JP6440349B2 - Rotating electric machine - Google Patents
Rotating electric machine Download PDFInfo
- Publication number
- JP6440349B2 JP6440349B2 JP2013185041A JP2013185041A JP6440349B2 JP 6440349 B2 JP6440349 B2 JP 6440349B2 JP 2013185041 A JP2013185041 A JP 2013185041A JP 2013185041 A JP2013185041 A JP 2013185041A JP 6440349 B2 JP6440349 B2 JP 6440349B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic flux
- permanent magnet
- rotor
- flux density
- rare earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000004907 flux Effects 0.000 claims description 80
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 30
- 150000002910 rare earth metals Chemical class 0.000 claims description 29
- 230000035699 permeability Effects 0.000 claims description 11
- 238000004804 winding Methods 0.000 claims description 8
- 230000004888 barrier function Effects 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims 2
- 238000003780 insertion Methods 0.000 description 15
- 230000037431 insertion Effects 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 230000005347 demagnetization Effects 0.000 description 7
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 4
- 230000002427 irreversible effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- AJCDFVKYMIUXCR-UHFFFAOYSA-N oxobarium;oxo(oxoferriooxy)iron Chemical compound [Ba]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O AJCDFVKYMIUXCR-UHFFFAOYSA-N 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
Description
本発明は、回転子に界磁源となる永久磁石を有する回転電機に関する。 The present invention relates to a rotating electrical machine having a permanent magnet as a field source in a rotor.
希土類永久磁石を使用した回転電機においては、永久磁石に鎖交する漏れ磁束によって生じる渦電流損により、効率の低下や磁石温度の増大といった課題があった。特にネオジム系の希土類永久磁石を用いた場合、150〜200℃の高温にさらされると不可逆減磁が生じるため、発熱源である渦電流損を低減することは重要な課題とされてきた。これに対し、永久磁石に発生する損失を低減するために回転子鉄心形状などが工夫されている。
一方、永久磁石を使用した回転電機においては、電機子巻線に流れる電流によって作られる反作用磁化による永久磁石の不可逆減磁が課題とされ、保磁力の異なる複数の永久磁石を1極あたりに配置することで解決を図ってきた。
In a rotating electrical machine using a rare earth permanent magnet, there are problems such as a reduction in efficiency and an increase in magnet temperature due to eddy current loss caused by leakage magnetic flux interlinking with the permanent magnet. In particular, when a neodymium-based rare earth permanent magnet is used, irreversible demagnetization occurs when exposed to a high temperature of 150 to 200 ° C. Therefore, it has been an important issue to reduce eddy current loss as a heat source. On the other hand, the rotor core shape and the like have been devised in order to reduce the loss generated in the permanent magnet.
On the other hand, in a rotating electrical machine using permanent magnets, irreversible demagnetization of the permanent magnets due to reaction magnetization created by the current flowing in the armature winding is a problem, and a plurality of permanent magnets having different coercive forces are arranged per pole. I have tried to solve it.
例えば、特開昭52−61712号公報(特許文献1)では、回転進み方向にバリウムフェライトマグネット、遅れ方向にストロンチウムフェライトマグネットという2種類の永久磁石を用いることで反作用磁界によって減磁しやすい回転方向遅れ側を減磁界に強い構成としている。 For example, in Japanese Patent Application Laid-Open No. 52-61712 (Patent Document 1), a rotation direction that is easy to demagnetize by a reaction magnetic field by using two types of permanent magnets, a barium ferrite magnet in the rotation advance direction and a strontium ferrite magnet in the delay direction. The delay side is configured to be strong against demagnetizing fields.
また、特開2009−38930号公報(特許文献2)では保磁力の低い永久磁石を両端から保磁力の高い永久磁石で挟み込む構成としている。 In JP 2009-38930 A (Patent Document 2), a permanent magnet having a low coercivity is sandwiched between permanent magnets from both ends.
しかしながら、永久磁石に鎖交する漏れ磁束と主磁束の経路は重複している場合が多く、鉄心形状により効果的に漏れ磁束のみを低減することは困難であった。 However, there are many cases where the paths of the leakage magnetic flux and the main magnetic flux interlinking with the permanent magnet overlap, and it is difficult to effectively reduce only the leakage magnetic flux due to the iron core shape.
また、複数種類の永久磁石組合せによって回転電機の特性を向上させるという点で、主に不可逆減磁を防止するために保磁力の観点からの先行技術は多く見られるものの、永久磁石に生じる渦電流損を低減する観点からの先行技術は見られない。 In addition, although there are many prior arts from the viewpoint of coercive force mainly to prevent irreversible demagnetization in terms of improving the characteristics of rotating electrical machines by combining multiple types of permanent magnets, eddy currents generated in permanent magnets There is no prior art from the viewpoint of reducing loss.
本発明が解決しようとする課題は、回転電機の回転子に配置された永久磁石に発生する渦電流損を低減し、効率を向上した回転電機を提供することにある。 The problem to be solved by the present invention is to provide a rotating electrical machine in which eddy current loss generated in a permanent magnet disposed in a rotor of the rotating electrical machine is reduced and efficiency is improved.
上記課題を解決するため、本発明は、回転子磁極1極を残留磁束密度の異なる2種類以上の複数個の希土類永久磁石で構成し、磁極中心から回転進み側と回転遅れ側で単位面積当たりの残留磁束密度が異なるように前記希土類永久磁石を配置した。 In order to solve the above-mentioned problems, the present invention is configured such that one rotor magnetic pole is composed of two or more types of rare earth permanent magnets having different residual magnetic flux densities, and per unit area from the magnetic pole center to the rotation advance side and the rotation delay side. The rare earth permanent magnets were arranged so that the residual magnetic flux densities of the magnets differed.
本発明によれば、回転電機の損失を低減し、効率を向上した回転電機を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the rotary electric machine which reduced the loss of the rotary electric machine and improved efficiency can be provided.
以下、本発明を適用した実施例について、図面に基づき説明する。本発明は回転電機の回転子に備えられた永久磁石に関するものであるから、以下の説明では、主に回転子の断面図を用いて説明する。図11は回転子に永久磁石を備える回転電機を周方向から見た断面図であり、1は回転子、2は回転子鉄心、3は固定子、4は固定子鉄心、5は固定子巻線、9はシャフト、10は永久磁石である。実施例の説明は主に図11中のA−A’断面において回転電機を見た軸方向断面図を用いる。 Embodiments to which the present invention is applied will be described below with reference to the drawings. Since the present invention relates to a permanent magnet provided in a rotor of a rotating electrical machine, the following description will be mainly made using a cross-sectional view of the rotor. FIG. 11 is a cross-sectional view of a rotating electrical machine having a permanent magnet on a rotor as viewed from the circumferential direction. 1 is a rotor, 2 is a rotor core, 3 is a stator, 4 is a stator core, and 5 is a stator winding. A wire, 9 is a shaft, and 10 is a permanent magnet. In the description of the embodiment, an axial sectional view of the rotary electric machine as viewed in the A-A ′ section in FIG. 11 is mainly used.
図2は本発明を適用した実施例1による回転電機の回転子を示す図である。また、図1は鉄心軸方向中央付近、すなわち図11中のA−A’断面において本実施例における回転電機を軸方向から見た断面図である。 FIG. 2 is a diagram showing a rotor of the rotating electrical machine according to the first embodiment to which the present invention is applied. FIG. 1 is a cross-sectional view of the rotating electrical machine according to the present embodiment viewed from the axial direction in the vicinity of the center in the axial direction of the iron core, that is, in the A-A ′ cross section in FIG. 11.
図2に示すように、本実施例における回転電機の回転子1は鋼板から打ち抜いたものを軸方向に複数積層して構成した回転子鉄心2とシャフト9(図11参照)、磁石挿入孔11に複数の永久磁石10(10a、10b)を挿入して構成される。永久磁石は磁石挿入孔11内に接着剤などを用いて固定され、必要に応じて樹脂製のスペーサなども用いられる。また、図1の断面図において、6は固定子スロット、7はエアギャップ、8は固定子鉄心ティース部である。
As shown in FIG. 2, the
図2において、本実施例は極数4の回転電機の例を示しており、1極分の界磁源として、周方向に2つ、軸方向に2つの計4つの永久磁石10が回転子鉄心2に設けられた磁石挿入孔11に配置される。この構成が回転方向に90°ずつ、計4つ対称に配置され、4極分の界磁源を構成している。回転方向は上方から見て反時計回りであり、回転進み側に残留磁束密度の高い希土類永久磁石10aを、回転遅れ側に残留磁束密度の低い希土類永久磁石10bを配置している。この時の永久磁石の保磁力は同等であっても良いし、減磁を防止する観点からいずれかに高い保持力のものを用いても良く、残留磁束密度を本実施例のように配置していれば、永久磁石中の渦電流損低減効果を得ることが出来る。
In FIG. 2, the present embodiment shows an example of a rotating electrical machine having 4 poles, and a total of four
なお、本実施例では、回転電機の回転方向である周方向には1極あたり複数の永久磁石を配置する必要があるが、軸方向については1つであっても良く、配置する数は回転電機の軸方向の全長や製作性などを鑑みて適切に選ぶのが良い。 In this embodiment, it is necessary to arrange a plurality of permanent magnets per pole in the circumferential direction, which is the rotation direction of the rotating electrical machine. However, the number of arrangement may be one in the axial direction. It is better to select appropriately in view of the overall length of the electric machine in the axial direction and manufacturability.
本実施例で示す永久磁石の配置によって永久磁石に生じる渦電流損が低減される原理を図3および図4を用いて説明する。 The principle by which the eddy current loss generated in the permanent magnet is reduced by the arrangement of the permanent magnet shown in this embodiment will be described with reference to FIGS.
図3は鉄心中の磁束密度と比透磁率の関係について説明した図であり、回転電機に用いられる代表的な電磁鋼板の特性を基に、鉄心に作用する磁束密度とその時の比透磁率について示したものである。回転電機の鉄心に用いられる電磁鋼板は、磁束密度が0から増加するにつれて比透磁率が増加し、1T前後で最大の透磁率を示した後、1T以上の領域では磁束密度の増加に伴って減少する。したがって、残留磁束密度が1T以上ある希土類永久磁石を用いた場合には、永久磁石近傍の鉄心の磁束密度が高いほど比透磁率は小さく、すなわち磁束は通りにくくなる。一方、残留磁束密度の小さい例えばフェライト磁石を用いた場合には、磁石近傍の鉄心においては磁束密度が高くなるにつれて比透磁率が高く、すなわち磁束が通りやすくなる。 FIG. 3 is a diagram for explaining the relationship between the magnetic flux density in the iron core and the relative magnetic permeability. Based on the characteristics of a typical electromagnetic steel sheet used in a rotating electrical machine, the magnetic flux density acting on the iron core and the relative magnetic permeability at that time. It is shown. The magnetic steel sheet used for the iron core of a rotating electrical machine increases in relative permeability as the magnetic flux density increases from 0, shows the maximum magnetic permeability around 1T, and increases with increasing magnetic flux density in the region of 1T or higher. Decrease. Therefore, when a rare earth permanent magnet having a residual magnetic flux density of 1 T or more is used, the higher the magnetic flux density of the iron core near the permanent magnet, the smaller the relative permeability, that is, the magnetic flux is difficult to pass. On the other hand, when, for example, a ferrite magnet having a small residual magnetic flux density is used, the relative permeability increases in the iron core near the magnet as the magnetic flux density increases, that is, the magnetic flux easily passes.
このため、図4に示すように、残留磁束密度の高い希土類永久磁石10aを配置した回転進み側は、回転遅れ側の残留磁束密度の低い希土類永久磁石10bに比べて、固定子鉄心ティース部8と固定子スロット6との磁気抵抗の差異に起因した磁束の脈動、すなわち、振幅が小さくなる。したがって、永久磁石に作用する漏れ磁束についてもその振幅が低減され、漏れ磁束に起因して永久磁石に生じる渦電流損も低減されることになる。言い換えれば、漏れ磁束の侵入が多い永久磁石近傍において、鉄心の比透磁率を低下させることで永久磁石に侵入する高調波磁束を低減でき、永久磁石に生じる渦電流損が低減される。
Therefore, as shown in FIG. 4, the stator
なお、一般的な希土類永久磁石の保磁力は500kA/m以上であり、上限としては現状の製品として約3000kA/mまでがある。本実施例で用いる希土類永久磁石としては、残留磁束密度1.0T以上、理論限界値1.6T、保磁力500kA/m以上が有効であり、残留磁束密度1.2T、保磁力1000kA/m前後が望ましい。 The coercive force of a general rare earth permanent magnet is 500 kA / m or more, and the upper limit is about 3000 kA / m as a current product. As the rare earth permanent magnet used in this embodiment, a residual magnetic flux density of 1.0 T or more, a theoretical limit value of 1.6 T, and a coercive force of 500 kA / m or more are effective, and a residual magnetic flux density of 1.2 T and a coercive force of around 1000 kA / m. Is desirable.
また、単純に残留磁束密度の高い磁石を用いた場合、誘起電圧が上がり、仕様の変更が生じてしまう。よって、誘起電圧の仕様を変えずに過電流損を低減する必要がある。そのために、回転子磁極1極を残留磁束密度の異なる2種類以上の複数個の磁石で構成し、全体の誘起電圧を調整する必要がある。 In addition, when a magnet having a high residual magnetic flux density is simply used, the induced voltage increases and the specification is changed. Therefore, it is necessary to reduce the overcurrent loss without changing the specification of the induced voltage. Therefore, it is necessary to adjust the overall induced voltage by configuring one pole of the rotor magnetic pole with two or more types of magnets having different residual magnetic flux densities.
図5は本実施例による電動機について、磁界解析により永久磁石の渦電流損を計算した結果である。解析における条件として、「従来」の構成では永久磁石の残留磁束密度を回転進み側、遅れ側とも同一の1.15Tとしてあり、「本発明」の構成では、永久磁石の残留磁束密度を回転進み側で+10%、遅れ側で−10%とした。磁極1極あたりの磁束量は同一であるから、電動機としての出力は同等であった。回転進み側の永久磁石の方が固定子から回転子への漏れ磁束が多く浸透するため、回転進み側の永久磁石で渦電流損が大きくなっている。これは、電動機として運転する場合、固定子側の固定子巻線に流れる電流が作る磁界の方が回転子の界磁に比べやや進んで回転しているためである。 FIG. 5 shows the result of calculating the eddy current loss of the permanent magnet by magnetic field analysis for the electric motor according to the present embodiment. As a condition in the analysis, in the “conventional” configuration, the residual magnetic flux density of the permanent magnet is 1.15 T, which is the same on both the rotation advance side and the delay side, and in the “invention” configuration, the residual magnetic flux density of the permanent magnet is rotationally advanced. + 10% on the side and -10% on the delay side. Since the amount of magnetic flux per magnetic pole is the same, the output as an electric motor is equivalent. The permanent magnet on the rotation advance side has more leakage flux from the stator to the rotor, so that the eddy current loss is larger on the permanent magnet on the rotation advance side. This is because when operating as an electric motor, the magnetic field created by the current flowing in the stator winding on the stator side rotates slightly ahead of the rotor field.
したがって、発電機として運転する場合には、図14に示すように、回転進み側に残留磁束密度の低い希土類永久磁石10bを、回転遅れ側に残留磁束密度の高い希土類永久磁石10aを配置して、本実施例と逆の構成を採ることで永久磁石に生じる渦電流損を低減することが出来る。
Therefore, when operating as a generator, as shown in FIG. 14, a rare earth
なお、発電機と電動機を兼用した発電/電動機の場合は、主として、発電機として運転するのか電動機として運転するのかにより、永久磁石の配置を決定すれば良い。 In the case of a generator / motor that uses both a generator and an electric motor, the arrangement of the permanent magnets may be determined mainly depending on whether the generator is operated as a generator or an electric motor.
また、以降の実施例において、特に断らない場合は、本回転電機は電動機として運転する場合を前提に説明している。 Further, in the following embodiments, unless otherwise specified, the description will be made on the assumption that the rotating electrical machine operates as an electric motor.
図5に示すように、従来の構成に対して本実施例の構成を用いると、永久磁石に生じる磁石渦電流損を低減することが出来る。なお、回転遅れ側の永久磁石においても損失が低減されているが、これは回転進み側の回転子鉄心における比透磁率が低下したことにより、固定子から回転子へ侵入する漏れ磁束自体が減少したためである。なお、本実施例では磁極数4、固定子のスロット数6の組合せの例を示したが、磁極数およびスロット数はこれ以外であっても良い。
As shown in FIG. 5, when the configuration of the present embodiment is used with respect to the conventional configuration, the magnet eddy current loss generated in the permanent magnet can be reduced. The loss is also reduced in the permanent magnet on the rotation delay side, but this is because the relative magnetic permeability in the rotor core on the rotation advance side is reduced, so that the leakage magnetic flux itself entering from the stator to the rotor is reduced. This is because. In this embodiment, the example of the combination of the number of
以上のように、本実施例では、回転子磁極1極を残留磁束密度の異なる2種類以上の複数個の希土類永久磁石で構成し、磁極中心から回転進み側と回転遅れ側で単位面積当たりの残留磁束密度が異なるように前記希土類永久磁石を配置した。これにより、永久磁石に生じる渦電流損を低減し、高効率で、回転電機内の温度を低減することが出来る回転電機を提供することができる。 As described above, in this embodiment, one pole of the rotor magnetic pole is composed of two or more types of rare earth permanent magnets having different residual magnetic flux densities, and per unit area on the rotation advance side and the rotation delay side from the magnetic pole center. The rare earth permanent magnets were arranged so that the residual magnetic flux densities were different. Thereby, the rotary electric machine which can reduce the eddy current loss which arises in a permanent magnet, can reduce the temperature in a rotary electric machine with high efficiency can be provided.
図6は実施例2による回転電機の回転子を示す図である。また、図7は本実例の変形例による回転電機の回転子を示す図である。 FIG. 6 is a diagram illustrating a rotor of a rotating electrical machine according to the second embodiment. FIG. 7 is a view showing a rotor of a rotating electrical machine according to a modification of this example.
本実施例では各磁極の界磁源として、周方向に2つ、軸方向に3つの計6つの永久磁石10が回転子鉄心2に設けられた磁石挿入孔11に配置される。この構成が回転方向に90°ずつ、計4つ対称に配置され、4極分の界磁源を構成している。
In this embodiment, six
回転方向は上方から見て反時計回りであり、図6では回転進み方向の永久磁石を全て残留磁束密度の高い希土類永久磁石10a、回転遅れ方向の永久磁石を全て残留磁束密度の低い希土類永久磁石10bで構成している。 The rotation direction is counterclockwise when viewed from above. In FIG. 6, all of the permanent magnets in the rotation advance direction have high residual magnetic flux density, and all of the permanent magnets in the rotation delay direction have low residual magnetic flux density. 10b.
永久磁石を軸方向に3つ以上配置する場合には、図6のように回転方向進み側全ての永久磁石を残留磁束密度の高い希土類永久磁石10a、回転遅れ側全ての永久磁石を残留磁束密度の低い希土類永久磁石10bから構成しても良いし、図7に示すように、回転方向進み側の永久磁石3つのうち2つを10a、1つを10bから構成し、回転方向遅れ側の永久磁石3つのうち2つを10b、1つを10aのように組合せても良い。
When three or more permanent magnets are arranged in the axial direction, as shown in FIG. 6, all of the permanent magnets on the rotational direction advance side are made of the rare earth
本実施例は磁極1極について磁極中心から回転進みあるいは遅れ側いずれかの単位面積当たり残留磁束密度が高くなるよう永久磁石を配置すれば効果を得ることが出来るため、本実施例で示したように複数の永久磁石を軸方向に配置する場合に保磁力など他の設計事項との調整から磁石を組合せた場合にも適用することができ、自由度が増加する。 In the present embodiment, the effect can be obtained if the permanent magnet is arranged so that the residual magnetic flux density per unit area on either the rotation advance side or the delay side is increased from the center of the magnetic pole for one magnetic pole. In addition, when a plurality of permanent magnets are arranged in the axial direction, the present invention can also be applied to a case where magnets are combined from adjustments with other design items such as coercive force, and the degree of freedom increases.
図8は実施例3による回転電機の回転子の軸方向断面図である。また、図9は本実施例の変形例による回転電機の回転子の軸方向断面図である。 FIG. 8 is an axial sectional view of the rotor of the rotating electrical machine according to the third embodiment. FIG. 9 is an axial sectional view of a rotor of a rotating electrical machine according to a modification of the present embodiment.
寸法が狭小な磁石挿入孔に周方向に2つ以上の磁石を配置する場合、相互の磁石間に接着剤等が行き渡らず、十分な保持強度を得られない可能性がある。永久磁石には出力の発生に伴って周方向、径方向に荷重が掛かり、保持強度が不十分な場合には、挿入孔内で永久磁石が振動して破損に繋がる。 When two or more magnets are arranged in the circumferential direction in a magnet insertion hole with a small size, adhesive or the like does not spread between the magnets, and there is a possibility that sufficient holding strength cannot be obtained. As the output is generated, a load is applied to the permanent magnet in the circumferential direction and the radial direction, and when the holding strength is insufficient, the permanent magnet vibrates in the insertion hole, leading to breakage.
そこで、本実施例では、周方向に配置する永久磁石の数に合わせて回転子鉄心2に磁石挿入孔11を設けてある。これにより、各々の永久磁石を挿入孔内に接着剤等で固定し、磁石の保持強度を向上することが出来る。
Therefore, in this embodiment, magnet insertion holes 11 are provided in the
具体的には、図8では、1極分の界磁源として、周方向に2つの磁石挿入孔を設け、それぞれの磁石挿入孔の回転進み方向に残留磁束密度の高い希土類永久磁石10a、回転遅れ方向に残留磁束密度の低い希土類永久磁石10bを挿入、固定する。また、図9では、1極分の界磁源として、周方向に3つの磁石挿入孔を設け、それぞれの磁石挿入孔の回転進み方向の2つに残留磁束密度の高い希土類永久磁石10aを、回転遅れ方向に残留磁束密度の低い希土類永久磁石10bを挿入、固定する。
Specifically, in FIG. 8, as a field source for one pole, two magnet insertion holes are provided in the circumferential direction, and the rare earth
各々の磁石挿入孔間の距離は強度と漏れ磁束の観点からバランスの良い寸法を適切に選択するのが良い。これは、磁石挿入孔間の鉄心寸法は強度と有効な磁束量のトレードオフ関係にあるためである。すなわち、回転速度から算出できる遠心力を考慮し、用いる鋼板に応じた強度の観点からはなるべく大きな寸法とすることが好ましく、永久磁石の磁束が固定子に至らず逆側の磁極へ戻る漏れ磁束量を低減する観点からはなるべく小さい寸法とするのが良い。 The distance between the respective magnet insertion holes should be appropriately selected from the viewpoint of strength and leakage flux. This is because the core size between the magnet insertion holes is in a trade-off relationship between strength and effective magnetic flux. In other words, considering the centrifugal force that can be calculated from the rotational speed, it is preferable to make the size as large as possible from the viewpoint of strength according to the steel sheet used, and the leakage magnetic flux that returns to the opposite magnetic pole without the magnetic flux of the permanent magnet reaching the stator From the viewpoint of reducing the amount, the size should be as small as possible.
以上のように、本実施例によれば周方向に複数の永久磁石を配置する場合にも保持強度を得ることが出来る。 As described above, according to this embodiment, the holding strength can be obtained even when a plurality of permanent magnets are arranged in the circumferential direction.
図10は実施例4による回転電機の回転子の軸方向断面図である。 FIG. 10 is a sectional view in the axial direction of the rotor of the rotating electrical machine according to the fourth embodiment.
本実施例を実施するには2種類以上の残留磁束密度の異なる磁石を選ぶ必要があるため、例えば図12に示す永久磁石の残留磁束密度と保磁力の関係において、保磁力が同一である、特性21の磁石と特性22の磁石を組合せる。すなわち、反作用磁界に対して不可逆減磁が起こらないよう、適用する回転電機の運転温度と作用する磁界から必要な保磁力を有する磁石を選択することが望ましい。 Since it is necessary to select two or more types of magnets having different residual magnetic flux densities in order to implement this embodiment, for example, the coercive force is the same in the relationship between the residual magnetic flux density and the coercive force of the permanent magnet shown in FIG. A magnet having the characteristic 21 and a magnet having the characteristic 22 are combined. That is, it is desirable to select a magnet having a necessary coercive force from the operating temperature of the rotating electrical machine to be applied and the magnetic field acting so that irreversible demagnetization does not occur with respect to the reaction magnetic field.
一方、図12に示す永久磁石の特性は、永久磁石の製造方法や添加元素、着磁方法などの違いによって所望の値となるよう製作される。また、図12中の直線は同様の製造方法で製作される磁石の特性の平均値を示すものである。よって、同様な製造方法によって製作される永久磁石を選ぶことで回転電機の納期短縮や製造コスト低減などの利点があるので、同一直線上の特性21の磁石と特性23の磁石を組合せると、特性23の永久磁石の保磁力が特性21の磁石に比べて小さく、減磁し易くなるという問題がある。 On the other hand, the characteristics of the permanent magnet shown in FIG. 12 are manufactured so as to have desired values depending on differences in the manufacturing method, additive elements, magnetization method, and the like of the permanent magnet. Moreover, the straight line in FIG. 12 shows the average value of the characteristic of the magnet manufactured by the same manufacturing method. Therefore, by selecting a permanent magnet manufactured by a similar manufacturing method, there are advantages such as shortening the delivery time of the rotating electrical machine and reducing manufacturing cost. Therefore, when combining the magnet of the characteristic 21 and the magnet of the characteristic 23 on the same straight line, The coercive force of the permanent magnet having the characteristic 23 is smaller than that of the magnet having the characteristic 21, and there is a problem that it is easy to demagnetize.
そこで、本実施例では、図10に示すように、回転進み側に残留磁束密度の高い希土類永久磁石10cを、回転遅れ側に残留磁束密度の低い希土類永久磁石10bを配置し、永久磁石10cの厚みを永久磁石10bよりも厚くしている。各々の永久磁石の特性は、永久磁石10cに図12における特性23、永久磁石10bには特性21の永久磁石を用いる。これにより、保磁力の低い永久磁石10cの保磁力が、厚みを厚くすることで上がるので減磁を防ぐことができる。
Therefore, in the present embodiment, as shown in FIG. 10, a rare earth
以上のように、本実施例によれば、残留磁束密度の異なる磁石を選択する場合に保磁力に比較的大きな差があっても減磁を防ぐことが出来る。 As described above, according to this embodiment, demagnetization can be prevented even when there is a relatively large difference in coercive force when magnets having different residual magnetic flux densities are selected.
図13は実施例5による回転電機の回転子の軸方向断面図である。 FIG. 13 is an axial sectional view of a rotor of a rotating electrical machine according to the fifth embodiment.
図13において、実施例1と同様の回転方向、永久磁石の配置であるが、さらに、回転子鉄心2の残留磁束密度の高い永久磁石10aの外径側部分に磁束の侵入を防ぐフラックスバリア12を設け、永久磁石10aに漏れ磁束が通りにくくなるよう構成する。
In FIG. 13, the rotation direction is the same as that of the first embodiment and the arrangement of the permanent magnets. Further, the
本実施例により、実施例1と同様の永久磁石の渦電流損を低減することが可能であるが、さらに、鉄心形状によって永久磁石に侵入する磁束を低減する方法も併せて実施することで、より一層渦電流損失を低減することができる。 According to the present embodiment, it is possible to reduce the eddy current loss of the permanent magnet similar to that of the first embodiment, but further, by implementing the method of reducing the magnetic flux entering the permanent magnet by the iron core shape, Eddy current loss can be further reduced.
なお、永久磁石10aに漏れ磁束が通りにくくなるよう構成する変形例として、例えば、永久磁石10aに対応するエアギャップ7が等価的に大きくなるように、非対称な回転子形状としても良い。
In addition, as a modified example in which the leakage magnetic flux is less likely to pass through the
以上実施例について説明したが、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例では、回転子の各磁極の界磁源として、周方向に2つまたは3つ、軸方向に2つまたは3つの永久磁石を構成した場合について説明したが、これに限定されるものではなく、その他の構成でも構わない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加、削除、置換をすることも可能である。 Although the embodiments have been described above, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, in the above-described embodiment, the case where two or three permanent magnets in the circumferential direction and two or three permanent magnets in the axial direction are configured as the field source of each magnetic pole of the rotor has been described. However, other configurations may be used. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is also possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
1…回転子、2…回転子鉄心、3…固定子、4…固定子鉄心
5…固定子巻線、6…固定子スロット、7…エアギャップ
8…固定子鉄心ティース部、9…シャフト
10、10a、10b、10c…永久磁石
11…磁石挿入孔、12…フラックスバリア。
DESCRIPTION OF
Claims (4)
前記回転子は所定磁束密度以上で磁束密度の増加に伴って比透磁率が減少する材料からなる回転子鉄心を有し、
回転子磁極1極を残留磁束密度の異なる2種類以上の複数個の希土類永久磁石で構成し、磁極中心から回転進み側の残留磁束密度が回転遅れ側よりも高くなるように前記複数個の希土類永久磁石を配置し、電動機として運転されることを特徴とする回転電機。 A stator winding, a stator core around which the stator winding is wound, a rotor disposed concentrically on the inner peripheral side of the stator core, and a permanent magnet serving as a field source in the rotor In rotating electrical machines,
The rotor has a rotor core made of a material whose relative permeability decreases with an increase in the magnetic flux density above a predetermined magnetic flux density,
One pole of the rotor magnetic pole is composed of two or more types of rare earth permanent magnets having different residual magnetic flux densities, and the plurality of rare earth elements are arranged such that the residual magnetic flux density on the rotation advance side from the magnetic pole center is higher than that on the rotation delay side. A rotating electric machine, wherein a permanent magnet is arranged and operated as an electric motor.
前記回転子は所定磁束密度以上で磁束密度の増加に伴って比透磁率が減少する材料からなる回転子鉄心を有し、
回転子磁極1極を残留磁束密度の異なる2種類以上の複数個の希土類永久磁石で構成し、磁極中心から回転遅れ側の残留磁束密度が回転進み側よりも高くなるように前記複数個の希土類永久磁石を配置し、発電機として運転されることを特徴とする回転電機。 A stator winding, a stator core around which the stator winding is wound, a rotor disposed concentrically on the inner peripheral side of the stator core, and a permanent magnet serving as a field source in the rotor In rotating electrical machines,
The rotor has a rotor core made of a material whose relative permeability decreases with an increase in the magnetic flux density above a predetermined magnetic flux density,
One pole of the rotor magnetic pole is composed of two or more types of rare earth permanent magnets having different residual magnetic flux densities, and the plurality of rare earths are set so that the residual magnetic flux density on the rotation delay side from the magnetic pole center is higher than that on the rotation advance side. A rotating electric machine characterized in that a permanent magnet is arranged and operated as a generator.
前記複数個の希土類永久磁石のうち、残留磁束密度の高い希土類永久磁石の磁石厚みを残留磁束密度の低い希土類永久磁石よりも厚くしたことを特徴とする回転電機。 The rotating electrical machine according to claim 1 or 2,
A rotating electric machine characterized in that among the plurality of rare earth permanent magnets, the magnet thickness of a rare earth permanent magnet having a high residual magnetic flux density is made thicker than that of a rare earth permanent magnet having a low residual magnetic flux density.
前記複数個の希土類永久磁石のうち、残留磁束密度が高い希土類永久磁石の外径側回転子鉄心に磁束の侵入を防ぐフラックスバリアを設けたことを特徴とする回転電機。 The rotating electrical machine according to claim 1 or 2,
A rotating electrical machine comprising a flux barrier for preventing magnetic flux from entering an outer diameter side rotor core of a rare earth permanent magnet having a high residual magnetic flux density among the plurality of rare earth permanent magnets.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013185041A JP6440349B2 (en) | 2013-09-06 | 2013-09-06 | Rotating electric machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013185041A JP6440349B2 (en) | 2013-09-06 | 2013-09-06 | Rotating electric machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015053801A JP2015053801A (en) | 2015-03-19 |
JP6440349B2 true JP6440349B2 (en) | 2018-12-19 |
Family
ID=52702427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013185041A Expired - Fee Related JP6440349B2 (en) | 2013-09-06 | 2013-09-06 | Rotating electric machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6440349B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108076676B (en) * | 2016-09-16 | 2019-12-17 | 株式会社东芝 | Rotating electrical machine and vehicle |
CN111149281B (en) | 2017-09-28 | 2022-06-21 | 三菱电机株式会社 | Permanent magnet type rotating electrical machine |
JP2022044204A (en) * | 2020-09-07 | 2022-03-17 | 日立金属株式会社 | Rotary electric machine |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4093364B2 (en) * | 2003-10-30 | 2008-06-04 | Tdk株式会社 | Sealed permanent magnet body for rotating electrical machine, and permanent magnet rotating electrical machine and rotor using the same |
JP5305887B2 (en) * | 2008-12-18 | 2013-10-02 | 株式会社東芝 | Permanent magnet rotating electric machine |
-
2013
- 2013-09-06 JP JP2013185041A patent/JP6440349B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015053801A (en) | 2015-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112838693B (en) | Rotary electric machine | |
CN109565198B (en) | Rotor and reluctance motor | |
JP5268711B2 (en) | Electric motor and compressor, air conditioner and vacuum cleaner | |
JP5538439B2 (en) | Rotor, blower and compressor of embedded permanent magnet motor | |
JP5436525B2 (en) | Electric motor | |
JP5774081B2 (en) | Rotating electric machine | |
WO2013179375A1 (en) | Composite torque rotating electric machine | |
JP5787673B2 (en) | Permanent magnet type rotating electric machine | |
JP6589624B2 (en) | motor | |
JP2019062673A (en) | Permanent magnet type rotary electric machine of variable magnetic flux type | |
JP2011223836A (en) | Permanent magnet type revolving armature | |
JPWO2013179376A1 (en) | Compound torque type rotating electrical machine | |
JP7076188B2 (en) | Variable magnetic force motor | |
CN108134494A (en) | Electric rotating machine | |
JP2014150626A (en) | Rotor for permanent magnet motor, method of manufacturing rotor for permanent magnet motor, and permanent magnet motor | |
JP2014155373A (en) | Multi-gap rotary electric machine | |
KR101897635B1 (en) | Permanent magnet-embedded motor and rotor thereof | |
JP6440349B2 (en) | Rotating electric machine | |
JP2013132124A (en) | Core for field element | |
JP2012257426A (en) | Rotor of rotary electric machine | |
JP2014011880A (en) | Rotary electric machine | |
JP2018098936A (en) | Magnet unit | |
EP3309931B1 (en) | Permanent magnet-embedded motor and compressor | |
JP5793948B2 (en) | Synchronous motor | |
JP5740250B2 (en) | Permanent magnet rotating electric machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151202 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160810 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160816 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161011 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180809 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180925 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181120 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6440349 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |