JP6440166B2 - Immunochromatography kit - Google Patents
Immunochromatography kit Download PDFInfo
- Publication number
- JP6440166B2 JP6440166B2 JP2015064125A JP2015064125A JP6440166B2 JP 6440166 B2 JP6440166 B2 JP 6440166B2 JP 2015064125 A JP2015064125 A JP 2015064125A JP 2015064125 A JP2015064125 A JP 2015064125A JP 6440166 B2 JP6440166 B2 JP 6440166B2
- Authority
- JP
- Japan
- Prior art keywords
- metal fine
- fine particles
- developing solution
- test
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Description
本発明は、イムノクロマトキットに関するものであり、特には、被験物質の検出感度に優れるイムノクロマトキットに関するものである。なお、イムノクロマトキットとは、被験物質を検出する際にイムノクロマトグラフ法を用いる検査キットである。 The present invention relates to an immunochromatography kit, and more particularly to an immunochromatography kit excellent in detection sensitivity of a test substance. The immunochromatography kit is a test kit that uses an immunochromatographic method when detecting a test substance.
貴金属のコロイドは化学的に変化し難く、粒径が数nm〜数十nm程度の、いわゆるナノ粒子を構成する。また各コロイド特有の色を発色し、各種用途への適用が期待され、例えば分子認識機能を利用した検出技術への応用が提案されている。 Noble metal colloids hardly change chemically and constitute so-called nanoparticles having a particle size of about several nanometers to several tens of nanometers. In addition, each colloid has a unique color and is expected to be applied to various uses. For example, application to a detection technique using a molecular recognition function has been proposed.
特許第4958082号公報(特許文献1)には、粒子の吸光スペクトルをシャープに改質させた金属ナノ粒子からなる局在表面プラズモン共鳴(LSPR)センサーが開示されており、該金属ナノ粒子は、1)粒径が5〜100nmであり、2)一辺が略40nm程度の平板状で三角形の粒子を含み、3)光子相関法による測定で頂点40nm付近にシャープな粒度分布を有することを特徴とする。 Japanese Patent No. 4995882 (Patent Document 1) discloses a localized surface plasmon resonance (LSPR) sensor composed of metal nanoparticles in which the absorption spectrum of particles is sharply modified. 1) The particle size is 5 to 100 nm, 2) flat and triangular particles having a side of about 40 nm, and 3) a sharp particle size distribution in the vicinity of the apex 40 nm as measured by the photon correlation method. To do.
また、特許第4787938号公報(特許文献2)は、ペプチド、代謝物、分子又はイオンなどの関心のある標的種を認識できるデバイスの分野において、板状銀ナノ粒子に着目し、標的検体と相互作用し得るレセプタが表面に付着した板状銀ナノ粒子が分散しているセンサーを開示している。 Further, Japanese Patent No. 4778738 (Patent Document 2) focuses on plate-like silver nanoparticles in the field of devices capable of recognizing target species of interest such as peptides, metabolites, molecules or ions, and interacts with target analytes. Disclosed is a sensor in which plate-like silver nanoparticles having a functioning receptor attached to the surface are dispersed.
しかしながら、分子認識機能を利用した検出技術にプレート状銀ナノ粒子を適用した場合、プレート状銀ナノ粒子の体液や生化学緩衝液に対する安定性に関して課題があり、検出技術への適用には依然として改良の余地がある。また、金のような他の金属の球状のナノ粒子は局在表面プラズモン共鳴(LSPR)の吸収波長制御域が限定されるため、被験物質毎に検出色を変えるといった多色設計に適しておらず、ナノ粒子を検出技術に適用した場合、複数の被験物質を同時に測定する場合、検出ラインの判別が困難であるといった課題もある。 However, when plate-like silver nanoparticles are applied to detection technology using molecular recognition function, there are issues regarding the stability of plate-like silver nanoparticles to body fluids and biochemical buffer solutions, and improvements to application to detection technology remain. There is room for. Also, spherical nanoparticles of other metals such as gold are not suitable for multicolor design such as changing the detection color for each test substance because the absorption wavelength control region of localized surface plasmon resonance (LSPR) is limited. First, when nanoparticles are applied to a detection technique, there is also a problem that it is difficult to determine a detection line when measuring a plurality of test substances at the same time.
そこで、本発明の目的は、上記従来技術の問題を解決し、分子認識機能を利用した検出技術の一つであるイムノクロマトキットに関して、被験物質の検出に優れ、且つ体液や生化学緩衝液の使用が可能であるイムノクロマトキットを提供することにある。 Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to use an immunochromatography kit which is one of detection techniques using a molecular recognition function, which is excellent in detection of a test substance and uses a body fluid or a biochemical buffer. An object of the present invention is to provide an immunochromatography kit capable of
本発明者は、上記目的を達成するために鋭意検討した結果、プレート状銀ナノ粒子の表面を金で被覆してなる金属微粒子をイムノクロマトキットに用いた場合、金属微粒子の体液や生化学緩衝液に対する安定性を確保した上で、被験物質の検出感度を向上させることが可能となることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that when metal fine particles formed by coating the surface of plate-like silver nanoparticles with gold are used in an immunochromatography kit, body fluids or biochemical buffer solutions of metal fine particles The inventors have found that it is possible to improve the detection sensitivity of a test substance while ensuring the stability to the above, and have completed the present invention.
即ち、本発明のイムノクロマトキットは、プレート状銀ナノ粒子及び該プレート状銀ナノ粒子の表面を被覆する金からなる金属微粒子(a)と、被験物質に対して特異的な結合性を有し且つ該金属微粒子(a)に対して結合性を有する分子(b)とを備えることを特徴とする。 That is, the immunochromatography kit of the present invention has plate-shaped silver nanoparticles and metal fine particles (a) made of gold covering the surface of the plate-shaped silver nanoparticles, and has a specific binding property to a test substance and And a molecule (b) having a binding property to the metal fine particles (a).
本発明のイムノクロマトキットの好適例においては、イムノクロマト試験後に1種又は複数種の検出ラインを呈するクロマトグラフ担体を備えるイムノクロマトキットであって、
前記検出ラインの色は、1種の金属微粒子(a)の色又は異なる色を呈する複数種の金属微粒子(a)の混色に基づいている。
In a preferred example of the immunochromatography kit of the present invention, an immunochromatography kit comprising a chromatographic carrier that exhibits one or more detection lines after an immunochromatographic test,
The color of the detection line is based on the color of one type of metal fine particles (a) or a mixed color of a plurality of types of metal fine particles (a) exhibiting different colors.
本発明のイムノクロマトキットの他の好適例においては、イムノクロマト試験後に複数種の検出ラインを呈するクロマトグラフ担体を備えるイムノクロマトキットであって、
前記クロマトグラフ担体は、異なる被験物質に対して結合性を有する複数種の分子(b)がそれぞれ異なる位置に固定されている。
In another preferred embodiment of the immunochromatography kit of the present invention, an immunochromatography kit comprising a chromatographic carrier that exhibits a plurality of types of detection lines after an immunochromatography test,
In the chromatographic carrier, plural kinds of molecules (b) having binding properties to different test substances are fixed at different positions.
本発明のイムノクロマトキットの好適例においては、前記被験物質に対して結合性を有さず且つ前記金属微粒子(a)に対して結合性を有する水溶性高分子(c)を更に備える。 In a preferred example of the immunochromatography kit of the present invention, a water-soluble polymer (c) having no binding property to the test substance and having binding properties to the metal fine particles (a) is further provided.
本発明によれば、金属微粒子の体液や生化学緩衝液に対する安定性を確保した上で、被験物質の検出感度を向上させることが可能なイムノクロマトキットを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the immunochromatography kit which can improve the detection sensitivity of a test substance can be provided, ensuring the stability with respect to the bodily fluid and biochemical buffer of a metal microparticle.
以下に、本発明を詳細に説明する。本発明のイムノクロマトキットは、プレート状銀ナノ粒子及び該プレート状銀ナノ粒子の表面を被覆する金からなる金属微粒子(a)と、被験物質に対して特異的な結合性を有し且つ該金属微粒子(a)に対して結合性を有する分子(b)とを備えることを特徴とする。 The present invention is described in detail below. The immunochromatography kit of the present invention comprises a plate-like silver nanoparticle and metal fine particles (a) made of gold covering the surface of the plate-like silver nanoparticle, a specific binding property to a test substance, and the metal And a molecule (b) having a binding property to the fine particles (a).
本発明のイムノクロマトキットに用いる金属微粒子(a)は、プレート状銀ナノ粒子と、該プレート状銀ナノ粒子の表面を被覆する金とからなる。上記金属微粒子(a)は、プレート状であるため球状微粒子が吸収する領域以外の可視光領域から近赤外光領域でプラズモン吸収が強く(J. Phys. Chem. B, 107, 668 (2003))、イムノクロマト試験時の被験物質検出ラインの色が球状微粒子を使用した際より幅広い波長域で設定できるため被験物質検出ラインの多色化が可能であり、かつ被験物質検出ラインに集積した金属微粒子(a)のプラズモン吸収により輝度は低くなり、背景とのコントラスト差が大きくなるため視認性が高くなる。また、プレート状銀ナノ粒子は遠心分離で濃縮する際や生化学試験に必須の各種緩衝液中で酸化されてアスペクト比や吸光度が変化する。また、理由は不明であるが球状微粒子は遠心分離で濃縮する際に凝集や遠沈管への吸着が発生し吸光度が変化する。それに対して、上記金属微粒子(a)は金で被覆してあるため、各種緩衝液中での分散安定性、酸化耐性が高い。また、上記金属微粒子(a)は遠心分離で濃縮する際に凝集や遠沈管への吸着は発生しないため吸光度の変化が少ない。すなわち、イムノクロマトグラフィーに金属微粒子を使用する際の事前処理操作である遠心分離や緩衝液曝露に対し強い耐久性を有し、他の金属微粒子より酸化や凝集が発生しにくく吸光度を高い状態で保てるため、これを標識物質として利用すると、被験物質に対する検出感度を向上させることができる。
なお、本発明における検出感度は、目視判定と、輝度差解析によって数値化できる。目視判定はイムノクロマト試験後の検出ライン有無を目視によって確認し、検出ラインが確認可能な最低被験物質濃度を検出感度とすることができる。輝度解析では、下記1から2を引いた値の絶対値が2(検出限界輝度差)以上である時の最低被験物質濃度を検出感度とすることができる。
1.被験物質を含まない展開液を使用したイムノクロマト試験時の検出ラインと検出ライン以外の部分の輝度差
2.被験物質を含む展開液を使用したイムノクロマト試験時のイムノクロマト担体上の検出ラインと検出ライン以外の部分の輝度差
The metal fine particles (a) used in the immunochromatography kit of the present invention are composed of plate-like silver nanoparticles and gold covering the surface of the plate-like silver nanoparticles. Since the metal fine particles (a) have a plate shape, plasmon absorption is strong in the visible light region to the near infrared light region other than the region where the spherical fine particles absorb (J. Phys. Chem. B, 107, 668 (2003)). ) Because the color of the test substance detection line during the immunochromatography test can be set in a wider wavelength range than when spherical fine particles are used, the test substance detection line can be multicolored and the metal fine particles accumulated in the test substance detection line The luminance is lowered by the plasmon absorption of (a), and the contrast difference with the background is increased, so that the visibility is increased. In addition, when the plate-like silver nanoparticles are concentrated by centrifugation or oxidized in various buffers essential for biochemical tests, the aspect ratio and absorbance change. Moreover, although the reason is unknown, when the spherical fine particles are concentrated by centrifugation, aggregation or adsorption to the centrifuge tube occurs and the absorbance changes. In contrast, since the metal fine particles (a) are coated with gold, they have high dispersion stability and oxidation resistance in various buffer solutions. Further, when the metal fine particles (a) are concentrated by centrifugation, aggregation and adsorption to the centrifuge tube do not occur, so the change in absorbance is small. In other words, it has strong durability against centrifugation and buffer exposure, which are pretreatment operations when using metal microparticles for immunochromatography, and is less susceptible to oxidation and aggregation than other metal microparticles, and can maintain a high absorbance. Therefore, when this is used as a labeling substance, the detection sensitivity for the test substance can be improved.
The detection sensitivity in the present invention can be quantified by visual determination and luminance difference analysis. In the visual determination, the presence or absence of the detection line after the immunochromatographic test is visually confirmed, and the lowest test substance concentration at which the detection line can be confirmed can be set as the detection sensitivity. In the luminance analysis, the minimum test substance concentration when the absolute value of the value obtained by subtracting 1 from 2 below is 2 (detection limit luminance difference) or more can be used as the detection sensitivity.
1. 1. Difference in luminance between a detection line and an area other than the detection line in an immunochromatographic test using a developing solution not containing a test substance. Luminance difference between the detection line on the immunochromatographic carrier and the part other than the detection line during the immunochromatographic test using a developing solution containing the test substance
なお、本発明のイムノクロマトキットにおいて、上記金属微粒子(a)は、イムノクロマトグラフ法に用いられる通常の標識物質と同様の形態で利用できるが、例えば、展開液中に分散しているか又は上記分子(b)と一体となってクロマトグラフ担体に担持されているか又は上記分子(b)と一体となってクロマトグラフの展開開始部に接合している吸収紙に担持されている。 In the immunochromatography kit of the present invention, the metal fine particles (a) can be used in the same form as a normal labeling substance used in an immunochromatography method. For example, the metal fine particles (a) are dispersed in a developing solution or the molecules ( It is carried on a chromatographic carrier integrally with b) or on an absorbent paper joined to the development start part of the chromatograph together with the molecule (b).
上記金属微粒子(a)を構成するプレート状銀ナノ粒子は、2つの主面を有する平たい粒子であり、その主面の形状は、三角形、五角形、六角形等の多角形状や、角がカーブ状となった円形状等の形状が挙げられ、例えば、銀イオンを還元する速度の調整やナノ粒子表面に吸着する分散剤の種類を選択することで、粒子の形状を制御できることが知られている。なお、主面の形状は、クロマトグラフの展開時にクロマトグラフ試験紙を構成する物質との物理的な引っかかりが少なく流動しやすいため、角がカーブ状になった円形状が好ましい。また、プレート状銀ナノ粒子の厚みは、通常40nm以下であり、5〜20nmが好ましく、粒子の主面の最大長さとなる粒子径は、通常10〜1000nmであり、10〜100nmが好ましい。更に、プレート状銀ナノ粒子のアスペクト比(粒子径/厚み)は、通常2以上であり、可視光領域にLSPRの吸収波長が発現して多色設計が可能な2〜10が好ましい。近赤外光で検出する場合には、LSPRが800〜2000nmで発現するようなアスペクト比(例えば、アスペクト比11で900nm付近にLSPRが発現)のプレート状銀ナノ粒子を用いればよい。多色設計の例としては、プレート状銀ナノ粒子のアスペクト比を調整することで単一のLSPRを発現するプレート状銀ナノ粒子を用いればよい。色を定量的に表す体系である表色系の一つであるマンセル・カラー・システムのマンセル値(以下、単にマンセル値ともいう)が5Y 8.5/14で、CIE1931xy色度図の座標(以下、単に色度座標ともいう)がx:0.4498、y:0.4811であるイエロー(イエロー系色、400〜500nm付近にLSPRを発現するプレート状銀ナノ粒子)、マンセル値が5RP 5/14で、色度座標がx:0.4142、y:0.2428であるマゼンタ(マゼンタ系色、500〜600nm付近にLSPRを発現するプレート状銀ナノ粒子)、マンセル値が7.5B 6/10で、色度座標がx:0.1934、y:0.2374であるシアン(シアン系色、600〜750nm付近にLSPRを発現するプレート状銀ナノ粒子)など、プレート状銀ナノ粒子のアスペクト比を調整することで任意のLSPRの吸収波長を選択できる。なお、図33は、CIE1931xy色度図におけるイエロー、マゼンタ及びシアンの色度座標を示す。アスペクト比の異なる2種以上のプレート状銀ナノ粒子を混合して色設計してよい。例えば、イエローとマゼンタを混合し赤色(マンセル値:5R 4/14、色度座標 x:0.5734、y:0.3057)、マゼンタとシアンを混合し青色(マンセル値:10B 4/14、色度座標 x:0.1310、y:0.1580)、イエローとシアンを混合し緑色(マンセル値:2.5G 6.5/10、色度座標 x:0.3000、y:0.6000)などが設計できる。なお、図34は、CIE1931xy色度図における赤色、青色及び緑色の色度座標を示す。さらに、イエロー系色、マゼンタ系色、シアン系色が発現するアスペクト比の異なる3種以上のプレート状銀ナノ粒子を三原色とした減法混合を適用した多色設計を用いることができる。例えば、イエロー系色、マゼンタ系色、シアン系色のプレート状銀ナノ粒子を任意の割合で混合して黒色を設計した場合、イムノクロマト試験時の被験物質検出ラインは背景(白色)とのコントラスト差が大きくなるため視認性(検出感度)が高くなる。また、アスペクト比の異なる複数のプレート状銀ナノ粒子を混合して色設計する場合は、クロマトグラフの展開時における粒子の流動速度の差が小さくなるように、プレート状銀ナノ粒子の厚みは、5〜15nmが好ましく、粒子の主面の最大長さとなる粒子径は、10〜80nmが好ましい。 The plate-like silver nanoparticles constituting the metal fine particles (a) are flat particles having two main surfaces, and the shape of the main surfaces is a polygonal shape such as a triangle, pentagon, hexagon, etc., and the corners are curved. For example, it is known that the shape of particles can be controlled by adjusting the rate of reducing silver ions and selecting the type of dispersant adsorbed on the nanoparticle surface. . In addition, the shape of the main surface is preferably a circular shape with curved corners because it is easy to flow with little physical catching with the substances constituting the chromatographic test paper when the chromatograph is developed. In addition, the thickness of the plate-like silver nanoparticles is usually 40 nm or less, preferably 5 to 20 nm, and the particle diameter that is the maximum length of the main surface of the particles is usually 10 to 1000 nm, preferably 10 to 100 nm. Furthermore, the aspect ratio (particle diameter / thickness) of the plate-like silver nanoparticles is usually 2 or more, and preferably 2 to 10 in which the absorption wavelength of LSPR is expressed in the visible light region and multicolor design is possible. In the case of detecting with near-infrared light, plate-like silver nanoparticles having an aspect ratio that allows LSPR to appear at 800 to 2000 nm (for example, LSPR appears near 900 nm with an aspect ratio of 11) may be used. As an example of multicolor design, plate-like silver nanoparticles that express a single LSPR by adjusting the aspect ratio of the plate-like silver nanoparticles may be used. The Munsell color system, which is one of the color systems that represent the color quantitatively, has a Munsell value (hereinafter also simply referred to as a Munsell value) of 5Y 8.5 / 14, and the coordinates of the CIE 1931xy chromaticity diagram ( Hereinafter, yellow (yellowish color, plate-like silver nanoparticles expressing LSPR in the vicinity of 400 to 500 nm) having x: 0.4498, y: 0.4811, and Munsell value of 5RP 5 / 14, magenta with chromaticity coordinates of x: 0.4142, y: 0.2428 (magenta color, plate-like silver nanoparticles expressing LSPR in the vicinity of 500 to 600 nm), Munsell value of 7.5B 6 / 10, chromaticity coordinates x: 0.1934, y: 0.2374 cyan (cyan color, plate-like silver nanoparticles expressing LSPR in the vicinity of 600 to 750 nm Etc., can be selected absorption wavelength of any LSPR by adjusting the aspect ratio of the plate-shaped silver nanoparticles. FIG. 33 shows chromaticity coordinates of yellow, magenta, and cyan in the CIE 1931xy chromaticity diagram. Two or more kinds of plate-like silver nanoparticles having different aspect ratios may be mixed to design a color. For example, yellow and magenta are mixed and red (Munsell value: 5R 4/14, chromaticity coordinates x: 0.5734, y: 0.3057), magenta and cyan are mixed and blue (Munsell value: 10B 4/14, Chromaticity coordinates x: 0.1310, y: 0.1580), yellow and cyan mixed and green (Munsell value: 2.5G 6.5 / 10, chromaticity coordinates x: 0.3000, y: 0.6000 ) Etc. can be designed. FIG. 34 shows chromaticity coordinates of red, blue and green in the CIE 1931xy chromaticity diagram. Furthermore, it is possible to use a multi-color design to which subtractive mixing using three or more kinds of plate-like silver nanoparticles with different aspect ratios that express yellow, magenta, and cyan colors as three primary colors. For example, when a black color is designed by mixing plate-type silver nanoparticles of yellow, magenta, and cyan colors in an arbitrary ratio, the test substance detection line during the immunochromatography test has a contrast difference from the background (white) Increases the visibility (detection sensitivity). In addition, when designing a color by mixing a plurality of plate-like silver nanoparticles with different aspect ratios, the thickness of the plate-like silver nanoparticles is small so that the difference in the flow rate of the particles during the development of the chromatograph is small. 5-15 nm is preferable, and the particle diameter which becomes the maximum length of the main surface of the particle is preferably 10-80 nm.
上記プレート状銀ナノ粒子の調製方法は、特に制限されるものではなく、粒子サイズを調整する等の目的に応じて適宜選択することができる。例えば、適切な分散剤を溶解した水溶液中に銀イオンを添加し、その後、適切な還元方法で銀イオンを還元することで、プレート状銀ナノ粒子が合成できることが知られており、具体例として、銀イオンを光で還元する方法(SCIENCE, 294, 1901 (2001))、熱で還元する方法(Nano Lett., 2, 903 (2002))、還元剤で還元する方法(Adv. Mater., 14, 1084 (2002))等が挙げられる。さらに、異種金属である銅イオン共存下で銀イオンを還元する方法(特許第5059317号公報)が挙げられる。また、プレート状銀ナノ粒子を合成する際には、通常、不純物として球状銀ナノ粒子も合成されることになるが、例えば「Adv. Funct. Mater., 18, 2005 (2008)」に記載されるような手法では、粒子の形状をプレート形状に成長させるために積層欠陥を有するプレート状銀ナノ粒子の種粒子の分散液を予め調製し、ここに銀イオンと還元剤を添加して、銀ナノ粒子の形状をプレート形状に成長させている。この種粒子を用いる手法は、球状粒子の生成を大幅に低減することができるため、好ましい。この種粒子は、ポリスチレンスルホン酸などのポリアニオン系ポリマーを溶解したクエン酸三ナトリウム水溶液中で銀イオンを還元すると生成し、ポリアニオン系ポリマーが銀ナノ粒子の表面と比較的強く相互作用した結果、欠陥構造が生じると考えられている。積層欠陥を有する種粒子は、<111>方向に成長して、大きな{111}面を有するプレート形状の銀ナノ粒子に成長する。種粒子を含む水分散液に銀イオンと還元剤を添加することで、プレート状銀ナノ粒子が得られる。このとき、種粒子の添加量を調製することで幅広いアスペクト比のプレート状銀ナノ粒子を得ることができる。種粒子の数を多く設定すると、個々の種粒子に消費される銀イオン量の割合が減少するため、得られるプレート状銀ナノ粒子の粒子径は小さくなる傾向がある。また、種粒子の数を少なく設定すると、個々の種粒子に消費される銀イオン量の割合が増大するため、得られるプレート状銀ナノ粒子の粒子径は大きくなる傾向がある。還元剤としては、アスコルビン酸を使用することができる。なお、プレート状銀ナノ粒子がこれらの手法により調製された場合、通常、水分散液の形態で調製される。また、球状銀ナノ粒子といった目的形状以外の形状を有する粒子や合成で使用した余剰の有機物を生成物から分離するためには、銀ナノ粒子の分散液を遠心分離機にかけたり又はフィルターにより濾過したりしてもよい。調製されたプレート状銀ナノ粒子は分散液中において粒子径に分布があり、その分布に応じて吸収スペクトルは変化する。粒子径の分布を狭くすることは、吸収スペクトルの半値幅を狭くし、色が鮮やかになるため、多色設計に好適である。 The method for preparing the plate-like silver nanoparticles is not particularly limited, and can be appropriately selected depending on the purpose such as adjusting the particle size. For example, it is known that silver particles can be synthesized by adding silver ions to an aqueous solution in which an appropriate dispersant is dissolved and then reducing the silver ions by an appropriate reduction method. , A method of reducing silver ions with light (SCIENCE, 294, 1901 (2001)), a method of reducing with heat (Nano Lett., 2, 903 (2002)), a method of reducing with a reducing agent (Adv. Mater., 14, 1084 (2002)). Furthermore, a method of reducing silver ions in the presence of copper ions, which are different metals (Japanese Patent No. 5059317), can be mentioned. In addition, when synthesizing plate-like silver nanoparticles, spherical silver nanoparticles are usually synthesized as impurities. For example, it is described in “Adv. Funct. Mater., 18, 2005 (2008)”. In such a technique, a seed liquid dispersion of plate-like silver nanoparticles having stacking faults is prepared in advance in order to grow the shape of the particles into a plate shape, and silver ions and a reducing agent are added thereto to add silver. The shape of the nanoparticles is grown into a plate shape. This method using seed particles is preferable because the generation of spherical particles can be greatly reduced. These seed particles are formed when silver ions are reduced in an aqueous solution of trisodium citrate in which a polyanionic polymer such as polystyrene sulfonic acid is dissolved. As a result of the relatively strong interaction between the polyanionic polymer and the surface of the silver nanoparticles, defects are generated. A structure is believed to arise. The seed particles having stacking faults grow in the <111> direction and grow into plate-shaped silver nanoparticles having a large {111} plane. Plate-like silver nanoparticles can be obtained by adding silver ions and a reducing agent to an aqueous dispersion containing seed particles. At this time, plate-like silver nanoparticles with a wide aspect ratio can be obtained by adjusting the amount of seed particles added. When the number of seed particles is set to be large, the ratio of the amount of silver ions consumed by individual seed particles decreases, so that the particle diameter of the obtained plate-like silver nanoparticles tends to be small. Further, when the number of seed particles is set to be small, the ratio of the amount of silver ions consumed by each seed particle increases, and therefore the particle diameter of the obtained plate-like silver nanoparticles tends to increase. As a reducing agent, ascorbic acid can be used. In addition, when plate-like silver nanoparticles are prepared by these techniques, they are usually prepared in the form of an aqueous dispersion. In addition, in order to separate particles having shapes other than the target shape such as spherical silver nanoparticles and excess organic substances used in the synthesis from the product, the dispersion of silver nanoparticles is subjected to a centrifuge or filtered through a filter. Or you may. The prepared plate-like silver nanoparticles have a distribution in particle diameter in the dispersion, and the absorption spectrum changes according to the distribution. Narrowing the particle size distribution is suitable for multicolor design because the half-value width of the absorption spectrum is narrowed and the color becomes vivid.
本発明のイムノクロマトキットに用いる金属微粒子(a)は、プレート状銀ナノ粒子の表面が金で被覆されていることを要する。例えば、プレート状銀ナノ粒子が金で被覆されずにクロマトグラフ担体に担持されているか又は展開開始部の吸収紙に担持されている場合、保管中のクロマトグラフ担体では該銀ナノ粒子が乾燥した状態で保持されており、また、使用時には該銀ナノ粒子が幅広いpHの展開液と接触するため、プレート状銀ナノ粒子が酸化してしまう場合も多い。銀ナノ粒子が酸化されると、銀ナノ粒子の形状も変化することになり、プラズモン吸収波長の変化に伴う色変化が発生するという問題が生じる。特に、プレート状銀ナノ粒子をイムノクロマトキットに適用する場合、プレート状銀ナノ粒子の精密な形状制御が要求されるため、プレート状銀ナノ粒子の適用には改善の余地があった。本発明者は、銀よりも酸化され難い金属の薄膜でプレート状銀ナノ粒子を被覆し、プレート状銀ナノ粒子の表面に金属のシェルを形成させることによって、イムノクロマトキットに用いる場合であってもプレート状銀ナノ粒子の酸化を防止できることを見出した。プレート状銀ナノ粒子の金属シェルとして使用できる金属としては、銀よりも貴な金属である金が挙げられる。 The metal fine particles (a) used in the immunochromatography kit of the present invention require that the surface of the plate-like silver nanoparticles is coated with gold. For example, when the plate-like silver nanoparticles are not coated with gold and are supported on a chromatographic carrier or are supported on an absorbent paper at the development start portion, the silver nanoparticles are dried on the chromatographic carrier during storage. Since the silver nanoparticles are in contact with a developing solution having a wide pH during use, the plate-like silver nanoparticles are often oxidized. When the silver nanoparticles are oxidized, the shape of the silver nanoparticles also changes, which causes a problem that a color change accompanying a change in the plasmon absorption wavelength occurs. In particular, when plate-like silver nanoparticles are applied to an immunochromatography kit, there is room for improvement in the application of plate-like silver nanoparticles because precise shape control of the plate-like silver nanoparticles is required. Even when the present inventor is used in an immunochromatography kit by coating a plate-like silver nanoparticle with a metal thin film that is less oxidizable than silver and forming a metal shell on the surface of the plate-like silver nanoparticle. It has been found that oxidation of plate-like silver nanoparticles can be prevented. Examples of the metal that can be used as the metal shell of the plate-like silver nanoparticles include gold, which is a noble metal than silver.
上記プレート状銀ナノ粒子の表面を金属で被覆する方法は、特に制限されるものではなく、金属の膜厚を調整する等の目的に応じて適宜選択することができる。例えば、金で被覆する場合、プレート状銀ナノ粒子の水分散液中に金イオンを添加し、該金イオンを化学的に還元することで、プレート状銀ナノ粒子の表面を金の薄膜(金のシェル)で被覆することができる(Materials Chemistry and Physics, 90, 361 (2005)、Angew. Chem. Int. Ed., 51, 5629 (2012))。例えば、まず、プレート状銀ナノ粒子の凝集や表面がエッチングされることを防ぐため、プレート状銀ナノ粒子の分散液中にクエン酸、ポリビニルピロリドン(PVP)、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)、ポリアクリル酸(PA)、ゼラチン、アミン等の適切な有機物を加えて、プレート状銀ナノ粒子の表面を処理し、次いで、該分散液中に金イオンと還元剤とを加えることで、プレート状銀ナノ粒子の表面が金で被覆されている金属微粒子を得ることができる。なお、本発明において、「プレート状銀ナノ粒子の表面を被覆する金」とは、プレート状銀ナノ粒子の表面に存在している金を指すが、金単体で存在しているものに加えて、銀との合金の状態で存在しているものも含まれる。 The method for coating the surface of the plate-like silver nanoparticles with metal is not particularly limited, and can be appropriately selected depending on the purpose such as adjusting the film thickness of the metal. For example, when coating with gold, gold ions are added to an aqueous dispersion of plate-like silver nanoparticles, and the gold ions are chemically reduced, so that the surface of the plate-like silver nanoparticles is made of a gold thin film (gold (Materials Chemistry and Physics, 90, 361 (2005), Angew. Chem. Int. Ed., 51, 5629 (2012)). For example, in order to prevent aggregation of the plate-like silver nanoparticles and etching of the surface, first, citric acid, polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), polyvinyl alcohol ( PVA), polyacrylic acid (PA), gelatin, amine and the like are added to treat the surface of the plate-like silver nanoparticles, and then gold ions and a reducing agent are added to the dispersion. Then, metal fine particles in which the surface of the plate-like silver nanoparticles is coated with gold can be obtained. In the present invention, “gold covering the surface of the plate-like silver nanoparticles” refers to gold existing on the surface of the plate-like silver nanoparticles, but in addition to the gold existing alone. In addition, those existing in the state of an alloy with silver are also included.
本発明のイムノクロマトキットに用いる分子(b)は、被験物質(例えば、抗原または抗体)に対して特異的な結合性を有する分子(例えば、抗体または抗原)であるが、上記金属微粒子(a)に対して結合性を有することを要する。これにより、上記分子(b)を介して被験物質と金属微粒子(a)とが結合してなる複合体が形成されるため、金属微粒子(a)の色調による被験物質の検出が可能になる。 The molecule (b) used in the immunochromatography kit of the present invention is a molecule (for example, antibody or antigen) having specific binding property to a test substance (for example, antigen or antibody). It is necessary to have binding properties. As a result, a complex is formed in which the test substance and the metal fine particles (a) are bonded via the molecule (b), so that the test substance can be detected based on the color tone of the metal fine particles (a).
上記分子(b)は、上記金属微粒子(a)に対して結合性を有するため、アミノ基、カルボキシル基、水酸基等の官能基を有することが好ましく、特にはメルカプト基、ジチオール基又はスルフィド基を有することが好ましい。しかし、これら官能基を有していなくても化合物の界面エネルギーや静電吸着により物理吸着していても良い。 The molecule (b) preferably has a functional group such as an amino group, a carboxyl group, or a hydroxyl group because it has binding properties to the metal fine particles (a), and in particular, a mercapto group, a dithiol group, or a sulfide group. It is preferable to have. However, even if these functional groups are not present, they may be physically adsorbed by interfacial energy or electrostatic adsorption of the compound.
上記分子(b)としては、被験物質の種類に応じて適宜選択されるものであるが、免疫反応性物質や、レクチンと糖鎖、アビジンとビオチン、核酸と当該核酸とハイブリダイズする核酸、核酸アプタマーやペプチドアプタマーなどのアプタマーと特異的に結合する有機低分子やタンパク質、核酸、細胞、細胞組織、微生物など、相互作用しうる物質であれば任意の物質に適用することができる。免疫反応性物質としては、各種抗体や抗原などを挙げることができる。ここで抗体(IgG、IgM、IgE、IgD、IgA等)としては、抗DNA抗体、抗ENA抗体、抗カルジオリビン抗体、抗ミトコンドリア抗体、抗平滑筋抗体等に代表される自己抗体や各種免疫グロブリン等を挙げることができ、例えばアレルゲンを特異的に認識する特異的免疫グロブリン(特異的IgE等)の分析等にも適用することが可能である。また、抗原としては、糖タンパク質や複数のサブユニットから構成される特定タンパク質、前立腺特異的抗原(PSA)等のタンパク質複合体などを挙げることができる。
上記分子(b)の例としては、抗コンカナバリンA抗体、マンノースおよびその誘導体(被験物質:コンカナバリンA)、抗ベロ毒素抗体、グロボ三糖およびその誘導体(被験物質:ベロ毒素)、シアリルラクトースおよびその誘導体、抗インフルエンザ抗体(被験物質:インフルエンザウイルスおよびその抗原)、抗B型肝炎ウイルス抗体(被験物質:B型肝炎ウイルスおよびその抗原)、抗インスリン抗体(被験物質:インスリン)、抗アフラトキシン抗体(被験物質:アフラトキシン)、抗ヒト絨毛性ゴナドトロピン抗体(被験物質:ヒト絨毛性ゴナドトロピン)、抗ヒト免疫不全ウイルス抗体(被験物質:ヒト免疫不全ウイルスおよびその抗原)、抗リシン抗体、ガラクトースおよびその誘導体(被験物質:リシン)、抗サルモネラ抗体(被験物質:サルモネラ菌)等の抗体や、炭疽菌(Bacillus anthracis)、黄色ブドウ球菌(Staphylococcus aureus)、D群赤痢菌・ソンネ赤痢菌(Shigella sonnei)、大腸菌(Escherichia coli)、ネズミチフス菌(Salmonella typhimurium)、溶連菌(Streptococcus hemolyticus)、パラチフス(Salmonella paratyphi A)、ブドウ球菌エンテロトキシンB(Staphylococcal enterotoxin B)、緑膿菌(Pseudomonas aeruginosa)、腸炎ビブリオ(Vibrio parahaemolyticus)等の細菌や、ムチン1等の上皮の細胞表面に表れるがんマーカー等と結合するDNAアプタマー、ヒトパピローマウイルス(HPV)の腫瘍性たんぱく質HPV16 E6と結合するペプチドアプタマー等が挙げられる。
The molecule (b) is appropriately selected depending on the type of the test substance, but is an immunoreactive substance, lectin and sugar chain, avidin and biotin, nucleic acid and nucleic acid that hybridizes with the nucleic acid, nucleic acid It can be applied to any substance as long as it can interact with small organic molecules, proteins, nucleic acids, cells, cell tissues, microorganisms and the like that specifically bind to aptamers such as aptamers and peptide aptamers. Examples of immunoreactive substances include various antibodies and antigens. Here, as antibodies (IgG, IgM, IgE, IgD, IgA, etc.), autoantibodies such as anti-DNA antibodies, anti-ENA antibodies, anti-cardioribine antibodies, anti-mitochondrial antibodies, anti-smooth muscle antibodies, various immunoglobulins, etc. For example, the present invention can be applied to analysis of specific immunoglobulins (specific IgE, etc.) that specifically recognize allergens. Examples of the antigen include a glycoprotein, a specific protein composed of a plurality of subunits, and a protein complex such as prostate specific antigen (PSA).
Examples of the molecule (b) include anti-concanavalin A antibody, mannose and its derivatives (test substance: concanavalin A), anti-verotoxin antibody, globotrisaccharide and its derivative (test substance: verotoxin), sialyl lactose and its Derivatives, anti-influenza antibody (test substance: influenza virus and its antigen), anti-hepatitis B virus antibody (test substance: hepatitis B virus and its antigen), anti-insulin antibody (test substance: insulin), anti-aflatoxin antibody (test) Substance: aflatoxin), anti-human chorionic gonadotropin antibody (test substance: human chorionic gonadotropin), anti-human immunodeficiency virus antibody (test substance: human immunodeficiency virus and its antigen), anti-lysine antibody, galactose and its derivatives (test) Substance: ricin), anti-Salmonella anti (Test substance: Salmonella), etc., Bacillus anthracis, Staphylococcus aureus, D group Shigella sonnei, Escherichia sumirum, Escherichia smut ), Streptococcus hemoliticus, Paratyphi (Salmonella paratyphi A), Staphylococcal enterotoxin B (Staphylococcal enterotoxin B), Pseudomonas aeruginosa, etc. Cell surface DNA aptamers that bind to cancer markers, etc. appearing, peptide aptamers, etc. that bind with a tumor protein HPV16 E6 of human papillomavirus (HPV) and the like.
被験物質の例として、コンカナバリン A(Con A)や麦芽アグルチニン、リシン等のレクチン、免疫グロブリンG(IgG)等の血清蛋白成分、ムチン等の糖たんぱく質、前立腺性酸性フォスファターゼ(PAP)、前立腺特異抗原(PSA)、アルカリ性フォスファターゼ、トランスアミナーゼ、トリプシン、ペプシノーゲン、α−フェトプロテイン(AFP)、ガン胎児性抗原(CEA)等のガン特異物質、ペプチドホルモン(成長ホルモン(GH)、副腎皮質刺激ホルモン(ACTH)、メラミン細胞刺激ホルモン(MSH)、プロラクチン、甲状腺刺激ホルモン(TSH)、黄体形成ホルモン(LH)、卵胞刺激ホルモン(FSH)、下垂体ホルモン、カルシユウム代謝調節ホルモン、膵ホルモン、消化管ホルモン、血管作用ホルモン、ヒト絨毛性性腺刺激ホルモン(hCG)等の胎盤ホルモン、便潜血、インフルエンザウイルス、アデノウイルス、RSウイルス、ロタウイルス、ヒトパピローマウイルス、B型肝炎ウイルス等のウイルス及びその抗原、抗体や代謝産物等、クラミジア、梅毒トレポネーマ、溶連菌、炭疽菌、黄色ブドウ球菌、赤痢菌、大腸菌、ネズミチフス菌、パラチフス、緑膿菌、腸炎ビブリオ等の細菌及びその抗原、抗体や代謝産物等、リュウマチ因子、セロトニン、ウロキナーゼ、フェリチン、サブスタンP、エストロン等の卵胞ホルモン、プロゲストロン等の天然又は合成黄体ホルモン、テストステロン等の男性ホルモン、コルチゾール等の副腎皮質ホルモン、コレステロール、胆汁酸、強心性ステロイド、サポゲニン等のその他のステロイド類、エピネフリン、ドーパミン、生理活性アルカロイド類、アミノ基含有向精神薬類、TRH等の低分子ペプチド類、ジヨードサイロニン等の甲状腺ホルモン類、プロスタグランジン類、ビタミン類、ペニシリン等の抗生物質類、DNA、RNA、オリゴヌクレオチド、ポリヌクレオチド、それらの増幅物等々が挙げられる。 Examples of test substances include concanavalin A (Con A), malt agglutinin, lectins such as ricin, serum protein components such as immunoglobulin G (IgG), glycoproteins such as mucin, prostatic acid phosphatase (PAP), prostate specific antigen (PSA), alkaline phosphatase, transaminase, trypsin, pepsinogen, α-fetoprotein (AFP), carcinoembryonic antigen (CEA) and other cancer specific substances, peptide hormones (growth hormone (GH), adrenocorticotropic hormone (ACTH), Melamine cell stimulating hormone (MSH), prolactin, thyroid stimulating hormone (TSH), luteinizing hormone (LH), follicle stimulating hormone (FSH), pituitary hormone, calcium metabolism regulating hormone, pancreatic hormone, gastrointestinal hormone, vasoactive hormone Mon, placental hormones such as human chorionic gonadotropin (hCG), fecal occult blood, influenza virus, adenovirus, RS virus, rotavirus, human papilloma virus, hepatitis B virus and other antigens, antibodies, metabolites, etc. , Chlamydia, Syphilis treponema, Streptococcus, Bacillus anthracis, Staphylococcus aureus, Shigella, Escherichia coli, Salmonella typhimurium, Paratyphi, Pseudomonas aeruginosa, Vibrio parahaemolyticus and other antigens, antibodies and metabolites, rheumatoid factor, serotonin , Follicular hormones such as ferritin, substance P and estrone, natural or synthetic luteinizing hormones such as progesterone, male hormones such as testosterone, adrenocortical hormones such as cortisol, cholesterol, bile acids, cardiotonic steroids, sapogenins and other STEROY , Epinephrine, dopamine, bioactive alkaloids, amino group-containing psychotropic drugs, low molecular peptides such as TRH, thyroid hormones such as diiodothyronine, antibiotics such as prostaglandins, vitamins, penicillin , DNA, RNA, oligonucleotides, polynucleotides, amplified products thereof, and the like.
なお、本発明のイムノクロマトキットにおいて、上記分子(b)は、イムノクロマトグラフ法に用いられる通常の抗体と同様の形態で利用できるが、例えば、展開液中に分散し且つクロマトグラフ担体に単独で固定化されている形態、上記金属微粒子(a)と一体となって展開液中に分散し且つクロマトグラフ担体に単独で固定化されている形態、上記金属微粒子(a)と一体となってクロマトグラフ担体に担持され且つクロマトグラフ担体の上記金属微粒子とは異なる位置に単独で固定化されている形態が挙げられる。 In the immunochromatography kit of the present invention, the molecule (b) can be used in the same form as a normal antibody used in an immunochromatography method. For example, the molecule (b) is dispersed in a developing solution and fixed alone on a chromatographic carrier. In a form integrated with the fine metal particles (a) and dispersed in the developing solution and fixed alone on the chromatographic carrier, a chromatograph integrated with the fine metal particles (a) The form supported by the support | carrier and being independently fixed to the position different from the said metal microparticle of a chromatographic support | carrier is mentioned.
本発明のイムノクロマトキットは、上記被験物質に対して結合性を有さず且つ上記金属微粒子(a)に対して結合性を有する水溶性高分子(c)を更に備えることが好ましい。上記金属微粒子(a)が展開液中に分散している場合、該展開液中に水溶性高分子(c)を加えることで、展開液中での金属微粒子(a)の分散安定性を向上させることができる。なお、「被験物質に対して結合性を有しない」という特徴は、水溶性高分子(c)が上記分子(b)とは異なる物質であることを意味する。 The immunochromatography kit of the present invention preferably further comprises a water-soluble polymer (c) that does not have binding properties to the test substance and has binding properties to the metal fine particles (a). When the metal fine particles (a) are dispersed in the developing solution, the dispersion stability of the metal fine particles (a) in the developing solution is improved by adding a water-soluble polymer (c) to the developing solution. Can be made. In addition, the feature of “having no binding property to the test substance” means that the water-soluble polymer (c) is a substance different from the molecule (b).
上記水溶性高分子(c)は、上記金属微粒子(a)に対して結合性を有するため、アミノ基、カルボキシル基、水酸基等の官能基を有することが好ましく、特にはメルカプト基、ジチオール基又はスルフィド基を有することが好ましい。しかし、これら官能基を有していなくても化合物の界面エネルギーや静電吸着により物理吸着していても良い。具体的には、ポリエチレングリコール、ポリアクリル酸、ポリメタクリル酸、ポリビニルピロリドン、ポリアリルアミン、デキストラン、ポリアクリルアミド、ポリメタクリルアミド、ポリビニルフェノール、ポリ安息香酸ビニル、ポリビニルアルコール等が挙げられる。なお、これら水溶性高分子は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The water-soluble polymer (c) preferably has a functional group such as an amino group, a carboxyl group, or a hydroxyl group because it has binding properties to the metal fine particles (a), and in particular, a mercapto group, a dithiol group, It preferably has a sulfide group. However, even if these functional groups are not present, they may be physically adsorbed by interfacial energy or electrostatic adsorption of the compound. Specific examples include polyethylene glycol, polyacrylic acid, polymethacrylic acid, polyvinyl pyrrolidone, polyallylamine, dextran, polyacrylamide, polymethacrylamide, polyvinyl phenol, polyvinyl benzoate, and polyvinyl alcohol. In addition, these water-soluble polymers may be used individually by 1 type, and may be used in combination of 2 or more type.
本発明のイムノクロマトキットは、通常、クロマトグラフ担体を備える。クロマトグラフ担体は、イムノクロマト試験後に1種又は複数種の検出ラインを呈する。クロマトグラフ担体としては、毛細管現象を示す多孔性物質が好ましく、ニトロセルロース膜、セルロース膜、アセチルセルロース膜、ポリスルホン膜、ポリエーテルスルホン膜、ナイロン膜、ガラス繊維、不織布、布、糸等が好適に挙げられる。 The immunochromatography kit of the present invention usually comprises a chromatographic carrier. A chromatographic carrier exhibits one or more detection lines after an immunochromatographic test. As the chromatographic carrier, a porous substance exhibiting a capillary phenomenon is preferable, and a nitrocellulose membrane, a cellulose membrane, an acetylcellulose membrane, a polysulfone membrane, a polyethersulfone membrane, a nylon membrane, a glass fiber, a nonwoven fabric, a cloth, a thread, and the like are preferable. Can be mentioned.
クロマトグラフ担体には、分子(b)が単独で固定化されるか又は同一の分子(b)が複数で固定されるか又は異種の分子(b)が複数で固定されており、この固定化部分が、被験物質の有無を判定する部分(検出ライン)として機能することになる。
クロマトグラフ担体がイムノクロマト試験後に複数種の検出ラインを呈する場合、該クロマトグラフ担体には、異なる被験物質に対して結合性を有する複数種の分子(b)がそれぞれ異なる位置に固定されていることが好ましい。この場合、異なる被験物質の検出を一度に行うことが可能になる。
また、イムノクロマト試験後に呈する検出ラインの色は、1種の金属微粒子(a)の色又は異なる色を呈する複数種の金属微粒子(a)の混色に基づいている。
このため、クロマトグラフ担体は、異なる被験物質に対して結合性を有する複数種の分子(b)により、複数の固定化部分を備える場合、金属微粒子(a)の色調の違いを利用して、それぞれの固定化部分を異なる色を呈する検出ラインとして機能させることも可能である(検出ラインの多色化)。これにより、複数の被験物質の検出が一度で可能になる。
On the chromatographic carrier, the molecule (b) is immobilized alone, or the same molecule (b) is immobilized in plural or different kinds of molecules (b) are immobilized in plural. The part functions as a part (detection line) for determining the presence or absence of the test substance.
When the chromatographic carrier exhibits a plurality of types of detection lines after the immunochromatographic test, a plurality of types of molecules (b) having binding properties to different test substances are fixed to the chromatographic carrier at different positions. Is preferred. In this case, it becomes possible to detect different test substances at once.
Further, the color of the detection line presented after the immunochromatographic test is based on the color of one type of metal fine particles (a) or a mixed color of a plurality of types of metal fine particles (a) exhibiting different colors.
For this reason, when the chromatographic carrier is provided with a plurality of immobilized portions by a plurality of types of molecules (b) having binding properties to different test substances, the difference in color tone of the metal fine particles (a) is used. It is also possible to cause each fixed portion to function as a detection line exhibiting a different color (multiple detection lines). Thereby, a plurality of test substances can be detected at once.
クロマトグラフ担体は、紙、プラスチック等の支持体上に設置して使用されてもよい。また、クロマトグラム担体は、展開液が展開する方向から見て下流側に位置する端部に、展開液を吸収除去するための吸収部(例えば、紙、不織布)が設けられていてもよい。また、展開液が展開する方向から見て上流側に位置する端部に金属微粒子(a)と抗体(b)の複合体を担持可能で且つ被験物質を含む溶液を吸収するための吸収部(例えば、ガラス繊維)が設けられていてもよい。 The chromatographic carrier may be used on a support such as paper or plastic. Further, the chromatogram carrier may be provided with an absorbing portion (for example, paper or nonwoven fabric) for absorbing and removing the developing solution at an end portion located on the downstream side when viewed from the developing direction of the developing solution. In addition, an absorption part (for absorbing a solution containing a test substance) capable of carrying a complex of metal fine particles (a) and an antibody (b) at an end located upstream from the direction in which the development liquid is developed. For example, glass fiber) may be provided.
なお、分子(b)が単独で固定化されたクロマトグラフ担体は、市販品を好適に使用できる。また、分子(b)と金属微粒子(a)とからなる複合体を担持し且つ分子(b)が単独で固定化されたクロマトグラフ担体は、前述の市販品のクロマトグラフ担体を使用して作製できる。市販品のクロマトグラフ担体の展開液を除去するための吸収部を上部としたとき、分子(b)が固定化されている部分の下部に位置する部分に分子(b)と金属微粒子(a)を一体化させた溶液を線状に滴下し乾燥させることによって作製できる。 A commercially available product can be suitably used as the chromatographic carrier on which the molecule (b) is immobilized alone. A chromatographic carrier carrying a complex composed of the molecule (b) and the metal fine particles (a) and having the molecule (b) immobilized alone is prepared using the above-mentioned commercially available chromatographic carrier. it can. When the absorption part for removing the developing solution of the commercially available chromatographic carrier is the upper part, the molecule (b) and the metal fine particles (a) are located at the lower part of the part where the molecule (b) is immobilized. The solution can be prepared by dropping a solution in which the above are integrated linearly and drying.
本発明のイムノクロマトキットは、通常、展開液を備える。展開液としては、例えば、被験物質を含む可能性のある試料と適当な溶媒(例えば、水、生理食塩水又は緩衝液等)の混合物が挙げられるが、該試料それ自体をクロマトグラフ担体上で展開できるのであれば、該試料それ自体を展開液として使用することも可能である。 The immunochromatography kit of the present invention usually comprises a developing solution. Examples of the developing solution include a mixture of a sample that may contain a test substance and an appropriate solvent (for example, water, physiological saline, or a buffer solution), and the sample itself is placed on a chromatographic carrier. If it can be developed, the sample itself can be used as a developing solution.
上記被験物質を含む可能性のある試料としては、特に限定されるものではなく、例えば、生物学的試料、特には動物(特にヒト)の体液(例えば、血液、血清、血漿、髄液、涙液、汗、尿、膿、鼻水、又は喀痰)若しくは排泄物(例えば、糞便)、臓器、組織、粘膜や皮膚、それらを含むと考えられる搾過検体(スワブ)、うがい液、又は動植物それ自体若しくはそれらの乾燥体を挙げることができる。 The sample that may contain the test substance is not particularly limited. For example, biological samples, particularly body fluids of animals (particularly humans) (for example, blood, serum, plasma, spinal fluid, tears) Fluid, sweat, urine, pus, runny nose or sputum) or excrement (eg, feces), organs, tissues, mucous membranes and skin, swabs suspected of containing them, gargle, or animals and plants themselves Or those dry bodies can be mentioned.
本発明のイムノクロマトキットにおいては、分子(b)がクロマトグラフ担体に単独で固定化されている場合、金属微粒子(a)及び分子(b)を更に含む展開液を使用することができる。 In the immunochromatography kit of the present invention, when the molecule (b) is immobilized alone on the chromatographic carrier, a developing solution further containing metal fine particles (a) and molecules (b) can be used.
なお、分子(b)がクロマトグラフ担体に単独で固定化されている場合、先に説明した展開液では、被験物質を含む可能性のある試料と、金属微粒子(a)及び分子(b)を混合しているが、展開液を2種類に分けて使用してもよい。例えば、被験物質を含む可能性のある試料を含む展開液を第1の展開液とし、金属微粒子(a)や分子(b)を含む展開液を第2の展開液として用いることも可能である。また、分子(b)が金属微粒子と一体となってクロマトグラフ担体に担持されている場合、被験物質を含む可能性のある試料を含む展開液のみを展開すればよい。同様に、分子(b)が金属微粒子と一体となって展開液が展開する方向から見て上流側に位置する端部の吸収部に担持されている場合、被験物質を含む可能性のある試料を含む展開液のみを展開すればよい。 When the molecule (b) is immobilized on the chromatographic carrier alone, the above-described developing solution contains a sample that may contain the test substance, the metal fine particles (a), and the molecules (b). Although mixed, the developing solution may be divided into two types. For example, a developing solution containing a sample that may contain a test substance may be used as the first developing solution, and a developing solution containing metal fine particles (a) or molecules (b) may be used as the second developing solution. . Further, when the molecule (b) is integrated with the metal fine particles and supported on the chromatographic carrier, only the developing solution containing the sample that may contain the test substance may be developed. Similarly, a sample that may contain a test substance when the molecule (b) is integrated with the metal fine particles and is supported on the absorption part at the upstream side when viewed from the direction in which the developing solution is developed. It is sufficient to develop only the developing solution containing
本発明のイムノクロマトキットは、イムノクロマトグラフ法を利用する様々な検出方法に使用可能である。以下、図を参照しながら、本発明のイムノクロマトキットの実施態様を用いる検出方法(イムノクロマト試験)の一部について詳細に説明する。なお、下記に示すイムノクロマト試験では、上記被験物質を含む可能性のある試料に被験物質が存在していることを前提にして説明されているが、当然、被験物質が存在しない場合もある。 The immunochromatography kit of the present invention can be used for various detection methods using an immunochromatography method. Hereinafter, a part of the detection method (immunochromatography test) using the embodiment of the immunochromatography kit of the present invention will be described in detail with reference to the drawings. The immunochromatographic test described below is described on the assumption that the test substance is present in a sample that may contain the test substance. Of course, the test substance may not exist.
図1は、本発明のイムノクロマトキットの一実施態様を用いたイムノクロマト試験の概略図を示す。図1に示すクロマトグラフ担体は、プラスチック上に設置されており、その上端には吸収紙が設けられている(これをイムノクロマト試験紙とする)。また、このクロマトグラフ担体は、分子(b)が直線状に固定化され、判定部分が形成されている。図1に示す展開液は、被験物質及び緩衝液を含む第1の展開液(実際には上述の生物学的試料等でもよい)と、金属微粒子(a)、分子(b)及び緩衝液を含む第2の展開液からなり、第2の展開液中では、金属微粒子(a)と分子(b)が結合して複合体を形成している。図1に示すイムノクロマト試験によれば、まず、イムノクロマト試験紙に第1の展開液を展開させる(図1(a))。ここで、図1のように被験物質が第1の展開液に含まれる場合、該被験物質は、クロマトグラフ担体上に固定化された分子(b)に結合する(図1(b))。次に、クロマトグラフ担体上に残存する未結合の被験物質を除去するため、緩衝液を展開してクロマトグラフ担体を洗浄する(図1(b))。なお、除去された被験物質は吸収紙に回収される。次に、イムノクロマト試験紙に第2の展開液を展開させる(図1(c))。ここで、図1のように被験物質が第1の展開液に含まれる場合、金属微粒子(a)と分子(b)の複合体が、クロマトグラフ担体上の分子(B)に結合している被験物質に結合する(図1(d))。図1のように被験物質が第1の展開液に含まれる場合、金属微粒子(a)が判定部分に残るため、金属微粒子(a)の色調による被験物質の検出が可能になる。 FIG. 1 shows a schematic diagram of an immunochromatographic test using one embodiment of the immunochromatography kit of the present invention. The chromatographic carrier shown in FIG. 1 is installed on a plastic, and an absorbent paper is provided on the upper end thereof (this is an immunochromatographic test paper). Further, in this chromatographic carrier, the molecule (b) is fixed in a straight line, and a determination portion is formed. The developing solution shown in FIG. 1 includes a first developing solution containing a test substance and a buffer solution (actually, the above-described biological sample or the like), metal fine particles (a), molecules (b), and a buffer solution. In the second developing solution, metal fine particles (a) and molecules (b) are bonded to form a complex. According to the immunochromatographic test shown in FIG. 1, first, a first developing solution is developed on an immunochromatographic test paper (FIG. 1 (a)). Here, when the test substance is contained in the first developing solution as shown in FIG. 1, the test substance binds to the molecule (b) immobilized on the chromatographic carrier (FIG. 1 (b)). Next, in order to remove the unbound test substance remaining on the chromatographic carrier, the chromatographic carrier is washed by developing a buffer solution (FIG. 1 (b)). The removed test substance is collected on absorbent paper. Next, the second developing solution is developed on the immunochromatographic test paper (FIG. 1 (c)). Here, when the test substance is contained in the first developing solution as shown in FIG. 1, the complex of the metal fine particle (a) and the molecule (b) is bound to the molecule (B) on the chromatographic carrier. It binds to the test substance (FIG. 1 (d)). When the test substance is contained in the first developing solution as shown in FIG. 1, the metal fine particles (a) remain in the determination portion, so that the test substance can be detected based on the color tone of the metal fine particles (a).
図2は、本発明のイムノクロマトキットの他の実施態様を用いたイムノクロマト試験の概略図を示す。図2に示すクロマトグラフ担体は、図1に示すものと同一である。図2に示す展開液は、被験物質、金属微粒子(a)、分子(b)及び緩衝液を含む展開液であり、展開液中では、分子(b)を介して金属微粒子(a)と被験物質が結合して複合体を形成している(図2(a))。図2に示すイムノクロマト試験によれば、イムノクロマト試験紙に展開液を展開させる(図2(b)及び(c))。ここで、図2のように被験物質が展開液に含まれる場合、該被験物質は、クロマトグラフ担体上に固定化された分子(b)に結合するが、図2(d)に示されるように、上記複合体が判定部分に残ることになる。ここで、上記複合体には金属微粒子(a)が含まれるため、金属微粒子(a)の色調による被験物質の検出が可能になる。 FIG. 2 shows a schematic diagram of an immunochromatographic test using another embodiment of the immunochromatography kit of the present invention. The chromatographic carrier shown in FIG. 2 is the same as that shown in FIG. The developing solution shown in FIG. 2 is a developing solution containing a test substance, metal fine particles (a), molecules (b), and a buffer solution. Substances are bonded to form a complex (FIG. 2A). According to the immunochromatographic test shown in FIG. 2, a developing solution is developed on an immunochromatographic test paper (FIGS. 2B and 2C). Here, when the test substance is contained in the developing solution as shown in FIG. 2, the test substance binds to the molecule (b) immobilized on the chromatographic carrier, as shown in FIG. 2 (d). In addition, the complex remains in the determination part. Here, since the composite contains the metal fine particles (a), the test substance can be detected by the color tone of the metal fine particles (a).
図3は、本発明のイムノクロマトキットの他の実施態様を用いたイムノクロマト試験の概略図を示す。図3(a)に示すクロマトグラフ担体は、図1に示すものと同一である。また、図3(a)のクロマトグラフ担体の、展開液が展開する方向から見て、判定部分より上流側に(図3では判定部分より下側に)金属微粒子(a)と分子(b)の複合体を含む溶液を滴下、乾燥し、複合体担持イムノクロマトグラフ担体を作製している(図3(b)及び(c))。図3(c)のクロマトグラフ担体では、展開液が複合体担持部分を通ると、複合体も展開液と一緒に展開される。図3に示す展開液は、被験物質および緩衝液を含む展開液(実際には上述の生物学的試料等でもよい)である。図3に示すイムノクロマト試験によれば、イムノクロマト試験紙に展開液を展開させる(図3(d)および(e))。ここで、図3のように被験物質が展開液に含まれる場合、該被験物質は、クロマトグラフ担体上に固定化された分子(b)に結合するが、図3(e)および(f)に示されるように、上記複合体が判定部分に残ることになる。ここで、上記複合体には金属微粒子(a)が含まれるため、金属微粒子(a)の色調による被験物質の検出が可能になる。 FIG. 3 shows a schematic diagram of an immunochromatographic test using another embodiment of the immunochromatography kit of the present invention. The chromatographic carrier shown in FIG. 3 (a) is the same as that shown in FIG. In addition, the fine metal particles (a) and the molecules (b) of the chromatographic carrier of FIG. 3 (a) are located upstream from the determination part (in FIG. 3 below the determination part) as viewed from the direction in which the developing solution is developed. A solution containing this complex was dropped and dried to produce a complex-supported immunochromatographic carrier (FIGS. 3B and 3C). In the chromatographic carrier of FIG. 3C, when the developing solution passes through the complex-supporting portion, the complex is also developed together with the developing solution. The developing solution shown in FIG. 3 is a developing solution containing a test substance and a buffer solution (actually, the above-described biological sample or the like may be used). According to the immunochromatographic test shown in FIG. 3, a developing solution is developed on an immunochromatographic test paper (FIGS. 3D and 3E). Here, when the test substance is contained in the developing solution as shown in FIG. 3, the test substance binds to the molecule (b) immobilized on the chromatographic carrier, while FIGS. 3 (e) and (f) As shown in the above, the complex remains in the determination part. Here, since the composite contains the metal fine particles (a), the test substance can be detected by the color tone of the metal fine particles (a).
図4は、本発明のイムノクロマトキットの他の実施態様を用いたイムノクロマト試験の概略図を示す。図4に示すクロマトグラフ担体には、展開液が展開する方向から見て上流側に位置する端部に金属微粒子(a)と抗体(b)の複合体を担持可能で且つ被験物質を含む溶液を吸収するためのガラス繊維の吸収部が設けられている。
図4(a)のクロマトグラフ担体では、ガラス繊維の吸収部に金属微粒子(a)と分子(b)の複合体を含む溶液を滴下、乾燥し、複合体担持イムノクロマトグラフ担体を作製している。
図4に示す展開液は、被験物質および緩衝液を含む展開液(実際には上述の生物学的試料等でもよい)である。図4に示すイムノクロマト試験によれば、イムノクロマト試験紙に展開液を展開させる(図4(b)、(c)、(d)及び(e))。ここで、図4のように被験物質が展開液に含まれる場合、該被験物質は、クロマトグラフ担体上に固定化された分子(b)に結合するが、図4(e)および(f)に示されるように、上記複合体が判定部分に残ることになる。ここで、上記複合体には金属微粒子(a)が含まれるため、金属微粒子(a)の色調による被験物質の検出が可能になる。
FIG. 4 shows a schematic diagram of an immunochromatographic test using another embodiment of the immunochromatography kit of the present invention. The chromatographic carrier shown in FIG. 4 is a solution that can carry a complex of metal fine particles (a) and an antibody (b) at the end located upstream from the direction in which the developing solution develops and contains a test substance. An absorption portion of glass fiber for absorbing water is provided.
In the chromatographic carrier of FIG. 4 (a), a solution containing a complex of metal fine particles (a) and molecules (b) is dropped onto the glass fiber absorption part and dried to produce a complex-supported immunochromatographic carrier. .
The developing solution shown in FIG. 4 is a developing solution (in fact, the above-described biological sample or the like) containing a test substance and a buffer solution. According to the immunochromatographic test shown in FIG. 4, a developing solution is developed on an immunochromatographic test paper (FIGS. 4B, 4C, 4D and 4E). Here, when the test substance is contained in the developing solution as shown in FIG. 4, the test substance binds to the molecule (b) immobilized on the chromatographic carrier, but FIGS. 4 (e) and (f) As shown in the above, the complex remains in the determination part. Here, since the composite contains the metal fine particles (a), the test substance can be detected by the color tone of the metal fine particles (a).
図5は、本発明のイムノクロマトキットの他の実施態様を用いたイムノクロマト試験の概略図を示す。図5に示すクロマトグラフ担体は、プラスチック上に設置されており、その上端には吸収紙が設けられている(これをイムノクロマト試験紙とする)。また、このクロマトグラフ担体は、複数の異種の分子(b)1−3が異なる位置に直線状に固定化され、判定部分が形成されている。図5に示す展開液は、複数の異種の被験物質1−3及び緩衝液を含む第1の展開液(図5(b)、(c))と、複数の異種の金属微粒子(a)1−3、複数の異種の分子(b)1−3(対応する数字の被験物質1−3と結合する)及び緩衝液を含む第2の展開液(図5(e))からなり、第2の展開液中では、複数の異種の金属微粒子(a)1−3と複数の異種の分子(b)1−3が結合して複合体を形成している。図5に示すイムノクロマト試験によれば、まず、イムノクロマト試験紙に第1の展開液を展開させる(図5(b)、(c))。ここで、図5のように複数の異種の被験物質1−3が第1の展開液に含まれる場合、該被験物質は、クロマトグラフ担体上に固定化された複数の異種の分子(b)のうち対応する分子(b)に結合する(図5(c))。次に、クロマトグラフ担体上に残存する未結合の被験物質を除去するため、緩衝液を展開してクロマトグラフ担体を洗浄する(図5(d))。なお、除去された被験物質は吸収紙に回収される。次に、イムノクロマト試験紙に第2の展開液を展開させる(図5(e))。ここで、図5のように複数の異種の被験物質が第1の展開液に含まれる場合、複数の異種の金属微粒子(a)1−3と複数の異種の分子(b)1−3の複合体が、クロマトグラフ担体上の各分子(b)に結合している被験物質に結合する(図5(e))。図5のように複数の異種の被験物質1−3が第1の展開液に含まれる場合、複数の異種の金属微粒子(a)1−3が複数の判定部分に残るため、各金属微粒子(a)の色調により複数の被験物質の検出が一度で可能になる。 FIG. 5 shows a schematic diagram of an immunochromatographic test using another embodiment of the immunochromatography kit of the present invention. The chromatographic carrier shown in FIG. 5 is installed on a plastic, and an absorbent paper is provided on the upper end thereof (this is an immunochromatographic test paper). In this chromatographic carrier, a plurality of different kinds of molecules (b) 1-3 are linearly fixed at different positions to form a determination portion. The developing solution shown in FIG. 5 includes a first developing solution (FIGS. 5B and 5C) containing a plurality of different test substances 1-3 and a buffer solution, and a plurality of different metal fine particles (a) 1. -3, a second developing solution (FIG. 5 (e)) containing a plurality of different kinds of molecules (b) 1-3 (binding to the corresponding numbers of test substances 1-3) and a buffer, In the developing solution, a plurality of different kinds of fine metal particles (a) 1-3 and a plurality of different kinds of molecules (b) 1-3 are combined to form a complex. According to the immunochromatographic test shown in FIG. 5, first, the first developing solution is developed on the immunochromatographic test paper (FIGS. 5B and 5C). Here, when a plurality of different kinds of test substances 1-3 are contained in the first developing solution as shown in FIG. 5, the test substances are a plurality of different kinds of molecules (b) immobilized on a chromatographic carrier. Bind to the corresponding molecule (b) (FIG. 5C). Next, in order to remove the unbound test substance remaining on the chromatographic carrier, the chromatographic carrier is washed by developing a buffer solution (FIG. 5 (d)). The removed test substance is collected on absorbent paper. Next, the second developing solution is developed on the immunochromatographic test paper (FIG. 5 (e)). Here, when a plurality of different types of test substances are included in the first developing solution as shown in FIG. 5, a plurality of different types of metal fine particles (a) 1-3 and a plurality of different types of molecules (b) 1-3 are included. The complex binds to the test substance bound to each molecule (b) on the chromatographic carrier (FIG. 5 (e)). When a plurality of different kinds of test substances 1-3 are included in the first developing solution as shown in FIG. 5, since a plurality of different kinds of metal fine particles (a) 1-3 remain in a plurality of determination portions, A plurality of test substances can be detected at once by the color tone of a).
図6は、本発明のイムノクロマトキットの他の実施態様を用いたイムノクロマト試験の概略図を示す。図6に示すクロマトグラフ担体は、プラスチック上に設置されており、その上端には吸収紙が設けられている(これをイムノクロマト試験紙とする)。また、このクロマトグラフ担体は、複数の異種の分子(b)1−3が異なる位置に直線状に固定化され、判定部分が形成されている。図6に示す展開液は、複数の異種の被験物質1−3及び緩衝液を含む第1の展開液(図6(b)、(c))と、複数の異種の金属微粒子(a)1−3、複数の異種の分子(b)1−3(対応する数字の被験物質1−3と結合する)及び緩衝液を含む第2の展開液(図6(e))からなり、第2の展開液中では、複数の異種の金属微粒子(a)1−3と複数の異種の分子(b)1−3が結合して複合体を形成しているが、金属微粒子(a)−1は、分子(b)−1又は分子(b)−3と共に複合体を形成し、金属微粒子(a)−2は、分子(b)−1又は分子(b)−2と共に複合体を形成し、金属微粒子(a)−3は、分子(b)−2又は分子(b)−3と共に複合体を形成している。
図6に示すイムノクロマト試験によれば、まず、イムノクロマト試験紙に第1の展開液を展開させる(図6(b)、(c))。ここで、図6のように複数の異種の被験物質1−3が第1の展開液に含まれる場合、該被験物質は、クロマトグラフ担体上に固定化された複数の異種の分子(b)1−3のうち対応する分子(b)に結合する(図6(c))。次に、クロマトグラフ担体上に残存する未結合の被験物質を除去するため、緩衝液を展開してクロマトグラフ担体を洗浄する(図6(d))。なお、除去された被験物質は吸収紙に回収される。次に、イムノクロマト試験紙に第2の展開液を展開させる(図6(e))。ここで、図6のように複数の異種の被験物質1−3が第1の展開液に含まれる場合、複数の異種の金属微粒子(a)1−3と複数の異種の分子(b)1−3の複合体が、クロマトグラフ担体上の各分子(b)に結合している被験物質に結合する(図6(e))。図6のように複数の異種の被験物質1−3が第1の展開液に含まれる場合、一つの判定部分に複数の異種の金属微粒子(a)が残るため、金属微粒子(a)1−3の混色の検出ラインが確認できる。
次に、図6に用いた第2の展開液の調製方法の一例を以下に記載する。金属微粒子(a)−1がイエロー調、金属微粒子(a)−2がマゼンタ調、金属微粒子(a)−3がシアン調の色であるとき、金属微粒子(a)−1と分子(b)−1、金属微粒子(a)−2と分子(b)−1をそれぞれ別々に複合体化し、これら複合体を等量ずつ混合することで赤色調の第2の展開液が調製可能である。同様に、金属微粒子(a)−2と分子(b)−2、金属微粒子(a)−3と分子(b)−2をそれぞれ別々に複合体化し、その後これら2種の複合体を等量ずつ混合することで青色調の第2の展開液が調製可能である。また、金属微粒子(a)−1と分子(b)−3、金属微粒子(a)−3と分子(b)−3をそれぞれ別々に複合体化し、その後これら2種の複合体を等量ずつ混合することで緑色調の第2の展開液が調製可能である。これら3種の第2展開液を同量混合することで黒色調の第2の展開液が調製でき、これを図6のイムノクロマト試験紙に展開すると、イムノクロマト紙に固定された分子(b)1−3に金属微粒子(a)の混色の検出ラインが確認される。図7に、図6に示すイムノクロマトキットに使用可能な第2展開液の一例を示す。なお、金属微粒子(a)や分子(b)の種類は、前述の3種に限定されず上限無く増やすことが可能であるため、検出部分の色を自由に制御することが可能である。
FIG. 6 shows a schematic diagram of an immunochromatographic test using another embodiment of the immunochromatography kit of the present invention. The chromatographic carrier shown in FIG. 6 is placed on a plastic, and an absorbent paper is provided on the upper end thereof (this is an immunochromatographic test paper). In this chromatographic carrier, a plurality of different kinds of molecules (b) 1-3 are linearly fixed at different positions to form a determination portion. The developing solution shown in FIG. 6 includes a first developing solution (FIGS. 6B and 6C) including a plurality of different test substances 1-3 and a buffer solution, and a plurality of different metal fine particles (a) 1. -3, a second developing solution (FIG. 6 (e)) containing a plurality of different kinds of molecules (b) 1-3 (binding to the corresponding numbers of test substances 1-3) and a buffer solution, In the developing solution, a plurality of different kinds of metal fine particles (a) 1-3 and a plurality of different kinds of molecules (b) 1-3 are combined to form a complex, but the metal fine particles (a) -1 Forms a complex with molecule (b) -1 or molecule (b) -3, and metal fine particle (a) -2 forms a complex with molecule (b) -1 or molecule (b) -2. The metal fine particles (a) -3 form a complex together with the molecule (b) -2 or the molecule (b) -3.
According to the immunochromatographic test shown in FIG. 6, first, the first developing solution is developed on the immunochromatographic test paper (FIGS. 6B and 6C). Here, when a plurality of different kinds of test substances 1-3 are contained in the first developing solution as shown in FIG. 6, the test substances are a plurality of different kinds of molecules (b) immobilized on a chromatographic carrier. It binds to the corresponding molecule (b) among 1-3 (FIG. 6 (c)). Next, in order to remove the unbound test substance remaining on the chromatographic carrier, the chromatographic carrier is washed by developing a buffer solution (FIG. 6 (d)). The removed test substance is collected on absorbent paper. Next, the second developing solution is developed on the immunochromatographic test paper (FIG. 6 (e)). Here, when a plurality of different kinds of test substances 1-3 are included in the first developing solution as shown in FIG. 6, a plurality of different kinds of metal fine particles (a) 1-3 and a plurality of different kinds of molecules (b) 1 -3 binds to the test substance bound to each molecule (b) on the chromatographic carrier (FIG. 6 (e)). When a plurality of different kinds of test substances 1-3 are included in the first developing solution as shown in FIG. 6, a plurality of different kinds of metal fine particles (a) remain in one determination portion, so that the metal fine particles (a) 1- 3 color mixture detection lines can be confirmed.
Next, an example of a method for preparing the second developing solution used in FIG. 6 will be described below. When the metal fine particles (a) -1 are yellow, the metal fine particles (a) -2 are magenta, and the metal fine particles (a) -3 are cyan, the metal fine particles (a) -1 and molecules (b) -1, the metal fine particles (a) -2 and the molecule (b) -1 are respectively complexed separately, and an equal amount of these complexes is mixed to prepare a second developing solution in red tone. Similarly, metal fine particles (a) -2 and molecules (b) -2, metal fine particles (a) -3 and molecules (b) -2 are respectively complexed separately, and then these two types of complexes are equivalent. By mixing each one, a second developing solution having a blue tone can be prepared. Also, the metal fine particles (a) -1 and the molecule (b) -3, the metal fine particles (a) -3 and the molecule (b) -3 are respectively complexed separately, and then these two types of complexes are each equivalent. By mixing, a second developing solution having a green tone can be prepared. A black second developing solution can be prepared by mixing the same amount of these three types of second developing solutions, and when this is developed on the immunochromatographic test paper of FIG. 6, the molecule (b) 1 immobilized on the immunochromatographic paper. -3 shows a mixed color detection line of the metal fine particles (a). FIG. 7 shows an example of a second developing solution that can be used in the immunochromatography kit shown in FIG. Note that the types of the metal fine particles (a) and the molecules (b) are not limited to the above-described three types, and can be increased without any upper limit, so that the color of the detection portion can be freely controlled.
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(プレート状銀ナノ粒子の種粒子の調製)
2.5mMのクエン酸ナトリウム水溶液20mLに、0.5g/Lの分子量70,000ポリスチレンスルホン酸水溶液1mLと、10mMの水素化ほう素ナトリウム水溶液1.2mLとを添加し、次いで、20mL/minで攪拌しながら、0.5mMの硝酸銀水溶液50mLを添加した。得られた溶液をインキュベーター(30℃)中に60分間静置し、プレート状銀ナノ粒子の種粒子の水分散液を作製した。調製した水分散液(原液)の光学特性を図8に示す。光学特性の測定は、株式会社島津製作所製の紫外可視近赤外分光光度計MPC3100UV−3100PCを用い、光路長:1cm及び測定波長:190−1300nmの条件下で行われた。最大吸収を示す波長は球状銀ナノ粒子のLSPRである396nm(消光度3.3)であった。なお、本発明の消光度とは分散液を分光光度計で測定した際の吸光度の値である。また、SEM写真を図28に示す。SEM写真の解析には株式会社日立製作所製の走査電子顕微鏡SU−70を用いた。粒子径は主に3nm以上、10nm未満のプレート状粒子であった。
(Preparation of seed particles of plate-like silver nanoparticles)
To 20 mL of 2.5 mM sodium citrate aqueous solution, 1 mL of 0.5 g / L molecular weight 70,000 polystyrenesulfonic acid aqueous solution and 1.2 mL of 10 mM sodium borohydride aqueous solution were added, and then at 20 mL / min. While stirring, 50 mL of 0.5 mM aqueous silver nitrate solution was added. The obtained solution was allowed to stand in an incubator (30 ° C.) for 60 minutes to prepare an aqueous dispersion of seed particles of plate-like silver nanoparticles. The optical characteristics of the prepared aqueous dispersion (stock solution) are shown in FIG. The optical properties were measured using an ultraviolet-visible near-infrared spectrophotometer MPC3100UV-3100PC manufactured by Shimadzu Corporation under the conditions of optical path length: 1 cm and measurement wavelength: 190-1300 nm. The wavelength exhibiting the maximum absorption was 396 nm (extinction degree 3.3) which is the LSPR of spherical silver nanoparticles. In addition, the extinction degree of this invention is the value of the light absorbency when measuring a dispersion liquid with a spectrophotometer. An SEM photograph is shown in FIG. A scanning electron microscope SU-70 manufactured by Hitachi, Ltd. was used for analysis of the SEM photograph. The particle diameter was mainly plate-like particles having a size of 3 nm or more and less than 10 nm.
(プレート状銀ナノ粒子Aの調製)
蒸留水200mlに、10mMのアスコルビン酸水溶液4.5mLを添加し、上述のプレート状銀ナノ粒子の種粒子の分散液(以下、種粒子水分散液という)12mlを添加した。得られた溶液に、0.5mMの硝酸銀水溶液120mLを30mL/minで攪拌しながら添加した。硝酸銀水溶液の添加が終了した4分後に攪拌を停止し、25mMのクエン酸ナトリウム水溶液20mlを添加し、得られた溶液を大気雰囲気下のインキュベーター(30℃)中に100時間静置し、プレート状銀ナノ粒子Aの水分散液を調製した。調製した分散液を蒸留水で4倍容に希釈した水分散液の光学特性を図9に示す。最大吸収を示す波長は454nm(消光度1.0)であった。光学特性の測定は、株式会社島津製作所製の紫外可視近赤外分光光度計MPC3100UV−3100PCを用い、光路長:1cm及び測定波長:190−1300nmの条件下で行われた。水分散液中のプレート状銀ナノ粒子AをSEMにより観察したところ、プレート状銀ナノ粒子Aの平均粒子径は18nmであり、平均厚さは8nmでアスペクト比は2.2であった。SEM写真の解析には株式会社日立製作所製の走査電子顕微鏡SU−70を用いた。
(Preparation of plate-like silver nanoparticles A)
To 200 ml of distilled water, 4.5 mL of a 10 mM ascorbic acid aqueous solution was added, and 12 ml of a seed particle dispersion (hereinafter referred to as seed particle aqueous dispersion) of the plate-like silver nanoparticles was added. To the resulting solution, 120 mL of 0.5 mM aqueous silver nitrate solution was added with stirring at 30 mL / min. Stirring was stopped 4 minutes after the addition of the aqueous silver nitrate solution, 20 ml of 25 mM aqueous sodium citrate solution was added, and the resulting solution was allowed to stand for 100 hours in an incubator (30 ° C.) under atmospheric conditions. An aqueous dispersion of silver nanoparticles A was prepared. FIG. 9 shows the optical characteristics of an aqueous dispersion obtained by diluting the prepared dispersion with distilled water to 4 volumes. The wavelength exhibiting the maximum absorption was 454 nm (quenching 1.0). The optical properties were measured using an ultraviolet-visible near-infrared spectrophotometer MPC3100UV-3100PC manufactured by Shimadzu Corporation under the conditions of optical path length: 1 cm and measurement wavelength: 190-1300 nm. When the plate-like silver nanoparticles A in the aqueous dispersion were observed by SEM, the plate-like silver nanoparticles A had an average particle diameter of 18 nm, an average thickness of 8 nm, and an aspect ratio of 2.2. A scanning electron microscope SU-70 manufactured by Hitachi, Ltd. was used for analysis of the SEM photograph.
(プレート状銀ナノ粒子Bの調製)
上記種粒子水分散液の添加量を12mlから4mlに変更した以外は、プレート状銀ナノ粒子Aの調製と同様にして、プレート状銀ナノ粒子Bの水分散液を調製した。調製した分散液を蒸留水で4倍容に希釈した水分散液の光学特性を図9に示す。最大吸収を示す波長は526nm(消光度1.1)であった。光学特性の測定は、株式会社島津製作所製の紫外可視近赤外分光光度計MPC3100UV−3100PCを用い、光路長:1cm及び測定波長:190−1300nmの条件下で行われた。水分散液中のプレート状銀ナノ粒子BをSEMにより観察したところ、プレート状銀ナノ粒子Bの平均粒子径は31nmであり、平均厚さは8nmでアスペクト比は3.8であった。SEM写真の解析には株式会社日立製作所製の走査電子顕微鏡SU−70を用いた。
(Preparation of plate-like silver nanoparticles B)
An aqueous dispersion of plate-like silver nanoparticles B was prepared in the same manner as the preparation of plate-like silver nanoparticles A, except that the amount of seed particle aqueous dispersion added was changed from 12 ml to 4 ml. FIG. 9 shows the optical characteristics of an aqueous dispersion obtained by diluting the prepared dispersion with distilled water to 4 volumes. The wavelength exhibiting the maximum absorption was 526 nm (quenching level 1.1). The optical properties were measured using an ultraviolet-visible near-infrared spectrophotometer MPC3100UV-3100PC manufactured by Shimadzu Corporation under the conditions of optical path length: 1 cm and measurement wavelength: 190-1300 nm. When the plate-like silver nanoparticles B in the aqueous dispersion were observed by SEM, the plate-like silver nanoparticles B had an average particle size of 31 nm, an average thickness of 8 nm, and an aspect ratio of 3.8. A scanning electron microscope SU-70 manufactured by Hitachi, Ltd. was used for analysis of the SEM photograph.
(プレート状銀ナノ粒子Cの調製)
上記種粒子水分散液の添加量を12mlから2mlに変更した以外は、プレート状銀ナノ粒子Aの調製と同様にして、プレート状銀ナノ粒子Cの水分散液を調製した。調製した分散液を蒸留水で4倍容に希釈した水分散液の光学特性を図9に示す。最大吸収を示す波長は626nm(消光度1.1)であった。光学特性の測定は、株式会社島津製作所製の紫外可視近赤外分光光度計MPC3100UV−3100PCを用い、光路長:1cm及び測定波長:190−1300nmの条件下で行われた。水分散液中のプレート状銀ナノ粒子CをSEMにより観察したところ、プレート状銀ナノ粒子Cの平均粒子径は50nmであり、平均厚さは10nmでアスペクト比は5.0であった。SEM写真の解析には株式会社日立製作所製の走査電子顕微鏡SU−70を用いた。
(Preparation of plate-like silver nanoparticles C)
An aqueous dispersion of the plate-like silver nanoparticles C was prepared in the same manner as the preparation of the plate-like silver nanoparticles A, except that the amount of the seed particle aqueous dispersion added was changed from 12 ml to 2 ml. FIG. 9 shows the optical characteristics of an aqueous dispersion obtained by diluting the prepared dispersion with distilled water to 4 volumes. The wavelength exhibiting the maximum absorption was 626 nm (quenching level 1.1). The optical properties were measured using an ultraviolet-visible near-infrared spectrophotometer MPC3100UV-3100PC manufactured by Shimadzu Corporation under the conditions of optical path length: 1 cm and measurement wavelength: 190-1300 nm. When the plate-like silver nanoparticles C in the aqueous dispersion were observed by SEM, the plate-like silver nanoparticles C had an average particle diameter of 50 nm, an average thickness of 10 nm, and an aspect ratio of 5.0. A scanning electron microscope SU-70 manufactured by Hitachi, Ltd. was used for analysis of the SEM photograph.
(プレート状銀ナノ粒子Dの調製)
上記種粒子水分散液の添加量を12mlから1mlに変更した以外は、プレート状銀ナノ粒子Aの調製と同様にして、プレート状銀ナノ粒子Dの水分散液を調製した。調製した分散液を蒸留水で4倍容に希釈した水分散液の光学特性を図9に示す。最大吸収を示す波長は704nm(消光度1.0)であった。光学特性の測定は、株式会社島津製作所製の紫外可視近赤外分光光度計MPC3100UV−3100PCを用い、光路長:1cm及び測定波長:190−1300nmの条件下で行われた。水分散液中のプレート状銀ナノ粒子DをSEMにより観察したところ、プレート状銀ナノ粒子Dの平均粒子径は74nmであり、平均厚さは8nmでアスペクト比は9.2であった。SEM写真の解析には株式会社日立製作所製の走査電子顕微鏡SU−70を用いた。
(Preparation of plate-like silver nanoparticles D)
An aqueous dispersion of plate-like silver nanoparticles D was prepared in the same manner as the preparation of plate-like silver nanoparticles A, except that the amount of seed particle aqueous dispersion added was changed from 12 ml to 1 ml. FIG. 9 shows the optical characteristics of an aqueous dispersion obtained by diluting the prepared dispersion with distilled water to 4 volumes. The wavelength exhibiting the maximum absorption was 704 nm (extinction degree 1.0). The optical properties were measured using an ultraviolet-visible near-infrared spectrophotometer MPC3100UV-3100PC manufactured by Shimadzu Corporation under the conditions of optical path length: 1 cm and measurement wavelength: 190-1300 nm. When the plate-like silver nanoparticles D in the aqueous dispersion were observed by SEM, the plate-like silver nanoparticles D had an average particle diameter of 74 nm, an average thickness of 8 nm, and an aspect ratio of 9.2. A scanning electron microscope SU-70 manufactured by Hitachi, Ltd. was used for analysis of the SEM photograph.
(金属微粒子Aの調製)
上記プレート状銀ナノ粒子Aの水分散液120mlに、5質量%のポリビニルピロリドン(PVP)水溶液8mlを添加し、ジエチルアミン1.2mlを添加し、0.5Mのアスコルビン酸水溶液1.6mlを添加した後、0.16mMの塩化金酸水溶液9.6mlを0.5mL/minで攪拌しながら添加した。得られた溶液をインキュベーター(30℃)中に24時間静置し、プレート状銀ナノ粒子Aの表面が金で被覆された金属微粒子Aの水分散液(イエロー調)を調製した。この金属微粒子Aの水分散液を原液とした。原液を蒸留水で4倍容に希釈した水分散液の光学特性を図10に示し、CIE1931xy色度図における原液の色度座標を図33に示す。最大吸収を示す波長は464nm(消光度0.8)であり、色度座標はx=0.5070、y=0.4774であった。光学特性の測定は、株式会社島津製作所製の紫外可視近赤外分光光度計MPC3100UV−3100PCを用い、光路長:1cm及び測定波長:190−1300nmの条件下で行われた。色度座標の測定は、同分光光度計を用い、光路長:1cm及び分光光度計操作用ソフトウェア「カラー測定ソフトウェア P/N 206−65207(株式会社島津製作所製)」にて照明:D65、視野:2°と設定した条件下で行われた。また、SEM写真を図29に示す。SEM写真の解析には株式会社日立製作所製の走査電子顕微鏡SU−70を用いた。
(Preparation of metal fine particles A)
To 120 ml of the aqueous dispersion of plate-like silver nanoparticles A, 8 ml of a 5% by mass polyvinylpyrrolidone (PVP) aqueous solution was added, 1.2 ml of diethylamine was added, and 1.6 ml of 0.5 M ascorbic acid aqueous solution was added. Then, 9.6 ml of 0.16 mM chloroauric acid aqueous solution was added at 0.5 mL / min with stirring. The obtained solution was allowed to stand in an incubator (30 ° C.) for 24 hours to prepare an aqueous dispersion (yellow tone) of metal fine particles A in which the surface of the plate-like silver nanoparticles A was coated with gold. This aqueous dispersion of metal fine particles A was used as a stock solution. FIG. 10 shows the optical characteristics of the aqueous dispersion obtained by diluting the stock solution with distilled water to 4 volumes, and FIG. 33 shows the chromaticity coordinates of the stock solution in the CIE1931xy chromaticity diagram. The wavelength exhibiting the maximum absorption was 464 nm (extinction degree 0.8), and the chromaticity coordinates were x = 0.57070 and y = 0.4774. The optical properties were measured using an ultraviolet-visible near-infrared spectrophotometer MPC3100UV-3100PC manufactured by Shimadzu Corporation under the conditions of optical path length: 1 cm and measurement wavelength: 190-1300 nm. The chromaticity coordinates are measured using the same spectrophotometer, with an optical path length of 1 cm and a spectrophotometer operation software “Color measurement software P / N 206-65207 (manufactured by Shimadzu Corporation)” illumination: D65, field of view : Performed under conditions set at 2 °. An SEM photograph is shown in FIG. A scanning electron microscope SU-70 manufactured by Hitachi, Ltd. was used for analysis of the SEM photograph.
(金属微粒子Bの調製)
プレート状銀ナノ粒子Aの水分散液120mlに代えてプレート状銀ナノ粒子Bの水分散液120mlを使用した以外は、金属微粒子Aの調製と同様にして、プレート状銀ナノ粒子Bの表面が金で被覆された金属微粒子Bの水分散液(マゼンタ調)を調製した。この金属微粒子Bの水分散液を原液とした。原液を蒸留水で4倍容に希釈した水分散液の光学特性を図10に示し、CIE1931xy色度図における原液の色度座標を図33に示す。最大吸収を示す波長は534nm(消光度0.9)であり、色度座標はx=0.4276、y=0.1751であった。光学特性の測定は、株式会社島津製作所製の紫外可視近赤外分光光度計MPC3100UV−3100PCを用い、光路長:1cm及び測定波長:190−1300nmの条件下で行われた。色度座標の測定は、同分光光度計を用い、光路長:1cm及び分光光度計操作用ソフトウェア「カラー測定ソフトウェア P/N 206−65207(株式会社島津製作所製)」にて照明:D65、視野:2°と設定した条件下で行われた。また、SEM写真を図30に示す。SEM写真の解析には株式会社日立製作所製の走査電子顕微鏡SU−70を用いた。
(Preparation of metal fine particles B)
The surface of the plate-like silver nanoparticle B is the same as the preparation of the metal fine particles A except that 120 ml of the aqueous dispersion of the plate-like silver nanoparticle B is used instead of 120 ml of the aqueous dispersion of the plate-like silver nanoparticle A. An aqueous dispersion (magenta tone) of metal fine particles B coated with gold was prepared. An aqueous dispersion of the metal fine particles B was used as a stock solution. FIG. 10 shows the optical characteristics of the aqueous dispersion obtained by diluting the stock solution with distilled water to 4 volumes, and FIG. 33 shows the chromaticity coordinates of the stock solution in the CIE1931xy chromaticity diagram. The wavelength exhibiting the maximum absorption was 534 nm (quenching degree 0.9), and the chromaticity coordinates were x = 0.4276 and y = 0.1751. The optical properties were measured using an ultraviolet-visible near-infrared spectrophotometer MPC3100UV-3100PC manufactured by Shimadzu Corporation under the conditions of optical path length: 1 cm and measurement wavelength: 190-1300 nm. The chromaticity coordinates are measured using the same spectrophotometer, with an optical path length of 1 cm and a spectrophotometer operation software “Color measurement software P / N 206-65207 (manufactured by Shimadzu Corporation)” illumination: D65, field of view : Performed under conditions set at 2 °. An SEM photograph is shown in FIG. A scanning electron microscope SU-70 manufactured by Hitachi, Ltd. was used for analysis of the SEM photograph.
(金属微粒子Cの調製)
プレート状銀ナノ粒子Aの水分散液120mlに代えてプレート状銀ナノ粒子Cの水分散液120mlを使用した以外は、金属微粒子Aの調製と同様にして、プレート状銀ナノ粒子Cの表面が金で被覆された金属微粒子Cの水分散液(シアン調)を調製した。この金属微粒子Cの水分散液を原液とした。原液を蒸留水で4倍容に希釈した水分散液の光学特性を図10に示し、CIE1931xy色度図における原液の色度座標を図33に示す。最大吸収を示す波長は634nm(消光度0.9)であり、色度座標はx=0.1467、y=0.2090であった。光学特性の測定は、株式会社島津製作所製の紫外可視近赤外分光光度計MPC3100UV−3100PCを用い、光路長:1cm及び測定波長:190−1300nmの条件下で行われた。色度座標の測定は、同分光光度計を用い、光路長:1cm及び分光光度計操作用ソフトウェア「カラー測定ソフトウェア P/N 206−65207(株式会社島津製作所製)」にて照明:D65、視野:2°と設定した条件下で行われた。また、SEM写真を図31に示す。SEM写真の解析には株式会社日立製作所製の走査電子顕微鏡SU−70を用いた。
(Preparation of metal fine particles C)
The surface of the plate-like silver nanoparticles C was prepared in the same manner as the preparation of the metal fine particles A, except that 120 ml of the aqueous dispersion of plate-like silver nanoparticles C was used instead of 120 ml of the aqueous dispersion of plate-like silver nanoparticles A. An aqueous dispersion (cyan tone) of metal fine particles C coated with gold was prepared. An aqueous dispersion of the metal fine particles C was used as a stock solution. FIG. 10 shows the optical characteristics of the aqueous dispersion obtained by diluting the stock solution with distilled water to 4 volumes, and FIG. 33 shows the chromaticity coordinates of the stock solution in the CIE1931xy chromaticity diagram. The wavelength exhibiting the maximum absorption was 634 nm (extinction degree 0.9), and the chromaticity coordinates were x = 0.1467 and y = 0.290. The optical properties were measured using an ultraviolet-visible near-infrared spectrophotometer MPC3100UV-3100PC manufactured by Shimadzu Corporation under the conditions of optical path length: 1 cm and measurement wavelength: 190-1300 nm. The chromaticity coordinates are measured using the same spectrophotometer, with an optical path length of 1 cm and a spectrophotometer operation software “Color measurement software P / N 206-65207 (manufactured by Shimadzu Corporation)” illumination: D65, field of view : Performed under conditions set at 2 °. An SEM photograph is shown in FIG. A scanning electron microscope SU-70 manufactured by Hitachi, Ltd. was used for analysis of the SEM photograph.
(複数種の金属微粒子による混色の調製)
原液である金属微粒子Aの水分散液及び金属微粒子Bの水分散液を等しい質量で混合したところ、赤色調の混合液A(色度座標 x:0.6057、y:0.3317)が得られた。原液である金属微粒子Bの水分散液及び金属微粒子Cの水分散液を等しい質量で混合したところ、青色調の混合液B(色度座標 x:0.1731、y:0.0675)が得られた。原液である金属微粒子Aの水分散液及び金属微粒子Cの水分散液を等しい質量で混合したところ、緑色調の混合液C(色度座標 x:0.2549、y:0.5712)が得られた。CIE1931xy色度図における混合液A、B及びCの色度座標を図34に示す。色度座標の測定は、同分光光度計を用い、光路長:1cm及び分光光度計操作用ソフトウェア「カラー測定ソフトウェア P/N 206−65207(株式会社島津製作所製)」にて照明:D65、視野:2°と設定した条件下で行われた。
(Preparation of color mixture with multiple types of metal fine particles)
When an aqueous dispersion of metal fine particles A and an aqueous dispersion of metal fine particles B, which are stock solutions, are mixed at an equal mass, a red-tone mixed liquid A (chromaticity coordinates x: 0.6057, y: 0.3317) is obtained. It was. When an aqueous dispersion of metal fine particles B and an aqueous dispersion of metal fine particles C, which are stock solutions, are mixed at an equal mass, a blue-tone mixed liquid B (chromaticity coordinates x: 0.1731, y: 0.0675) is obtained. It was. When an aqueous dispersion of metal fine particles A and an aqueous dispersion of metal fine particles C, which are stock solutions, are mixed at an equal mass, a green-tone mixed liquid C (chromaticity coordinates x: 0.2549, y: 0.5712) is obtained. It was. FIG. 34 shows the chromaticity coordinates of the liquid mixtures A, B, and C in the CIE 1931xy chromaticity diagram. The chromaticity coordinates are measured using the same spectrophotometer, with an optical path length of 1 cm and a spectrophotometer operation software “Color measurement software P / N 206-65207 (manufactured by Shimadzu Corporation)” illumination: D65, field of view : Performed under conditions set at 2 °.
(金属微粒子Dの調製)
プレート状銀ナノ粒子Aの水分散液120mlに代えてプレート状銀ナノ粒子Dの水分散液120mlを使用した以外は、金属微粒子Aの調製と同様にして、プレート状銀ナノ粒子Dの表面が金で被覆された金属微粒子Dの水分散液を調製した。調製した分散液を蒸留水で4倍容に希釈した水分散液の光学特性を図10に示す。最大吸収を示す波長は714nm(消光度0.8)であった。光学特性の測定は、株式会社島津製作所製の紫外可視近赤外分光光度計MPC3100UV−3100PCを用い、光路長:1cm及び測定波長:190−1300nmの条件下で行われた。また、SEM写真を図32に示す。SEM写真の解析には株式会社日立製作所製の走査電子顕微鏡SU−70を用いた。
(Preparation of metal fine particles D)
The surface of the plate-like silver nanoparticles D was prepared in the same manner as the preparation of the metal fine particles A except that 120 ml of the aqueous dispersion of plate-like silver nanoparticles D was used instead of 120 ml of the aqueous dispersion of plate-like silver nanoparticles A. An aqueous dispersion of metal fine particles D coated with gold was prepared. FIG. 10 shows the optical characteristics of an aqueous dispersion obtained by diluting the prepared dispersion with distilled water to 4 volumes. The wavelength exhibiting the maximum absorption was 714 nm (extinction degree 0.8). The optical properties were measured using an ultraviolet-visible near-infrared spectrophotometer MPC3100UV-3100PC manufactured by Shimadzu Corporation under the conditions of optical path length: 1 cm and measurement wavelength: 190-1300 nm. An SEM photograph is shown in FIG. A scanning electron microscope SU-70 manufactured by Hitachi, Ltd. was used for analysis of the SEM photograph.
(金属微粒子Bの緩衝液中での安定性試験)
[プレート状銀ナノ粒子の緩衝液中での安定性]
先に調製されたプレート状銀ナノ粒子Bの分散液1mLを蒸留水3mLおよび10mM PBS(+)緩衝液(塩化カルシウム二水和物(関東化学株式会社製)0.133g、塩化マグネシウム六水和物(関東化学株式会社製)0.1gを蒸留水800mLで溶解し、市販の200mM PBS(−)溶液(関東化学株式会社製)50mLを添加し、全量を1Lとして調製)3mLにそれぞれ添加し、4倍希釈とした。
調製した溶液の消光度(Extinction)を紫外可視近赤外分光光度計(装置名:紫外可視近赤外分光光度計MPC3100UV−3100PC、製造元:株式会社島津製作所)で測定した。プレート状銀ナノ粒子Bの波長542nmの消光度減少率は約90%であり、大幅に低下した。消光度測定結果を図11に示す。
(Stability test of metal fine particle B in buffer)
[Stability of plate-like silver nanoparticles in buffer]
1 mL of the previously prepared dispersion of plate-like silver nanoparticles B was added to 3 mL of distilled water and 10 mM PBS (+) buffer solution (0.133 g of calcium chloride dihydrate (manufactured by Kanto Chemical Co., Inc.), magnesium chloride hexahydrate. 0.1 g of the product (manufactured by Kanto Chemical Co., Ltd.) is dissolved in 800 mL of distilled water, 50 mL of a commercially available 200 mM PBS (−) solution (manufactured by Kanto Chemical Co., Ltd.) is added, and the total amount is adjusted to 1 L. A 4-fold dilution was used.
The extinction degree (Extinction) of the prepared solution was measured with an ultraviolet visible near infrared spectrophotometer (device name: ultraviolet visible near infrared spectrophotometer MPC3100UV-3100PC, manufacturer: Shimadzu Corporation). The quenching reduction rate of the plate-like silver nanoparticles B at a wavelength of 542 nm was about 90%, which was greatly reduced. The extinction degree measurement results are shown in FIG.
[金被覆プレート状銀ナノ粒子の緩衝液中での安定性]
先に調製された金属微粒子Bの水分散液1mLを蒸留水3mLおよび10mM PBS(+)緩衝液(塩化カルシウム二水和物(関東化学株式会社製)0.133g、塩化マグネシウム六水和物(関東化学株式会社製)0.1gを蒸留水800mLで溶解し、市販の200mM PBS(−)溶液(関東化学株式会社製)50mLを添加し、全量を1Lとして調製)3mLにそれぞれ添加し、4倍希釈とした。
調製した溶液の消光度(Extinction)を紫外可視近赤外分光光度計(装置名:紫外可視近赤外分光光度計 MPC3100UV−3100PC、製造元:株式会社島津製作所)で測定した。金属微粒子Bの波長556nmの消光度減少率は約1.4%であり、殆ど変化が無く安定であった。消光度測定結果を図12に示す。
[Stability of gold-coated plate-like silver nanoparticles in buffer]
1 mL of the aqueous dispersion of metal fine particles B prepared above was added to 3 mL of distilled water and 10 mM PBS (+) buffer (calcium chloride dihydrate (manufactured by Kanto Chemical Co., Ltd.) 0.133 g, magnesium chloride hexahydrate ( 0.1 g of Kanto Chemical Co., Ltd.) was dissolved in 800 mL of distilled water, 50 mL of a commercially available 200 mM PBS (−) solution (manufactured by Kanto Chemical Co., Ltd.) was added, and the total amount was adjusted to 1 L. The dilution was doubled.
The extinction degree of the prepared solution was measured with an ultraviolet-visible near-infrared spectrophotometer (device name: UV-visible near-infrared spectrophotometer MPC3100UV-3100PC, manufacturer: Shimadzu Corporation). The reduction rate of the extinction degree of the metal fine particle B at a wavelength of 556 nm was about 1.4%, and was almost unchanged and stable. The extinction degree measurement results are shown in FIG.
以上のことから、金属微粒子Bは、生化学緩衝液中での安定性に優れることが分かった。 From the above, it was found that the metal fine particles B are excellent in stability in a biochemical buffer.
[イムノクロマト試験 実施例1]
金属微粒子A〜Dを使用したコンカナバリンAのイムノクロマト試験
(コンカナバリンAイムノクロマト試験用展開液A〜Dの調製)
5mMのPBS(+)緩衝液(200mM PBS溶液(製品名:PBS溶液20倍濃縮液、製造元:関東化学株式会社)を40倍容に希釈し5mM PBS(−)緩衝液を1L調製し、塩化カルシウム(関東化学株式会社製)の1g/mL水溶液0.1mL及び、塩化マグネシウム六水和物(関東化学株式会社製)の1g/mL水溶液0.05mLを添加して調製)中における濃度50μg/mLの抗コンカナバリンA抗体(品名:Anti Concanavalin A、製造元:EY Laboratories,Inc.)の溶液0.2mLと、先に調製された金属微粒子Aの分散液1.8mLを混合し、得られた混合物を室温にて30分間振とうした。次いで、遠心分離(75000rpm、4℃、1時間)を行い、抗体−金属微粒子複合体を沈殿させ、上澄み液を除去した。その後、抗体−金属微粒子複合体を純水500μL中に再分散させ、紫外可視分光光度計Agilent 8453(アジレント・テクノロジー株式会社製)を使用して消光度(Extinction)0.55になるように調整し、展開液Aを調製した。同様に、金属微粒子B〜Dの分散液を用いて、展開液B〜Dを調製した。
[Immunochromatographic test Example 1]
Immunochromatographic test of concanavalin A using metal fine particles A to D (Preparation of developing solutions A to D for concanavalin A immunochromatography test)
5 mM PBS (+) buffer (200 mM PBS solution (product name: PBS solution 20-fold concentrated solution, manufacturer: Kanto Chemical Co., Inc.) diluted to 40-fold to prepare 1 L of 5 mM PBS (-) buffer, 50 μg / concentration in 0.1 g of 1 g / mL aqueous solution of calcium (manufactured by Kanto Chemical Co., Ltd.) and 0.05 mL of 1 g / mL aqueous solution of magnesium chloride hexahydrate (manufactured by Kanto Chemical Co., Ltd.) 0.2 mL of a solution of mL of anti-concanavalin A antibody (product name: Anti Concanavalin A, manufacturer: EY Laboratories, Inc.) and 1.8 mL of the previously prepared dispersion of metal fine particles A were mixed, and the resulting mixture was obtained. Was shaken for 30 minutes at room temperature. Subsequently, centrifugation (75000 rpm, 4 ° C., 1 hour) was performed to precipitate the antibody-metal fine particle complex, and the supernatant was removed. Thereafter, the antibody-metal fine particle complex is redispersed in 500 μL of pure water and adjusted to an extinction level of 0.55 using an ultraviolet-visible spectrophotometer Agilent 8453 (manufactured by Agilent Technologies). Then, a developing solution A was prepared. Similarly, developing solutions B to D were prepared using dispersions of metal fine particles B to D.
(コンカナバリンAのイムノクロマト試験1)
図1に示されるようなイムノクロマト試験を行った。抗コンカナバリンA抗体が直線状に固定化されたイムノクロマト試験紙を用いた。イムノクロマト試験紙はイムノクロマト試験紙の受託作製会社(有限会社バイオデバイステクノロジー)より購入したものを使用した。抗コンカナバリンA抗体を直線状に固定する際、抗コンカナバリンA抗体溶液を5mM PBS(−)緩衝液(上記の市販品の200mM PBS溶液を蒸留水で200倍容 希釈して作製)で濃度1g/mLに調整したものを使用した。第1の展開液は、5mMのPBS(+)緩衝液中におけるコンカナバリンA(品名:Canavalia ensiformis(Jack Bean)[Con A],Jack bean(−)、株式会社J−オイルミルズ製)の溶液であり、コンカナバリンAの濃度が6μM、0.60μM、0.06μM、6nM、0.6nM、0.06nM及び0Mの溶液を用意した(pH7.4)。洗浄用展開液は5mMのPBS(+)緩衝液である(pH7.4)。第2の展開液には、上述の展開液A〜Dを用いた(pH7.0)。具体的には、イムノクロマト試験紙に、各濃度の第1の展開液15μLをそれぞれ展開させた。次いで、洗浄用展開液である5mMのPBS(+)緩衝液30μLを展開させた。最後に、各種第2の展開液60μLを展開させた。展開液A〜Dを用いた全てのイムノクロマト試験において、コンカナバリンAの検出が展開液Aでは6μM、0.60μM、0.06μM、6nM、0.6nM、0.06nMの濃度に亘って目視により確認され、展開液B、C、Dでは6μM、0.60μM、0.06μM、6nM、0.6nMの濃度に亘って目視により確認された。結果を図13に示す。
(Immunochromatographic test 1 for concanavalin A)
An immunochromatographic test as shown in FIG. 1 was performed. An immunochromatographic test paper on which an anti-concanavalin A antibody was immobilized linearly was used. The immunochromatographic test paper used was purchased from a contract manufacturing company for immunochromatographic test paper (Biodevice Technology Co., Ltd.). When immobilizing the anti-concanavalin A antibody in a straight line, the anti-concanavalin A antibody solution was diluted with 5 mM PBS (−) buffer solution (prepared by diluting the above-mentioned commercially available 200 mM PBS solution 200 times with distilled water) to a concentration of 1 g / What was adjusted to mL was used. The first developing solution is a solution of concanavalin A (product name: Canavaria ensiformis (Jack Bean) [Con A], Jack bean (−), manufactured by J-Oil Mills Co., Ltd.) in 5 mM PBS (+) buffer. There were prepared solutions having concanavalin A concentrations of 6 μM, 0.60 μM, 0.06 μM, 6 nM, 0.6 nM, 0.06 nM and 0 M (pH 7.4). The developing solution for washing is a 5 mM PBS (+) buffer (pH 7.4). The above developing solutions A to D were used as the second developing solution (pH 7.0). Specifically, 15 μL of the first developing solution of each concentration was developed on the immunochromatographic test paper. Subsequently, 30 μL of 5 mM PBS (+) buffer, which is a developing solution for washing, was developed. Finally, 60 μL of various second developing solutions were developed. In all immunochromatographic tests using the developing solutions A to D, the detection of concanavalin A was visually confirmed in the developing solution A over the concentrations of 6 μM, 0.60 μM, 0.06 μM, 6 nM, 0.6 nM, and 0.06 nM. In the developing solutions B, C, and D, it was visually confirmed over the concentrations of 6 μM, 0.60 μM, 0.06 μM, 6 nM, and 0.6 nM. The results are shown in FIG.
(コンカナバリンAのイムノクロマト試験2)
図2に示されるようなイムノクロマト試験を行った。イムノクロマト試験1と同じイムノクロマト試験紙を用いた。展開液には、展開液A〜Dのうち1種の展開液60μLと、5mMのPBS(+)緩衝液中における濃度が6μM、0.60μM、0.06μM、6nM、0.6nM、0.06nM又は0MのコナカバリンAである溶液15μLとを混合したものを用いた(pH7.0)。具体的には、イムノクロマト試験紙に各種展開液を展開させた。全ての展開液において、コンカナバリンAの検出が6μM、0.60μM、0.06μM、6nM、0.6nMの濃度に亘って目視により確認できた。
(Immunochromatographic test 2 for concanavalin A)
An immunochromatographic test as shown in FIG. 2 was performed. The same immunochromatographic test paper as in immunochromatographic test 1 was used. The developing solution includes 60 μL of one type of developing solution among the developing solutions A to D and concentrations of 6 μM, 0.60 μM, 0.06 μM, 6 nM, 0.6 nM,. A solution mixed with 15 μL of a solution of 06 nM or 0 M Conacavalin A (pH 7.0) was used. Specifically, various developing solutions were developed on immunochromatographic test paper. In all the developing solutions, the detection of concanavalin A was visually confirmed over the concentrations of 6 μM, 0.60 μM, 0.06 μM, 6 nM, and 0.6 nM.
(コンカナバリンAのイムノクロマト試験1の輝度解析)
コンカナバリンAのイムノクロマト試験1での試験後のイムノクロマト試験紙をスキャニング(装置名:Cano Scan LiDE500F、キヤノン株式会社)し、判定部分(抗コンカナバリンA抗体の固定化部分)と、判定部分以外の部分の最低輝度を画像解析ソフト(Image−J)で測定することにより、検出感度を数値化することができる。なお、Image−Jは、アメリカ国立衛生研究所でWayne Rasbandが開発したオープン・ソースで公有の画像処理ソフトウェアである(http://imagej.nih.gov/ij/)。検出感度は各部分をそれぞれ5回測定し、得られた数値の中央値の差とすることができる。輝度差解析の結果、金属微粒子A、BではコンカナバリンAの検出が6μM、0.60μM、0.06μM、6nM、0.6nM、0.06nMの濃度に亘って確認でき、金属微粒子C、DではコンカナバリンAの検出が6μM、0.60μM、0.06μM、6nM、0.6nMの濃度に亘って確認できた。輝度解析の結果を図14〜17、後述する球状金コロイドとの比較を図19に示す。
(Luminance analysis of immunochromatographic test 1 for concanavalin A)
Scan the immunochromatographic test paper after the test in immunochromatographic test 1 for concanavalin A (device name: Canon Scan LiDE500F, Canon Inc.), and determine the part other than the judgment part (immobilization part of anti-concanavalin A antibody) By measuring the minimum luminance with image analysis software (Image-J), the detection sensitivity can be quantified. Image-J is an open source and public image processing software developed by Wayne Rasband at the National Institutes of Health (http://imagej.nih.gov/ij/). The detection sensitivity can be the difference between the median values obtained by measuring each part five times. As a result of the luminance difference analysis, the detection of concanavalin A can be confirmed over the concentrations of 6 μM, 0.60 μM, 0.06 μM, 6 nM, 0.6 nM, and 0.06 nM in the metal fine particles A and B. The detection of concanavalin A was confirmed over concentrations of 6 μM, 0.60 μM, 0.06 μM, 6 nM, and 0.6 nM. 14 to 17 show the results of luminance analysis, and FIG. 19 shows a comparison with a spherical gold colloid described later.
[イムノクロマト試験 実施例2]
金属微粒子Bを使用したB型肝炎ウイルス抗原のイムノクロマト試験
(B型肝炎ウイルス抗原イムノクマト試験用展開液の調製)
先に調製された金属微粒子Bの分散液2.0mLの遠心分離(25000rpm、4℃、10分間)を行い、金属微粒子を沈殿させ、上澄み液1.85mLを除去した。その後、金属微粒子を5mM PBS(−)緩衝液1.85mLで再分散した。この作業を二回繰り返し、分散液のpHを7.4に調整した。
5mMのPBS(−)緩衝液(市販の200mM PBS溶液を40倍希釈して調製)中における濃度50μg/mLの抗B型肝炎ウイルス抗原抗体(品名:Goat anti HBsAg、製造元:Arista Biologicals,Inc.)の溶液0.2mLと、先に遠心分離によりpHを7.4に調整された金属微粒子Bの分散液1.8mLを混合し、得られた混合物を室温にて30分間振とうした。次いで、遠心分離(25000rpm、4℃、10分間)を行い、抗体−金属微粒子複合体を沈殿させ、上澄み液1.85mLを除去した。その後、抗体−金属微粒子複合体を5mM PBS(−)緩衝液で再分散させ、紫外可視分光光度計 Agilent 8453(アジレント・テクノロジー株式会社製)を使用して消光度(Extinction)0.35になるように調整し、展開液Eを調製した。
[Immunochromatographic test Example 2]
Immunochromatographic test of hepatitis B virus antigen using metal fine particle B (Preparation of developing solution for hepatitis B virus antigen immunokumat test)
Centrifugation (25000 rpm, 4 ° C., 10 minutes) of the dispersion liquid of metal fine particles B prepared earlier was performed to precipitate metal fine particles, and 1.85 mL of the supernatant liquid was removed. Thereafter, the metal microparticles were redispersed with 1.85 mL of 5 mM PBS (−) buffer. This operation was repeated twice to adjust the pH of the dispersion to 7.4.
Anti-hepatitis B virus antigen antibody (product name: Goat anti HBsAg, manufacturer: Arista Biologicals, Inc.) at a concentration of 50 μg / mL in 5 mM PBS (−) buffer (prepared by diluting a commercially available 200 mM PBS solution 40-fold). ) And 1.8 mL of a dispersion of metal fine particles B whose pH was previously adjusted to 7.4 by centrifugation were mixed, and the resulting mixture was shaken at room temperature for 30 minutes. Subsequently, centrifugation (25000 rpm, 4 ° C., 10 minutes) was performed to precipitate the antibody-metal fine particle complex, and 1.85 mL of the supernatant was removed. Thereafter, the antibody-metal fine particle complex is redispersed with 5 mM PBS (−) buffer, and an extinction degree (Extinction) of 0.35 is obtained using an ultraviolet-visible spectrophotometer Agilent 8453 (manufactured by Agilent Technologies). Thus, a developing solution E was prepared.
(B型肝炎ウイルス抗原のイムノクロマト試験)
図1に示されるようなイムノクロマト試験を行った。抗B型肝炎ウイルス抗原抗体が直線状に固定化されたイムノクロマト試験紙を用いた。イムノクロマト試験紙はイムノクロマト試験紙の受託作製会社(有限会社バイオデバイステクノロジー)より購入したものを使用した。抗B型肝炎ウイルス抗原抗体を直線状に固定する際、抗B型肝炎ウイルス抗原抗体溶液を5mM PBS(−)緩衝液(上記の市販品の200mM PBS溶液を蒸留水で40倍希釈して作製)で濃度1g/mLに調整したものを使用した。第1の展開液は、1mMのPBS(−)緩衝液中におけるB型肝炎ウイルス抗原(品名:HBsAg Protein(Subtype adr)、製造元:Fitzgerald Industries International Inc.)の溶液であり、B型肝炎ウイルス抗原の濃度が6μM、0.60μM、0.06μM、6nM、0M(Blank)の溶液を用意した。洗浄用展開液は5mMのPBS(−)緩衝液である。第2の展開液には、上述の展開液Eを用いた。具体的には、イムノクロマト試験紙に、各濃度の第1の展開液15μLをそれぞれ展開させた。次いで、洗浄用展開液である5mMのPBS(−)緩衝液30μLを展開させた。最後に、第2の展開液60μLを展開させた。本イムノクロマト試験において、B型肝炎ウイルス抗原の検出が6μM、0.60μM、0.06μMの濃度に亘って目視により確認された。結果を図20に示す。
(Immunochromatographic test for hepatitis B virus antigen)
An immunochromatographic test as shown in FIG. 1 was performed. An immunochromatographic test paper on which an anti-hepatitis B virus antigen antibody was immobilized linearly was used. The immunochromatographic test paper used was purchased from a contract manufacturing company for immunochromatographic test paper (Biodevice Technology Co., Ltd.). When the anti-hepatitis B virus antigen antibody is immobilized in a straight line, an anti-hepatitis B virus antigen antibody solution is prepared by diluting the above-mentioned commercially available 200 mM PBS solution 40 times with distilled water. ) Was used to adjust the concentration to 1 g / mL. The first developing solution is a solution of hepatitis B virus antigen (product name: HBsAg Protein (Subtype adr), manufacturer: Fitzgerald Industries International Inc.) in 1 mM PBS (−) buffer, and hepatitis B virus antigen Solution having a concentration of 6 μM, 0.60 μM, 0.06 μM, 6 nM, and 0 M (Blank) was prepared. The developing solution for washing is a 5 mM PBS (−) buffer. The above-mentioned developing solution E was used as the second developing solution. Specifically, 15 μL of the first developing solution of each concentration was developed on the immunochromatographic test paper. Subsequently, 30 μL of 5 mM PBS (−) buffer, which is a developing solution for washing, was developed. Finally, 60 μL of the second developing solution was developed. In this immunochromatographic test, detection of hepatitis B virus antigen was confirmed by visual observation over concentrations of 6 μM, 0.60 μM, and 0.06 μM. The results are shown in FIG.
(B型肝炎ウイルス抗原のイムノクロマト試験の輝度解析)
B型肝炎ウイルス抗原のイムノクロマト試験での試験後のイムノクロマト試験紙をスキャニング(装置名:Cano Scan LiDE500F、製造元:キヤノン株式会社)し、判定部分(抗B型肝炎ウイルス抗原抗体の固定化部分)と、判定部分以外の部分の最低輝度を画像解析ソフト(Image−J)で測定することにより、検出感度を数値化することができる。検出感度は各部分をそれぞれ5回測定し、得られた数値の中央値の差とすることができる。輝度差解析の結果、B型肝炎ウイルス抗原の検出が6μM、0.60μM、0.06μMの濃度に亘って確認された。輝度解析の結果を図21、球状金コロイドとの比較を図23に示す。
(Luminance analysis of immunochromatographic test for hepatitis B virus antigen)
The immunochromatographic test paper after the test in the immunochromatographic test of hepatitis B virus antigen was scanned (device name: Cano Scan LiDE500F, manufacturer: Canon Inc.), and the determination part (anti-hepatitis B virus antigen antibody immobilization part) and The detection sensitivity can be quantified by measuring the minimum luminance of the portion other than the determination portion with image analysis software (Image-J). The detection sensitivity can be the difference between the median values obtained by measuring each part five times. As a result of luminance difference analysis, detection of hepatitis B virus antigen was confirmed over concentrations of 6 μM, 0.60 μM, and 0.06 μM. The result of luminance analysis is shown in FIG. 21, and the comparison with the spherical gold colloid is shown in FIG.
[イムノクロマト試験 実施例3]
多色イムノクロマト試験
(多色イムノクロマト試験用展開液の調製)
先に調製された金属微粒子A〜Cの分散液2.0mLの遠心分離(25000rpm、4℃、10分間)を行い、金属微粒子を沈殿させ、上澄み液1.85mLを除去した。その後、金属微粒子を5mM PBS(−)緩衝液1.85mLで再分散した。この作業を二回繰り返し、分散液のpHを7.4に調整した。
5mMのPBS(−)緩衝液(市販の200mM PBS溶液を40倍希釈して調製)中における濃度50μg/mLの抗B型肝炎ウイルス抗原抗体(品名:Goat anti HBsAg、製造元:Arista Biologicals,Inc.)の溶液0.2mLと、先に遠心分離によりpHを7.4に調整された金属微粒子A〜Cの分散液1.8mLを混合し、得られた混合物を室温にて30分間振とうした。次いで、遠心分離(25000rpm、4℃、10分間)を行い、抗体−金属微粒子複合体を沈殿させ、上澄み液1.85mLを除去し抗体-金属微粒子複合体の13.3倍濃縮液を調製した。該濃縮液を紫外可視分光光度計 Agilent 8453(アジレント・テクノロジー株式会社製)を使用して消光度(Extinction)2.0になるように5mM PBS(−)緩衝液で14倍希釈し、展開液F〜Hを調製した。また、前述の濃縮液を7倍希釈し、2倍濃度の濃縮展開液F〜Hを調製し、これらを図24に従って調合し、展開液I〜Lを調製した。展開液F〜Lの分光特性測定結果を図25、26に示す。図25、26に示すように球状金コロイドを使用した展開液の場合、単色設計しかできないが、本発明のように、金属微粒子A、B、Cを使用した場合は多色設計が可能であった。
[Immunochromatographic test Example 3]
Multicolor immunochromatographic test (preparation of developing solution for multicolor immunochromatographic test)
Centrifugation (25000 rpm, 4 ° C., 10 minutes) of 2.0 mL of the previously prepared dispersion of metal fine particles A to C was performed to precipitate the metal fine particles, and 1.85 mL of the supernatant was removed. Thereafter, the metal microparticles were redispersed with 1.85 mL of 5 mM PBS (−) buffer. This operation was repeated twice to adjust the pH of the dispersion to 7.4.
Anti-hepatitis B virus antigen antibody (product name: Goat anti HBsAg, manufacturer: Arista Biologicals, Inc.) at a concentration of 50 μg / mL in 5 mM PBS (−) buffer (prepared by diluting a commercially available 200 mM PBS solution 40-fold). And 0.2 mL of a dispersion of metal fine particles A to C whose pH was previously adjusted to 7.4 by centrifugation, and the resulting mixture was shaken at room temperature for 30 minutes. . Subsequently, centrifugation (25000 rpm, 4 ° C., 10 minutes) was performed to precipitate the antibody-metal fine particle complex, and 1.85 mL of the supernatant was removed to prepare a 13.3 times concentrated solution of the antibody-metal fine particle complex. . Using a UV-visible spectrophotometer Agilent 8453 (manufactured by Agilent Technologies), the concentrated solution is diluted 14-fold with 5 mM PBS (−) buffer so as to have an extinction degree of 2.0. FH were prepared. Moreover, the above-mentioned concentrated liquid was diluted 7 times, 2 times concentration concentrated developing liquid FH was prepared, these were prepared according to FIG. 24, and developing liquid IL was prepared. The spectral characteristic measurement results of the developing solutions F to L are shown in FIGS. As shown in FIGS. 25 and 26, in the case of a developing solution using a spherical gold colloid, only a single color design is possible. However, in the case of using the metal fine particles A, B, and C as in the present invention, a multicolor design is possible. It was.
(多色イムノクロマト試験)
図1に示されるようなイムノクロマト試験を行った。抗B型肝炎ウイルス抗原抗体が直線状に固定化されたイムノクロマト試験紙を用いた。イムノクロマト試験紙はイムノクロマト試験紙の受託作製会社(有限会社バイオデバイステクノロジー)より購入したものを使用した。抗B型肝炎ウイルス抗原抗体を直線状に固定する際、抗B型肝炎ウイルス抗原抗体溶液を5mM PBS(−)緩衝液(上記の市販品の200mM PBS溶液を蒸留水で40倍希釈して作製)で濃度1g/mLに調整したものを使用した。第1の展開液は、1mMのPBS(−)緩衝液中におけるB型肝炎ウイルス抗原(品名:HBsAg Protein(Subtype adr)、製造元:Fitzgerald Industries International Inc.)の溶液であり、B型肝炎ウイルス抗原の濃度が6μM、0.60μM、0.06μM、6nM、0M(Blank)の溶液を用意した。洗浄用展開液は5mMのPBS(−)緩衝液である。第2の展開液には、上述の展開液F〜Lを用いた。具体的には、イムノクロマト試験紙に、各濃度の第1の展開液15μLをそれぞれ展開させた。次いで、洗浄用展開液である5mMのPBS(−)緩衝液30μLを展開させた。最後に、第2の展開液60μLを展開させた。本イムノクロマト試験において、B型肝炎ウイルス抗原の検出が6μM、0.60μM、0.06μMの濃度に亘って目視により確認された。また、検出ラインの色が展開液により異なり、展開液F使用時はイエロー調、展開液G使用時はマゼンタ調、展開液H使用時はシアン調、展開液I使用時は赤色調、展開液J使用時は青色調、展開液K使用時は緑色調、展開液L使用時は黒色調の色を呈した。
よって、図5や図6に示されるようなイムノクロマト試験を行う場合(クロマトグラフ担体に、複数の異種の分子(b)が異なる位置に直線状に固定化され、判定部分が形成されている場合)、金属微粒子(a)の色調の違いを利用して、それぞれの固定化部分を異なる色を呈する検出ラインとして機能できることが分かる(検出ラインの多色化)。これにより、複数の被験物質を一度に検出できることも分かる。
(Multicolor immunochromatographic test)
An immunochromatographic test as shown in FIG. 1 was performed. An immunochromatographic test paper on which an anti-hepatitis B virus antigen antibody was immobilized linearly was used. The immunochromatographic test paper used was purchased from a contract manufacturing company for immunochromatographic test paper (Biodevice Technology Co., Ltd.). When the anti-hepatitis B virus antigen antibody is immobilized in a straight line, an anti-hepatitis B virus antigen antibody solution is prepared by diluting the above-mentioned commercially available 200 mM PBS solution 40 times with distilled water. ) Was used to adjust the concentration to 1 g / mL. The first developing solution is a solution of hepatitis B virus antigen (product name: HBsAg Protein (Subtype adr), manufacturer: Fitzgerald Industries International Inc.) in 1 mM PBS (−) buffer, and hepatitis B virus antigen. Solution having a concentration of 6 μM, 0.60 μM, 0.06 μM, 6 nM, and 0 M (Blank) was prepared. The developing solution for washing is a 5 mM PBS (−) buffer. As the second developing solution, the developing solutions F to L described above were used. Specifically, 15 μL of the first developing solution of each concentration was developed on the immunochromatographic test paper. Subsequently, 30 μL of 5 mM PBS (−) buffer, which is a developing solution for washing, was developed. Finally, 60 μL of the second developing solution was developed. In this immunochromatographic test, detection of hepatitis B virus antigen was confirmed by visual observation over concentrations of 6 μM, 0.60 μM, and 0.06 μM. The color of the detection line varies depending on the developing solution. When developing solution F is used, yellow tone, when developing solution G is used, magenta tone, when developing solution H is used, cyan tone, when developing solution I is used, red tone, developing solution. When J was used, the color was blue, when the developing solution K was used, the color was green, and when using the developing solution L, the color was black.
Therefore, when performing an immunochromatographic test as shown in FIG. 5 or FIG. 6 (when a plurality of different kinds of molecules (b) are linearly immobilized at different positions on a chromatographic carrier and a determination portion is formed. ), It can be seen that each immobilization portion can function as a detection line exhibiting a different color by utilizing the difference in color tone of the metal fine particles (a) (multiple detection lines). This also shows that a plurality of test substances can be detected at a time.
(多色イムノクロマト試験結果の測色)
多色イムノクロマト試験により得られたイムノクロマト紙をスキャニング(装置名:Cano Scan LiDE500F、製造元:キヤノン株式会社)し、得られた画像をビットマップ画像編集ソフトウェアのAdobe Photoshopで取り込み、検出ラインのCIELAB D50を測定した。測色の結果を図27に示す。
(Color measurement of multicolor immunochromatographic test results)
The immunochromatographic paper obtained by the multicolor immunochromatographic test was scanned (device name: Canon Scan LiDE500F, manufacturer: Canon Inc.), and the obtained image was captured with the bitmap image editing software Adobe Photoshop, and the CIELAB D50 of the detection line was captured. It was measured. The result of color measurement is shown in FIG.
[イムノクロマト試験 実施例4]
金属微粒子B及びCを使用したB型肝炎ウイルス抗原及びヒト絨毛性性腺刺激ホルモンの二検体二色検出イムノクロマト試験
(B型肝炎ウイルス抗原およびヒト絨毛性性腺刺激ホルモンイムノクマト試験用複合体分散液Aの調製)
先に調製された金属微粒子Bの分散液2.0mLの遠心分離(25000rpm、4℃、10分間)を行い、金属微粒子を沈殿させ、上澄み液1.85mLを除去した。その後、金属微粒子を5mM PBS(−)緩衝液1.85mLで再分散した。この作業を二回繰り返し、分散液のpHを7.4に調整した。5mMのPBS(−)緩衝液(市販の200mM PBS溶液を40倍希釈して調製)中における濃度50μg/mLの抗B型肝炎ウイルス抗原抗体(品名:Goat anti HBsAg、製造元:Arista Biologicals,Inc.)の溶液0.2mLと、先に遠心分離によりpHを7.4に調整された金属微粒子Bの分散液1.8mLを混合し、得られた混合物を室温にて60分間振とうした。その後、3.26wt% ウシ血清アルブミン(BSA)−5mM PBS(−)溶液100μLを添加し、得られた混合物を室温にて60分間振とうした。次いで、遠心分離(25000rpm、4℃、10分間)を行い、抗体−金属微粒子複合体を沈殿させ、上澄み液1.85mLを除去した。その後、抗体−金属微粒子複合体を5mM PBS(−)緩衝液で再分散させ、紫外可視分光光度計 Agilent 8453(アジレント・テクノロジー株式会社製)を使用して消光度(Extinction)1.0になるように調整し、複合体分散液Aを調製した。
[Immunochromatographic test Example 4]
Two-sample two-color detection immunochromatographic test for hepatitis B virus antigen and human chorionic gonadotropin using metal microparticles B and C (complex dispersion A for hepatitis B virus antigen and human chorionic gonadotropin immunokumato test) Preparation)
Centrifugation (25000 rpm, 4 ° C., 10 minutes) of the dispersion liquid of metal fine particles B prepared earlier was performed to precipitate metal fine particles, and 1.85 mL of the supernatant liquid was removed. Thereafter, the metal microparticles were redispersed with 1.85 mL of 5 mM PBS (−) buffer. This operation was repeated twice to adjust the pH of the dispersion to 7.4. Anti-hepatitis B virus antigen antibody (product name: Goat anti HBsAg, manufacturer: Arista Biologicals, Inc.) at a concentration of 50 μg / mL in 5 mM PBS (−) buffer (prepared by diluting a commercially available 200 mM PBS solution 40-fold). ) And 1.8 mL of a dispersion of metal fine particles B whose pH was previously adjusted to 7.4 by centrifugation were mixed, and the resulting mixture was shaken at room temperature for 60 minutes. Thereafter, 100 μL of a 3.26 wt% bovine serum albumin (BSA) -5 mM PBS (−) solution was added, and the resulting mixture was shaken at room temperature for 60 minutes. Subsequently, centrifugation (25000 rpm, 4 ° C., 10 minutes) was performed to precipitate the antibody-metal fine particle complex, and 1.85 mL of the supernatant was removed. Thereafter, the antibody-metal fine particle complex is re-dispersed with 5 mM PBS (−) buffer, and the extinction degree is 1.0 using an ultraviolet-visible spectrophotometer Agilent 8453 (manufactured by Agilent Technologies). Thus, a composite dispersion A was prepared.
(B型肝炎ウイルス抗原およびヒト絨毛性性腺刺激ホルモンイムノクマト試験用複合体分散液Bの調製)
先に調製された金属微粒子Cの分散液2.0mLの遠心分離(25000rpm、4℃、10分間)を行い、金属微粒子を沈殿させ、上澄み液1.85mLを除去した。その後、金属微粒子を5mM PBS(−)緩衝液1.85mLで再分散した。この作業を二回繰り返し、分散液のpHを7.4に調整した。5mMのPBS(−)緩衝液(市販の200mM PBS溶液を40倍希釈して調製)中における濃度50μg/mLの抗ヒト絨毛性性腺刺激ホルモン抗体(品名:MONOCLONAL ANTI−HUMAN CHORIONIC GONADOTROPIN、製造元:Medix Biochemica製)の溶液0.2mLと、先に遠心分離によりpHを7.4に調整された金属微粒子Cの分散液1.8mLを混合し、得られた混合物を室温にて30分間振とうし、その後4℃にて24時間静置した。次いで、遠心分離(25000rpm、4℃、10分間)を行い、抗体−金属微粒子複合体を沈殿させ、上澄み液1.85mLを除去した。その後、抗体−金属微粒子複合体を5mM PBS(−)緩衝液で再分散させ、紫外可視分光光度計 Agilent 8453(アジレント・テクノロジー株式会社製)を使用して消光度(Extinction)1.0になるように調整し、複合体分散液Bを調製した。
(Preparation of complex dispersion B for hepatitis B virus antigen and human chorionic gonadotropin immunokumato test)
Centrifugation (25000 rpm, 4 ° C., 10 minutes) of 2.0 mL of the previously prepared dispersion of metal fine particles C was performed to precipitate the metal fine particles, and 1.85 mL of the supernatant was removed. Thereafter, the metal microparticles were redispersed with 1.85 mL of 5 mM PBS (−) buffer. This operation was repeated twice to adjust the pH of the dispersion to 7.4. Anti-human chorionic gonadotropin antibody (product name: MONOCLONAL ANTI-HUMAN CHORONIC GONADOTROPIN, manufacturer: Medix) in a concentration of 50 μg / mL in 5 mM PBS (−) buffer (prepared by diluting a commercially available 200 mM PBS solution 40-fold) Biochemica solution (0.2 mL) and the metal fine particle C dispersion (1.8 mL) previously adjusted to pH 7.4 by centrifugation were mixed, and the resulting mixture was shaken at room temperature for 30 minutes. Then, it was allowed to stand at 4 ° C. for 24 hours. Subsequently, centrifugation (25000 rpm, 4 ° C., 10 minutes) was performed to precipitate the antibody-metal fine particle complex, and 1.85 mL of the supernatant was removed. Thereafter, the antibody-metal fine particle complex is re-dispersed with 5 mM PBS (−) buffer, and the extinction degree is 1.0 using an ultraviolet-visible spectrophotometer Agilent 8453 (manufactured by Agilent Technologies). Thus, a composite dispersion B was prepared.
(B型肝炎ウイルス抗原およびヒト絨毛性性腺刺激ホルモンイムノクマト試験用展開液Mの調製)
先に調製された金属微粒子Aの分散液2.0mLの遠心分離(25000rpm、4℃、10分間)を行い、金属微粒子を沈殿させ、上澄み液1.85mLを除去した。その後、金属微粒子を5mM PBS(−)緩衝液1.85mLで再分散した。この作業を二回繰り返し、分散液のpHを7.4に調整した。その後、pH7.4に調整した金属微粒子Aの分散液を紫外可視分光光度計 Agilent 8453(アジレント・テクノロジー株式会社製)を使用して消光度(Extinction)1.0になるように調整し、pH調整分散液Aを調整した。pH調整分散液Aと、複合体分散液Aと、複合体分散液Bとを等しい体積比で混合し、展開液M(色調:黒色調)を調製した。
(Preparation of developing solution M for hepatitis B virus antigen and human chorionic gonadotropin immunokumato test)
Centrifugation (25000 rpm, 4 ° C., 10 minutes) of 2.0 mL of the previously prepared dispersion of metal fine particles A was performed to precipitate the metal fine particles, and 1.85 mL of the supernatant was removed. Thereafter, the metal microparticles were redispersed with 1.85 mL of 5 mM PBS (−) buffer. This operation was repeated twice to adjust the pH of the dispersion to 7.4. Thereafter, the dispersion of the metal fine particles A adjusted to pH 7.4 is adjusted using an ultraviolet-visible spectrophotometer Agilent 8453 (manufactured by Agilent Technologies) so that the extinction degree is 1.0. Preparation dispersion A was prepared. The pH adjustment dispersion A, the composite dispersion A, and the composite dispersion B were mixed at an equal volume ratio to prepare a developing liquid M (color tone: black tone).
(B型肝炎ウイルス抗原およびヒト絨毛性性腺刺激ホルモンのイムノクロマト試験)
図5に示されるようなイムノクロマト試験を行った。抗B型肝炎ウイルス抗原抗体および抗ヒト絨毛性性腺刺激ホルモン抗体がそれぞれ直線状に固定化されたイムノクロマト試験紙(展開液が展開する方向から見て下流側に抗ヒト絨毛性性腺刺激ホルモン抗体が固定され、展開液が展開する方向から見て上流側に抗B型肝炎ウイルス抗原抗体が固定される)を用いた。イムノクロマト試験紙はイムノクロマト試験紙の受託作製会社(有限会社バイオデバイステクノロジー)より購入したものを使用した。抗B型肝炎ウイルス抗原抗体および抗ヒト絨毛性性腺刺激ホルモン抗体を直線状に固定する際、各抗体溶液を5mM PBS(−)緩衝液(上記の市販品の200mM PBS溶液を蒸留水で40倍希釈して作製)で濃度1g/mLに調整したものを使用した。第1の展開液は、5mMのPBS(−)緩衝液中におけるB型肝炎ウイルス抗原(品名:HBsAg Protein(Subtype adr)、製造元:Fitzgerald Industries International Inc.)とヒト絨毛性性腺刺激ホルモン(品名:hCG Human(−)、製造元:Meridian Life Science, Inc.製)の混合溶液であり、両抗原濃度が0.3μM、0.03μM、0.003M、0M(Blank)である混合溶液を用意した。洗浄用展開液は5mMのPBS(−)緩衝液である。第2の展開液には、展開液Mを用いた。具体的には、イムノクロマト試験紙に、各濃度の第1の展開液30μLをそれぞれ展開させた。次いで、洗浄用展開液である5mMのPBS(−)緩衝液30μLを展開させた。最後に、第2の展開液120μLを展開させた。本イムノクロマト試験において、B型肝炎ウイルス抗原の検出が0.3μM、0.030μM、0.003μMの濃度に亘って目視により確認され、ヒト絨毛性性腺刺激ホルモンの0.3μM、0.03μMの濃度に亘って確認された。結果を図35に示す。また、検出ラインの色調は、抗ヒト絨毛性性腺刺激ホルモン抗体の固定化部分がシアン調、抗B型肝炎ウイルス抗原抗体の固定化部分がマゼンタ調であった。
(Immunochromatographic test for hepatitis B virus antigen and human chorionic gonadotropin)
An immunochromatographic test as shown in FIG. 5 was performed. An immunochromatographic test paper in which an anti-hepatitis B virus antigen antibody and an anti-human chorionic gonadotropin antibody are each immobilized in a straight line (the anti-human chorionic gonadotropin antibody is downstream of the developing solution in the direction of development) And an anti-hepatitis B virus antigen antibody is fixed upstream from the direction in which the developing solution develops). The immunochromatographic test paper used was purchased from a contract manufacturing company for immunochromatographic test paper (Biodevice Technology Co., Ltd.). When the anti-hepatitis B virus antigen antibody and the anti-human chorionic gonadotropin antibody are immobilized linearly, each antibody solution is diluted with 5 mM PBS (−) buffer (the above-mentioned commercially available 200 mM PBS solution is 40 times with distilled water. What was adjusted to a concentration of 1 g / mL in (prepared by dilution) was used. The first developing solution is a hepatitis B virus antigen (product name: HBsAg Protein (Subtype adr), manufacturer: Fitzgerald Industries International Inc.) and human chorionic gonadotropin (product name: 5B) in PBS (-) buffer. hCG Human (-), manufacturer: Meridian Life Science, Inc.), and both antigen concentrations were 0.3 μM, 0.03 μM, 0.003 M, and 0 M (Blank). The developing solution for washing is a 5 mM PBS (−) buffer. The developing solution M was used as the second developing solution. Specifically, 30 μL of the first developing solution at each concentration was developed on an immunochromatographic test paper. Subsequently, 30 μL of 5 mM PBS (−) buffer, which is a developing solution for washing, was developed. Finally, 120 μL of the second developing solution was developed. In this immunochromatographic test, the detection of hepatitis B virus antigen was confirmed visually over the concentrations of 0.3 μM, 0.030 μM and 0.003 μM, and the concentrations of human chorionic gonadotropin 0.3 μM and 0.03 μM. Was confirmed. The results are shown in FIG. The color of the detection line was cyan in the immobilized part of the anti-human chorionic gonadotropin antibody and magenta in the immobilized part of the anti-hepatitis B virus antigen antibody.
(B型肝炎ウイルス抗原およびヒト絨毛性性腺刺激ホルモンの二検体二色検出イムノクロマト試験結果の測色)
二検体二色検出イムノクロマト試験により得られたイムノクロマト紙をスキャニング(装置名:Cano Scan LiDE500F、製造元:キヤノン株式会社)し、得られた画像をビットマップ画像編集ソフトウェアのAdobe Photoshopで取り込み、検出ラインのCIELAB D50を測定した。測色の結果を図36に示す。
(Color measurement of immunochromatographic test results of two-sample two-color detection of hepatitis B virus antigen and human chorionic gonadotropin)
The immunochromatographic paper obtained by the two-sample two-color detection immunochromatographic test was scanned (device name: Canon Scan LiDE500F, manufacturer: Canon Inc.), and the obtained image was captured by Adobe Photoshop, a bitmap image editing software. CIELAB D50 was measured. The result of color measurement is shown in FIG.
(B型肝炎ウイルス抗原およびヒト絨毛性性腺刺激ホルモンの二検体二色検出イムノクロマト試験の輝度解析)
二検体二色検出イムノクロマト試験での試験後のイムノクロマト試験紙をスキャニング(装置名:Cano Scan LiDE500F、製造元:キヤノン株式会社)し、判定部分(抗B型肝炎ウイルス抗原抗体および抗ヒト絨毛性性腺刺激ホルモン抗体の固定化部分)と、判定部分以外の部分の最低輝度を画像解析ソフト(Image−J)で測定することにより、検出感度を数値化することができる。検出感度は各部分をそれぞれ5回測定し、得られた数値の中央値の差とすることができる。輝度差解析の結果、B型肝炎ウイルス抗原の検出が0.3μM、0.03μM、0.003μMの濃度に亘って確認され、ヒト絨毛性性腺刺激ホルモンの0.3μM、0.03μMの濃度に亘って確認された。輝度解析の結果を図37に示す。
(Luminance analysis of two-sample two-color immunochromatography test for hepatitis B virus antigen and human chorionic gonadotropin)
The immunochromatographic test paper after the test in the two-sample two-color detection immunochromatography test was scanned (device name: Canon Scan LiDE500F, manufacturer: Canon Inc.), and the determination part (anti-hepatitis B virus antigen antibody and anti-human chorionic gonad stimulation) The detection sensitivity can be quantified by measuring the minimum luminance of portions other than the determination portion of the hormone antibody) and image analysis software (Image-J). The detection sensitivity can be the difference between the median values obtained by measuring each part five times. As a result of the luminance difference analysis, the detection of hepatitis B virus antigen was confirmed over the concentrations of 0.3 μM, 0.03 μM and 0.003 μM, and the concentrations of human chorionic gonadotropin 0.3 μM and 0.03 μM were confirmed. Confirmed. The result of the luminance analysis is shown in FIG.
[イムノクロマト試験 実施例5]
高精彩多色イムノクロマト試験
(高精彩多色イムノクロマト試験用展開液の調製)
先に調製された金属微粒子A〜Cの分散液2.0mLの遠心分離(25000rpm、4℃、10分間)を行い、金属微粒子を沈殿させ、上澄み液1.85mLを除去した。その後、金属微粒子を5mM PBS(−)緩衝液1.85mLで再分散した。この作業を二回繰り返し、分散液のpHを7.4に調整した。
5mMのPBS(−)緩衝液(市販の200mM PBS溶液を40倍希釈して調製)中における濃度50μg/mLの抗B型肝炎ウイルス抗原抗体(品名:Goat anti HBsAg、製造元:Arista Biologicals,Inc.)の溶液0.2mLと、先に遠心分離によりpHを7.4に調整された金属微粒子A〜Cの分散液1.8mLを混合し、得られた混合物を室温にて30分間振とうした。その後、3.26wt% ウシ血清アルブミン(BSA)−5mM PBS(−)溶液100μLを該混合物に添加し、得られた混合物を室温にて60分間振とうした。次いで、遠心分離(25000rpm、4℃、10分間)を行い、抗体−金属微粒子複合体を沈殿させ、上澄み液1.75mLを除去し、その後、沈殿物に0.16wt% BSA−5mM PBS(−)緩衝液0.75mLを添加し、抗体−金属微粒子複合体の2倍濃縮液を調製した。該濃縮液を0.16wt% BSA−5mM PBS(−)緩衝液で3.0倍希釈し、展開液N〜Pを調製した。また、前述の濃縮液を図38に従って調合し、展開液Q〜Tを調製した。
[Immunochromatographic test Example 5]
High-resolution multicolor immunochromatography test (Preparation of developing solution for high-color multicolor immunochromatography test)
Centrifugation (25000 rpm, 4 ° C., 10 minutes) of 2.0 mL of the previously prepared dispersion of metal fine particles A to C was performed to precipitate the metal fine particles, and 1.85 mL of the supernatant was removed. Thereafter, the metal microparticles were redispersed with 1.85 mL of 5 mM PBS (−) buffer. This operation was repeated twice to adjust the pH of the dispersion to 7.4.
Anti-hepatitis B virus antigen antibody (product name: Goat anti HBsAg, manufacturer: Arista Biologicals, Inc.) at a concentration of 50 μg / mL in 5 mM PBS (−) buffer (prepared by diluting a commercially available 200 mM PBS solution 40-fold). And 0.2 mL of a dispersion of metal fine particles A to C whose pH was previously adjusted to 7.4 by centrifugation, and the resulting mixture was shaken at room temperature for 30 minutes. . Thereafter, 100 μL of a 3.26 wt% bovine serum albumin (BSA) -5 mM PBS (−) solution was added to the mixture, and the resulting mixture was shaken at room temperature for 60 minutes. Subsequently, centrifugation (25000 rpm, 4 ° C., 10 minutes) is performed to precipitate the antibody-metal fine particle complex, 1.75 mL of the supernatant is removed, and then 0.16 wt% BSA-5 mM PBS (− ) 0.75 mL of buffer solution was added to prepare a 2-fold concentrated solution of antibody-metal fine particle complex. The concentrated solution was diluted 3.0 times with 0.16 wt% BSA-5 mM PBS (−) buffer to prepare developing solutions N to P. Moreover, the above-mentioned concentrate was prepared according to FIG. 38 and the developing liquids QT were prepared.
(高精彩多色イムノクロマト試験)
図1に示されるようなイムノクロマト試験を行った。抗B型肝炎ウイルス抗原抗体が直線状に固定化されたイムノクロマト試験紙を用いた。イムノクロマト試験紙はイムノクロマト試験紙の受託作製会社(有限会社バイオデバイステクノロジー)より購入したものを使用した。抗B型肝炎ウイルス抗原抗体を直線状に固定する際、抗B型肝炎ウイルス抗原抗体溶液を5mM PBS(−)緩衝液(上記の市販品の200mM PBS溶液を蒸留水で40倍希釈して作製)で濃度1g/mLに調整したものを使用した。第1の展開液は、1mMのPBS(−)緩衝液中におけるB型肝炎ウイルス抗原(品名:HBsAg Protein(Subtype adr)、製造元:Fitzgerald Industries International Inc.)の溶液であり、B型肝炎ウイルス抗原の濃度が0.60μM、0M(Blank)の溶液を用意した。洗浄用展開液は5mMのPBS(−)緩衝液である。第2の展開液には、上述の展開液N〜Tを用いた。具体的には、イムノクロマト試験紙に、各濃度の第1の展開液15μLをそれぞれ展開させた。次いで、洗浄用展開液である5mMのPBS(−)緩衝液30μLを展開させた。最後に、第2の展開液60μLを展開させた。本イムノクロマト試験において、B型肝炎ウイルス抗原の検出が0.6μMの濃度で目視により確認され、0μM(Blank)の濃度では確認されず、非特異検出が無いことが確認された。また、検出ラインの色が展開液により異なり、展開液N使用時はイエロー調、展開液O使用時はマゼンタ調、展開液P使用時はシアン調、展開液Q使用時は赤色調、展開液R使用時は青色調、展開液S使用時は緑色調、展開液T使用時は黒色調の色を呈した。
(Highly detailed multicolor immunochromatographic test)
An immunochromatographic test as shown in FIG. 1 was performed. An immunochromatographic test paper on which an anti-hepatitis B virus antigen antibody was immobilized linearly was used. The immunochromatographic test paper used was purchased from a contract manufacturing company for immunochromatographic test paper (Biodevice Technology Co., Ltd.). When the anti-hepatitis B virus antigen antibody is immobilized in a straight line, an anti-hepatitis B virus antigen antibody solution is prepared by diluting the above-mentioned commercially available 200 mM PBS solution 40 times with distilled water. ) Was used to adjust the concentration to 1 g / mL. The first developing solution is a solution of hepatitis B virus antigen (product name: HBsAg Protein (Subtype adr), manufacturer: Fitzgerald Industries International Inc.) in 1 mM PBS (−) buffer, and hepatitis B virus antigen A solution having a concentration of 0.60 μM and 0M (Blank) was prepared. The developing solution for washing is a 5 mM PBS (−) buffer. The above-described developing solutions N to T were used as the second developing solution. Specifically, 15 μL of the first developing solution of each concentration was developed on the immunochromatographic test paper. Subsequently, 30 μL of 5 mM PBS (−) buffer, which is a developing solution for washing, was developed. Finally, 60 μL of the second developing solution was developed. In this immunochromatographic test, the detection of hepatitis B virus antigen was confirmed visually at a concentration of 0.6 μM, not at a concentration of 0 μM (Blank), and it was confirmed that there was no non-specific detection. The color of the detection line differs depending on the developing solution. When developing solution N is used, yellow tone, when developing solution O is used, magenta tone, when developing solution P is used, cyan tone, when developing solution Q is used, red tone, developing solution When R was used, the color was blue, when using the developing solution S, the color was green, and when using the developing solution T, the color was black.
(高精彩多色イムノクロマト試験結果の測色)
高精彩多色イムノクロマト試験により得られたイムノクロマト紙をスキャニング(装置名:Cano Scan LiDE220、製造元:キヤノン株式会社)し、得られた画像をビットマップ画像編集ソフトウェアのAdobe Photoshopで取り込み、検出ラインのCIELAB D50を測定した。測色の結果を図39に示す。
(Color measurement of high-resolution multicolor immunochromatographic test results)
The immunochromatographic paper obtained by the high-definition and multicolor immunochromatographic test was scanned (device name: Canon Scan LiDE220, manufacturer: Canon Inc.), and the obtained image was captured by Adobe Photoshop, a bitmap image editing software, and CIELAB of the detection line D50 was measured. The result of color measurement is shown in FIG.
[イムノクロマト試験 比較例1]
球状金コロイドを使用したコンカナバリンAのイムノクロマト試験
(球状金コロイドを使用したコンカナバリンAのイムノクマト試験用展開液の調製)
市販の球状金コロイド分散液(品名:Auコロイド溶液−SC、粒径:40nm、製造元:田中貴金属株式会社)10mLに5質量%のポリビニルピロリドン(PVP)水溶液3.5mLを添加、攪拌後、一晩静置し、金コロイド調整液を作製した。
上記の金コロイド調整液2.0mLの遠心分離(25000rpm、4℃、10分間)を行い、金微粒子を沈殿させ、上澄み液1.85mLを除去した。その後、金微粒子を5mMのPBS(+)緩衝液(200mM PBS溶液(製品名:PBS溶液20倍濃縮液、製造元:関東化学株式会社)を40倍容に希釈し5mM PBS(−)緩衝液を1L調製し、塩化カルシウム(関東化学株式会社製)の1g/mL水溶液0.1mL及び、塩化マグネシウム六水和物(関東化学株式会社製)の1g/mL水溶液0.05mLを添加して調製)1.85mLで再分散した。この作業を二回繰り返し、分散液のpHを7.4に調整した。
5mMのPBS(+)緩衝液中における濃度50μg/mLの抗コンカナバリンA抗体(品名:Anti Concanavalin A、製造元:EY Laboratories,Inc.)の溶液0.2mLと、先に調製された金コロイドの分散液1.8mLを混合し、得られた混合物を室温にて30分間振とうした。次いで、遠心分離(75000rpm、4℃、1時間)を行い、抗体−金コロイド複合体を沈殿させ、上澄み液を除去した。その後、抗体−金コロイド複合体を純水500μL中に再分散させ、紫外可視分光光度計Agilent 8453(アジレント・テクノロジー株式会社製)を使用して消光度(Extinction)0.35になるように調整し、抗体−金コロイド展開液Iを調製した。
[Immunochromatographic test Comparative Example 1]
Immunochromatographic test of concanavalin A using spherical gold colloid (preparation of developing solution for immunokumato test of concanavalin A using spherical gold colloid)
A commercially available spherical gold colloid dispersion (product name: Au colloid solution-SC, particle size: 40 nm, manufacturer: Tanaka Kikinzoku Co., Ltd.) 10 mL was added with 5 mL of a 5% by mass polyvinylpyrrolidone (PVP) aqueous solution. It left still and produced gold colloid adjustment liquid.
Centrifugation (25000 rpm, 4 ° C., 10 minutes) of 2.0 mL of the above gold colloid adjustment solution was performed to precipitate gold fine particles, and 1.85 mL of the supernatant was removed. Thereafter, the gold microparticles were diluted to 40 mM with 5 mM PBS (+) buffer (200 mM PBS solution (product name: PBS solution 20-fold concentrated solution, manufacturer: Kanto Chemical Co., Ltd.)), and 5 mM PBS (-) buffer solution was added. Prepare 1 L and add 0.1 mL of 1 g / mL aqueous solution of calcium chloride (manufactured by Kanto Chemical Co., Ltd.) and 0.05 mL of 1 g / mL aqueous solution of magnesium chloride hexahydrate (manufactured by Kanto Chemical Co., Ltd.) Redispersed with 1.85 mL. This operation was repeated twice to adjust the pH of the dispersion to 7.4.
Dispersion of gold colloid prepared previously in 0.2 mL of a solution of anti-concanavalin A antibody (product name: Anti Concanavalin A, manufacturer: EY Laboratories, Inc.) at a concentration of 50 μg / mL in 5 mM PBS (+) buffer The liquid 1.8mL was mixed and the obtained mixture was shaken for 30 minutes at room temperature. Subsequently, centrifugation (75000 rpm, 4 ° C., 1 hour) was performed to precipitate the antibody-gold colloid complex, and the supernatant was removed. Thereafter, the antibody-gold colloid complex is re-dispersed in 500 μL of pure water and adjusted to an extinction level of 0.35 using an ultraviolet-visible spectrophotometer Agilent 8453 (manufactured by Agilent Technologies). Then, an antibody-gold colloid developing solution I was prepared.
(金コロイドを使用したコンカナバリンAのイムノクロマト試験)
図1に示されるようなイムノクロマト試験を行った。抗コンカナバリンA抗体が直線状に固定化されたイムノクロマト試験紙を用いた。イムノクロマト試験紙はイムノクロマト試験紙の受託作製会社(有限会社バイオデバイステクノロジー)より購入したものを使用した。抗コンカナバリンA抗体を直線状に固定する際、抗コンカナバリンA抗体溶液を5mM PBS(+)緩衝液で濃度1g/mLに調整したものを使用した。第1の展開液は、5mMのPBS(+)緩衝液中におけるコンカナバリンA(品名:Canavalia ensiformis(Jack Bean)[Con A],Jack bean(−)、株式会社J−オイルミルズ製)の溶液であり、コンカナバリンAの濃度が6μM、0.60μM、0.06μM、6nM、0.6nM、0.06nM及び0Mの溶液を用意した。洗浄用展開液は5mMのPBS(+)緩衝液である。第2の展開液には、上述の抗体−金コロイド展開液Iを用いた。具体的には、イムノクロマト試験紙に、各濃度の第1の展開液15μLをそれぞれ展開させた。次いで、洗浄用展開液である5mMのPBS(+)緩衝液30μLを展開させた。最後に、第2の展開液である抗体−金コロイド展開液I60μLを展開させた。イムノクロマト試験の結果、コンカナバリンAの検出が6μM、0.60μM、0.06μM、6nMの濃度に亘って目視により確認された。結果を図13に示す。
(Immunochromatographic test of concanavalin A using gold colloid)
An immunochromatographic test as shown in FIG. 1 was performed. An immunochromatographic test paper on which an anti-concanavalin A antibody was immobilized linearly was used. The immunochromatographic test paper used was purchased from a contract manufacturing company for immunochromatographic test paper (Biodevice Technology Co., Ltd.). When the anti-concanavalin A antibody was fixed linearly, an anti-concanavalin A antibody solution adjusted to a concentration of 1 g / mL with 5 mM PBS (+) buffer was used. The first developing solution is a solution of concanavalin A (product name: Canavaria ensiformis (Jack Bean) [Con A], Jack bean (−), manufactured by J-Oil Mills Co., Ltd.) in 5 mM PBS (+) buffer. Yes, solutions with concanavalin A concentrations of 6 μM, 0.60 μM, 0.06 μM, 6 nM, 0.6 nM, 0.06 nM and 0 M were prepared. The developing solution for washing is a 5 mM PBS (+) buffer. The above-described antibody-gold colloid developing solution I was used as the second developing solution. Specifically, 15 μL of the first developing solution of each concentration was developed on the immunochromatographic test paper. Subsequently, 30 μL of 5 mM PBS (+) buffer, which is a developing solution for washing, was developed. Finally, 60 μL of antibody-gold colloid developing solution I as the second developing solution was developed. As a result of the immunochromatographic test, the detection of concanavalin A was visually confirmed over the concentrations of 6 μM, 0.60 μM, 0.06 μM and 6 nM. The results are shown in FIG.
(球状金コロイドを使用したコンカナバリンAのイムノクロマト試験の輝度解析)
球状金コロイドを使用したコンカナバリンAのイムノクロマト試験での試験後のイムノクロマト試験紙をスキャニング(装置名:Cano Scan LiDE500F、キヤノン株式会社)し、判定部分(抗コンカナバリンA抗体の固定化部分)と、判定部分以外の部分の最低輝度を画像解析ソフト(Image−J)で測定することにより、検出感度を数値化することができる。検出感度は各部分をそれぞれ5回測定し、得られた数値の中央値の差とすることができる。輝度差解析の結果、球状金コロイドではコンカナバリンAの検出が6μM、0.60μM、0.06μM、6nMの濃度に亘って確認できた。輝度解析の結果を図18、金属微粒子A〜Dとの比較を図19に示す。
(Luminance analysis of immunochromatographic test of concanavalin A using spherical gold colloid)
The immunochromatographic test paper after the test in the immunochromatographic test of concanavalin A using a spherical gold colloid was scanned (device name: Canon Scan LiDE500F, Canon Inc.) and judged as a judgment part (anti-concanavalin A antibody immobilization part). The detection sensitivity can be quantified by measuring the minimum luminance of the portion other than the portion with image analysis software (Image-J). The detection sensitivity can be the difference between the median values obtained by measuring each part five times. As a result of the luminance difference analysis, the detection of concanavalin A was confirmed over the concentrations of 6 μM, 0.60 μM, 0.06 μM, and 6 nM in the spherical gold colloid. The result of the luminance analysis is shown in FIG. 18, and the comparison with the metal fine particles A to D is shown in FIG.
[イムノクロマト試験 比較例2]
球状金コロイドを使用したB型肝炎ウイルス抗原のイムノクロマト試験
(球状金コロイドを使用したB型肝炎ウイルス抗原イムノクマト試験用展開液の調製)
市販の球状金コロイド分散液(品名:Auコロイド溶液−SC、粒径:40nm、製造元:田中貴金属株式会社)10mLに5質量%のポリビニルピロリドン(PVP)水溶液3.5mLを添加、攪拌後、一晩静置し、金コロイド調整液を作製した。
上記の金コロイド調整液2.0mLの遠心分離(25000rpm、4℃、10分間)を行い、金微粒子を沈殿させ、上澄み液1.85mLを除去した。その後、金微粒子を5mM PBS(−)緩衝液1.85mLで再分散した。この作業を二回繰り返し、分散液のpHを7.4に調整した。
5mMのPBS(−)緩衝液(市販の200mM PBS溶液を200倍希釈して調製)中における濃度50μg/mLの抗B型肝炎ウイルス抗原抗体(品名:Goat anti HBsAg、製造元:Arista Biologicals,Inc.)の溶液0.2mLと、先に遠心分離によりpHを7.4に調整された金コロイド調整液1.8mLを混合し、得られた混合物を室温にて30分間振とうした。次いで、遠心分離(25000rpm、4℃、10分間)を行い、抗体−金コロイド複合体を沈殿させ、上澄み液1.85mLを除去し、抗体−金コロイド複合体の13.3倍濃縮液を調製した。その後、該濃縮液を5mM PBS(−)緩衝液で希釈、紫外可視分光光度計Agilent 8453(アジレント・テクノロジー株式会社製)を使用して消光度(Extinction)0.35になるように調整し、抗体−金コロイド展開液IIを調製した。また、該濃縮液を3倍希釈し消光度2.0の抗体−金コロイド展開液IIIを調製し、後述するB型肝炎ウイルス抗原イムノクロマト試験結果の測色に使用するイムノクロマト試験に使用した。
[Immunochromatographic test comparative example 2]
Immunochromatographic test of hepatitis B virus antigen using spherical gold colloid (Preparation of developing solution for hepatitis B virus antigen immunokumat test using spherical gold colloid)
A commercially available spherical gold colloid dispersion (product name: Au colloid solution-SC, particle size: 40 nm, manufacturer: Tanaka Kikinzoku Co., Ltd.) 10 mL was added with 5 mL of a 5% by mass polyvinylpyrrolidone (PVP) aqueous solution. It left still and produced gold colloid adjustment liquid.
Centrifugation (25000 rpm, 4 ° C., 10 minutes) of 2.0 mL of the above gold colloid adjustment solution was performed to precipitate gold fine particles, and 1.85 mL of the supernatant was removed. Thereafter, the gold microparticles were redispersed with 1.85 mL of 5 mM PBS (−) buffer. This operation was repeated twice to adjust the pH of the dispersion to 7.4.
Anti-hepatitis B virus antigen antibody (product name: Goat anti HBsAg, manufacturer: Arista Biologicals, Inc.) at a concentration of 50 μg / mL in 5 mM PBS (−) buffer (prepared by diluting a commercially available 200 mM PBS solution 200-fold). And 0.2 mL of a gold colloid adjustment solution whose pH was previously adjusted to 7.4 by centrifugation, and the resulting mixture was shaken at room temperature for 30 minutes. Subsequently, centrifugation (25000 rpm, 4 ° C., 10 minutes) is performed to precipitate the antibody-gold colloid complex, 1.85 mL of the supernatant is removed, and a 13.3 times concentrated solution of the antibody-gold colloid complex is prepared. did. Then, the concentrated solution was diluted with 5 mM PBS (−) buffer, adjusted to have an extinction degree of 0.35 using an ultraviolet-visible spectrophotometer Agilent 8453 (manufactured by Agilent Technologies), Antibody-gold colloid developing solution II was prepared. Further, the concentrated solution was diluted 3 times to prepare an antibody-gold colloid developing solution III having a quenching degree of 2.0 and used for an immunochromatographic test used for color measurement of the hepatitis B virus antigen immunochromatographic test result described later.
(金コロイドを使用したB型肝炎ウイルス抗原のイムノクロマト試験)
図1に示されるようなイムノクロマト試験を行った。抗B型肝炎ウイルス抗原抗体が直線状に固定化されたイムノクロマト試験紙を用いた。イムノクロマト試験紙はイムノクロマト試験紙の受託作製会社(有限会社バイオデバイステクノロジー)より購入したものを使用した。抗B型肝炎ウイルス抗原抗体を直線状に固定する際、抗B型肝炎ウイルス抗原抗体溶液を1mM PBS(−)緩衝液(上記の市販品の200mM PBS溶液を蒸留水で200倍希釈して作製)で濃度1g/mLに調整したものを使用した。第1の展開液は、1mMのPBS(−)緩衝液中におけるB型肝炎ウイルス抗原(品名:HBsAg Protein(Subtype adr)、製造元:Fitzgerald Industries International Inc.)の溶液であり、B型肝炎ウイルス抗原の濃度が6μM、0.60μM、0.06μM、6nM、0M(Blank)の溶液を用意した。洗浄用展開液は1mMのPBS(−)緩衝液である。第2の展開液には、先に調製された消光度0.35に調整した抗体−金コロイド展開液IIを用いた。具体的には、イムノクロマト試験紙に、各濃度の第1の展開液15μLをそれぞれ展開させた。次いで、洗浄用展開液である1mMのPBS(−)緩衝液30μLを展開させた。最後に、第2の展開液60μLを展開させた。本イムノクロマト試験において、B型肝炎ウイルス抗原の検出が6μM、0.60μMの濃度に亘って目視により確認できた。結果を図20に示す。また、検出ラインの色は赤紫色であった。
(Immunochromatographic test of hepatitis B virus antigen using colloidal gold)
An immunochromatographic test as shown in FIG. 1 was performed. An immunochromatographic test paper on which an anti-hepatitis B virus antigen antibody was immobilized linearly was used. The immunochromatographic test paper used was purchased from a contract manufacturing company for immunochromatographic test paper (Biodevice Technology Co., Ltd.). When the anti-hepatitis B virus antigen antibody is immobilized in a straight line, the anti-hepatitis B virus antigen antibody solution is prepared by diluting the above-mentioned commercially available 200 mM PBS solution 200-fold with distilled water (200 mM PBS). ) Was used to adjust the concentration to 1 g / mL. The first developing solution is a solution of hepatitis B virus antigen (product name: HBsAg Protein (Subtype adr), manufacturer: Fitzgerald Industries International Inc.) in 1 mM PBS (−) buffer, and hepatitis B virus antigen Solution having a concentration of 6 μM, 0.60 μM, 0.06 μM, 6 nM, and 0 M (Blank) was prepared. The developing solution for washing is a 1 mM PBS (−) buffer. As the second developing solution, the previously prepared antibody-gold colloid developing solution II adjusted to a quenching degree of 0.35 was used. Specifically, 15 μL of the first developing solution of each concentration was developed on the immunochromatographic test paper. Subsequently, 30 μL of 1 mM PBS (−) buffer, which is a developing solution for washing, was developed. Finally, 60 μL of the second developing solution was developed. In this immunochromatography test, the detection of hepatitis B virus antigen was confirmed visually over the concentrations of 6 μM and 0.60 μM. The results are shown in FIG. The color of the detection line was reddish purple.
(球状金コロイドを使用したB型肝炎ウイルス抗原のイムノクロマト試験の輝度解析)
球状金コロイドを使用したB型肝炎ウイルス抗原のイムノクロマト試験での試験後のイムノクロマト試験紙をスキャニング(装置名:Cano Scan LiDE500F、製造元:キヤノン株式会社)し、判定部分(抗B型肝炎ウイルス抗原抗体の固定化部分)と、判定部分以外の部分の最低輝度を画像解析ソフト(Image−J)で測定することにより、検出感度を数値化することができる。検出感度は各部分をそれぞれ5回測定し、得られた数値の中央値の差とすることができる。輝度差解析の結果、B型肝炎ウイルス抗原の検出が6μM、0.60μMの濃度に亘って確認された。輝度解析の結果を図22、金属微粒子Bとの比較を図23に示す。
(Luminance analysis of immunochromatographic test for hepatitis B virus antigen using spherical gold colloid)
The immunochromatographic test paper after the test in the immunochromatographic test of the hepatitis B virus antigen using a spherical gold colloid was scanned (device name: Canon Scan LiDE500F, manufacturer: Canon Inc.), and the determination part (anti-hepatitis B virus antigen antibody) The detection sensitivity can be quantified by measuring the minimum luminance of the portion other than the determination portion and the determination portion with image analysis software (Image-J). The detection sensitivity can be the difference between the median values obtained by measuring each part five times. As a result of luminance difference analysis, detection of hepatitis B virus antigen was confirmed over concentrations of 6 μM and 0.60 μM. The result of the luminance analysis is shown in FIG. 22, and the comparison with the metal fine particle B is shown in FIG.
[イムノクロマト試験 比較例3]
(金コロイドを使用したB型肝炎ウイルス抗原イムノクロマト試験結果の測色)
先に調製された消光度2.0に調整した抗体−金コロイド展開液IIIを使用したB型肝炎ウイルス抗原イムノクロマト試験により得られたイムノクロマト紙をスキャニング(装置名:Cano Scan LiDE500F、製造元:キヤノン株式会社)し、得られた画像をビットマップ画像編集ソフトウェアのAdobe Photoshopで取り込み、検出ラインのCIELAB D50を測定した。抗体−金コロイド展開液IIIの分光特性を図25、測色の結果を図27に示す。
[Immunochromatographic test comparative example 3]
(Color measurement of hepatitis B virus antigen immunochromatography test results using colloidal gold)
Scanning immunochromatographic paper obtained by the hepatitis B virus antigen immunochromatographic test using the antibody-gold colloid developing solution III adjusted to the extinction degree of 2.0 prepared previously (device name: Cano Scan LiDE500F, manufacturer: Canon Inc.) The acquired image was taken in with Adobe Photoshop, a bitmap image editing software, and CIELAB D50 of the detection line was measured. FIG. 25 shows the spectral characteristics of the antibody-gold colloid developing solution III, and FIG. 27 shows the results of colorimetry.
Claims (4)
前記検出ラインの色は、1種の金属微粒子(a)の色又は異なる色を呈する複数種の金属微粒子(a)の混色に基づいていることを特徴とする請求項1に記載のイムノクロマトキット。 An immunochromatography kit comprising a chromatographic carrier exhibiting one or more detection lines after an immunochromatographic test,
The immunochromatography kit according to claim 1, wherein the color of the detection line is based on a color of one kind of metal fine particles (a) or a mixed color of a plurality of kinds of metal fine particles (a) exhibiting different colors.
前記クロマトグラフ担体は、異なる被験物質に対して結合性を有する複数種の分子(b)がそれぞれ異なる位置に固定されていることを特徴とする請求項1又は2に記載のイムノクロマトキット。 An immunochromatography kit comprising a chromatographic carrier that exhibits a plurality of detection lines after an immunochromatographic test,
The immunochromatography kit according to claim 1 or 2, wherein a plurality of types of molecules (b) having binding properties to different test substances are fixed to the chromatographic carrier at different positions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015064125A JP6440166B2 (en) | 2014-03-28 | 2015-03-26 | Immunochromatography kit |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014068683 | 2014-03-28 | ||
JP2014068683 | 2014-03-28 | ||
JP2015064125A JP6440166B2 (en) | 2014-03-28 | 2015-03-26 | Immunochromatography kit |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015194495A JP2015194495A (en) | 2015-11-05 |
JP6440166B2 true JP6440166B2 (en) | 2018-12-19 |
Family
ID=54433618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015064125A Active JP6440166B2 (en) | 2014-03-28 | 2015-03-26 | Immunochromatography kit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6440166B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6294574B2 (en) * | 2016-03-09 | 2018-03-14 | 大日本塗料株式会社 | Composition for detecting test substance containing gold nanoplate and use thereof |
JP6133478B1 (en) * | 2016-07-15 | 2017-05-24 | 株式会社ニチレイバイオサイエンス | Colored particles |
EP3842789B1 (en) * | 2018-08-21 | 2024-10-16 | Denka Company Limited | Immunochromatography in which carrier particles are used to amplify surface plasmon resonance |
WO2021230267A1 (en) * | 2020-05-12 | 2021-11-18 | 大日本塗料株式会社 | Suspension of gold-coated silver nano-plates, use thereof and production method therefor, and immunochromatography kit |
JP6987939B2 (en) * | 2020-05-12 | 2022-01-05 | 大日本塗料株式会社 | Suspension of gold-coated silver nanoplates and their uses and manufacturing methods |
CN112143632A (en) * | 2020-09-27 | 2020-12-29 | 浙江农林大学 | A high-throughput rapid drug susceptibility detection kit for veterinary clinical use |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4787938B2 (en) * | 2003-03-28 | 2011-10-05 | ザ・プロウボウスト・フェロウズ・ファウンデーション・スカラーズ・アンド・ザ・アザー・メンバーズ・オブ・ボード・オブ・ザ・カレッジ・オブ・ザ・ホリー・アンド・アンデバイデッド・トリニティ・オブ・クイーン | Detecting sensor using silver nanoparticles |
MX2009009994A (en) * | 2007-03-20 | 2009-10-19 | Becton Dickinson Co | Assays using surface-enhanced raman spectroscopy (sers)-active particles. |
US8962342B2 (en) * | 2007-06-06 | 2015-02-24 | Beckton, Dickinson And Company | Near-infrared dyes as surface enhanced raman scattering reporters |
JP4980945B2 (en) * | 2008-02-12 | 2012-07-18 | 富士フイルム株式会社 | Metal particle and inspection method using the same |
JP5503382B2 (en) * | 2010-04-05 | 2014-05-28 | 古河電気工業株式会社 | Composite particles for immunochromatography |
-
2015
- 2015-03-26 JP JP2015064125A patent/JP6440166B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015194495A (en) | 2015-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6440166B2 (en) | Immunochromatography kit | |
JP5960374B2 (en) | Suspension of gold-coated silver nanoplate | |
US11733241B2 (en) | Marker, immunoassay method, immunoassay reagent, method for assaying analyte, analyte measurement kit, and lateral-flow chromatographic test strip | |
CN103201057B (en) | Blue gold nano grain, its manufacture method and use the assay method of this blueness gold nano grain for immunologic assay | |
CN105436516B (en) | The preparation method of the high photon absorbing intensity racemosus shape colloid gold nanoparticle of controllable grain size | |
TWI724639B (en) | Resin-platinum complex, labeling substance, immunological assay, immunological assay reagent, analyte assay method, analyte assay kit for detecting or quantifying analyte, lateral flow chromatography Test strip | |
JP6381642B2 (en) | Resin-metal complex, labeling substance, immunological measurement method, reagent for immunological measurement, method for measuring analyte, kit for analyte measurement, and test strip for lateral flow type chromatography | |
Panfilova et al. | Multiplexed dot immunoassay using Ag nanocubes, Au/Ag alloy nanoparticles, and Au/Ag nanocages | |
EP2780710A2 (en) | Metal/silica core/shell nanoparticles, manufacturing process and immunochromatographic test device comprising such nanoparticles | |
JP6987939B2 (en) | Suspension of gold-coated silver nanoplates and their uses and manufacturing methods | |
CN110140053A (en) | Metal-resin complex and its application | |
WO2021230267A1 (en) | Suspension of gold-coated silver nano-plates, use thereof and production method therefor, and immunochromatography kit | |
US20210255179A1 (en) | Method for detecting a test substance | |
JP2017095744A (en) | Composition for detecting test substance containing gold nanorod and usage thereof | |
JP6716632B2 (en) | Composition for detecting test substance containing palladium-coated anisotropic gold nanoparticles and use thereof | |
TWI876357B (en) | Immunochromatography device and immunochromatography detection method using the same | |
JP2022161209A (en) | Immunochromato kit | |
Sarlak et al. | Design of an Immunochromatographic Kit Using Hybrid Nanomaterial for Rapid Detection of Disease | |
Liu et al. | High sensitivity bacillus thuringiensis cry1Ac protein detections using fluorescein diacetate nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20161013 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20161013 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161017 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180312 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180312 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180919 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181023 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181114 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6440166 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |