintering in the step (B), the temperature is further raised to perform a treatment for dissolving Cu (treatment for holding at about 1200 to 1300 ° C. for about 20 to 120 minutes), and then densification in the step (C2). Processing may be performed.
This densification treatment requires high temperature and pressure, and can be performed by methods such as hot pressing, spark plasma sintering (SPS), and hot rolling. By this densification treatment, the voids in the sintered body are reduced and densified to increase the relative density.
In the step (D), the Cu-Mo composite material obtained in the step (C1) or (C2) is rolled at a predetermined reduction rate for the purpose of reducing the thermal expansion coefficient of the Cu-Mo composite material (a). (Y) is applied.
In addition, before rolling the Cu-Mo composite material obtained at the process (C1) or (C2), you may perform a homogenization aging heat processing at the temperature of about 800-1000 degreeC as needed.
本発明の放熱板は、冷間圧延又は温間圧延のままで、或いはさらに軟質化時効熱処理を施すことにより製品とすることができる。また、必要に応じて、半導体の台座としての使用を想定した耐食性及び電食に対する性能を向上させる目的で、表面にさらにNiめっきなどのめっきを施してもよい。この場合、めっき皮膜は放熱板の熱特性に大きく影響しない程度の膜厚で形成される。めっきの種類に特別な制限はなく、例えば、Niめっき、Auめっき、Agめっきなどが適用でき、これらの中から選ばれるめっきを単独で或いは2層以上を組み合わせて施すことができる。めっきは、放熱板の片面(最外層である両Cu層のうちの一方の表面)のみに施してもよいし、放熱板の両面に施してもよい。 The heat sink of the present invention can be made into a product by performing cold-rolling or warm-rolling, or by performing a softening aging heat treatment. Further, if necessary, the surface may be further subjected to plating such as Ni plating for the purpose of improving the corrosion resistance assumed to be used as a semiconductor pedestal and the performance against electric corrosion. In this case, the plating film is formed with a thickness that does not significantly affect the thermal characteristics of the heat sink. There is no special restriction | limiting in the kind of plating, For example, Ni plating, Au plating, Ag plating etc. can be applied, and plating chosen from these can be given individually or in combination of 2 or more layers. Plating may be performed only on one side (one surface of both Cu layers which are outermost layers) of a heat sink, or may be performed on both surfaces of a heat sink.
本発明の放熱板は、各種の半導体モジュールが備えるセラミックパッケージやメタルパッケージなどの半導体パッケージに好適に利用でき、高い放熱性と耐用性が得られる。特に、高熱伝導率でありながら、低い熱膨張率が800℃を超える高温に曝された後も保持されるので、接合温度が750℃以上と高くなるロウ付け接合を行なう用途などについても問題なく適用できる。 The heat sink of the present invention can be suitably used for semiconductor packages such as ceramic packages and metal packages provided in various semiconductor modules, and high heat dissipation and durability can be obtained. In particular, although it has a high thermal conductivity, a low thermal expansion coefficient is maintained even after being exposed to a high temperature exceeding 800 ° C., so there is no problem in applications such as brazing joining where the joining temperature is increased to 750 ° C. or higher. Applicable.
(1)Cu−Mo複合材の製造条件
Mo粉末(FSSS平均粒径:6μm)と純Cu粉末(平均粒径D50:5μm)を所定の割合で混合した混合粉末を型(50mm×50mm)に入れて加圧成形し、後工程の冷間圧延での圧下率に応じた厚さの圧粉体とした。この圧粉体を水素雰囲気中で焼結(1000℃、600分)して焼結体を得た。次いで、この焼結体の上面に純Cu板を置き、水素雰囲気中で1200℃に加熱(保持時間180分)して純Cu板を溶解させ、この溶解したCuを焼結体に含浸させることで、所定のCu含有量のCu−Mo複合材を得た。このCu−Mo複合材を、表面に残留するCuをフライス盤を用いて除去した後、所定の圧下率で一方向の圧延(y)(冷間圧延)を施し、Cu−Mo複合材を製作した。
(1) Manufacturing conditions of Cu-Mo composite material Mixed powder obtained by mixing Mo powder (FSSS average particle diameter: 6 μm) and pure Cu powder (average particle diameter D50: 5 μm) at a predetermined ratio into a mold (50 mm × 50 mm) The resulting green compact was pressed into a green compact having a thickness corresponding to the rolling reduction ratio in the subsequent cold rolling. The green compact was sintered (1000 ° C., 600 minutes) in a hydrogen atmosphere to obtain a sintered body. Next, a pure Cu plate is placed on the upper surface of the sintered body, heated to 1200 ° C. in a hydrogen atmosphere (holding time 180 minutes) to dissolve the pure Cu plate, and the sintered body is impregnated with the dissolved Cu. Thus, a Cu—Mo composite material having a predetermined Cu content was obtained. After removing Cu remaining on the surface using a milling machine, the Cu-Mo composite material was subjected to unidirectional rolling (y) (cold rolling) at a predetermined reduction rate to produce a Cu-Mo composite material. .
(2)各供試体の製造条件
(2.1)本発明例
上記のようにして得られた所定の板厚のCu−Mo複合材と純Cu板を、Cu/(Cu−Mo)/Cu/(Cu−Mo)/Cuの5層構造又はCu/(Cu−Mo)/Cu/(Cu−Mo)/Cu/(Cu−Mo)/Cuの7層構造に積層させ、この積層体を放電プラズマ焼結(SPS)装置(住友石炭鉱業(株)社製「DR.SINTER SPS-1050」)を用いて、950℃、18分保持、加圧力20MPaの条件で拡散接合させた。次いで、上記Cu−Mo複合材の圧延(y)(冷間圧延)と同じ圧下率で、圧延(y)の圧延方向と直交する方向に圧延(冷間圧延)し、本発明例の放熱板(板厚1mm)を製造した。
(2.2)比較例
Cu−Mo複合材と純Cu板をCu/(Cu−Mo)/Cuの3層構造とした以外は、本発明例と同一の条件で比較例の放熱板(板厚1mm)を製造した(比較例1、2、11)。
また、上記Cu−Mo複合材単体も比較例の放熱板(板厚1mm)とした(比較例3〜10、12〜14)。
(2) Manufacturing conditions for each specimen (2.1) Example of the present invention A Cu-Mo composite material and a pure Cu plate having a predetermined plate thickness obtained as described above were prepared as Cu / (Cu-Mo) / Cu / ( A five-layer structure of Cu-Mo) / Cu or a seven-layer structure of Cu / (Cu-Mo) / Cu / (Cu-Mo) / Cu / (Cu-Mo) / Cu is laminated, and this laminate is subjected to discharge plasma. Using a sintering (SPS) apparatus (“DR.SINTER SPS-1050” manufactured by Sumitomo Coal Mining Co., Ltd.), diffusion bonding was performed under the conditions of 950 ° C., holding for 18 minutes, and pressure of 20 MPa. Subsequently, the Cu-Mo composite material is rolled (cold rolled) in the direction orthogonal to the rolling direction of the rolled (y) at the same rolling reduction as the rolled (y) (cold rolled), and the heat sink of the present invention example (
(2.2) Comparative Example A heat radiating plate of a comparative example (plate thickness of 1 mm) under the same conditions as those of the present invention example except that the Cu-Mo composite material and the pure Cu plate have a three-layer structure of Cu / (Cu-Mo) / Cu. (Comparative Examples 1, 2, and 11).
Moreover, the said Cu-Mo composite material single-piece | unit was also used as the heat sink (plate thickness 1mm) of the comparative example (comparative examples 3-10, 12-14).
(3)熱特性の測定
各供試体について、板面内熱膨張率を押棒式変位検出法で測定し、50℃−400℃と50℃−800℃における各伸び量の差を温度差で割り算して、50℃から400℃までの板面内平均熱膨張率と50℃から800℃までの板面内平均熱膨張率を求めた。また、板厚方向の熱伝導率(室温での熱伝導率)をフラッシュ法で測定した。
(4)熱特性の評価
表1〜表6に、各供試体の熱特性を製造条件とともに示す。これによれば、比較例に較べて本発明例は板厚方向の熱伝導率が大幅に増加していることが判る。
(3) Measurement of thermal characteristics For each specimen, the coefficient of thermal expansion in the plate surface was measured by a push rod displacement detection method, and the difference in elongation between 50 ° C-400 ° C and 50 ° C-800 ° C was divided by the temperature difference. Then, the average in-plane thermal expansion coefficient from 50 ° C. to 400 ° C. and the average in-plane thermal expansion coefficient from 50 ° C. to 800 ° C. were determined. Further, the thermal conductivity in the plate thickness direction (thermal conductivity at room temperature) was measured by a flash method.
(4) Evaluation of thermal characteristics Tables 1 to 6 show the thermal characteristics of each specimen together with the manufacturing conditions. According to this, it can be seen that the thermal conductivity in the thickness direction of the present invention example is greatly increased compared to the comparative example.
Claims (30)
Cu−Mo複合体層は、Cuマトリクス中に扁平なMo相が分散した板厚断面組織を有し、
両面の最外層のCu層(1a)の厚さt1と中間層のCu層(1b)の厚さt2がt1≦t2を満足し、且つ両面の最外層のCu層(1a)の厚さt1と板厚Tがt1/T≦0.04を満足することを特徴とする放熱板。 In the plate thickness direction, Cu layers and Cu-Mo composite layers are alternately stacked to form three or more Cu layers and two or more Cu-Mo composite layers, and the outermost layers on both sides are Cu layers. A heat sink consisting of layers,
The Cu-Mo composite layer has a plate thickness cross-sectional structure in which a flat Mo phase is dispersed in a Cu matrix,
The outermost layer of the Cu layer of the double-sided thickness t 1 and the intermediate layer Cu layer of (1a) the thickness t 2 of the (1b) satisfies the t 1 ≦ t 2, and Cu layer of the outermost layer of double-sided (1a) radiator plate thickness t 1 and the thickness T of which satisfies the t 1 / T ≦ 0.04.
Cuマトリクス中にMo相が分散した板厚断面組織を有するCu−Mo複合材(a)とCu材(b)を積層させ、該積層体を拡散接合した後、冷間圧延(x)を施すことにより、Cu−Mo複合材(a)によるCu−Mo複合体層とCu材(b)によるCu層が積層した放熱板を得ることを特徴とする放熱板の製造方法。 A method of manufacturing a heat sink according to any one of claims 1 to 7
A Cu-Mo composite material (a) and a Cu material (b) having a plate-thickness cross-sectional structure in which a Mo phase is dispersed in a Cu matrix are laminated, and after the diffusion body is diffusion bonded, cold rolling (x) is performed. By this, the manufacturing method of the heat sink characterized by obtaining the heat sink with which the Cu-Mo composite layer by Cu-Mo composite material (a) and the Cu layer by Cu material (b) were laminated | stacked.
下記(1)又は/及び(2)の温間圧延を行うことを特徴とする請求項24に記載の放熱板の製造方法。
(1)冷間圧延(x)に代えて温間圧延を行う。
(2)圧延(y)を温間圧延で行う。 Cu content of Cu-Mo composite material (a) is less than 20 mass%, and the total rolling reduction of Cu-Mo composite material (a) combining cold rolling (x) and rolling (y) is 70% or more. A manufacturing method (including a manufacturing method in which the rolling (y) of the Cu—Mo composite material (a) is not performed),
The method for producing a heat sink according to claim 24 , wherein the warm rolling of (1) and / or (2) below is performed.
(1) Perform warm rolling instead of cold rolling (x).
(2) Rolling (y) is performed by warm rolling.
下記(1)又は/及び(2)の温間圧延を行うことを特徴とする請求項25に記載の放熱板の製造方法。
(1)冷間圧延(x)に代えて温間圧延を行う。
(2)圧延(y)を温間圧延で行う。 A manufacturing method in which the total rolling reduction of the Cu-Mo composite (a) obtained by combining the cold rolling (x) and the rolling (y) is 96% or more (provided that the rolling of the Cu-Mo composite (a) (y) Including a manufacturing method that does not perform
The method for manufacturing a heat sink according to claim 25 , wherein the warm rolling of (1) and / or (2) below is performed.
(1) Perform warm rolling instead of cold rolling (x).
(2) Rolling (y) is performed by warm rolling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018145822A JP6462172B1 (en) | 2018-08-02 | 2018-08-02 | Heat sink and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018145822A JP6462172B1 (en) | 2018-08-02 | 2018-08-02 | Heat sink and manufacturing method thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017222337A Division JP6455896B1 (en) | 2017-11-18 | 2017-11-18 | Heat sink and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6462172B1 true JP6462172B1 (en) | 2019-01-30 |
JP2019096860A JP2019096860A (en) | 2019-06-20 |
Family
ID=65229050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018145822A Active JP6462172B1 (en) | 2018-08-02 | 2018-08-02 | Heat sink and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6462172B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110465548A (en) * | 2019-08-22 | 2019-11-19 | 太原理工大学 | A kind of rolling mill practice of new composite strip |
JP6732395B1 (en) | 2019-08-29 | 2020-07-29 | Jfe精密株式会社 | Heat sink |
JP6784863B1 (en) * | 2020-04-28 | 2020-11-11 | Jfe精密株式会社 | Heat dissipation plate |
JP7507615B2 (en) | 2020-06-22 | 2024-06-28 | 株式会社オーク製作所 | Discharge lamp and method of manufacturing electrode for discharge lamp |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006060247A (en) * | 2005-10-03 | 2006-03-02 | Kyocera Corp | Heat dissipation substrate and its manufacturing method |
JP2006100640A (en) * | 2004-09-30 | 2006-04-13 | Hitachi Metals Ltd | Ceramic circuit board and power semiconductor module using same |
JP2007142126A (en) * | 2005-11-18 | 2007-06-07 | Allied Material Corp | Composite material, semiconductor-mounted heat dissipating board, and ceramic package using the same |
JP2008057032A (en) * | 2006-02-15 | 2008-03-13 | Jfe Seimitsu Kk | Cr-Cu ALLOY, MANUFACTURING METHOD THEREFOR, RADIATION PLATE FOR SEMICONDUCTOR AND RADIATION PARTS FOR SEMICONDUCTOR |
JP2011129880A (en) * | 2009-10-01 | 2011-06-30 | Jfe Seimitsu Kk | Heat sink for electronic device, and process for production thereof |
WO2016088687A1 (en) * | 2014-12-05 | 2016-06-09 | 株式会社半導体熱研究所 | Heat-dissipating substrate and method for manufacturing same |
JP2017028295A (en) * | 2014-05-29 | 2017-02-02 | 株式会社アライドマテリアル | Heat spreader and method for producing the same |
JP2017152606A (en) * | 2016-02-26 | 2017-08-31 | 京セラ株式会社 | Heat radiation substrate, semiconductor package using the same, and semiconductor module |
-
2018
- 2018-08-02 JP JP2018145822A patent/JP6462172B1/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006100640A (en) * | 2004-09-30 | 2006-04-13 | Hitachi Metals Ltd | Ceramic circuit board and power semiconductor module using same |
JP2006060247A (en) * | 2005-10-03 | 2006-03-02 | Kyocera Corp | Heat dissipation substrate and its manufacturing method |
JP2007142126A (en) * | 2005-11-18 | 2007-06-07 | Allied Material Corp | Composite material, semiconductor-mounted heat dissipating board, and ceramic package using the same |
JP2008057032A (en) * | 2006-02-15 | 2008-03-13 | Jfe Seimitsu Kk | Cr-Cu ALLOY, MANUFACTURING METHOD THEREFOR, RADIATION PLATE FOR SEMICONDUCTOR AND RADIATION PARTS FOR SEMICONDUCTOR |
JP2011129880A (en) * | 2009-10-01 | 2011-06-30 | Jfe Seimitsu Kk | Heat sink for electronic device, and process for production thereof |
JP2017028295A (en) * | 2014-05-29 | 2017-02-02 | 株式会社アライドマテリアル | Heat spreader and method for producing the same |
WO2016088687A1 (en) * | 2014-12-05 | 2016-06-09 | 株式会社半導体熱研究所 | Heat-dissipating substrate and method for manufacturing same |
JP2017152606A (en) * | 2016-02-26 | 2017-08-31 | 京セラ株式会社 | Heat radiation substrate, semiconductor package using the same, and semiconductor module |
Also Published As
Publication number | Publication date |
---|---|
JP2019096860A (en) | 2019-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6455896B1 (en) | Heat sink and manufacturing method thereof | |
JP6233677B1 (en) | Heat sink and manufacturing method thereof | |
JP6462172B1 (en) | Heat sink and manufacturing method thereof | |
WO2016035796A1 (en) | Heat dissipation member and method for producing heat dissipation member | |
JP5698947B2 (en) | Heat sink for electronic device and method for manufacturing the same | |
TW201701975A (en) | Bonded body, power module substrate with heat sink, heat sink and method of producing bonded body, method of producing power module substrate with heat sink and method of producing heat sink | |
TWI661516B (en) | Bonded body, power module substrate with heat sink, heat sink, method of producing bonded body, method of producing power module substrate with heat sink and method of producing heat sink | |
TW201325330A (en) | Wiring substrate and method for manufacturing same and semiconductor device | |
JP6446011B2 (en) | Copper alloy plate for heat dissipation parts and heat dissipation parts | |
JPH09312361A (en) | Composite material for electronic component and its manufacture | |
JP7440944B2 (en) | Composite materials and heat dissipation components | |
JPH06268117A (en) | Heat radiating substrate for semiconductor device and its manufacture | |
WO2021040030A1 (en) | Heat dissipation plate, semiconductor package and semiconductor module | |
JP6786090B2 (en) | Heat dissipation plate material | |
JP2018162518A (en) | Copper alloy sheet for vapor chamber and vapor chamber | |
JP6981846B2 (en) | Heat dissipation plate and its manufacturing method | |
WO2016167217A1 (en) | Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink | |
JP6784863B1 (en) | Heat dissipation plate | |
JPH09312364A (en) | Composite material for electronic component and its manufacture | |
JP2011066250A (en) | Heat sink and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180823 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20180823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180904 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20180829 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6462172 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |