Nothing Special   »   [go: up one dir, main page]

JP6339763B2 - Catalyst for dehydrogenation, carbonyl compound using the catalyst, and method for producing hydrogen - Google Patents

Catalyst for dehydrogenation, carbonyl compound using the catalyst, and method for producing hydrogen Download PDF

Info

Publication number
JP6339763B2
JP6339763B2 JP2013033904A JP2013033904A JP6339763B2 JP 6339763 B2 JP6339763 B2 JP 6339763B2 JP 2013033904 A JP2013033904 A JP 2013033904A JP 2013033904 A JP2013033904 A JP 2013033904A JP 6339763 B2 JP6339763 B2 JP 6339763B2
Authority
JP
Japan
Prior art keywords
group
dehydrogenation
alcohol
hydrogen
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013033904A
Other languages
Japanese (ja)
Other versions
JP2015083544A (en
Inventor
山口良平
藤田健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Chemical Co Inc
Original Assignee
Kanto Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Chemical Co Inc filed Critical Kanto Chemical Co Inc
Priority to JP2013033904A priority Critical patent/JP6339763B2/en
Publication of JP2015083544A publication Critical patent/JP2015083544A/en
Application granted granted Critical
Publication of JP6339763B2 publication Critical patent/JP6339763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyridine Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

本発明は、含窒素配位子を有する有機金属錯体を含む脱水素反応用触媒に関するものである。また、本発明は、前記有機金属錯体を触媒とする、脱水素方法、アルコール類の脱水素反応によるカルボニル化合物の製造方法、およびアルコール、ギ酸またはギ酸塩の脱水素反応による水素の製造方法に関するものである。さらに本発明は、含窒素配位子を有する新規な有機金属錯体に関する。   The present invention relates to a catalyst for dehydrogenation reaction containing an organometallic complex having a nitrogen-containing ligand. The present invention also relates to a dehydrogenation method using the organometallic complex as a catalyst, a method for producing a carbonyl compound by dehydrogenation of alcohols, and a method for producing hydrogen by dehydrogenation of alcohol, formic acid or formate. It is. The present invention further relates to a novel organometallic complex having a nitrogen-containing ligand.

水素含有有機化合物の脱水素反応は、有機合成における最も重要な反応の一つで、工業的に利用価値の高い反応である。例えば、アルコールの脱水素反応(酸化反応)によるアルデヒド、ケトン、カルボン酸などのカルボニル化合物への変換反応は、医薬品、農薬、食品、香料、材料など多くの分野で用いられる有機化合物、またはその原料の製造において重要な役割を果たしている。また、アルコール、ギ酸またはギ酸塩の脱水素反応による水素の製造方法は、燃料電池の水素の供給、および貯蔵技術として注目されている技術である。   The dehydrogenation reaction of a hydrogen-containing organic compound is one of the most important reactions in organic synthesis and is an industrially valuable reaction. For example, conversion reaction to carbonyl compounds such as aldehydes, ketones, carboxylic acids by dehydrogenation reaction (oxidation reaction) of alcohol is an organic compound used in many fields such as pharmaceuticals, agricultural chemicals, foods, fragrances, materials, or raw materials thereof. Plays an important role in the manufacture of. In addition, a method for producing hydrogen by dehydrogenation of alcohol, formic acid, or formate is a technology that has attracted attention as a hydrogen supply and storage technology for fuel cells.

アルコールの酸化的脱水素反応によるカルボニル化合物の合成は、医薬品、農薬、香料などの中間体を得るための、有機合成における最も重要な官能基変換の一つであり、従来より数多くの優れた酸化剤や酸化反応が開発されてきた。例えば、量論酸化試剤としては重金属酸化剤(過マンガン酸カリウム、重クロム酸およびその塩、ならびに三酸化クロムなど)を用いた酸化方法やDMSO酸化法(Swern酸化など)などが知られている。これらの酸化剤や酸化方法は、多量の高毒性廃棄物の副生や悪臭の発生など安全性や環境調和性の面から工業的実施には困難が伴う。   Synthesis of carbonyl compounds by oxidative dehydrogenation of alcohol is one of the most important functional group transformations in organic synthesis to obtain intermediates such as pharmaceuticals, agricultural chemicals, and fragrances. Agents and oxidation reactions have been developed. For example, oxidation methods using heavy metal oxidizing agents (potassium permanganate, dichromic acid and its salts, chromium trioxide, etc.) and DMSO oxidation methods (Swern oxidation, etc.) are known as stoichiometric oxidation reagents. . These oxidizing agents and oxidation methods are difficult to implement industrially from the viewpoint of safety and environmental harmony, such as by-product of a large amount of highly toxic waste and generation of bad odor.

これに対し、環境調和型のグリーンケミストリーの観点から、過酸化水素、アセトン、分子状酸素等の共酸化剤を用いたアルコールの触媒的酸化反応が開発されている。しかしながら、共酸化剤を用いた反応は、共酸化剤の種類によっては反応が複雑化したり、適用できる基質が限られるといった課題があり、また、原子効率に基づいた触媒反応の設計という観点からみると改善の余地が残されている。   On the other hand, from the viewpoint of environmentally friendly green chemistry, a catalytic oxidation reaction of alcohol using a co-oxidant such as hydrogen peroxide, acetone, molecular oxygen has been developed. However, the reaction using a co-oxidant has problems such as complicated reaction depending on the type of co-oxidant and limited applicable substrates, and from the viewpoint of designing a catalytic reaction based on atomic efficiency. There is still room for improvement.

これらのことから、共酸化剤を用いないアルコールの触媒的酸化反応、すなわち触媒的な酸化的脱水素反応の開発はプロセス化学的な観点から極めて重要である。近年、このような反応が相次いで報告されており、例えば、ルテニウム触媒(非特許文献1〜5)やイリジウム触媒(非特許文献6、7)を用いた酸化的脱水素反応が報告されている。しかしながら、これらの反応は比較的高温で実施されていること、塩基性条件を必要とする反応では塩基に不安定な基質に適用できないこと、触媒量が比較的多いことなど工業的に実施する上では問題点がある。   From these facts, development of catalytic oxidation reaction of alcohol without using a co-oxidant, that is, catalytic oxidative dehydrogenation reaction is extremely important from the viewpoint of process chemistry. In recent years, such reactions have been reported one after another. For example, oxidative dehydrogenation reactions using ruthenium catalysts (Non-Patent Documents 1 to 5) and iridium catalysts (Non-Patent Documents 6 and 7) have been reported. . However, these reactions are carried out at a relatively high temperature, cannot be applied to base-labile substrates in reactions that require basic conditions, and have a relatively large amount of catalyst. Then there is a problem.

また、非特許文献8では、カチオン性イリジウム錯体を用いたアルコールの脱水素的酸化反応が報告されているが、水溶媒中、還流条件下で反応を行なっており、安全性や経済性を考慮するとより低温で実施できることが望ましい。また、この反応ではカチオン性イリジウム錯体自体が酸性を示すため、酸性状態で分解しやすい基質の反応には不向きである。さらに、非特許文献9では、中性イリジウム錯体を用いた環状アミン(2,6−ジメチルデカヒドロ−1,5−ナフチリジン)の触媒的脱水素化反応が報告されているが、アルコールの触媒的脱水素化反応への適用はなされていない。
以上のことから、低触媒量で比較的低温で実施可能なアルコールの触媒的な脱水素反応の開発が望まれていた。
Non-Patent Document 8 reports a dehydrogenative oxidation reaction of an alcohol using a cationic iridium complex, but the reaction is carried out in an aqueous solvent under reflux conditions, taking safety and economy into consideration. Then, it is desirable that it can be carried out at a lower temperature. In addition, in this reaction, the cationic iridium complex itself exhibits acidity, so that it is not suitable for the reaction of a substrate that is easily decomposed in an acidic state. Furthermore, Non-Patent Document 9 reports a catalytic dehydrogenation reaction of a cyclic amine (2,6-dimethyldecahydro-1,5-naphthyridine) using a neutral iridium complex. No application to dehydrogenation reactions has been made.
From the above, it has been desired to develop a catalytic dehydrogenation reaction of alcohol that can be carried out at a relatively low temperature with a low catalyst amount.

また、第一級アルコールの酸化反応によりアルデヒドが生成し、さらにアルデヒドを酸化することで対応するカルボン酸が得られるが、これをワンポットで進行させる反応は、プロセス化学的な観点から極めて重要である。この目的に用いられる化学量論的酸化剤として、過マンガン酸カリウム (KMnO4)、ジョーンズ試薬、二クロム酸ピリジニウム(PDC)が知られているが、重金属の大量使用、および高毒性の化合物の副生など、経済性や安全性の面でこれらの方法を工業的に実施するのは困難である。 In addition, an aldehyde is generated by the oxidation reaction of the primary alcohol, and the corresponding carboxylic acid is obtained by further oxidizing the aldehyde. The reaction in which this proceeds in one pot is extremely important from the viewpoint of process chemistry. . Known stoichiometric oxidizers for this purpose are potassium permanganate (KMnO 4 ), Jones reagent, pyridinium dichromate (PDC), but heavy metal use and high toxicity compounds It is difficult to industrially implement these methods in terms of economy and safety such as by-products.

触媒的な手法として、四酸化ルテニウム、TEMPO(非特許文献10)を用いた酸化方法が知られているが、条件が比較的強力なために官能基を多く含む化合物への適用は困難であり、また、共酸化剤を用いる必要があることから原子効率に基づいた触媒反応の設計という観点からみると改善の余地が残されている。タングステン酸ナトリウム(非特許文献11)を触媒に用いた方法は、高濃度の過酸化水素水を用いることから危険性を伴う反応である。TEMPO酸化の欠点を改良した1-Me-AZADO酸化(特許文献1)も開発されたが、この手法も多量の共酸化剤を用いる必要があることから、環境負荷を低減できる触媒の開発が望まれていた。
以上のことから、共酸化剤を用いずに、低触媒量で進行する第一級アルコールからのアルデヒドを経たカルボン酸への酸化的脱水素反応の開発が望まれていた。
As a catalytic method, an oxidation method using ruthenium tetroxide and TEMPO (Non-patent Document 10) is known, but it is difficult to apply to a compound containing many functional groups because the conditions are relatively strong. Moreover, since it is necessary to use a co-oxidant, there is still room for improvement from the viewpoint of designing a catalytic reaction based on atomic efficiency. The method using sodium tungstate (Non-patent Document 11) as a catalyst is a reaction involving danger because a high-concentration hydrogen peroxide solution is used. 1-Me-AZADO oxidation (patent document 1) was also developed, which improved the defects of TEMPO oxidation, but this method also requires the use of a large amount of co-oxidant, so the development of a catalyst that can reduce the environmental burden is hoped for. It was rare.
In view of the above, it has been desired to develop an oxidative dehydrogenation reaction from primary alcohols to carboxylic acids via aldehydes, which proceeds in a low catalytic amount without using a co-oxidant.

一方、水素(H)は、従来から石油精製や化学原料として産業上のあらゆる分野で利用されており、近年は、燃料電池の燃料として注目されている。しかし、水素は室温で気体であること、反応性が高く空気中で発火等を起こしやすいことなどから、水素の安定供給あるいは貯蔵は燃料電池の開発において重要な課題となっている。例えば、水素の貯蔵方法としては、圧縮ガスとして貯蔵する方法、水素ガスを液化し、液体水素の形で貯蔵する方法、水素吸蔵合金に水素を取り込ませ、貯蔵する方法が知られている。しかし、これらの方法は、貯蔵媒体の単位重量あたりの水素貯蔵量が小さいことに加え、コスト、安全性および取扱いの点で問題がある。 On the other hand, hydrogen (H 2 ) has been conventionally used in various industrial fields as a petroleum refining and chemical raw material, and has recently attracted attention as a fuel for fuel cells. However, since hydrogen is a gas at room temperature and has high reactivity and easily ignites in the air, stable supply or storage of hydrogen is an important issue in the development of fuel cells. For example, as a method for storing hydrogen, a method for storing as compressed gas, a method for storing hydrogen gas in the form of liquid hydrogen, and a method for storing hydrogen by taking it into a hydrogen storage alloy are known. However, these methods have problems in terms of cost, safety, and handling in addition to a small hydrogen storage amount per unit weight of the storage medium.

これらの問題を解決するため、水素をHとしてでなく別の物質の形で貯蔵する方法が考えられる。例えば、ギ酸(HCOH)は、強く加熱することにより水素(H)と二酸化炭素(CO)を発生することが知られている。これを利用して、水素を安全な物質であるギ酸の形で貯蔵し、ギ酸を適宜加熱して水素を発生させることで、安定に水素を供給することができる。しかしながら、ギ酸の熱分解反応は高温で行なう必要があるため、より穏和な条件下でギ酸から水素を高効率に発生させることができる触媒の開発が望まれている。 In order to solve these problems, a method of storing hydrogen in the form of another substance instead of H 2 is conceivable. For example, formic acid (HCO 2 H) is known to generate hydrogen (H 2 ) and carbon dioxide (CO 2 ) when heated strongly. By utilizing this, hydrogen can be stored stably in the form of formic acid, which is a safe substance, and hydrogen can be generated by appropriately heating formic acid to generate hydrogen. However, since the thermal decomposition reaction of formic acid needs to be carried out at a high temperature, development of a catalyst capable of generating hydrogen from formic acid with high efficiency under milder conditions is desired.

これまでにギ酸の分解用触媒として、金属錯体を用いた例が報告されている。例えば、特許文献2にはイリジウムとルテニウムを含む複核金属錯体が報告されているが、2種類の遷移金属を用いるために製造コストが高くなる。また、特許文献3にはロジウム錯体を用いたギ酸の分解反応が報告されているが、実施例中のロジウム錯体はビピリジル系配位子を有するカチオン性アコ錯体に限定されているに止まり、用いられている触媒量も約1mol%であることから、必ずしも効率が良いとは言えない。
以上のことから、穏和な条件下、低触媒量で高い反応性を有する、ギ酸またはギ酸塩の分解反応用触媒の開発が望まれていた。
So far, examples using metal complexes as formic acid decomposition catalysts have been reported. For example, Patent Document 2 reports a binuclear metal complex containing iridium and ruthenium. However, since two kinds of transition metals are used, the production cost increases. Patent Document 3 reports a formic acid decomposition reaction using a rhodium complex, but the rhodium complexes in the examples are limited to cationic aco complexes having a bipyridyl-based ligand. Since the amount of catalyst used is about 1 mol%, it cannot be said that the efficiency is necessarily good.
From the above, it has been desired to develop a catalyst for decomposition reaction of formic acid or formate having a low reactivity and high reactivity under mild conditions.

特開2009−114143JP 2009-114143 A 特許第4572393号Japanese Patent No. 4572393 特開2009−78200JP 2009-78200 A

J. Ho Choi, N. Kim, Y. J. Shin, J. H. Park and J. Park, Tetrahedron Lett.,2004, 45, 4607-4610.J. Ho Choi, N. Kim, Y. J. Shin, J. H. Park and J. Park, Tetrahedron Lett., 2004, 45, 4607-4610. H. Junge and M. Beller, Tetrahedron Lett., 2005, 46, 1031-1034.H. Junge and M. Beller, Tetrahedron Lett., 2005, 46, 1031-1034. J. Zhang, G. Leitus, Y. Ben-David and D. Milstein, J. Am. Chem.Soc., 2005, 127, 10840-10841.J. Zhang, G. Leitus, Y. Ben-David and D. Milstein, J. Am. Chem. Soc., 2005, 127, 10840-10841. J. van Buijtenen, J. Meuldijk et al., Organometallics, 2006, 25,873-881.J. van Buijtenen, J. Meuldijk et al., Organometallics, 2006, 25, 873-881. H. Junge, B. Loges, and M. Beller, Chem. Commun., 2007, 522-524.H. Junge, B. Loges, and M. Beller, Chem. Commun., 2007, 522-524. K. Fujita, N. Tanino and R. Yamaguchi, Org. Lett., 2007, 9(1), 109-111.K. Fujita, N. Tanino and R. Yamaguchi, Org. Lett., 2007, 9 (1), 109-111. K. Fujita, T. Yoshida, Y. Imori and R. Yamaguchi, Org. Lett., 2011, 13(9), 2278-2281.K. Fujita, T. Yoshida, Y. Imori and R. Yamaguchi, Org. Lett., 2011, 13 (9), 2278-2281.

川原 諒子、藤田 健一、山口 良平「新規水溶性Cp*イリジウム錯体触媒を用いた水溶媒中でのアルコールの脱水素的酸化反応」、日本化学会第91春季年会 講演予稿集、社団法人 日本化学会、2011年3月11日発行、講演番号 4C5−48Kyoko Kawahara, Kenichi Fujita, Ryohei Yamaguchi “Dehydrogenative Oxidation of Alcohol in Aqueous Solvent Using Novel Water-soluble Cp * Iridium Complex Catalyst”, The 91st Annual Meeting of the Chemical Society of Japan Society, issued on March 11, 2011, lecture number 4C5-48 田中 結衣、藤田 健一、山口 良平「機能性ビピリジン系配位子を有する新規Cp*イリジウム錯体の合成と含窒素複素環の触媒的脱水素化反応」、日本化学会第91春季年会 講演予稿集、社団法人 日本化学会、2011年3月11日発行、講演番号 4C5−47Yui Tanaka, Kenichi Fujita, Ryohei Yamaguchi “Synthesis of novel Cp * iridium complexes with functional bipyridine ligands and catalytic dehydrogenation of nitrogen-containing heterocycles”, Proceedings of the 91st Annual Meeting of the Chemical Society of Japan , The Chemical Society of Japan, published on March 11, 2011, lecture number 4C5-47 Anelli. P. L, Biffi. C, Montanari. F and Quici. S, J. Org. Chem., 1987, 52, 2559-2562.Anelli. P. L, Biffi. C, Montanari. F and Quici. S, J. Org. Chem., 1987, 52, 2559-2562. R. Noyori, M. Aoki and K. Sato, Chem. Commun., 2003,1977.R. Noyori, M. Aoki and K. Sato, Chem. Commun., 2003, 1977.

本発明の目的は、新規な脱水素反応用触媒を提供することにある。本発明の他の目的は、アルコール類からケトン、アルデヒド、およびカルボン酸を高効率に製造できる方法を提供すること、また、アルコール、ギ酸またはギ酸塩から水素を効率良く製造する方法を提供することにある。   An object of the present invention is to provide a novel catalyst for dehydrogenation reaction. Another object of the present invention is to provide a method capable of efficiently producing ketones, aldehydes, and carboxylic acids from alcohols, and to provide a method for efficiently producing hydrogen from alcohols, formic acid or formate. It is in.

本発明者らは、前記目的を達成するために鋭意研究を進める中、カルボニル酸素および窒素を有する配位子を含む中性有機金属化合物を含む触媒により、アルコールおよびギ酸またはギ酸塩の脱水素反応が円滑に進行することを見出し、さらに検討を進める中で、新規の錯体により著しく触媒効率ならびに反応収率を向上できること、さらには脱水素反応だけではなく可逆的脱水素−水素化による相互変換を、水素の放出と吸収をともなって、定量的に繰り返し行えることを見出し、本発明を完成するに至った。   In the course of diligent research to achieve the above-mentioned object, the present inventors have conducted a dehydrogenation reaction of alcohol and formic acid or formate by a catalyst containing a neutral organometallic compound containing a ligand having carbonyl oxygen and nitrogen. In the course of further investigation, the catalyst efficiency and reaction yield can be remarkably improved by the new complex. Furthermore, not only dehydrogenation but also reversible dehydrogenation-hydrogenation interconversion The inventors have found that the process can be repeated quantitatively with the release and absorption of hydrogen, and the present invention has been completed.

本発明の触媒によれば、共酸化剤を必要とせず、アルコールの脱水素反応およびギ酸またはギ酸塩の分解反応を高収率で実現することができる。本発明の錯体は中性錯体であり、一般的な有機溶媒のほとんどについて高い溶解性を示すことから、様々な沸点を有する溶媒を任意に選択して用いることができる。また、基質を溶解しやすい溶媒を選んで用いることも可能である。さらに本発明によれば、ギ酸またはギ酸塩の分解反応を100℃以下の反応温度で実施可能であることから、安全性や経済性の面からも工業的実施に極めて有利である。   According to the catalyst of the present invention, a cooxidant is not required, and the alcohol dehydrogenation reaction and the formic acid or formate decomposition reaction can be realized in high yield. Since the complex of the present invention is a neutral complex and exhibits high solubility in most common organic solvents, a solvent having various boiling points can be arbitrarily selected and used. It is also possible to select and use a solvent that easily dissolves the substrate. Furthermore, according to the present invention, since the decomposition reaction of formic acid or formate can be carried out at a reaction temperature of 100 ° C. or less, it is extremely advantageous for industrial implementation from the viewpoint of safety and economy.

また、本発明によれば、可逆的脱水素−水素化による相互変換を同一の触媒を用いて行うことができる。すなわち、本発明の触媒は、所望なら例えば以下の反応式で表される反応の双方向に用いることも可能である。
反応式(I)
式中、
Xは、水素含有化合物または酸素含有化合物であり、
Yは、Xに対応する化合物であって、カルボニル化合物または不飽和結合含有化合物、
(i)は脱水素であり、
(ii)は水素化である。
In addition, according to the present invention, interconversion by reversible dehydrogenation-hydrogenation can be performed using the same catalyst. That is, the catalyst of the present invention can be used in both directions of the reaction represented by the following reaction formula, for example, if desired.
Reaction formula (I)
Where
X is a hydrogen-containing compound or an oxygen-containing compound,
Y is a compound corresponding to X, and is a carbonyl compound or an unsaturated bond-containing compound,
(I) is dehydrogenation,
(Ii) is hydrogenation.

中でも、本発明のアコ配位子を有する新規化合物(錯体)を含む触媒は極めて高い触媒効率および反応収率を示し、非常に有用な触媒である。   Especially, the catalyst containing the novel compound (complex) which has an acoligand of this invention shows very high catalyst efficiency and reaction yield, and is a very useful catalyst.

すなわち、本発明は以下に関する。
[1] 式(1)
式中、
Arは、置換基を有していてもよいベンゼン、または置換基を有していてもよいシクロペンタジエニル基であり、
Mは、ルテニウム、ロジウムまたはイリジウムであり、
〜Rは、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、スルホ基、メルカプト基、カルボキシル基、1もしくは2以上の水素原子が置換されていてもよい、C1〜10のアルキル基、C3〜15のシクロアルキル基、C6〜15のアリール基、C1〜10のヘテロシクリル基、C2〜10のアルケニル基、C2〜10のアルキニル基、C1〜10のアルコキシ基、C1〜10のエステル基、C1〜10のフルオロアルキル基、C1〜10のアシル基、C1〜10のスルホニル基、C1〜10のアミノ基、C1〜10のアミド基、C1〜10のスルフェニル基またはC1〜10のシリル基であり、
とRは互いに連結して、 −CH=CH− を形成してもよく、前記 −CH=CH− におけるHは、互いに独立してハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、スルホ基、メルカプト基、カルボキシル基、1もしくは2以上の水素原子が置換されていてもよい、C1〜10のアルキル基、C3〜15のシクロアルキル基、C6〜15のアリール基、C1〜10のヘテロシクリル基、C2〜10のアルケニル基、C2〜10のアルキニル基、C1〜10のアルコキシ基、C1〜10のエステル基、C1〜10のフルオロアルキル基、C1〜10のアシル基、C1〜10のスルホニル基、C1〜10のアミノ基、C1〜10のアミド基、C1〜10のスルフェニル基またはC1〜10のシリル基で置換されていてもよく、
Lは、スルホキシド配位子、含窒素芳香環配位子、アミン配位子、ホスフィン配位子、エーテル配位子およびアコ配位子からなる群から選択される、
で表される有機金属化合物を含む触媒を用いる、酸素含有化合物の脱水素方法。
That is, the present invention relates to the following.
[1] Formula (1)
Where
Ar is an optionally substituted benzene, or an optionally substituted cyclopentadienyl group,
M is ruthenium, rhodium or iridium;
R 1 to R 6 may be independently substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, a sulfo group, a mercapto group, a carboxyl group, or one or more hydrogen atoms. C1-10 alkyl group, C3-15 cycloalkyl group, C6-15 aryl group, C1-10 heterocyclyl group, C2-10 alkenyl group, C2-10 alkynyl group, C1-10 alkoxy group C1-10 ester group, C1-10 fluoroalkyl group, C1-10 acyl group, C1-10 sulfonyl group, C1-10 amino group, C1-10 amide group, C1-10 sulfenyl Group or a C1-10 silyl group,
R 3 and R 4 may be connected to each other to form —CH═CH—, and H in —CH═CH— is independently a halogen atom, nitro group, cyano group, hydroxy group, sulfo group. Group, mercapto group, carboxyl group, one or more hydrogen atoms optionally substituted, C1-10 alkyl group, C3-15 cycloalkyl group, C6-15 aryl group, C1-10 heterocyclyl Group, C2-10 alkenyl group, C2-10 alkynyl group, C1-10 alkoxy group, C1-10 ester group, C1-10 fluoroalkyl group, C1-10 acyl group, C1-10 sulfonyl Group, C1-10 amino group, C1-10 amide group, C1-10 sulfenyl group or C1-10 silyl group,
L is selected from the group consisting of a sulfoxide ligand, a nitrogen-containing aromatic ring ligand, an amine ligand, a phosphine ligand, an ether ligand and an aco ligand;
A method for dehydrogenating an oxygen-containing compound using a catalyst containing an organometallic compound represented by the formula:

[2] 酸素含有化合物が、アルコールである、[1]に記載の方法。
[3] 酸素含有化合物が、ギ酸またはギ酸塩である、[1]に記載の方法。
[4] Lが、アコ配位子である、[1]〜[3]のいずれかに記載の方法。
[5] Arが、置換基を有していてもよいシクロペンタジエニル基であり、Mがイリジウムであることを特徴とする、[1]〜[4]のいずれかに記載の方法。
[2] The method according to [1], wherein the oxygen-containing compound is an alcohol.
[3] The method according to [1], wherein the oxygen-containing compound is formic acid or formate.
[4] The method according to any one of [1] to [3], wherein L is an acoligand.
[5] The method according to any one of [1] to [4], wherein Ar is a cyclopentadienyl group which may have a substituent, and M is iridium.

[6] [1]〜[5]のいずれかに記載の方法に用いる、式(1)で表される有機金属化合物を含む脱水素用触媒。
[7] [1]〜[5]のいずれかに記載の脱水素方法を用いて、アルコールの脱水素により対応するカルボニル化合物を生成させることを特徴とする、カルボニル化合物の製造方法。
[8] カルボニル化合物が、ケトンまたはアルデヒドである[7]に記載の方法。
[9] アルコールが第一級アルコールであり、カルボニル化合物がカルボン酸であり、水を含む溶媒を用いる、[7]に記載の方法。
[10] [1]〜[5]のいずれかに記載の脱水素方法を用いて、アルコール、アルコールと水とを含む混合物、ギ酸またはギ酸塩の脱水素により水素を生成させることを特徴とする、水素の製造方法。
[6] A dehydrogenation catalyst containing an organometallic compound represented by the formula (1) used in the method according to any one of [1] to [5].
[7] A method for producing a carbonyl compound, wherein the corresponding carbonyl compound is produced by dehydrogenation of an alcohol using the dehydrogenation method according to any one of [1] to [5].
[8] The method according to [7], wherein the carbonyl compound is a ketone or an aldehyde.
[9] The method according to [7], wherein the alcohol is a primary alcohol, the carbonyl compound is a carboxylic acid, and a solvent containing water is used.
[10] Using the dehydrogenation method according to any one of [1] to [5], hydrogen is generated by dehydrogenation of alcohol, a mixture containing alcohol and water, formic acid or formate. , A method for producing hydrogen.

[11]
式(1)
式中、
Arは、置換基を有していてもよいベンゼン、または置換基を有していてもよいシクロペンタジエニル基であり、
Mは、ルテニウム、ロジウムまたはイリジウムであり、
〜Rは、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、スルホ基、メルカプト基、カルボキシル基、1もしくは2以上の水素原子が置換されていてもよい、C1〜10のアルキル基、C3〜15のシクロアルキル基、C6〜15のアリール基、C1〜10のヘテロシクリル基、C2〜10のアルケニル基、C2〜10のアルキニル基、C1〜10のアルコキシ基、C1〜10のエステル基、C1〜10のフルオロアルキル基、C1〜10のアシル基、C1〜10のスルホニル基、C1〜10のアミノ基、C1〜10のアミド基、C1〜10のスルフェニル基またはC1〜10のシリル基であり、
とRは互いに連結して、 −CH=CH− を形成してもよく、前記 −CH=CH− におけるHは、互いに独立してハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、スルホ基、メルカプト基、カルボキシル基、1もしくは2以上の水素原子が置換されていてもよい、C1〜10のアルキル基、C3〜15のシクロアルキル基、C6〜15のアリール基、C1〜10のヘテロシクリル基、C2〜10のアルケニル基、C2〜10のアルキニル基、C1〜10のアルコキシ基、C1〜10のエステル基、C1〜10のフルオロアルキル基、C1〜10のアシル基、C1〜10のスルホニル基、C1〜10のアミノ基、C1〜10のアミド基、C1〜10のスルフェニル基またはC1〜10のシリル基で置換されていてもよく、
Lは、アコ配位子である、
で表される有機金属化合物。
[11]
Formula (1)
Where
Ar is an optionally substituted benzene, or an optionally substituted cyclopentadienyl group,
M is ruthenium, rhodium or iridium;
R 1 to R 6 may be independently substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, a sulfo group, a mercapto group, a carboxyl group, or one or more hydrogen atoms. C1-10 alkyl group, C3-15 cycloalkyl group, C6-15 aryl group, C1-10 heterocyclyl group, C2-10 alkenyl group, C2-10 alkynyl group, C1-10 alkoxy group C1-10 ester group, C1-10 fluoroalkyl group, C1-10 acyl group, C1-10 sulfonyl group, C1-10 amino group, C1-10 amide group, C1-10 sulfenyl Group or a C1-10 silyl group,
R 3 and R 4 may be connected to each other to form —CH═CH—, and H in —CH═CH— is independently a halogen atom, nitro group, cyano group, hydroxy group, sulfo group. Group, mercapto group, carboxyl group, one or more hydrogen atoms optionally substituted, C1-10 alkyl group, C3-15 cycloalkyl group, C6-15 aryl group, C1-10 heterocyclyl Group, C2-10 alkenyl group, C2-10 alkynyl group, C1-10 alkoxy group, C1-10 ester group, C1-10 fluoroalkyl group, C1-10 acyl group, C1-10 sulfonyl Group, C1-10 amino group, C1-10 amide group, C1-10 sulfenyl group or C1-10 silyl group,
L is an acoligand,
An organometallic compound represented by

[12] Arが、置換基を有していてもよいシクロペンタジエニル基であり、Mがイリジウムであることを特徴とする、[11]に記載の有機金属化合物。
[13]
式(2)
式中、
Arは、置換基を有していてもよいベンゼン、または置換基を有していてもよいシクロペンタジエニル基であり、
Mは、ルテニウム、ロジウムまたはイリジウムであり、
〜Rは、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、スルホ基、メルカプト基、カルボキシル基、1もしくは2以上の水素原子が置換されていてもよい、C1〜10のアルキル基、C3〜15のシクロアルキル基、C6〜15のアリール基、C1〜10のヘテロシクリル基、C2〜10のアルケニル基、C2〜10のアルキニル基、C1〜10のアルコキシ基、C1〜10のエステル基、C1〜10のフルオロアルキル基、C1〜10のアシル基、C1〜10のスルホニル基、C1〜10のアミノ基、C1〜10のアミド基、C1〜10のスルフェニル基またはC1〜10のシリル基であり、
とRは互いに連結して、 −CH=CH− を形成してもよく、前記 −CH=CH− におけるHは、互いに独立してハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、スルホ基、メルカプト基、カルボキシル基、1もしくは2以上の水素原子が置換されていてもよい、C1〜10のアルキル基、C3〜15のシクロアルキル基、C6〜15のアリール基、C1〜10のヘテロシクリル基、C2〜10のアルケニル基、C2〜10のアルキニル基、C1〜10のアルコキシ基、C1〜10のエステル基、C1〜10のフルオロアルキル基、C1〜10のアシル基、C1〜10のスルホニル基、C1〜10のアミノ基、C1〜10のアミド基、C1〜10のスルフェニル基またはC1〜10のシリル基で置換されていてもよく、
Zは、Na、Li、KまたはCsである、
で表される有機金属化合物。
[14] Arが、置換基を有していてもよいシクロペンタジエニル基であり、Mがイリジウムであることを特徴とする、[13]に記載の有機金属化合物。
[15] [13]または[14]に記載の有機金属化合物を含む触媒を用いる、酸素含有化合物の脱水素方法。
[16] 酸素含有化合物が、アルコール、ギ酸またはギ酸塩である、[15]に記載の方法。
[17] [13]または[14]に記載の有機金属化合物を含む脱水素用触媒。
[12] The organometallic compound according to [11], wherein Ar is a cyclopentadienyl group which may have a substituent, and M is iridium.
[13]
Formula (2)
Where
Ar is an optionally substituted benzene, or an optionally substituted cyclopentadienyl group,
M is ruthenium, rhodium or iridium;
R 1 to R 6 may be independently substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, a sulfo group, a mercapto group, a carboxyl group, or one or more hydrogen atoms. C1-10 alkyl group, C3-15 cycloalkyl group, C6-15 aryl group, C1-10 heterocyclyl group, C2-10 alkenyl group, C2-10 alkynyl group, C1-10 alkoxy group C1-10 ester group, C1-10 fluoroalkyl group, C1-10 acyl group, C1-10 sulfonyl group, C1-10 amino group, C1-10 amide group, C1-10 sulfenyl Group or a C1-10 silyl group,
R 3 and R 4 may be connected to each other to form —CH═CH—, and H in —CH═CH— is independently a halogen atom, nitro group, cyano group, hydroxy group, sulfo group. Group, mercapto group, carboxyl group, one or more hydrogen atoms optionally substituted, C1-10 alkyl group, C3-15 cycloalkyl group, C6-15 aryl group, C1-10 heterocyclyl Group, C2-10 alkenyl group, C2-10 alkynyl group, C1-10 alkoxy group, C1-10 ester group, C1-10 fluoroalkyl group, C1-10 acyl group, C1-10 sulfonyl Group, C1-10 amino group, C1-10 amide group, C1-10 sulfenyl group or C1-10 silyl group,
Z is Na, Li, K or Cs.
An organometallic compound represented by
[14] The organometallic compound according to [13], wherein Ar is a cyclopentadienyl group which may have a substituent, and M is iridium.
[15] A method for dehydrogenating an oxygen-containing compound using a catalyst containing the organometallic compound according to [13] or [14].
[16] The method according to [15], wherein the oxygen-containing compound is alcohol, formic acid or formate.
[17] A dehydrogenation catalyst comprising the organometallic compound according to [13] or [14].

[18] [15]または[16]に記載の脱水素方法を用いて、アルコールの脱水素により対応するカルボニル化合物を生成させることを特徴とする、カルボニル化合物の製造方法。
[19] カルボニル化合物が、ケトンまたはアルデヒドである[18]に記載の方法。
[20] アルコールが第一級アルコールであり、カルボニル化合物がカルボン酸であり、水を含む溶媒を用いる、[18]に記載の方法。
[21] [16]に記載の脱水素方法を用いて、アルコール、アルコールと水とを含む混合物、ギ酸またはギ酸塩の脱水素により水素を生成させることを特徴とする、水素の製造方法。
[22] 連続的に水素を製造する方法であって、[1]に記載の一般式(1)および/または[13]に記載の一般式(2)で表される有機金属化合物の存在下、アルコールと水とを含む混合物にアルカリ化合物を加え、脱水素反応させ、脱水素の進行過程において該混合物と該アルカリ化合物とを、1または2回以上追加することにより、連続的に水素ガスを製造する、前記方法。
[23] [22]に記載の方法を用いる連続的に水素を製造するシステムであって、脱水素反応を行う反応槽、混合物とアルカリ化合物とを供給する供給部および製造した水素を回収する回収部を含む、前記システム。
[18] A method for producing a carbonyl compound, wherein the corresponding carbonyl compound is produced by dehydrogenation of an alcohol using the dehydrogenation method according to [15] or [16].
[19] The method according to [18], wherein the carbonyl compound is a ketone or an aldehyde.
[20] The method according to [18], wherein the alcohol is a primary alcohol, the carbonyl compound is a carboxylic acid, and a solvent containing water is used.
[21] A method for producing hydrogen, wherein the hydrogen is produced by dehydrogenation of alcohol, a mixture containing alcohol and water, formic acid or formate using the dehydrogenation method according to [16].
[22] A method for producing hydrogen continuously, in the presence of an organometallic compound represented by the general formula (1) described in [1] and / or the general formula (2) described in [13] Then, an alkali compound is added to a mixture containing alcohol and water to cause a dehydrogenation reaction, and hydrogen gas is continuously added by adding the mixture and the alkali compound one or more times in the progress of dehydrogenation. The method of manufacturing.
[23] A system for continuously producing hydrogen using the method according to [22], a reaction tank for performing a dehydrogenation reaction, a supply unit for supplying a mixture and an alkali compound, and a recovery for recovering the produced hydrogen The system including a unit.

本発明の一側面は、下記式(1)で表される含窒素有機金属化合物(有機金属錯体)を含む触媒を用いる、酸素含有化合物の脱水素方法に関する。本発明に用いる有機金属錯体は、ビピリジンまたはフェナントロリン上にカルボニル酸素および窒素を含有する配位子含む金属錯体であれば特に限定されないが、典型的には、式(1)で表される。
One aspect of the present invention relates to a method for dehydrogenating an oxygen-containing compound using a catalyst containing a nitrogen-containing organometallic compound (organometallic complex) represented by the following formula (1). The organometallic complex used in the present invention is not particularly limited as long as it is a metal complex containing a ligand containing carbonyl oxygen and nitrogen on bipyridine or phenanthroline, but is typically represented by the formula (1).

式(1)中、Arは、典型的には、1または2以上の水素原子が置換されていてもよいベンゼンまたはシクロペンタジエニル基である。
1または2以上の水素原子が置換されていてもよい芳香族化合物の具体例としては、これに限定するものではないが、例えばベンゼン、トルエン、o−、m−およびp−キシレン、o−、m−およびp−シメン、1,2,3−、1,2,4−および1,3,5−トリメチルベンゼン、1,2,4,5−テトラメチルベンゼン、1,2,3,4−テトラメチルベンゼン、1,3,4,5−テトラメチルベンゼン、ペンタメチルベンゼン、ならびにヘキサメチルベンゼン等のアルキル基を有するベンゼン、ベンジル、ビニル、アリルなどの不飽和炭化水素基を有するベンゼン、ハロゲン原子、ヒドロキシル基、アルコキシ基、エステル基、アミノ基等の異原子を有するベンゼンなどが挙げられる。ベンゼン環の置換基の数は1〜6の任意の数であり、置換位置は任意の位置を選ぶことができる。錯体合成の容易さという点で、p−シメン、1,3,5−トリメチルベンゼン、ヘキサメチルベンゼンが好ましい。
In formula (1), Ar is typically a benzene or cyclopentadienyl group in which one or more hydrogen atoms may be substituted.
Specific examples of the aromatic compound in which one or more hydrogen atoms may be substituted include, but are not limited to, for example, benzene, toluene, o-, m- and p-xylene, o-, m- and p-cymene, 1,2,3-, 1,2,4- and 1,3,5-trimethylbenzene, 1,2,4,5-tetramethylbenzene, 1,2,3,4- Tetramethylbenzene, 1,3,4,5-tetramethylbenzene, pentamethylbenzene, benzene having an alkyl group such as hexamethylbenzene, benzene having an unsaturated hydrocarbon group such as benzyl, vinyl, allyl, halogen atom Benzene having a different atom such as a hydroxyl group, an alkoxy group, an ester group or an amino group. The number of substituents on the benzene ring is an arbitrary number from 1 to 6, and an arbitrary position can be selected as the substitution position. From the viewpoint of ease of complex synthesis, p-cymene, 1,3,5-trimethylbenzene and hexamethylbenzene are preferred.

本発明において、「置換されていてもよい」は、任意の置換基を有していてもよいことをいい、置換基はこれに限定されるものではないが、典型的には、C1〜10の飽和もしくは不飽和炭化水素基、アリール基、ヘテロシクリル基、アルコキシ基、フルオロアルキル基、アシル基、エステル基、ヒドロキシル基、アミノ基、アミド基、カルボキシル基、スルホニル基、ニトロ基、シアノ基、スルフェニル基、スルホ基、メルカプト基、シリル基またはハロゲン基であり、特に、C1〜10の飽和もしくは不飽和炭化水素基、アリール基、ヘテロシクリル基、アルコキシ基、アシル基、エステル基、ヒドロキシル基、アミノ基、スルホニル基、シリル基またはハロゲン基である。   In the present invention, “optionally substituted” means that it may have an arbitrary substituent, and the substituent is not limited to this, but typically C1-10. Saturated or unsaturated hydrocarbon group, aryl group, heterocyclyl group, alkoxy group, fluoroalkyl group, acyl group, ester group, hydroxyl group, amino group, amide group, carboxyl group, sulfonyl group, nitro group, cyano group, sulfo group A phenyl group, a sulfo group, a mercapto group, a silyl group or a halogen group, in particular, a C1-10 saturated or unsaturated hydrocarbon group, aryl group, heterocyclyl group, alkoxy group, acyl group, ester group, hydroxyl group, amino group Group, sulfonyl group, silyl group or halogen group.

置換基の具体例としては、これに限定するものではないが、例えばメチル基、エチル基、n−プロピル基、i−プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシレン基、エテニル基、プロペニル基、ブテニル基、フェニル基、トルイル基、ナフチル基、ピリジル基、フラニル基、メトキシ基、エトキシ基、プロポキシ基、アセチル基、プロパノイル基、シクロヘキサンカルボニル基、ベンゾイル基、メトキシカルボニル基、エトキシカルボニル基、ヒドロキシル基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、メチルスルホニル基、エチルスルホニル基、メチルシリル基、ジメチルシリル基、フルオロ基、クロロ基、トリフルオロメチル基などが挙げられる。錯体合成の容易さという点で、好ましくは飽和または不飽和炭化水素基、さらに好ましくはメチル基、i−プロピル基である。   Specific examples of the substituent include, but are not limited to, methyl group, ethyl group, n-propyl group, i-propyl group, butyl group, pentyl group, hexyl group, cyclohexylene group, ethenyl group, Propenyl, butenyl, phenyl, toluyl, naphthyl, pyridyl, furanyl, methoxy, ethoxy, propoxy, acetyl, propanoyl, cyclohexanecarbonyl, benzoyl, methoxycarbonyl, ethoxycarbonyl , Hydroxyl group, methylamino group, ethylamino group, dimethylamino group, methylsulfonyl group, ethylsulfonyl group, methylsilyl group, dimethylsilyl group, fluoro group, chloro group, trifluoromethyl group and the like. From the viewpoint of ease of complex synthesis, a saturated or unsaturated hydrocarbon group is preferable, and a methyl group or i-propyl group is more preferable.

1または2以上の水素原子が置換されていてもよいシクロペンタジエニル基の具体例としては、これに限定するものではないが、例えばシクロペンタジエニル基、メチルシクロペンタジエニル基、エチルシクロペンタジエニル基、イソプロピルシクロペンタジエニル基、フェニルシクロペンタジエニル基、ベンジルシクロペンタジエニル基、1,2−ジメチルシクロペンタジエニル基、1,3−ジメチルシクロペンタジエニル基、1,2,3−トリメチルシクロペンタジエニル基、1,2,4−トリメチルシクロペンタジエニル基、1,2,3,4−テトラメチルシクロペンタジエニル基、1,2,3,4,5−ペンタメチルシクロペンタジエニル基(Cp)などが挙げられる。錯体合成の容易さという点で、1,2,3,4,5−ペンタメチルシクロペンタジエニル基(Cp)が好ましい。 Specific examples of the cyclopentadienyl group in which one or more hydrogen atoms may be substituted include, but are not limited to, for example, a cyclopentadienyl group, a methylcyclopentadienyl group, an ethylcyclopentyl group, and the like. Pentadienyl group, isopropylcyclopentadienyl group, phenylcyclopentadienyl group, benzylcyclopentadienyl group, 1,2-dimethylcyclopentadienyl group, 1,3-dimethylcyclopentadienyl group, 1, 2,3-trimethylcyclopentadienyl group, 1,2,4-trimethylcyclopentadienyl group, 1,2,3,4-tetramethylcyclopentadienyl group, 1,2,3,4,5- Examples include a pentamethylcyclopentadienyl group (Cp * ). In view of ease of complex synthesis, 1,2,3,4,5-pentamethylcyclopentadienyl group (Cp * ) is preferable.

式(1)中のMは、ルテニウム、ロジウム、およびイリジウムのいずれかである。触媒活性の高さという点で、イリジウムが好ましい。   M in the formula (1) is any one of ruthenium, rhodium, and iridium. Iridium is preferred in terms of high catalytic activity.

式(1)中のR〜Rは、典型的には、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、スルホ基、メルカプト基、カルボキシル基、1もしくは2以上の水素原子が置換されていてもよい、C1〜10のアルキル基、C3〜15のシクロアルキル基、C6〜15のアリール基、C1〜10のヘテロシクリル基、C2〜10のアルケニル基、C2〜10のアルキニル基、C1〜10のアルコキシ基、C1〜10のエステル基、C1〜10のフルオロアルキル基、C1〜10のアシル基、C1〜10のスルホニル基、C1〜10のアミノ基、C1〜10のアミド基、C1〜10のスルフェニル基またはC1〜10のシリル基であり、RとRは互いに連結して、 −CH=CH− を形成してもよく、前記 −CH=CH− におけるHは、互いに独立して、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、スルホ基、メルカプト基、カルボキシル基、1もしくは2以上の水素原子が置換されていてもよい、C1〜10のアルキル基、C3〜15のシクロアルキル基、C6〜15のアリール基、C1〜10のヘテロシクリル基、C2〜10のアルケニル基、C2〜10のアルキニル基、C1〜10のアルコキシ基、C1〜10のエステル基、C1〜10のフルオロアルキル基、C1〜10のアシル基、C1〜10のスルホニル基、C1〜10のアミノ基、C1〜10のアミド基、C1〜10のスルフェニル基またはC1〜10のシリル基で置換されていてもよい。 R 1 to R 6 in formula (1) are typically independently of each other a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, a sulfo group, a mercapto group, a carboxyl group, 1 or 2 The above hydrogen atoms may be substituted, C1-10 alkyl group, C3-15 cycloalkyl group, C6-15 aryl group, C1-10 heterocyclyl group, C2-10 alkenyl group, C2- 10 alkynyl groups, C1-10 alkoxy groups, C1-10 ester groups, C1-10 fluoroalkyl groups, C1-10 acyl groups, C1-10 sulfonyl groups, C1-10 amino groups, C1-10 10 amide group, a sulfenyl group, or a silyl group of C1-10 the C1-10, R 3 and R 4 are linked to each other, may form a -CH = CH-, wherein H in CH═CH— is independently of each other a halogen atom, a nitro group, a cyano group, a hydroxy group, a sulfo group, a mercapto group, a carboxyl group, or one or more hydrogen atoms may be substituted. -10 alkyl group, C3-15 cycloalkyl group, C6-15 aryl group, C1-10 heterocyclyl group, C2-10 alkenyl group, C2-10 alkynyl group, C1-10 alkoxy group, C1 -10 ester group, C1-10 fluoroalkyl group, C1-10 acyl group, C1-10 sulfonyl group, C1-10 amino group, C1-10 amide group, C1-10 sulfenyl group or It may be substituted with a C1-10 silyl group.

〜Rの具体例としては、これに限定するものではないが、例えば水素原子、フッ素基、クロロ基、臭素基、ヨウ素基、トリフルオロメチル基、ニトロ基、シアノ基、ヒドロキシル基、スルホ基、メルカプト基、カルボキシル基、メトキシ基、エトキシ基、n−プロポキシ基、iso−プロポキシ基、tert−ブトキシ基、ジメチルアミノ基、メチル基、エチル基、n−プロピル基、i−プロピル基、tert−ブチル基、イソブチル基、ベンジル基、シクロヘキシル基、フェニル基、ビニル基、ピリジル基、エチニル基、エステル結合を有する基、アセチル基、メタンスルホニル基、エタンスルホニル基、p−トルエンスルホニル基、トリフルオロメタンスルホニル基、メチルシリル基、ジメチルシリル基、トリメチルシリル基などが挙げられる。触媒活性や反応収率の高さという点で、水素原子、メチル基、エチル基、イソプロピル基、tert−ブチル基、イソブチル基、ベンジル基、フェニル基、4−メトキシフェニル基、4−(ジメチルアミノ)フェニル基が好ましい。 Specific examples of R 1 to R 6 include, but are not limited to, hydrogen atom, fluorine group, chloro group, bromine group, iodine group, trifluoromethyl group, nitro group, cyano group, hydroxyl group, Sulfo group, mercapto group, carboxyl group, methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, tert-butoxy group, dimethylamino group, methyl group, ethyl group, n-propyl group, i-propyl group, tert-butyl group, isobutyl group, benzyl group, cyclohexyl group, phenyl group, vinyl group, pyridyl group, ethynyl group, group having an ester bond, acetyl group, methanesulfonyl group, ethanesulfonyl group, p-toluenesulfonyl group, trifluoro Lomethanesulfonyl group, methylsilyl group, dimethylsilyl group, trimethylsilyl group, etc. And the like. In terms of catalytic activity and high reaction yield, hydrogen atom, methyl group, ethyl group, isopropyl group, tert-butyl group, isobutyl group, benzyl group, phenyl group, 4-methoxyphenyl group, 4- (dimethylamino) ) A phenyl group is preferred.

式(1)中のLは、典型的には、スルホキシド配位子、含窒素芳香環配位子、アミン配位子、ホスフィン配位子、エーテル配位子およびアコ配位子からなる群から選択される。   L in formula (1) is typically from the group consisting of sulfoxide ligands, nitrogen-containing aromatic ring ligands, amine ligands, phosphine ligands, ether ligands and aco ligands. Selected.

具体例としては、これに限定するものではないが、例えばスルホキシド配位子としてDMSO、ジフェニルスルホキシド、メチルフェニルスルホキシドが、含窒素芳香環配位子としてピリジン、ピコリン、ルチジン、3−クロロピリジン、4−クロロピリジンが、アミン配位子としてアニリン、トルイジン、アニシジンが、ホスフィン配位子としてトリフェニルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリ―tert−ブチルホスフィン、トリシクロへキシルホスフィン、トリエトキシホスフィンが、エーテル配位子としてジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、シクロペンチルメチルエーテル、メチル−tert−ブチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、アニソールなどが挙げられる。   Specific examples include, but are not limited to, DMSO, diphenyl sulfoxide, and methylphenyl sulfoxide as sulfoxide ligands, and pyridine, picoline, lutidine, 3-chloropyridine, 4 as nitrogen-containing aromatic ring ligands. -Chloropyridine is the amine ligand aniline, toluidine, anisidine, the phosphine ligand is triphenylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri-tert-butylphosphine, tricyclohexylphosphine, triethoxyphosphine Are ether ligands such as dimethyl ether, diethyl ether, diisopropyl ether, cyclopentyl methyl ether, methyl tert-butyl ether, tetrahydrofuran, 2-methyl ether. Examples include trahydrofuran and anisole.

Lは、ジメチルスルホキシド配位子(dmso)、ピリジン配位子(pyridine)、アニリン配位子(aniline)またはアコ配位子が好ましく、極めて高い触媒効率および反応収率を示すという点から、アコ配位子が特に好ましい。   L is preferably a dimethyl sulfoxide ligand (dmso), a pyridine ligand (pyridine), an aniline ligand (aniline) or an aco-ligand, and exhibits an extremely high catalytic efficiency and reaction yield. A ligand is particularly preferred.

本発明において、好ましい有機金属錯体は、式(1)、式中Arが、置換基を有していてもよいシクロペンタジエニル基であり、Mがイリジウムであり、Lがジメチルスルホキシド配位子(dmso)、ピリジン配位子(pyridine)、アニリン配位子(aniline)またはアコ配位子である、で表される錯体である。本発明の有機金属錯体は中性錯体であるため、一般的な有機溶媒のほとんどについて高い溶解性を示し、様々な沸点を有する溶媒を任意に選択して用いることができる。また、基質を溶解しやすい溶媒を選んで用いることも可能である。   In the present invention, a preferred organometallic complex is represented by the formula (1), wherein Ar is a cyclopentadienyl group which may have a substituent, M is iridium, and L is a dimethyl sulfoxide ligand. (Dmso), a pyridine ligand (pyridine), an aniline ligand (aniline), or an acoligand. Since the organometallic complex of the present invention is a neutral complex, it exhibits high solubility in most common organic solvents, and solvents having various boiling points can be arbitrarily selected and used. It is also possible to select and use a solvent that easily dissolves the substrate.

触媒効率および反応収率の観点から、特に式(1)、式中Arが、置換基を有していてもよいシクロペンタジエニル基であり、Mがイリジウムであり、Lがアコ配位子である、で表される有機金属錯体、すなわちアコ錯体が好ましい。このアコ錯体が極めて高い触媒効率および反応収率を示す理由は必ずしも明らかではないが、アコ配位子の解離が起こりやすく、配位不飽和活性種を生じやすいためと考えられる。   From the viewpoint of catalyst efficiency and reaction yield, in particular, formula (1), where Ar is a cyclopentadienyl group which may have a substituent, M is iridium, and L is an acoligand. An organometallic complex represented by: an aco complex is preferred. The reason why this aco-complex exhibits extremely high catalyst efficiency and reaction yield is not necessarily clear, but it is considered that the aco-ligand is easily dissociated and a coordination unsaturated active species is likely to be generated.

本発明において、酸素含有化合物としては、酸素および水素を含有する化合物であればよく、これに限定するものではないが、例えばアルコール、ギ酸およびギ酸塩などが挙げられる。   In the present invention, the oxygen-containing compound may be a compound containing oxygen and hydrogen, and is not limited thereto, and examples thereof include alcohol, formic acid, and formate.

アルコールは、これに限定するものではないが、第一級アルコール、第二級アルコールであってもよい。   Although alcohol is not limited to this, primary alcohol and secondary alcohol may be sufficient.

第一級アルコールは、典型的には式(3)
式中、Rは、水素原子、置換基を有していてもよい、C5〜C15の芳香族単環または多環式炭化水素基、C1〜C15の異種原子を含む複素単環または多環式基、もしくはC1〜C25の飽和または不飽和の鎖状または環状の炭化水素基を示す、で表される化合物である。
この場合の置換基としては、たとえば水素原子、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、スルホ基、メルカプト基、カルボキシル基、1もしくは2以上の水素原子が置換されていてもよい、C1〜10のアルキル基、C3〜15のシクロアルキル基、C5〜15のアリール基、C1〜15のヘテロシクリル基、C2〜10のアルケニル基、C2〜10のアルキニル基、C1〜10のアルコキシ基、C1〜10のエステル基、C1〜10のフルオロアルキル基、C1〜10のアシル基、C1〜10のスルホニル基、C1〜10のアミノ基、C1〜10のアミド基、C1〜10のスルフェニル基またはC1〜10のシリル基等の適宜なものとすることができる。
Primary alcohols typically have the formula (3)
In the formula, R 7 is a hydrogen atom, an optionally substituted C5-C15 aromatic monocyclic or polycyclic hydrocarbon group, a heteromonocyclic or polycyclic containing a C1-C15 heteroatom. And a C1-C25 saturated or unsaturated chain or cyclic hydrocarbon group.
As the substituent in this case, for example, a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, a sulfo group, a mercapto group, a carboxyl group, or one or more hydrogen atoms may be substituted. 10 alkyl groups, C3-15 cycloalkyl groups, C5-15 aryl groups, C1-15 heterocyclyl groups, C2-10 alkenyl groups, C2-10 alkynyl groups, C1-10 alkoxy groups, C1-10 10 ester groups, C1-10 fluoroalkyl groups, C1-10 acyl groups, C1-10 sulfonyl groups, C1-10 amino groups, C1-10 amide groups, C1-10 sulfenyl groups or C1 It can be appropriate such as 10 to 10 silyl groups.

については、具体的には水素原子、フェニル基、2−メチルフェニル、2−エチルフェニル、2−イソプロピルフェニル、2−tert−ブチルフェニル、2−メトキシフェニル、2−クロロフェニル、2−ビニルフェニル、3−メチルフェニル、3−エチルフェニル、3−イソプロピルフェニル、3−メトキシフェニル、3−クロロフェニル、3−ビニルフェニル、4−メチルフェニル、4−エチルフェニル、4−イソプロピルフェニル、4−tert−ブチルフェニル、4−ビニルフェニル、クメニル、メシチル、キシリル、1−ナフチル、2−ナフチル、アントリル、フェナントリル、インデニル基等の芳香族単環や多環式基、チエニル、フリル、ピラニル、キサンテニル、ピリジル、ピロリル、イミダゾリニル、インドリル、カルバゾイル、フェナントロニリル等のヘテロ単環や多環式基、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル等のアルキル基、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、2−アダマンチル等のシクロアルキル基、ベンジル、ビニル、アリールなどの不飽和炭化水素基、フェロセニル基等を例示することができる。 R 7 is specifically a hydrogen atom, phenyl group, 2-methylphenyl, 2-ethylphenyl, 2-isopropylphenyl, 2-tert-butylphenyl, 2-methoxyphenyl, 2-chlorophenyl, 2-vinylphenyl. 3-methylphenyl, 3-ethylphenyl, 3-isopropylphenyl, 3-methoxyphenyl, 3-chlorophenyl, 3-vinylphenyl, 4-methylphenyl, 4-ethylphenyl, 4-isopropylphenyl, 4-tert-butyl Aromatic monocyclic and polycyclic groups such as phenyl, 4-vinylphenyl, cumenyl, mesityl, xylyl, 1-naphthyl, 2-naphthyl, anthryl, phenanthryl, indenyl group, thienyl, furyl, pyranyl, xanthenyl, pyridyl, pyrrolyl , Imidazolinyl, indolyl, potassium Heterocyclic and polycyclic groups such as rubazoyl and phenanthronylyl, alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl and heptyl, cyclopropyl such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and 2-adamantyl Illustrative examples include alkyl groups, unsaturated hydrocarbon groups such as benzyl, vinyl and aryl, and ferrocenyl groups.

第二級アルコールは、典型的には、式(4)
式中、R、Rは、同一または別異の、置換基を有していてもよい、C5〜C15の芳香族単環または多環式炭化水素基、C1〜C15の異種原子を含む複素単環または多環式基、もしくはC1〜C25の飽和または不飽和の鎖状または環状の炭化水素基を示す。なお、RとRが互いに結合して環を形成してもよい、で表される化合物である。
この場合の置換基としては、たとえば水素原子、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、スルホ基、メルカプト基、カルボキシル基、1もしくは2以上の水素原子が置換されていてもよい、C1〜10のアルキル基、C3〜15のシクロアルキル基、C5〜15のアリール基、C1〜15のヘテロシクリル基、C2〜10のアルケニル基、C2〜10のアルキニル基、C1〜10のアルコキシ基、C1〜10のエステル基、C1〜10のフルオロアルキル基、C1〜10のアシル基、C1〜10のスルホニル基、C1〜10のアミノ基、C1〜10のアミド基、C1〜10のスルフェニル基またはC1〜10のシリル基等の適宜なものとすることができる。
Secondary alcohols typically have the formula (4)
In the formula, R 8 and R 9 include the same or different, optionally substituted C5-C15 aromatic monocyclic or polycyclic hydrocarbon group, C1-C15 hetero atom. A heterocyclic monocyclic or polycyclic group, or a C1-C25 saturated or unsaturated chain or cyclic hydrocarbon group. R 8 and R 9 may be bonded to each other to form a ring.
As the substituent in this case, for example, a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, a sulfo group, a mercapto group, a carboxyl group, or one or more hydrogen atoms may be substituted. 10 alkyl groups, C3-15 cycloalkyl groups, C5-15 aryl groups, C1-15 heterocyclyl groups, C2-10 alkenyl groups, C2-10 alkynyl groups, C1-10 alkoxy groups, C1-10 10 ester groups, C1-10 fluoroalkyl groups, C1-10 acyl groups, C1-10 sulfonyl groups, C1-10 amino groups, C1-10 amide groups, C1-10 sulfenyl groups or C1 It can be appropriate such as 10 to 10 silyl groups.

およびRについては、具体的にはフェニル基、2−メチルフェニル、2−エチルフェニル、2−イソプロピルフェニル、2−tert−ブチルフェニル、2−メトキシフェニル、2−クロロフェニル、2−ビニルフェニル、3−メチルフェニル、3−エチルフェニル、3−イソプロピルフェニル、3−メトキシフェニル、3−クロロフェニル、3−ビニルフェニル、4−メチルフェニル、4−エチルフェニル、4−イソプロピルフェニル、4−tert−ブチルフェニル、4−ビニルフェニル、クメニル、メシチル、キシリル、1−ナフチル、2−ナフチル、アントリル、フェナントリル、インデニル基等の芳香族単環や多環式基、チエニル、フリル、ピラニル、キサンテニル、ピリジル、ピロリル、イミダゾリニル、インドリル、カルバゾイル、フェナントロニリル等のヘテロ単環や多環式基、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル等のアルキル基、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、2−アダマンチル等のシクロアルキル基、ベンジル、ビニル、アリールなどの不飽和炭化水素基、フェロセニル基等を例示することができる。
とRが結合して環を形成する場合、たとえばシクロペンタノール、シクロヘキサノール、シクロヘプタノール、シクロペンテノール、シクロヘキセノール、シクロヘプテノール等のごとき環状アルコールを与える飽和および不飽和脂環式基、およびそれぞれの各炭素にアルキル基、アリール基、不飽和アルキル基、ヘテロ元素を含む鎖状または環状炭化水素基を有する置換基をもつ飽和および不飽和脂環式基を例示することができる。
Specific examples of R 8 and R 9 include phenyl group, 2-methylphenyl, 2-ethylphenyl, 2-isopropylphenyl, 2-tert-butylphenyl, 2-methoxyphenyl, 2-chlorophenyl, and 2-vinylphenyl. 3-methylphenyl, 3-ethylphenyl, 3-isopropylphenyl, 3-methoxyphenyl, 3-chlorophenyl, 3-vinylphenyl, 4-methylphenyl, 4-ethylphenyl, 4-isopropylphenyl, 4-tert-butyl Aromatic monocyclic and polycyclic groups such as phenyl, 4-vinylphenyl, cumenyl, mesityl, xylyl, 1-naphthyl, 2-naphthyl, anthryl, phenanthryl, indenyl group, thienyl, furyl, pyranyl, xanthenyl, pyridyl, pyrrolyl , Imidazolinyl, indolyl, carbazoyl , Heteromonocyclic and polycyclic groups such as phenanthronilyl, alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl and heptyl, cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and 2-adamantyl Examples thereof include unsaturated hydrocarbon groups such as benzyl, vinyl and aryl, and ferrocenyl groups.
When R 8 and R 9 combine to form a ring, for example, saturated and unsaturated fats that give cyclic alcohols such as cyclopentanol, cyclohexanol, cycloheptanol, cyclopentenol, cyclohexenol, cycloheptenol, etc. Illustrate saturated and unsaturated alicyclic groups with cyclic groups and substituents having alkyl groups, aryl groups, unsaturated alkyl groups, chained or cyclic hydrocarbon groups containing heteroelements on each carbon. Can do.

ギ酸塩としては、これに限定するものではないが、ギ酸ナトリウム、ギ酸カリウムなどのギ酸金属塩、ギ酸アンモニウム塩などのギ酸塩が挙げられる。   Examples of the formate salt include, but are not limited to, formate salts such as sodium formate and potassium formate, and metal formate such as ammonium formate.

本明細書において、脱水素反応とは、水素分子が脱離する反応のことを意味し、例えば酸化的脱水素反応および分解反応などが挙げられる。本明細書の脱水素方法は、脱水素反応をさせることにより行う。   In this specification, dehydrogenation means a reaction in which hydrogen molecules are eliminated, and examples thereof include oxidative dehydrogenation and decomposition. The dehydrogenation method of this specification is performed by carrying out a dehydrogenation reaction.

本発明の一側面は、本発明の脱水素方法によって、前記アルコールから対応するカルボニル化合物を製造する方法に関する。例えばアルコールが第一級アルコールである場合には、対応するカルボニル化合物としてアルデヒドが得られ、例えば以下の反応式で示される。
は、上述したとおりである。
One aspect of the present invention relates to a method for producing a corresponding carbonyl compound from the alcohol by the dehydrogenation method of the present invention. For example, when the alcohol is a primary alcohol, an aldehyde is obtained as the corresponding carbonyl compound, and is represented by the following reaction formula, for example.
R 7 is as described above.

第二級アルコールである場合にはケトンが得られ、例えば以下の反応式で示される。
およびRは、上述したとおりである。
In the case of a secondary alcohol, a ketone is obtained, for example, represented by the following reaction formula.
R 8 and R 9 are as described above.

本発明の一側面は、本発明の脱水素方法を用いて、第一級アルコールからアルデヒドを経て、カルボン酸を製造する方法に関する。このアルコールからカルボン酸への変換は、1)アルコールの脱水素によるアルデヒドの生成、2)アルデヒドの水和によるヘミアセタールの生成、3)ヘミアセタールの脱水素によるカルボン酸の生成、の三段階を経て進行していると考えられる。したがって、カルボン酸を製造する際には、アルデヒドを水和し、ヘミアセタールを生成するために、水を含む溶媒を用いるのが好ましい。具体的な製造例として、これに限定されるものではないが、例えばエタノールからの酢酸の製造が挙げられる。   One aspect of the present invention relates to a method for producing a carboxylic acid from a primary alcohol via an aldehyde using the dehydrogenation method of the present invention. This conversion from alcohol to carboxylic acid involves three steps: 1) generation of aldehyde by dehydrogenation of alcohol, 2) formation of hemiacetal by hydration of aldehyde, and 3) formation of carboxylic acid by dehydrogenation of hemiacetal. It is thought that it is progressing. Therefore, when producing carboxylic acid, it is preferable to use a solvent containing water in order to hydrate the aldehyde and produce hemiacetal. Specific production examples include, but are not limited to, production of acetic acid from ethanol.

本発明の一側面は、本発明の脱水素方法を用いて、アルコール、好ましくは第一級アルコールから水素を製造する方法に関する。アルコールは特に限定されないが、水素発生効率の観点から第一級アルコールが好ましく、水との混合溶液の脱水素により製造するのが好ましい。例えば第一級アルコールがメタノールの場合には、1モルのメタノール:水=1:1の混合溶液の脱水素により、3モルの水素分子が生じることになるため、形式的にはメタノール分子中の水素原子と水分子中の水素原子のすべてが水素分子へと変換されることになり、水素製造法として極めて効率的である。   One aspect of the present invention relates to a process for producing hydrogen from an alcohol, preferably a primary alcohol, using the dehydrogenation process of the present invention. The alcohol is not particularly limited, but is preferably a primary alcohol from the viewpoint of hydrogen generation efficiency, and is preferably produced by dehydrogenation of a mixed solution with water. For example, when the primary alcohol is methanol, dehydrogenation of a mixed solution of 1 mole of methanol: water = 1: 1 generates 3 moles of hydrogen molecules. All hydrogen atoms in the hydrogen atom and water molecule are converted into hydrogen molecules, which is extremely efficient as a hydrogen production method.

水素の製造において、脱水素反応をpH1〜14で進行させることができる。水素発生効率の観点から、pH5〜14が好ましく、pH10〜14が特に好ましい。反応の進行にともなって二酸化炭素が発生し、反応系が徐々に酸性化していくため、反応開始時のpHを13以上にしておくことで効率的な水素化が長時間にわたって継続できる。   In the production of hydrogen, the dehydrogenation reaction can proceed at pH 1-14. From the viewpoint of hydrogen generation efficiency, pH 5 to 14 is preferable, and pH 10 to 14 is particularly preferable. As the reaction proceeds, carbon dioxide is generated and the reaction system is gradually acidified. Therefore, by setting the pH at the start of the reaction to 13 or more, efficient hydrogenation can be continued for a long time.

本発明によれば、第一級アルコールから、カルボン酸と水素を同時に得ることができる。これにより、バイオマス資源から発酵により得られるアルコールを原料に用い、有機工業化学において重要なカルボン酸と、クリーンエネルギーとして有用な水素を同時に得ることが可能である。   According to the present invention, carboxylic acid and hydrogen can be obtained simultaneously from a primary alcohol. This makes it possible to simultaneously obtain carboxylic acid that is important in organic industrial chemistry and hydrogen that is useful as clean energy, using alcohol obtained by fermentation from biomass resources as a raw material.

本発明の一側面は、本発明の脱水素方法を用いて、ギ酸またはギ酸塩から分解反応により、水素を製造する方法に関する。本発明によれば、反応温度60から90℃程度で実施することができるため、安全性および経済性に優れ、工業化にも極めて有利である。   One aspect of the present invention relates to a method for producing hydrogen from formic acid or formate by a decomposition reaction using the dehydrogenation method of the present invention. According to the present invention, since the reaction can be carried out at a reaction temperature of about 60 to 90 ° C., it is excellent in safety and economy and is extremely advantageous for industrialization.

本発明の脱水素方法において、使用する触媒の量は、ルテニウム、ロジウム、またはイリジウム錯体に対するアルコール、ギ酸またはギ酸塩のモル比をS/C(Sはアルコール、ギ酸またはギ酸塩のモル数、Cは触媒のモル数を表す)として表記することができる。その場合、S/Cをどの程度まで高められるかは基質の構造、触媒の種類、濃度、反応温度、反応溶媒の種類等によって大きく変動するが、実用上はS/C=50〜500000程度に設定することが望ましい。   In the dehydrogenation process of the present invention, the amount of catalyst used is the molar ratio of alcohol, formic acid or formate to ruthenium, rhodium or iridium complex, S / C (S is the number of moles of alcohol, formic acid or formate, C Represents the number of moles of catalyst). In that case, the extent to which S / C can be increased greatly varies depending on the structure of the substrate, the type of catalyst, the concentration, the reaction temperature, the type of reaction solvent, etc., but in practice, S / C is about 50 to 500,000. It is desirable to set.

本発明の脱水素反応は、無溶媒または溶媒の存在下で行なわれる。溶媒を用いる場合は、触媒、基質、および生成物の物理的性質や化学的性質を考慮し、適時反応溶媒を選択することができる。プロトン性溶媒、非プロトン性溶媒、イオン性液体、水および緩衝液を単独で、もしくは複数組み合わせて用いることができる。
具体的な溶媒としては、これに限定されるものではないが、例えばペンタン、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、テトラヒドロフラン、ジイソプロピルエーテル、ジクロロメタン、ジメチルホルムアミド、t−ブタノール、水などが挙げられる。
The dehydrogenation reaction of the present invention is carried out without solvent or in the presence of a solvent. When a solvent is used, the reaction solvent can be selected in a timely manner in consideration of the physical properties and chemical properties of the catalyst, the substrate, and the product. Protic solvents, aprotic solvents, ionic liquids, water and buffers can be used alone or in combination.
Specific examples of the solvent include, but are not limited to, pentane, hexane, heptane, benzene, toluene, xylene, tetrahydrofuran, diisopropyl ether, dichloromethane, dimethylformamide, t-butanol, and water.

反応温度は、触媒、基質および生成物の溶解度、反応性、および経済性を考慮して、好ましくは−20℃〜200℃程度で実施することができるが、さらに好ましくは20℃〜150℃である。
反応時間は、基質濃度や反応温度等の反応条件によって異なるが、数分から100時間で反応が完結する。
脱水素反応により生成したカルボニル化合物の精製は、酸−塩基抽出、カラムクロマトグラフィー、蒸留、再結晶等の公知の方法により、または適時それらの組み合わせにより行うことができる。
The reaction temperature is preferably about −20 ° C. to 200 ° C., more preferably 20 ° C. to 150 ° C., considering the solubility, reactivity, and economy of the catalyst, substrate and product. is there.
The reaction time varies depending on the reaction conditions such as the substrate concentration and reaction temperature, but the reaction is completed in several minutes to 100 hours.
Purification of the carbonyl compound produced by the dehydrogenation reaction can be performed by a known method such as acid-base extraction, column chromatography, distillation, recrystallization, or a combination thereof in a timely manner.

本発明の脱水素方法によれば、広範囲のpH領域で反応が可能である。アルコールの脱水素反応において、pHは1〜14でよく、好ましくはpH4〜10であり、合成化学的観点からpH6〜8が好ましい。
カルボン酸の製造においては、カルボン酸の生成とともに、pHは酸性側へと変化し得るが、pH1〜14の領域において反応が進行する。中性領域であるpH6〜8で開始するのが合成化学的観点からみて好ましく、カルボン酸の生成効率の観点から、全体を通して反応系のpHが1〜10の範囲内にあるのが好ましく、特にpH1〜8の範囲内にあるのが好ましい。
According to the dehydrogenation method of the present invention, the reaction is possible in a wide pH range. In the alcohol dehydrogenation reaction, the pH may be 1 to 14, preferably 4 to 10, and preferably 6 to 8 from the viewpoint of synthetic chemistry.
In the production of carboxylic acid, the pH can change to the acidic side as the carboxylic acid is produced, but the reaction proceeds in the region of pH 1-14. It is preferable from the viewpoint of synthetic chemistry to start at pH 6 to 8, which is a neutral region, and from the viewpoint of the production efficiency of carboxylic acid, it is preferable that the pH of the reaction system is within the range of 1 to 10 throughout. It is preferably within the range of pH 1-8.

本発明の一側面は、以下の式(1)
式(1)
式中、
Arは、置換基を有していてもよいベンゼン、または置換基を有していてもよいシクロペンタジエニル基であり、
Mは、ルテニウム、ロジウムまたはイリジウムであり、
〜Rは、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、スルホ基、メルカプト基、カルボキシル基、1もしくは2以上の水素原子が置換されていてもよい、C1〜10のアルキル基、C3〜15のシクロアルキル基、C6〜15のアリール基、C1〜10のヘテロシクリル基、C2〜10のアルケニル基、C2〜10のアルキニル基、C1〜10のアルコキシ基、C1〜10のエステル基、C1〜10のフルオロアルキル基、C1〜10のアシル基、C1〜10のスルホニル基、C1〜10のアミノ基、C1〜10のアミド基、C1〜10のスルフェニル基またはC1〜10のシリル基であり、
とRは互いに連結して、 −CH=CH− を形成してもよく、前記 −CH=CH− におけるHは、互いに独立してハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、スルホ基、メルカプト基、カルボキシル基、1もしくは2以上の水素原子が置換されていてもよい、C1〜10のアルキル基、C3〜15のシクロアルキル基、C6〜15のアリール基、C1〜10のヘテロシクリル基、C2〜10のアルケニル基、C2〜10のアルキニル基、C1〜10のアルコキシ基、C1〜10のエステル基、C1〜10のフルオロアルキル基、C1〜10のアシル基、C1〜10のスルホニル基、C1〜10のアミノ基、C1〜10のアミド基、C1〜10のスルフェニル基またはC1〜10のシリル基で置換されていてもよく、
Lは、アコ配位子である、
で表される有機金属化合物に関する。
One aspect of the present invention is the following formula (1):
Formula (1)
Where
Ar is an optionally substituted benzene, or an optionally substituted cyclopentadienyl group,
M is ruthenium, rhodium or iridium;
R 1 to R 6 may be independently substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, a sulfo group, a mercapto group, a carboxyl group, or one or more hydrogen atoms. C1-10 alkyl group, C3-15 cycloalkyl group, C6-15 aryl group, C1-10 heterocyclyl group, C2-10 alkenyl group, C2-10 alkynyl group, C1-10 alkoxy group C1-10 ester group, C1-10 fluoroalkyl group, C1-10 acyl group, C1-10 sulfonyl group, C1-10 amino group, C1-10 amide group, C1-10 sulfenyl Group or a C1-10 silyl group,
R 3 and R 4 may be connected to each other to form —CH═CH—, and H in —CH═CH— is independently a halogen atom, nitro group, cyano group, hydroxy group, sulfo group. Group, mercapto group, carboxyl group, one or more hydrogen atoms optionally substituted, C1-10 alkyl group, C3-15 cycloalkyl group, C6-15 aryl group, C1-10 heterocyclyl Group, C2-10 alkenyl group, C2-10 alkynyl group, C1-10 alkoxy group, C1-10 ester group, C1-10 fluoroalkyl group, C1-10 acyl group, C1-10 sulfonyl Group, C1-10 amino group, C1-10 amide group, C1-10 sulfenyl group or C1-10 silyl group,
L is an acoligand,
It is related with the organometallic compound represented by these.

本発明の一側面は、以下の式(2)
式中、
Arは、置換基を有していてもよいベンゼン、または置換基を有していてもよいシクロペンタジエニル基であり、
Mは、ルテニウム、ロジウムまたはイリジウムであり、
〜Rは、互いに独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、スルホ基、メルカプト基、カルボキシル基、1もしくは2以上の水素原子が置換されていてもよい、C1〜10のアルキル基、C3〜15のシクロアルキル基、C6〜15のアリール基、C1〜10のヘテロシクリル基、C2〜10のアルケニル基、C2〜10のアルキニル基、C1〜10のアルコキシ基、C1〜10のエステル基、C1〜10のフルオロアルキル基、C1〜10のアシル基、C1〜10のスルホニル基、C1〜10のアミノ基、C1〜10のアミド基、C1〜10のスルフェニル基またはC1〜10のシリル基であり、
とRは互いに連結して、 −CH=CH− を形成してもよく、前記 −CH=CH− におけるHは、互いに独立してハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、スルホ基、メルカプト基、カルボキシル基、1もしくは2以上の水素原子が置換されていてもよい、C1〜10のアルキル基、C3〜15のシクロアルキル基、C6〜15のアリール基、C1〜10のヘテロシクリル基、C2〜10のアルケニル基、C2〜10のアルキニル基、C1〜10のアルコキシ基、C1〜10のエステル基、C1〜10のフルオロアルキル基、C1〜10のアシル基、C1〜10のスルホニル基、C1〜10のアミノ基、C1〜10のアミド基、C1〜10のスルフェニル基またはC1〜10のシリル基で置換されていてもよく、
Zは、Na、Li、KまたはCsである、
で表される有機金属化合物に関する。
One aspect of the present invention is the following formula (2):
Where
Ar is an optionally substituted benzene, or an optionally substituted cyclopentadienyl group,
M is ruthenium, rhodium or iridium;
R 1 to R 6 may be independently substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, a sulfo group, a mercapto group, a carboxyl group, or one or more hydrogen atoms. C1-10 alkyl group, C3-15 cycloalkyl group, C6-15 aryl group, C1-10 heterocyclyl group, C2-10 alkenyl group, C2-10 alkynyl group, C1-10 alkoxy group C1-10 ester group, C1-10 fluoroalkyl group, C1-10 acyl group, C1-10 sulfonyl group, C1-10 amino group, C1-10 amide group, C1-10 sulfenyl Group or a C1-10 silyl group,
R 3 and R 4 may be connected to each other to form —CH═CH—, and H in —CH═CH— is independently a halogen atom, nitro group, cyano group, hydroxy group, sulfo group. Group, mercapto group, carboxyl group, one or more hydrogen atoms optionally substituted, C1-10 alkyl group, C3-15 cycloalkyl group, C6-15 aryl group, C1-10 heterocyclyl Group, C2-10 alkenyl group, C2-10 alkynyl group, C1-10 alkoxy group, C1-10 ester group, C1-10 fluoroalkyl group, C1-10 acyl group, C1-10 sulfonyl Group, C1-10 amino group, C1-10 amide group, C1-10 sulfenyl group or C1-10 silyl group,
Z is Na, Li, K or Cs.
It is related with the organometallic compound represented by these.

式(2)で表される化合物は、式(1)中、Lがアコ配位子である有機金属化合物とアルカリ化合物とを反応させることにより製造することができる。アルカリ化合物としては、これに限定するものではないが、例えば水酸化ナトリウム、水酸化リチウム、水酸化カリウムおよび水酸化セシウムなどが挙げられる。したがって、式(2)で表される化合物は、Lがアコ配位子である式(1)で表される有機金属化合物を触媒として用いる脱水素反応において、アルカリ化合物を添加することにより、反応系中で生成されてもよい。   The compound represented by the formula (2) can be produced by reacting an organometallic compound in which L is an acoligand and an alkali compound in the formula (1). Examples of the alkali compound include, but are not limited to, sodium hydroxide, lithium hydroxide, potassium hydroxide, and cesium hydroxide. Therefore, the compound represented by the formula (2) can be reacted by adding an alkali compound in the dehydrogenation reaction using the organometallic compound represented by the formula (1) in which L is an acoligand as a catalyst. It may be generated in the system.

式(2)で表される化合物は、式(1)で表される化合物において上述した脱水素方法、カルボニル化合物の製造方法、水素の製造方法などにおいて、式(1)で表される化合物と同様に使用することができる。よって、本発明は式(2)で表される化合物を含む脱水素用触媒に関する。   The compound represented by the formula (2) is the same as the compound represented by the formula (1) in the dehydrogenation method, the carbonyl compound production method, the hydrogen production method and the like described above for the compound represented by the formula (1). It can be used as well. Therefore, this invention relates to the catalyst for dehydrogenation containing the compound represented by Formula (2).

本発明による水素の製造方法は、アルコールと水との混合物から連続的に水素を製造することを含む。特に効率性の観点から、式(2)で表される化合物を使用するのが好ましい。
連続的に水素を製造する方法としては、例えば逐次添加方式および連続添加方式が挙げられる。逐次添加方式は、アルコールと水との混合物に、式(1)および/または式(2)で表される化合物とアルカリ化合物を加え、加熱して還流下で反応させることにより水素を発生させた後、消費分に相当するアルコールおよび水を加え、さらにアルカリ化合物を加える。それぞれ追加した後のpHは反応開始時のpHと同等であることが好ましい。このように消費分を逐次添加することにより、連続的に水素を製造することができる。
The method for producing hydrogen according to the present invention comprises continuously producing hydrogen from a mixture of alcohol and water. In particular, from the viewpoint of efficiency, it is preferable to use the compound represented by the formula (2).
Examples of the method for continuously producing hydrogen include a sequential addition method and a continuous addition method. In the sequential addition method, hydrogen was generated by adding a compound represented by the formula (1) and / or the formula (2) and an alkali compound to a mixture of alcohol and water, and heating and reacting under reflux. Thereafter, alcohol and water corresponding to the consumed amount are added, and further an alkali compound is added. The pH after each addition is preferably equal to the pH at the start of the reaction. In this way, hydrogen can be continuously produced by sequentially adding consumption.

連続添加方式は、アルコールと水との混合物に、式(1)および/または式(2)で表される化合物とアルカリ化合物を加え、加熱して還流下で反応系を開始させ、例えばシリンジポンプ、マイクロフィーダなどを用いて、予め混合したアルコール、水およびアルカリ化合物の混合物を、還流を継続させた状態で、一定の速度で添加し続ける。このように、連続的に一定の速度で消費される原料(アルコールおよび水)ならびに水酸化ナトリウムを消費速度に相当する量補いながら、連続的に反応させることにより、ほぼ一定のペースで水素ガスを長時間製造することができる。
本発明による連続的に水素を製造する水素の製造方法によれば、触媒回転数は2回以上であって、100回以上、好ましくは1000回以上、さらに好ましくは3500回以上とすることも可能であり、極めて効率がよく、実用性の高い新しいシステムを構築することができる。
In the continuous addition method, a compound represented by formula (1) and / or formula (2) and an alkali compound are added to a mixture of alcohol and water, and the reaction system is started under reflux by heating. For example, a syringe pump Using a microfeeder or the like, a mixture of alcohol, water and an alkali compound mixed in advance is continuously added at a constant rate while refluxing is continued. In this way, by continuously reacting raw materials (alcohol and water) consumed at a constant rate and sodium hydroxide while supplementing the amount corresponding to the consumption rate, hydrogen gas is supplied at a substantially constant rate. Can be manufactured for a long time.
According to the hydrogen production method of continuously producing hydrogen according to the present invention, the catalyst rotation speed is 2 times or more, and can be 100 times or more, preferably 1000 times or more, more preferably 3500 times or more. Therefore, it is possible to construct a new system that is extremely efficient and highly practical.

連続的に水素を製造するシステムとしては、これに限定されるものではないが、反応槽、供給部および回収部を含むシステムが挙げられる。反応槽は、原料を触媒下で脱水素反応させ得るものであれば特に限定されないが、反応を継続させることができるものが好ましく、典型的には加熱および還流が可能な装置を具備する。また、供給部は、典型的には追加するための原料およびアルカリ化合物を貯蔵する貯蔵槽、シリンジポンプおよびマイクロフィーダなどの供給手段を含む。回収部は、発生する水素を回収するものであれば特に限定されないが、例えばガスビュレット、ガスバッグ、ガスタンク等が挙げられる。   The system for continuously producing hydrogen includes, but is not limited to, a system including a reaction tank, a supply unit, and a recovery unit. The reaction vessel is not particularly limited as long as the raw material can be dehydrogenated under a catalyst, but is preferably capable of continuing the reaction, and typically includes a device capable of heating and refluxing. The supply unit typically includes supply means such as a storage tank for storing raw materials and alkali compounds for addition, a syringe pump, and a microfeeder. The recovery unit is not particularly limited as long as it recovers the generated hydrogen, and examples thereof include a gas burette, a gas bag, and a gas tank.

本発明の一側面は、脱水素反応だけではなく、水素化および可逆的脱水素−水素化による相互変換に関する。例えば、
反応式(II)
式中、
およびRは、前述のとおりであり、
(i)は脱水素反応であり、(ii)は水素化である、
で表される触媒反応において、本発明の触媒は、(i)および(ii)の双方向の触媒反応を、水素の放出と吸収をともなって、定量的に相互変換を繰り返し行うことができる。
同じ触媒を用いて、脱水素反応と水素化を可逆的かつ連続的に行うことにより、水素貯蔵システムとして発展させることが可能と考えられる。
One aspect of the present invention relates not only to dehydrogenation reactions, but also to interconversion by hydrogenation and reversible dehydrogenation-hydrogenation. For example,
Reaction formula (II)
Where
R 8 and R 9 are as described above,
(I) is a dehydrogenation reaction, (ii) is a hydrogenation,
In the catalytic reaction represented by the formula (1), the catalyst of the present invention can repeatedly perform the mutual conversion of the bidirectional catalytic reaction (i) and (ii) quantitatively with the release and absorption of hydrogen.
It is considered possible to develop a hydrogen storage system by performing the dehydrogenation reaction and hydrogenation reversibly and continuously using the same catalyst.

以下、実施例を示し、さらに詳しくこの発明について説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated in detail, this invention is not limited by these Examples.

下記の例に記載した反応は、アルゴンガスまたは窒素ガスの不活性ガス雰囲気下で行なった。使用したアルコールは、市販試薬をそのまま用いた。錯体および反応物の同定には核磁気共鳴装置(NMR)を用い、テトラメチルシラン(TMS)を内部標準物質とし、そのシグナルをδ=0(δは化学シフト)とした。カルボニル化合物や水素への転化率および収率はガスクロマトグラフィー(GC)により決定した。NMR装置はJOEL ECX-500およびJOEL ECS-400(日本電子株式会社製)を用い、GC装置はGL-Sciences GC353B(株式会社ジーエルサイエンス製)を用いた。   The reactions described in the following examples were performed in an inert gas atmosphere of argon gas or nitrogen gas. The alcohol used was a commercially available reagent. For identification of the complex and the reactant, a nuclear magnetic resonance apparatus (NMR) was used, tetramethylsilane (TMS) was used as an internal standard substance, and the signal was δ = 0 (δ is a chemical shift). The conversion rate and yield to carbonyl compounds and hydrogen were determined by gas chromatography (GC). As the NMR apparatus, JOEL ECX-500 and JOEL ECS-400 (manufactured by JEOL Ltd.) were used, and as the GC apparatus, GL-Sciences GC353B (manufactured by GL Sciences Inc.) was used.

<新規中性イリジウム錯体触媒の合成>
[製造例1]
中性イリジウム錯体1は、製造例1−aまたは1−bに示すいずれかの方法で製造した。
[製造例1−a]
合成スキーム1−aに示すように、ジカチオン性Cpイリジウム―アコ錯体(407.8mg,0.60mmol)に6,6’−ジヒドロキシ−2,2’−ビピリジン配位子(113.8mg,0.60mmol)を水溶媒(12mL)中で作用させることにより、錯体Aを得た(収率93%)。続いて、錯体A(915.0mg,1.1mmol)に対してナトリウムt−ブトキシド(211.4mg,2.2mmol)を水溶媒(30mL)中で作用させることにより、中性イリジウム錯体1を得た(収率84%)。
<Synthesis of a novel neutral iridium complex catalyst>
[Production Example 1]
Neutral iridium complex 1 was produced by either method shown in Production Example 1-a or 1-b.
[Production Example 1-a]
As shown in Synthesis Scheme 1-a, a dicationic Cp * iridium-aco complex (407.8 mg, 0.60 mmol) is converted to a 6,6′-dihydroxy-2,2′-bipyridine ligand (113.8 mg, 0 .60 mmol) was allowed to act in an aqueous solvent (12 mL) to obtain Complex A (yield 93%). Subsequently, neutral iridium complex 1 is obtained by allowing sodium t-butoxide (211.4 mg, 2.2 mmol) to act on complex A (915.0 mg, 1.1 mmol) in an aqueous solvent (30 mL). (Yield 84%).

[製造例1−b]
スキーム1−bに示すように、[CpIrCl(458.4mg,0.570mmol)に6,6’−ジヒドロキシ−2,2’−ビピリジン配位子(250.0mg,1.33mmol)をメタノール溶媒(8mL)中で作用させ、60℃で3時間反応させたのち、ガラスフィルターでろ過することによりカチオン性錯体A’を得た(収率74%)。続いて、カチオン性錯体A’(100.0mg,0.170mmol)とカリウムt−ブトキシド(38.3mg,0.340mmol)を水(5mL)中、室温で30分撹拌して反応させ、析出した固体をろ過することにより錯体1を得た(収率64%)。
[Production Example 1-b]
As shown in Scheme 1-b, [Cp * IrCl 2 ] 2 (458.4 mg, 0.570 mmol) was converted to 6,6′-dihydroxy-2,2′-bipyridine ligand (250.0 mg, 1.33 mmol). ) In methanol solvent (8 mL), reacted at 60 ° C. for 3 hours, and then filtered through a glass filter to obtain a cationic complex A ′ (yield 74%). Subsequently, the cationic complex A ′ (100.0 mg, 0.170 mmol) and potassium t-butoxide (38.3 mg, 0.340 mmol) were reacted in water (5 mL) by stirring at room temperature for 30 minutes to precipitate. The solid was filtered to obtain Complex 1 (yield 64%).

1H NMR (400 MHz, CD3OD) δ 7.43 (t, J = 8 Hz, 2H), 6.92 (d, J = 8 Hz, 2H), 6.43 (d, J = 8 Hz, 2H), 1.59 (s, 15H). 13C{1H} NMR (125.8 MHz, CD3OD) δ 170.9, 157.3, 139.9, 118.1, 106.9, 88.0, 9.83. Anal. Calcd for C20H23O3N2Ir: C, 45.18; H, 4.36; N, 5.27. Found: C, 45.47; H, 4.01; N, 5.62. 1 H NMR (400 MHz, CD 3 OD) δ 7.43 (t, J = 8 Hz, 2H), 6.92 (d, J = 8 Hz, 2H), 6.43 (d, J = 8 Hz, 2H), 1.59 ( 13 C { 1 H} NMR (125.8 MHz, CD 3 OD) δ 170.9, 157.3, 139.9, 118.1, 106.9, 88.0, 9.83. Anal. Calcd for C 20 H 23 O 3 N 2 Ir: C , 45.18; H, 4.36; N, 5.27. Found: C, 45.47; H, 4.01; N, 5.62.

[製造例2]中性イリジウム錯体2の合成
スキーム2に示すように、[CpIrCl(240.0mg,0.301mmol)に2,9−ジヒドロキシ−1,10−フェナントロリン配位子(150.1mg,0.707mmol)をメタノール溶媒(5.4mL)中で作用させ、60℃で4時間反応させたのち、ガラスフィルターでろ過することによりカチオン性錯体Tを得た(収率60%)。続いて、カチオン性錯体T(150mg,0.229mmol)とカリウムt−ブトキシド(51.4mg,0.421mmol)を水(6.8mL)中、室温で30分撹拌して反応させ、真空下で溶媒を留去した。残渣にトルエン(15mL)を加えて抽出し、溶媒留去後にエタノール(2mL)と水(18mL)を用いて再結晶することによって錯体2を得た(収率73%)。
[Production Example 2] As shown in the synthesis scheme 2 neutral iridium complex 2, [Cp * IrCl 2] 2 (240.0mg, 0.301mmol) in 2,9-dihydroxy-1,10-phenanthroline ligands (150.1 mg, 0.707 mmol) was allowed to act in a methanol solvent (5.4 mL), reacted at 60 ° C. for 4 hours, and then filtered through a glass filter to obtain a cationic complex T (yield 60 %). Subsequently, the cationic complex T (150 mg, 0.229 mmol) and potassium t-butoxide (51.4 mg, 0.421 mmol) were reacted in water (6.8 mL) by stirring at room temperature for 30 minutes, under vacuum. The solvent was distilled off. Toluene (15 mL) was added to the residue for extraction, and after distilling off the solvent, recrystallization was performed using ethanol (2 mL) and water (18 mL) to obtain Complex 2 (yield 73%).

1H NMR (400 MHz, CDCl3) δ7.78 (d, J = 9 Hz, 2H), 7.16 (s, 2H), 6.81 (d, J = 9 Hz, 2H), 1.86 (s, 15H). 13C{1H} NMR (125.8 MHz, CDCl3) δ168.7, 146.1, 139.1, 123.5, 119.2, 118.8, 91.7, 10.8. 1 H NMR (400 MHz, CDCl 3 ) δ 7.78 (d, J = 9 Hz, 2H), 7.16 (s, 2H), 6.81 (d, J = 9 Hz, 2H), 1.86 (s, 15H). 13 C { 1 H} NMR (125.8 MHz, CDCl 3 ) δ168.7, 146.1, 139.1, 123.5, 119.2, 118.8, 91.7, 10.8.

[製造例3]中性イリジウム錯体Bの合成
カチオン性錯体A’(150.6mg,0.240mmol)、カリウムt−ブトキシド(80.5mg,0.718mmol)とピリジン(101.1mg,1.278mmol)をジクロロメタン(10mL)中、室温で一晩撹拌して反応させ、真空下で溶媒を留去した。残渣にトルエン(15mL)を加えて抽出したのち、溶媒留去することによって錯体Bを得た(収率75%)。
[Production Example 3] Synthesis of neutral iridium complex B Cationic complex A '(150.6 mg, 0.240 mmol), potassium t-butoxide (80.5 mg, 0.718 mmol) and pyridine (101.1 mg, 1.278 mmol) ) In dichloromethane (10 mL) with stirring at room temperature overnight and the solvent was removed in vacuo. Toluene (15 mL) was added to the residue for extraction, and then the solvent was distilled off to obtain Complex B (yield 75%).

1H NMR (500 MHz, CD2Cl2) δ9.87 (d, J = 8 Hz, 2H), 7.58 (t, J = 8 Hz, 1H), 7.16 (d, J = 8 Hz, 2H), 6.22 (d, J = 8 Hz, 2H) δ1.50 (s, 15H). 13C{1H} NMR (125.8 MHz, CD2Cl2) δ168.8, 158.4, 157.4, 136.9, 136.7, 125.7, 117.6, 103.4, 88.2, 9.4. 1 H NMR (500 MHz, CD 2 Cl 2 ) δ9.87 (d, J = 8 Hz, 2H), 7.58 (t, J = 8 Hz, 1H), 7.16 (d, J = 8 Hz, 2H), 6.22 (d, J = 8 Hz , 2H) δ1.50 (s, 15H). 13 C {1 H} NMR (125.8 MHz, CD 2 Cl 2) δ168.8, 158.4, 157.4, 136.9, 136.7, 125.7, 117.6, 103.4, 88.2, 9.4.

[製造例4]中性イリジウム錯体Cの合成
カチオン性錯体A’(150.6mg,0.240mmol)、カリウムt−ブトキシド(80.5mg,0.718mmol)とアニリン(35.7mg,0.360mmol)をジクロロメタン(10mL)中、室温で一晩撹拌して反応させ、真空下で溶媒を留去した。残渣にトルエン(15mL)を加えて抽出したのち、溶媒留去することによって錯体Cを得た(収率70%)。
[Production Example 4] Synthesis of neutral iridium complex C Cationic complex A '(150.6 mg, 0.240 mmol), potassium t-butoxide (80.5 mg, 0.718 mmol) and aniline (35.7 mg, 0.360 mmol) ) In dichloromethane (10 mL) with stirring at room temperature overnight and the solvent was removed in vacuo. Toluene (15 mL) was added to the residue for extraction, and then the solvent was distilled off to obtain Complex C (yield 70%).

1H NMR (500 MHz, CD2Cl2) δ7.49 (bs, 1H), 7.27 (bs, 2H), 7.23 (t, J = 8 Hz, 2H), 7.06 (bs, 1H), 6.52 (d, J = 7 Hz, 2H), 6.22 (d, J = 8 Hz, 2H), 5.79 (bs, 1H), 1.28 (s, 15H). 13C{1H} NMR (125.8 MHz, CD2Cl2) δ169.1, 156.1, 141.5, 137.5, 128.6, 125.2, 122.5, 117.0, 103.4, 86.6, 8.4. 1 H NMR (500 MHz, CD 2 Cl 2 ) δ7.49 (bs, 1H), 7.27 (bs, 2H), 7.23 (t, J = 8 Hz, 2H), 7.06 (bs, 1H), 6.52 (d , J = 7 Hz, 2H), 6.22 (d, J = 8 Hz, 2H), 5.79 (bs, 1H), 1.28 (s, 15H). 13 C { 1 H} NMR (125.8 MHz, CD 2 Cl 2 ) δ169.1, 156.1, 141.5, 137.5, 128.6, 125.2, 122.5, 117.0, 103.4, 86.6, 8.4.

[製造例5]中性イリジウム錯体Dの合成
カチオン性錯体A’(150.6mg,0.240mmol)、カリウムt−ブトキシド(80.5mg,0.718mmol)とジメチルスルホキシド(18.3mg,0.234mmol)をジクロロメタン(10mL)中、室温で一晩撹拌して反応させ、真空下で溶媒を留去した。残渣にトルエン(15mL)を加えて抽出したのち、溶媒留去することによって錯体Dを得た(収率61%)。
[Production Example 5] Synthesis of neutral iridium complex D Cationic complex A ′ (150.6 mg, 0.240 mmol), potassium t-butoxide (80.5 mg, 0.718 mmol), and dimethyl sulfoxide (18.3 mg, 0.24 mmol). 234 mmol) was reacted in dichloromethane (10 mL) with stirring overnight at room temperature and the solvent was distilled off under vacuum. Toluene (15 mL) was added to the residue for extraction, and then the solvent was distilled off to obtain Complex D (yield 61%).

1H NMR (500 MHz, CD2Cl2) δ7.15 (t, J = 8 Hz, 2H), 6.46 (d, J = 8 Hz, 2H), 6.13 (d, J = 8 Hz, 2H), 2.89 (bs, 6H), 1.56 (s, 15H). 13C{1H} NMR (100.5 MHz, CD2Cl2) δ168.2, 156.6, 137.2, 117.2, 103.9, 95.1, 46.1, 9.0. 1 H NMR (500 MHz, CD 2 Cl 2 ) δ7.15 (t, J = 8 Hz, 2H), 6.46 (d, J = 8 Hz, 2H), 6.13 (d, J = 8 Hz, 2H), 2.89 (bs, 6H), 1.56 (s, 15H). 13 C {1 H} NMR (100.5 MHz, CD 2 Cl 2) δ168.2, 156.6, 137.2, 117.2, 103.9, 95.1, 46.1, 9.0.

[製造例6]中性イリジウム錯体Eの合成
カチオン性錯体T(150.6mg,0.230mmol)、カリウムt−ブトキシド(79.2mg,0.706mmol)とピリジン(90.5mg,1.144mmol)をジクロロメタン(10mL)中、室温で一晩撹拌して反応させ、真空下で溶媒を留去した。残渣にトルエン(15mL)を加えて抽出したのち、溶媒留去することによって錯体Eを得た(収率82%)。
[Production Example 6] Synthesis of neutral iridium complex E Cationic complex T (150.6 mg, 0.230 mmol), potassium t-butoxide (79.2 mg, 0.706 mmol) and pyridine (90.5 mg, 1.144 mmol) Was reacted in dichloromethane (10 mL) with stirring overnight at room temperature, and the solvent was removed in vacuo. Toluene (15 mL) was added to the residue for extraction, and then the solvent was distilled off to obtain Complex E (yield 82%).

1H NMR (500 MHz, CDCl3) δ9.65 (d, J = 5 Hz, 1H), 7.56 (d, J = 8 Hz, 2H), 7.53 (t, J = 8 Hz, 2H), 7.19 (t, J = 7 Hz, 2H), 6.68 (d, J = 8 Hz, 2H), 1.59 (s, 15H). 13C{1H} NMR (125.8 MHz, CD2Cl2) δ168.2, 158.2, 147.4, 136.9, 136.8, 125.9, 122.6, 120.8, 118.7, 88.2, 10.0. 1 H NMR (500 MHz, CDCl 3 ) δ9.65 (d, J = 5 Hz, 1H), 7.56 (d, J = 8 Hz, 2H), 7.53 (t, J = 8 Hz, 2H), 7.19 ( t, J = 7 Hz, 2H), 6.68 (d, J = 8 Hz, 2H), 1.59 (s, 15H). 13 C { 1 H} NMR (125.8 MHz, CD 2 Cl 2 ) δ168.2, 158.2 , 147.4, 136.9, 136.8, 125.9, 122.6, 120.8, 118.7, 88.2, 10.0.

次に、合成した錯体を触媒に用いた脱水素反応を例示する。例中で用いた錯体の構造式を以下に示す。   Next, a dehydrogenation reaction using the synthesized complex as a catalyst will be exemplified. The structural formula of the complex used in the examples is shown below.

例中で用いた錯体
Complexes used in the examples

[実施例1]
<ラセミ体1−フェニルエタノールの脱水素反応によるアセトフェノンの合成>
不活性ガス雰囲気下、50mLの2つ口ナスフラスコに脱水ペンタン3mL、ラセミ体1−フェニルエタノール122.2mg(1.0mmol)、および錯体1を2.7mg(0.005mmol、0.5mol%)加え、還流条件下で5時間撹拌した。トルエン10mLを加えて均一にした後、反応液をGCにて分析したところ、表1に示すように転化率100%、収率100%で対応するアセトフェノンが生成することを確認した。
[Example 1]
<Synthesis of acetophenone by dehydrogenation of racemic 1-phenylethanol>
In an inert gas atmosphere, in a 50 mL two-necked eggplant flask, 3 mL of dehydrated pentane, 122.2 mg (1.0 mmol) of racemic 1-phenylethanol, and 2.7 mg (0.005 mmol, 0.5 mol%) of Complex 1 In addition, the mixture was stirred for 5 hours under reflux conditions. After 10 mL of toluene was added to make uniform, the reaction solution was analyzed by GC. As shown in Table 1, it was confirmed that the corresponding acetophenone was produced at a conversion rate of 100% and a yield of 100%.

[実施例2]
<ラセミ体1−フェニルエタノールの脱水素反応によるアセトフェノンの合成>
触媒として錯体2を2.8mg(0.005mmol、0.5mol%)用いた以外は、実施例1と同条件で反応を実施した。GCによる分析の結果、表1に示すように転化率37%、収率36%でアセトフェノンが生成することを確認した。
[Example 2]
<Synthesis of acetophenone by dehydrogenation of racemic 1-phenylethanol>
The reaction was carried out under the same conditions as in Example 1 except that 2.8 mg (0.005 mmol, 0.5 mol%) of Complex 2 was used as a catalyst. As a result of GC analysis, as shown in Table 1, it was confirmed that acetophenone was produced at a conversion rate of 37% and a yield of 36%.

[実施例3〜6]
<ラセミ体1−フェニルエタノールの脱水素反応によるアセトフェノンの合成>
触媒として表1に示した各種錯体触媒B〜E(0.005mmol)を用いた以外は、実施例1と同条件で反応を実施した。GCによる分析結果を表1にまとめて示した。アセトフェノンが生成することを確認した。
[Examples 3 to 6]
<Synthesis of acetophenone by dehydrogenation of racemic 1-phenylethanol>
The reaction was carried out under the same conditions as in Example 1 except that various complex catalysts B to E (0.005 mmol) shown in Table 1 were used as the catalyst. The results of GC analysis are summarized in Table 1. It was confirmed that acetophenone was formed.

[実施例7]
<ラセミ体1−フェニルエタノールの脱水素的酸化反応によるアセトフェノンの合成>
不活性ガス雰囲気下、50mLの2つ口ナスフラスコに脱水ペンタン3mL、ラセミ体1−フェニルエタノール122.2mg(1.0mmol)、および錯体1を2.7mg(0.005mmol、0.5mol%)加え、還流条件下で5時間撹拌した。トルエン10mLを加えて均一にした後、反応液をGCにて分析したところ、表2に示すように転化率100%、収率100%で対応するアセトフェノンが生成することを確認した。
[Example 7]
<Synthesis of acetophenone by dehydrogenative oxidation of racemic 1-phenylethanol>
In an inert gas atmosphere, in a 50 mL two-necked eggplant flask, 3 mL of dehydrated pentane, 122.2 mg (1.0 mmol) of racemic 1-phenylethanol, and 2.7 mg (0.005 mmol, 0.5 mol%) of Complex 1 In addition, the mixture was stirred for 5 hours under reflux conditions. After 10 mL of toluene was added to make it uniform, the reaction solution was analyzed by GC. As shown in Table 2, it was confirmed that the corresponding acetophenone was produced at a conversion rate of 100% and a yield of 100%.

[比較例1]
<ラセミ体1−フェニルエタノールの脱水素的酸化反応によるアセトフェノンの合成>
触媒として錯体A(0.005mmol)を用いた以外は、実施例7と同条件で反応を実施した。GCによる分析の結果、表2に示すように変換率19%、収率18%でアセトフェノンが生成した。実施例7と比較すると、収率が明らかに低値を示していることから、本発明の有用性が示された。
[Comparative Example 1]
<Synthesis of acetophenone by dehydrogenative oxidation of racemic 1-phenylethanol>
The reaction was carried out under the same conditions as in Example 7 except that Complex A (0.005 mmol) was used as the catalyst. As a result of GC analysis, as shown in Table 2, acetophenone was produced with a conversion rate of 19% and a yield of 18%. Compared to Example 7, the yield was clearly lower, indicating the usefulness of the present invention.

[比較例2]
<ラセミ体1−フェニルエタノールの脱水素的酸化反応によるアセトフェノンの合成>
触媒として錯体A(0.005mmol)を用い、反応溶媒として水を用いた以外は、実施例7と同条件で反応を実施した。GCによる分析の結果、表2に示すように転化率6%、収率4%でアセトフェノンが生成した。実施例7と比較すると、収率が明らかに低値を示していることから、本発明の有用性が示された。
[Comparative Example 2]
<Synthesis of acetophenone by dehydrogenative oxidation of racemic 1-phenylethanol>
The reaction was carried out under the same conditions as in Example 7 except that Complex A (0.005 mmol) was used as the catalyst and water was used as the reaction solvent. As a result of GC analysis, as shown in Table 2, acetophenone was produced at a conversion rate of 6% and a yield of 4%. Compared to Example 7, the yield was clearly lower, indicating the usefulness of the present invention.

[比較例3]
<ラセミ体1−フェニルエタノールの脱水素的酸化反応によるアセトフェノンの合成>
触媒として錯体A(0.005mmol)、反応溶媒として水を用い、80℃で反応を実施した以外は、実施例7と同条件で反応を実施した。GCによる分析の結果、表2に示すように転化率12%、収率11%でアセトフェノンが生成した。実施例7と比較すると、収率が明らかに低値を示していることから、本発明の有用性が示された。
[Comparative Example 3]
<Synthesis of acetophenone by dehydrogenative oxidation of racemic 1-phenylethanol>
The reaction was carried out under the same conditions as in Example 7 except that the reaction was carried out at 80 ° C. using Complex A (0.005 mmol) as the catalyst and water as the reaction solvent. As a result of GC analysis, as shown in Table 2, acetophenone was produced at a conversion rate of 12% and a yield of 11%. Compared to Example 7, the yield was clearly lower, indicating the usefulness of the present invention.

[実施例8〜14]
<第二級アルコールの脱水素的酸化反応によるケトンの合成>
錯体1を触媒に用い、表3に示すような反応条件で種々の第二級アルコールの脱水素的酸化反応を行なった。反応終了後、反応液をGCにて分析したところ、いずれも高転化率、高収率で対応するケトンが生成することを確認した。
[Examples 8 to 14]
<Synthesis of ketones by dehydrogenative oxidation of secondary alcohols>
Using complex 1 as a catalyst, various secondary alcohols were subjected to dehydrogenative oxidation reaction under the reaction conditions shown in Table 3. After completion of the reaction, the reaction solution was analyzed by GC. As a result, it was confirmed that the corresponding ketone was produced with high conversion and high yield.

[実施例15]
<ラセミ体1−フェニルエタノールの脱水素的酸化反応によるアセトフェノンの合成>
1000mLのナスフラスコに脱水p−キシレン500mL、ラセミ体1−フェニルエタノール61.06g(500mmol)、および錯体1を0.53mg(0.001mmol、0.0002mol%)加え、還流条件下で48時間撹拌した。ジクロロメタンを加えて均一にした後、反応液をGCにて分析したところ、収率55%で対応するアセトフェノンが生成することを確認した。この反応では高い触媒回転数(TON=275,000)を示したことから、本発明の有用性が示された。
[Example 15]
<Synthesis of acetophenone by dehydrogenative oxidation of racemic 1-phenylethanol>
To a 1000 mL eggplant flask, 500 mL of dehydrated p-xylene, 61.06 g (500 mmol) of racemic 1-phenylethanol, and 0.53 mg (0.001 mmol, 0.0002 mol%) of Complex 1 were added and stirred for 48 hours under reflux conditions. did. After adding dichloromethane to make it uniform, the reaction solution was analyzed by GC, and it was confirmed that the corresponding acetophenone was produced in a yield of 55%. This reaction showed a high catalyst rotation speed (TON = 275,000), indicating the usefulness of the present invention.

[実施例16]
<β−エストラジオールの脱水素的酸化反応によるエストロンの合成>
50mLの一口ナスフラスコにtert−ブチルアルコール3mL、β−エストラジオール272.4mg(1.0mmol)および錯体1を2.7mg(0.005mmol,0.5mol%)を加え、還流条件下で20時間撹拌した。反応液の溶媒を留去し、NMRにて分析したところ、収率100%で対応するエストロンが生成することを確認した。
[Example 16]
<Synthesis of estrone by dehydrogenative oxidation of β-estradiol>
To a 50 mL one-necked eggplant flask, 3 mL of tert-butyl alcohol, 272.4 mg (1.0 mmol) of β-estradiol and 2.7 mg (0.005 mmol, 0.5 mol%) of Complex 1 were added, and the mixture was stirred for 20 hours under reflux conditions did. When the solvent of the reaction solution was distilled off and analyzed by NMR, it was confirmed that the corresponding estrone was produced at a yield of 100%.

[実施例17]
<ベンジルアルコールの脱水素的酸化反応によるベンズアルデヒドの合成>
50mLのナスフラスコにtert−ブチルアルコール10mL、ベンジルアルコール54.0mg(0.5mmol)、および錯体1を4.0mg(0.0075mmol、1.5mol%)加え、還流条件下で20時間撹拌した。ジクロロメタン10mLを加えて均一にした後、反応液をGCにて分析したところ、表4に示すように転化率92%、収率92%で対応するベンズアルデヒドが生成することを確認した。
[Example 17]
<Synthesis of benzaldehyde by dehydrogenative oxidation of benzyl alcohol>
To a 50 mL eggplant flask, 10 mL of tert-butyl alcohol, 54.0 mg (0.5 mmol) of benzyl alcohol, and 4.0 mg (0.0075 mmol, 1.5 mol%) of Complex 1 were added and stirred for 20 hours under reflux conditions. After 10 mL of dichloromethane was added to make it uniform, the reaction solution was analyzed by GC. As shown in Table 4, it was confirmed that the corresponding benzaldehyde was produced at a conversion rate of 92% and a yield of 92%.

[実施例18〜20]
<第一級アルコールの脱水素的酸化反応によるアルデヒドの合成>
基質として表4に示した各種第一級アルコール(0.5mmol)を用いた以外は、実施例17と同条件で反応を実施した。GCによる分析結果を表4にまとめて示した。
[Examples 18 to 20]
<Synthesis of aldehydes by dehydrogenative oxidation of primary alcohols>
The reaction was carried out under the same conditions as in Example 17 except that various primary alcohols (0.5 mmol) shown in Table 4 were used as the substrate. The results of GC analysis are summarized in Table 4.

[実施例21]
<4−(トリフルオロメチル)ベンジルアルコールの脱水素的酸化反応による4−(トリ フルオロメチル)ベンズアルデヒドの合成>
50mLのナスフラスコに脱水ヘプタン10mL、4−(トリフルオロメチル)ベンジルアルコール88.5mg(0.5mmol)、および錯体1を7.9mg(0.015mmol、3.0mol%)加え、還流条件下で20時間撹拌した。ジクロロメタン10mLを加えて均一にした後、反応液をGCにて分析したところ、表4に示すように転化率89%、収率88%で対応する4−(トリフルオロメチル)ベンズアルデヒドが生成することを確認した。
[Example 21]
<Synthesis of 4- (trifluoromethyl) benzaldehyde by dehydrogenative oxidation of 4- (trifluoromethyl) benzyl alcohol>
To a 50 mL eggplant flask, 10 mL of dehydrated heptane, 88.5 mg (0.5 mmol) of 4- (trifluoromethyl) benzyl alcohol, and 7.9 mg (0.015 mmol, 3.0 mol%) of Complex 1 were added, and the mixture was refluxed. Stir for 20 hours. After adding 10 mL of dichloromethane and homogenizing it, the reaction solution was analyzed by GC. As shown in Table 4, the corresponding 4- (trifluoromethyl) benzaldehyde was produced at a conversion rate of 89% and a yield of 88%. It was confirmed.

[実施例22]
<シクロヘキサンメタノールの脱水素的酸化反応によるシクロヘキサンカルボキシアルデヒドの合成>
50mLのナスフラスコに脱水トルエン10mL、シクロヘキサンメタノール56.2mg(0.5mmol)、および錯体1を6.5mg(0.012mmol、2.5mol%)加え、還流条件下で20時間撹拌した。トルエン10mLを加えて均一にした後、反応液をGCにて分析したところ、表4に示すように転化率82%、収率81%で対応するシクロヘキサンカルボキシアルデヒドが生成することを確認した。
[Example 22]
<Synthesis of cyclohexanecarboxaldehyde by dehydrogenative oxidation of cyclohexanemethanol>
To a 50 mL eggplant flask, 10 mL of dehydrated toluene, 56.2 mg (0.5 mmol) of cyclohexanemethanol, and 6.5 mg (0.012 mmol, 2.5 mol%) of Complex 1 were added and stirred for 20 hours under reflux conditions. After adding 10 mL of toluene and homogenizing it, the reaction solution was analyzed by GC. As shown in Table 4, it was confirmed that the corresponding cyclohexanecarboxaldehyde was produced at a conversion rate of 82% and a yield of 81%.

[実施例23]
<1−オクタノールの脱水素的酸化反応によるn−オクタナールの合成>
50mLのナスフラスコに脱水トルエン10mL、1−オクタノール65.2mg(0.5mmol)、および錯体1を13.2mg(0.025mmol、5.0mol%)加え、還流条件下で20時間撹拌した。トルエン10mLを加えて均一にした後、反応液をGCにて分析したところ、表4に示すように転化率89%、収率87%で対応するn−オクタナールが生成することを確認した。
[Example 23]
<Synthesis of n-octanal by dehydrogenative oxidation of 1-octanol>
10 mL of dehydrated toluene, 65.2 mg (0.5 mmol) of 1-octanol and 13.2 mg (0.025 mmol, 5.0 mol%) of Complex 1 were added to a 50 mL eggplant flask, and the mixture was stirred under reflux conditions for 20 hours. After adding 10 mL of toluene to make it uniform, the reaction solution was analyzed by GC. As shown in Table 4, it was confirmed that the corresponding n-octanal was produced at a conversion rate of 89% and a yield of 87%.

[実施例24]
<ベンジルアルコールの脱水素的酸化反応によるベンズアルデヒドの合成>
500mLのナスフラスコに脱水トルエン270mL、ベンジルアルコール8.648g(80mmol)、および錯体1を0.85mg(0.0016mmol、0.002mol%)加え、還流条件下で48時間撹拌した。トルエンを加えて均一とした後、反応液をGCにて分析したところ、収率95%で対応するベンズアルデヒドが生成することを確認した。この反応では高い触媒回転数(TON=47,500)を示したことから、本発明の有用性が示された。
[Example 24]
<Synthesis of benzaldehyde by dehydrogenative oxidation of benzyl alcohol>
To a 500 mL eggplant flask, 270 mL of dehydrated toluene, 8.648 g (80 mmol) of benzyl alcohol, and 0.85 mg (0.0016 mmol, 0.002 mol%) of Complex 1 were added and stirred for 48 hours under reflux conditions. After adding toluene to make it uniform, the reaction solution was analyzed by GC, and it was confirmed that the corresponding benzaldehyde was produced at a yield of 95%. Since this reaction showed a high catalyst rotation speed (TON = 47,500), the usefulness of the present invention was shown.

[実施例25]
<ラセミ体1−フェニルエタノールの脱水素的酸化反応によるアセトフェノンの合成(無溶媒条件下)>
50mLの2つ口ナスフラスコにラセミ体1−フェニルエタノール610.4mg(5.0mmol)、および錯体1を79.7mg(0.15mmol、3.0mol%)加え、60℃で20時間撹拌した。ジクロロメタン100mLを加えて均一にした後、反応液をGCにて分析したところ、表5に示すように転化率95%、収率93%で対応するアセトフェノンが生成することを確認した。
[Example 25]
<Synthesis of acetophenone by dehydrogenative oxidation of racemic 1-phenylethanol (under solvent-free conditions)>
In a 50 mL two-necked eggplant flask, 610.4 mg (5.0 mmol) of racemic 1-phenylethanol and 79.7 mg (0.15 mmol, 3.0 mol%) of Complex 1 were added and stirred at 60 ° C. for 20 hours. After adding 100 mL of dichloromethane and homogenizing it, the reaction solution was analyzed by GC. As shown in Table 5, it was confirmed that the corresponding acetophenone was produced at a conversion rate of 95% and a yield of 93%.

[実施例26〜28]
<アルコールの脱水素的酸化反応によるアルデヒドの合成(無溶媒条件下)>
基質として表5に示した各種アルコール(5.0mmol)を用い、反応温度を90℃とした以外は、実施例25と同条件で反応を実施した。GCによる分析結果を表5にまとめて示した。
[Examples 26 to 28]
<Synthesis of aldehydes by dehydrogenative oxidation of alcohol (under solvent-free conditions)>
The reaction was carried out under the same conditions as in Example 25 except that various alcohols (5.0 mmol) shown in Table 5 were used as substrates and the reaction temperature was 90 ° C. The results of GC analysis are summarized in Table 5.

[比較例4]
<ラセミ体1−フェニルエタノールの脱水素的酸化反応によるアセトフェノンの合成(無溶媒条件下)>
触媒として錯体A(0.15mmol)を用いた以外は、実施例25と同条件で反応を実施した。GCによる分析の結果、表5に示すように転化率は93%であったが、アセトフェノンの収率は5%であった。実施例25と比較すると、収率が明らかに低値を示していることから、本発明の有用性が示された。
[Comparative Example 4]
<Synthesis of acetophenone by dehydrogenative oxidation of racemic 1-phenylethanol (under solvent-free conditions)>
The reaction was carried out under the same conditions as in Example 25 except that Complex A (0.15 mmol) was used as the catalyst. As a result of GC analysis, the conversion rate was 93% as shown in Table 5, but the acetophenone yield was 5%. Compared with Example 25, the yield was clearly low, indicating the usefulness of the present invention.

[実施例29]
<エタノールの脱水素的酸化反応を経由する酢酸の合成>
10mLの試験管にエタノール460.7mg(10mmol)、水360.4mg(20mmol)、および錯体1を159.7mg(0.3mmol、3.0mol%)加え、還流条件下で20時間撹拌した。反応液をNMRにて分析したところ、酢酸が収率75%で生成することを確認した。また、発生したガスを分析したところ、水素が収率84%で生成することを確認した。バイオマス資源から発酵により得られるエタノールを原料に用い、有機工業化学において重要な酢酸と、クリーンエネルギーとして有用な水素を同時に得られることから、本発明の有用性が示された。
[Example 29]
<Synthesis of acetic acid via dehydrogenative oxidation of ethanol>
Ethanol (460.7 mg, 10 mmol), water (360.4 mg, 20 mmol), and Complex 1 (159.7 mg, 0.3 mmol, 3.0 mol%) were added to a 10 mL test tube, and the mixture was stirred under reflux conditions for 20 hours. When the reaction solution was analyzed by NMR, it was confirmed that acetic acid was produced in a yield of 75%. Further, when the generated gas was analyzed, it was confirmed that hydrogen was produced with a yield of 84%. The usefulness of the present invention was shown because acetic acid important in organic industrial chemistry and hydrogen useful as clean energy can be obtained simultaneously using ethanol obtained by fermentation from biomass resources as a raw material.

[実施例30]
<2−プロパノールの脱水素的酸化反応による水素の製造>
10mLの試験管に2−プロパノール901.6mg(15mmol)、および錯体1を159.5mg(0.3mmol、2.0mol%)加え、還流条件下で4時間撹拌した。反応液をGCにて分析したところ、アセトンが収率98%で生成することを確認した。また、発生したガスを分析したところ、水素が収率91%で生成することを確認した。
[Example 30]
<Production of hydrogen by dehydrogenative oxidation of 2-propanol>
To a 10 mL test tube, 901.6 mg (15 mmol) of 2-propanol and 159.5 mg (0.3 mmol, 2.0 mol%) of Complex 1 were added, and the mixture was stirred for 4 hours under reflux conditions. When the reaction liquid was analyzed by GC, it was confirmed that acetone was produced in a yield of 98%. Further, when the generated gas was analyzed, it was confirmed that hydrogen was produced with a yield of 91%.

[実施例31]
<アセトンの水素化>
不活性ガス雰囲気下、30mLの2ツ口ナスフラスコに錯体1を79.6mg(0.15mmol,0.5mol%)とり、水素置換をした後、アセトン1.7418g(30.0mmol)を加え、水素で満たした風船をつけ40℃で4時間撹拌した。反応液をGCにて分析したところ、2−プロパノールが収率95%で生成することを確認した。
[Example 31]
<Hydrogenation of acetone>
Under an inert gas atmosphere, 99.6 mg (0.15 mmol, 0.5 mol%) of Complex 1 was taken in a 30 mL two-necked eggplant flask, and after hydrogen substitution, 1.7418 g (30.0 mmol) of acetone was added, A balloon filled with hydrogen was put on and stirred at 40 ° C. for 4 hours. When the reaction liquid was analyzed by GC, it was confirmed that 2-propanol was produced with a yield of 95%.

[実施例32]
<メタノールの脱水素的酸化反応による水素の製造>
10mLの試験管にメタノール320.4mg(10mmol)、水180.2mg(10mmol)、および錯体1を159.5mg(0.3mmol、3.0mol%)加え、pHメーターを用いてpH>13となるまで水酸化ナトリウム水溶液を添加した後、還流条件下で20時間撹拌した。発生したガスを分析したところ、水素が収率99%で生成することを確認した。
[Example 32]
<Production of hydrogen by dehydrogenative oxidation of methanol>
Add 150.4 mg (10 mmol) of methanol, 150.2 mg (10 mmol) of water, and 159.5 mg (0.3 mmol, 3.0 mol%) of Complex 1 to a 10 mL test tube, and reach pH> 13 using a pH meter. After adding an aqueous sodium hydroxide solution, the mixture was stirred for 20 hours under reflux conditions. When the generated gas was analyzed, it was confirmed that hydrogen was produced in a yield of 99%.

[実施例33]
<ギ酸の脱水素的酸化反応による水素の製造>
10mLの試験管にギ酸460.6mg(10mmol)、および錯体1を2.6mg(0.005mmol、0.05mol%)加え、60℃で21分間撹拌した。発生したガスを分析したところ、水素が収率94%で生成することを確認した。少ない触媒量で短時間にギ酸を分解し、水素を製造できることから、本発明の有用性が示された。
[Example 33]
<Production of hydrogen by dehydrogenative oxidation of formic acid>
460.6 mg (10 mmol) of formic acid and 2.6 mg (0.005 mmol, 0.05 mol%) of complex 1 were added to a 10 mL test tube, and the mixture was stirred at 60 ° C. for 21 minutes. When the generated gas was analyzed, it was confirmed that hydrogen was produced with a yield of 94%. The usefulness of the present invention was shown because hydrogen can be produced by decomposing formic acid in a short time with a small amount of catalyst.

[製造例7]
<機能性ビピリドナート配位子を有するアニオン性イリジウム錯体の合成>
中性イリジウム錯体1(1.0630g、2.0mmol)をフラスコに取り、1.0 M水酸化ナトリウム水溶液(3.0mL、3.0mmol)を加えて室温で反応させると、黒緑色均一溶液となった。その後、溶液をマイクロチューブに移し、空気下で開放した状態で静置して結晶化させることにより、対イオンとしてナトリウムイオンを有する新規アニオン性錯体3を収率72%(796.5mg、1.4mmol)で得た。
[Production Example 7]
<Synthesis of anionic iridium complex having functional bipyridonate ligand>
When neutral iridium complex 1 (1.0630 g, 2.0 mmol) is taken in a flask and 1.0 M aqueous sodium hydroxide solution (3.0 mL, 3.0 mmol) is added and reacted at room temperature, a black-green uniform solution is obtained. became. Thereafter, the solution was transferred to a microtube, and left standing in the open state for crystallization to give a novel anionic complex 3 having a sodium ion as a counter ion in a yield of 72% (796.5 mg, 1.. 4 mmol).

1H NMR (500 MHz, D2O) δ 7.46 (t, J = 8.0 Hz, 2H), 7.03 (d, J = 6.5 Hz, 2H), 6.42 (d, J = 7.5 Hz, 2H), 1.49 (s, 15H). 13C{1H} NMR (125.8 MHz, D2O) δ 170.6, 156.9, 139.3, 116.8, 107.4, 85.6, 9.39. Anal. Calcd for C20H22O3N2NaIr・H2O: C, 42.02; H, 4.23; N, 4.90. Found: C, 42.07; H, 4.64; N, 4.93. 1 H NMR (500 MHz, D 2 O) δ 7.46 (t, J = 8.0 Hz, 2H), 7.03 (d, J = 6.5 Hz, 2H), 6.42 (d, J = 7.5 Hz, 2H), 1.49 ( 13 C { 1 H} NMR (125.8 MHz, D 2 O) δ 170.6, 156.9, 139.3, 116.8, 107.4, 85.6, 9.39. Anal.Calcd for C 20 H 22 O 3 N 2 NaIr ・ H 2 O: C, 42.02; H, 4.23; N, 4.90. Found: C, 42.07; H, 4.64; N, 4.93.

錯体3、およびジカチオン性錯体Aならびに中性イリジウム錯体1を触媒として用いた触媒反応を、以下検討した。
The catalytic reaction using the complex 3, the dicationic complex A and the neutral iridium complex 1 as catalysts was examined below.

[実施例34]
<メタノールと水の混合物からの水素発生反応>
前述の錯体A、1および3を触媒として用いて、メタノールと水の混合物からの脱水素化反応を行った。反応は、メタノールと水を原料に用い、触媒の存在下で加熱還流を行い、発生した気体をガスビュレットに捕集して定量した。なお、気体の容積のうち75%を水素とみなし、水素の容積とその収率を計算して表に掲載した。最初に、等量のメタノール(20mmol)と水(20mmol)を原料とし、触媒A、1および3(0.5mol%)の存在下で20時間加熱還流することによって各触媒の活性を比較した(entry 1−3)。ジカチオン性の触媒Aや中性の触媒1を用いた場合は、ほとんど反応が進行せず、ごく微量の水素の発生しか観測されなかったが(entry 1と2)、アニオン性の触媒3を用いることによって反応が進行するようになり、120mL(収率8%)の水素を得ることができた(entry 3)。次に、メタノールに対する水の当量を変化させてみると(entry 3−5)、水を4当量用いたときに水素の発生量が最大となった(150mL、収率10%、entry 4)。続いて、本触媒系では反応の進行に伴って二酸化炭素が生じるため、系が徐々に酸性化し、触媒分子がアニオン性錯体3から中性錯体1へ、さらにはジカチオン性錯体Aへと転化している可能性が考えられるため、これを防ぐために添加物として塩基(水酸化ナトリウム)を加えることを検討した(entry 6−9)。これによって水素の収率は大幅に向上し、0.5mol%の水酸化ナトリウムを添加したときに最適条件となり、1223mL(収率84%)の水素を得ることができた(entry 7)。
[Example 34]
<Hydrogen generation reaction from a mixture of methanol and water>
A dehydrogenation reaction from a mixture of methanol and water was performed using the aforementioned complexes A, 1 and 3 as catalysts. In the reaction, methanol and water were used as raw materials, heated and refluxed in the presence of a catalyst, and the generated gas was collected in a gas burette and quantified. Note that 75% of the gas volume was regarded as hydrogen, and the hydrogen volume and its yield were calculated and listed in the table. First, the activity of each catalyst was compared by heating and refluxing for 20 hours in the presence of Catalysts A, 1 and 3 (0.5 mol%) using equal amounts of methanol (20 mmol) and water (20 mmol) as raw materials ( entry 1-3). When dicationic catalyst A or neutral catalyst 1 was used, the reaction hardly proceeded and only a very small amount of hydrogen was observed (entries 1 and 2), but anionic catalyst 3 was used. As a result, the reaction proceeded, and 120 mL (yield 8%) of hydrogen could be obtained (entry 3). Next, when the equivalent of water with respect to methanol was changed (entry 3-5), the amount of generated hydrogen was maximized when 4 equivalents of water were used (150 mL, yield 10%, entry 4). Subsequently, carbon dioxide is generated as the reaction proceeds in this catalyst system, so that the system is gradually acidified, and the catalyst molecules are converted from the anionic complex 3 to the neutral complex 1 and further to the dicationic complex A. In order to prevent this, it was examined to add a base (sodium hydroxide) as an additive (entry 6-9). As a result, the yield of hydrogen was greatly improved, and optimum conditions were obtained when 0.5 mol% of sodium hydroxide was added, and 1223 mL (yield 84%) of hydrogen could be obtained (entry 7).

[実施例35]
<メタノールと水からの水素発生法(逐次添加方式)>
[Example 35]
<Method of generating hydrogen from methanol and water (sequential addition method)>

メタノールと水の混合物から連続的に水素を発生する触媒系の構築を検討した。
最初に、メタノール(20mmol)と水(80mmol)の混合物に対し触媒3(0.1mol%)と水酸化ナトリウム(0.5mol%)を加えた。この時点での系のpHは11.2であった。この混合物を還流条件下で20時間反応させると、607.5mL(収率41%)の水素が発生した。ここで、消費量に相当するメタノール(8.2mmol)と水(8.2mmol)を反応系に加え、さらに水酸化ナトリウム(0.5mol%)を再度加えて系内のpHを11.3に調整した後、還流条件下で20時間反応させると、611.3mL(収率41%)の水素が発生した。同様の操作を再び繰り返すことで、562.5mL(収率38%)の水素を得ることができた。
このような連続的な水素発生法によって、合計1781.3mL(71.5mmol)の水素を得ることができ、触媒回転数としては1191回が達成された。触媒に対し安全で取り扱いやすい原料(メタノールと水の混合物)ならびに水酸化ナトリウムを連続的に加えて加熱する手順によって、水素ガスを連続的に発生できる新しいシステムへと発展させることが可能である。
The construction of a catalyst system that continuously generates hydrogen from a mixture of methanol and water was investigated.
First, catalyst 3 (0.1 mol%) and sodium hydroxide (0.5 mol%) were added to a mixture of methanol (20 mmol) and water (80 mmol). The pH of the system at this point was 11.2. When this mixture was reacted under reflux conditions for 20 hours, 607.5 mL (41% yield) of hydrogen was generated. Here, methanol (8.2 mmol) corresponding to consumption and water (8.2 mmol) were added to the reaction system, and sodium hydroxide (0.5 mol%) was added again to bring the pH in the system to 11.3. After the adjustment, when reacted for 20 hours under reflux conditions, 611.3 mL (41% yield) of hydrogen was generated. By repeating the same operation again, 562.5 mL (yield 38%) of hydrogen could be obtained.
A total of 1781.3 mL (71.5 mmol) of hydrogen could be obtained by such a continuous hydrogen generation method, and 1191 times as the catalyst rotation speed was achieved. It is possible to develop a new system capable of continuously generating hydrogen gas by using a safe and easy-to-handle raw material for the catalyst (a mixture of methanol and water) and a procedure in which sodium hydroxide is continuously added and heated.

[実施例36]
<メタノールと水からの水素発生法(連続添加方式 その1)>
[Example 36]
<Method for generating hydrogen from methanol and water (continuous addition method 1)>

触媒的な水素発生に伴って消費するメタノールと水を補うため、シリンジポンプを用いて一定のペースで添加する実験を行った。
最初に、メタノール(20mmol)と水(80mmol)の混合物に対し触媒3(0.1mol%)と水酸化ナトリウム(0.5mol%)を加えた。この時点での系のpHは11.2であった。反応系を加熱して還流を開始するとともに、シリンジポンプを用いて[メタノール(0.6mmol/h)、水(0.6mmol/h)、水酸 化ナトリウム(0.001mmol/h)]を予めこれらを混合した溶液として加えた。還流を継続することで、ほぼ一定のペースでガスの発生が観測され、50時間後には2385mLの水素(99.61mmol)を得ることができ、触媒回転数としては1660回が達成された。
このように、消費される原料(メタノールおよび水)ならびに水酸化ナトリウムを消費速度に相当する量補いながら連続的に反応させることにより、ほぼ一定のペースで水素ガスを長時間(50時間)にわたって持続的に発生させることができる。
In order to make up for methanol and water consumed with catalytic hydrogen generation, an experiment was conducted in which a syringe pump was added at a constant pace.
First, catalyst 3 (0.1 mol%) and sodium hydroxide (0.5 mol%) were added to a mixture of methanol (20 mmol) and water (80 mmol). The pH of the system at this point was 11.2. The reaction system is heated to start refluxing, and [methanol (0.6 mmol / h), water (0.6 mmol / h), sodium hydroxide (0.001 mmol / h)] is previously added using a syringe pump. These were added as a mixed solution. By continuing the reflux, gas generation was observed at a substantially constant pace. After 50 hours, 2385 mL of hydrogen (99.61 mmol) could be obtained, and a catalyst rotation speed of 1660 was achieved.
In this way, by continuously reacting the consumed raw materials (methanol and water) and sodium hydroxide in an amount corresponding to the consumption rate, hydrogen gas is maintained at a substantially constant pace for a long time (50 hours). Can be generated automatically.

[実施例37]
<メタノールと水からの水素発生法(連続添加方式 その2)>
[Example 37]
<Method for generating hydrogen from methanol and water (continuous addition method 2)>

触媒的な水素発生に伴って消費するメタノールと水を補うため、同様にシリンジポンプを用いて一定のペースで添加する実験を150時間に延長して行った。
最初に、メタノール(20mmol)と水(80mmol)の混合物に対し触媒3(0.1mol%)と水酸化ナトリウム(0.5mol%)を加えた。この時点での系のpHは11.2であった。反応系を加熱して還流を開始するとともに、シリンジポンプを用いて[メタノール(0.6mmol/h)、水(0.6mmol/h)、水酸化ナトリウム(0.001mmol/h)]を予めこれらを混合した溶液として加えた。還流を継続することで、ほぼ一定のペースでガスの発生が観測され、150時間後には4946mLの水素(210.2mmol)を得ることができ、触媒回転数としては3502回が達成された。
このように、消費される原料(メタノールおよび水)ならびに水酸化ナトリウムを消費速度に相当する量補いながら連続的に反応させることにより、ほぼ一定のペースで水素ガスを長時間(150時間)にわたって持続的に発生させることができる。
In order to make up for methanol and water consumed with catalytic hydrogen generation, an experiment in which addition was performed at a constant pace using a syringe pump was similarly extended to 150 hours.
First, catalyst 3 (0.1 mol%) and sodium hydroxide (0.5 mol%) were added to a mixture of methanol (20 mmol) and water (80 mmol). The pH of the system at this point was 11.2. The reaction system is heated to start refluxing, and [methanol (0.6 mmol / h), water (0.6 mmol / h), sodium hydroxide (0.001 mmol / h)] is previously added using a syringe pump. As a mixed solution. By continuing the reflux, gas generation was observed at a substantially constant pace. After 150 hours, 4946 mL of hydrogen (210.2 mmol) could be obtained, and the catalyst rotation speed was 3502 times.
In this way, by continuously reacting the consumed raw materials (methanol and water) and sodium hydroxide in an amount corresponding to the consumption rate, hydrogen gas is maintained at a substantially constant pace for a long time (150 hours). Can be generated automatically.

[実施例38]
<低級アルコールと水を原料とする脱水素的カルボン酸合成反応>
低級アルコール(エタノール、1−プロパノール、1−ブタノール)と水との混合物を原料に用いて、水素を得ると同時に対応する炭素数のカルボン酸を得る触媒反応について検討した。まず、エタノール(10mmol)と水(20mmol)の混合物に対し、アニオン性触媒3(3.0mol%)と水酸化ナトリウム(3.0mol%)を加え、還流条件下で20時間反応させると、酢酸が収率85%で生成するとともに、水素が445mL(収率92%)得られた(entry 1)。また、1−プロパノールと水の混合物を原料とする同様の反応を40時間かけて行うと、プロピオン酸が収率68%で得られるとともに、水素が411mL(収率85%)発生した。なお、この反応では、少量(18%)のエステル生成物(プロピオン酸プロピル)も観測された(entry 2)。さらに、1−ブタノールと水の混合物を原料とする反応によっても同様のカルボン酸生成反応が進行し、水素の発生を伴って酪酸を得ることができた(entry 3と4)。
[Example 38]
<Dehydrogenative carboxylic acid synthesis reaction using lower alcohol and water as raw materials>
Using a mixture of a lower alcohol (ethanol, 1-propanol, 1-butanol) and water as a raw material, a catalytic reaction for obtaining hydrogen and at the same time obtaining a carboxylic acid having a corresponding carbon number was studied. First, an anionic catalyst 3 (3.0 mol%) and sodium hydroxide (3.0 mol%) were added to a mixture of ethanol (10 mmol) and water (20 mmol) and reacted for 20 hours under reflux conditions. Was produced in a yield of 85%, and 445 mL (yield 92%) of hydrogen was obtained (entry 1). Further, when a similar reaction using a mixture of 1-propanol and water as a raw material was carried out for 40 hours, propionic acid was obtained in a yield of 68% and 411 mL (yield: 85%) of hydrogen was generated. In this reaction, a small amount (18%) of an ester product (propyl propionate) was also observed (entry 2). Furthermore, a similar carboxylic acid production reaction proceeded by a reaction using a mixture of 1-butanol and water as raw materials, and butyric acid could be obtained with generation of hydrogen (entries 3 and 4).

Claims (16)

式(1)
式中、
Arは、1,2−ジメチルシクロペンタジエニル基、1,3−ジメチルシクロペンタジエニル基、1,2,3−トリメチルシクロペンタジエニル基、1,2,4−トリメチルシクロペンタジエニル基、1,2,3,4−テトラメチルシクロペンタジエニル基または1,2,3,4,5−ペンタメチルシクロペンタジエニル基であり、
Mは、イリジウムであり、
〜Rは、互いに独立して、水素原子、ニトロ基、シアノ基、ヒドロキシ基、カルボキシル基、1もしくは2以上の水素原子が置換されていてもよい、C1〜10のアルキル基、C3〜15のシクロアルキル基、C6〜15のアリール基、C1〜10のヘテロシクリル基、C1〜10のアルコキシ基、C1〜10のエステル基、C1〜10のフルオロアルキル基、C1〜10のスルホニル基、C1〜10のアミノ基またはC1〜10のアミド基であり、
とRは互いに連結して、 −CH=CH− を形成してもよく
は、アコ配位子である、
で表される有機金属化合物。
Formula (1)
Where
Ar is 1,2-dimethylcyclopentadienyl group, 1,3-dimethylcyclopentadienyl group, 1,2,3-trimethylcyclopentadienyl group, 1,2,4-trimethylcyclopentadienyl group 1,2,3,4-tetramethylcyclopentadienyl group or 1,2,3,4,5-pentamethylcyclopentadienyl group ,
M is iridium,
R 1 to R 6 are, independently of one another, a hydrogen atom, nitro group, cyano group, hydroxy group, mosquitoes carboxyl group, one or more hydrogen atoms may be substituted, an alkyl group of C1~10 , a cycloalkyl group of C3-15, aryl group C6~15, heterocyclyl group C1-10, alkoxy groups of C 1 to 10, ester groups C1-10, fluoroalkyl group C1-10, C 1 to 10 A sulfonyl group, a C1-10 amino group or a C1-10 amide group,
R 3 and R 4 may be linked together to form —CH═CH— ,
L is an acoligand,
An organometallic compound represented by
請求項1に記載の有機金属化合物を含む脱水素用触媒。   A dehydrogenation catalyst comprising the organometallic compound according to claim 1. 請求項1に記載の有機金属化合物を含む触媒を用いる、アルコール、ギ酸またはギ酸塩の脱水素方法。   A method for dehydrogenating alcohol, formic acid or formate using a catalyst comprising the organometallic compound according to claim 1. 請求項3に記載の脱水素方法を用いて、アルコールの脱水素により対応するカルボニル化合物を生成させることを特徴とする、カルボニル化合物の製造方法。   A method for producing a carbonyl compound, comprising using the dehydrogenation method according to claim 3 to produce a corresponding carbonyl compound by dehydrogenation of an alcohol. カルボニル化合物が、ケトンまたはアルデヒドである請求項4に記載の方法。   The method according to claim 4, wherein the carbonyl compound is a ketone or an aldehyde. アルコールが第一級アルコールであり、カルボニル化合物がカルボン酸であり、水を含む溶媒を用いる、請求項4に記載の方法。   The method according to claim 4, wherein the alcohol is a primary alcohol, the carbonyl compound is a carboxylic acid, and a solvent containing water is used. 請求項3に記載の脱水素方法を用いて、アルコール、アルコールと水とを含む混合物、ギ酸またはギ酸塩の脱水素により水素を生成させることを特徴とする、水素の製造方法。   A method for producing hydrogen, comprising using the dehydrogenation method according to claim 3 to produce hydrogen by dehydrogenation of alcohol, a mixture containing alcohol and water, formic acid or formate. 式(2)
式中、
Arは、1,2−ジメチルシクロペンタジエニル基、1,3−ジメチルシクロペンタジエニル基、1,2,3−トリメチルシクロペンタジエニル基、1,2,4−トリメチルシクロペンタジエニル基、1,2,3,4−テトラメチルシクロペンタジエニル基または1,2,3,4,5−ペンタメチルシクロペンタジエニル基であり、
Mは、イリジウムであり、
〜Rは、互いに独立して、水素原子、ニトロ基、シアノ基、ヒドロキシ基、カルボキシル基、1もしくは2以上の水素原子が置換されていてもよい、C1〜10のアルキル基、C3〜15のシクロアルキル基、C6〜15のアリール基、C1〜10のヘテロシクリル基、C1〜10のアルコキシ基、C1〜10のエステル基、C1〜10のフルオロアルキル基、C1〜10のスルホニル基、C1〜10のアミノ基またはC1〜10のアミド基であり、
とRは互いに連結して、 −CH=CH− を形成してもよく
は、Na、Li、KまたはCsである、
で表される有機金属化合物。
Formula (2)
Where
Ar is 1,2-dimethylcyclopentadienyl group, 1,3-dimethylcyclopentadienyl group, 1,2,3-trimethylcyclopentadienyl group, 1,2,4-trimethylcyclopentadienyl group 1,2,3,4-tetramethylcyclopentadienyl group or 1,2,3,4,5-pentamethylcyclopentadienyl group ,
M is iridium,
R 1 to R 6 are, independently of one another, a hydrogen atom, nitro group, cyano group, hydroxy group, mosquitoes carboxyl group, one or more hydrogen atoms may be substituted, an alkyl group of C1~10 , a cycloalkyl group of C3-15, aryl group C6~15, heterocyclyl group C1-10, alkoxy groups of C 1 to 10, ester groups C1-10, fluoroalkyl group C1-10, C 1 to 10 A sulfonyl group, a C1-10 amino group or a C1-10 amide group ,
R 3 and R 4 may be linked together to form —CH═CH— ,
Z is Na, Li, K or Cs.
An organometallic compound represented by
請求項8に記載の有機金属化合物を含む触媒を用いる、アルコール、ギ酸またはギ酸塩の脱水素方法。   A method for dehydrogenating an alcohol, formic acid or formate using a catalyst comprising the organometallic compound according to claim 8. 請求項8に記載の有機金属化合物を含む脱水素用触媒。   A dehydrogenation catalyst comprising the organometallic compound according to claim 8. 請求項9に記載の脱水素方法を用いて、アルコールの脱水素により対応するカルボニル化合物を生成させることを特徴とする、カルボニル化合物の製造方法。   A method for producing a carbonyl compound, comprising using the dehydrogenation method according to claim 9 to produce a corresponding carbonyl compound by dehydrogenation of an alcohol. カルボニル化合物が、ケトンまたはアルデヒドである請求項11に記載の方法。   The method according to claim 11, wherein the carbonyl compound is a ketone or an aldehyde. アルコールが第一級アルコールであり、カルボニル化合物がカルボン酸であり、水を含む溶媒を用いる、請求項11に記載の方法。   The method according to claim 11, wherein the alcohol is a primary alcohol, the carbonyl compound is a carboxylic acid, and a solvent containing water is used. 請求項9に記載の脱水素方法を用いて、アルコール、アルコールと水とを含む混合物、ギ酸またはギ酸塩の脱水素により水素を生成させることを特徴とする、水素の製造方法。   A method for producing hydrogen, comprising using the dehydrogenation method according to claim 9 to dehydrogenate alcohol, a mixture containing alcohol and water, formic acid or formate. 連続的に水素を製造する方法であって、アルコールと水とを含む混合物にアルカリ化合物を加え、請求項1に記載の一般式(1)および/または請求項8に記載の一般式(2)で表される有機金属化合物の存在下、脱水素反応させ、脱水素の進行過程において該混合物および該アルカリ化合物を1または2回以上追加する、前記方法。   A method for continuously producing hydrogen, wherein an alkali compound is added to a mixture containing alcohol and water, and the general formula (1) according to claim 1 and / or the general formula (2) according to claim 8. The method, wherein the dehydrogenation reaction is carried out in the presence of the organometallic compound represented by the formula, and the mixture and the alkali compound are added one or more times during the course of dehydrogenation. 請求項15に記載の方法を用いる連続的に水素を製造するシステムであって、脱水素反応を行う反応槽、アルコールと水とを含む混合物とアルカリ化合物とを供給する供給部および製造した水素を回収する回収部を含む、前記システム。 A system for continuously producing hydrogen using the method according to claim 15, comprising a reaction tank for performing a dehydrogenation reaction, a supply unit for supplying a mixture containing an alcohol and water and an alkali compound, and the produced hydrogen. The system including a recovery unit for recovery.
JP2013033904A 2012-02-23 2013-02-22 Catalyst for dehydrogenation, carbonyl compound using the catalyst, and method for producing hydrogen Active JP6339763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013033904A JP6339763B2 (en) 2012-02-23 2013-02-22 Catalyst for dehydrogenation, carbonyl compound using the catalyst, and method for producing hydrogen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013509356A JPWO2013125020A1 (en) 2012-02-23 2012-02-23 Catalyst for dehydrogenation, carbonyl compound using the catalyst, and method for producing hydrogen
JP2013509356 2012-02-23
JP2013033904A JP6339763B2 (en) 2012-02-23 2013-02-22 Catalyst for dehydrogenation, carbonyl compound using the catalyst, and method for producing hydrogen

Publications (2)

Publication Number Publication Date
JP2015083544A JP2015083544A (en) 2015-04-30
JP6339763B2 true JP6339763B2 (en) 2018-06-06

Family

ID=53047377

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013509356A Pending JPWO2013125020A1 (en) 2012-02-23 2012-02-23 Catalyst for dehydrogenation, carbonyl compound using the catalyst, and method for producing hydrogen
JP2013033904A Active JP6339763B2 (en) 2012-02-23 2013-02-22 Catalyst for dehydrogenation, carbonyl compound using the catalyst, and method for producing hydrogen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013509356A Pending JPWO2013125020A1 (en) 2012-02-23 2012-02-23 Catalyst for dehydrogenation, carbonyl compound using the catalyst, and method for producing hydrogen

Country Status (1)

Country Link
JP (2) JPWO2013125020A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112409188B (en) * 2019-08-20 2023-05-05 南京理工大学 Method for synthesizing N-alkylamine
CN112409114A (en) * 2019-08-20 2021-02-26 南京理工大学 Method for synthesizing secondary alcohol
CN112844483A (en) * 2021-01-15 2021-05-28 云南电网有限责任公司电力科学研究院 Homogeneous catalyst applied to liquid hydrogen storage material and dehydrogenation and preparation method thereof
CN113105304B (en) * 2021-04-08 2022-03-29 上海橡实化学有限公司 Method for synthesizing unsaturated primary alcohol in aqueous phase
CN116212964B (en) * 2023-02-28 2024-09-10 中南大学 Iridium catalyst for hydrogen production from formic acid, and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4875576B2 (en) * 2007-09-25 2012-02-15 独立行政法人科学技術振興機構 Catalyst for formic acid decomposition, formic acid decomposition method, hydrogen production method, formic acid production and decomposition apparatus, hydrogen storage and generation method
JP2010083730A (en) * 2008-10-01 2010-04-15 Osaka Univ Method for producing at least either deuterium (d2) or hydrogen deuteride (hd) and catalyst for formic acid decomposition used therefor
WO2011108730A1 (en) * 2010-03-04 2011-09-09 国立大学法人大阪大学 Mononuclear metal complex, hydrogenation reduction catalyst, dehydrogenation catalyst, method for producing hydrogenation reduction product, method for producing hydrogen (h2), and method for producing dehydrogenation reaction product

Also Published As

Publication number Publication date
JP2015083544A (en) 2015-04-30
JPWO2013125020A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
US9856282B2 (en) Dehydrogenation catalyst, and carbonyl compound and hydrogen production method using said catalyst
Skouta et al. Gold-catalyzed reactions of C–H bonds
JP6339763B2 (en) Catalyst for dehydrogenation, carbonyl compound using the catalyst, and method for producing hydrogen
JP5674059B2 (en) Catalyst for hydrogen transfer reaction containing ruthenium complex and method for producing hydrogen transfer reactant
Liao et al. Palladium-catalyzed desulfitative oxidative coupling between arenesulfinic acid salts and allylic alcohols: a strategy for the selective construction of β-aryl ketones and aldehydes
Huang et al. Catalyst-free chemoselective conjugate addition and reduction of α, β-unsaturated carbonyl compounds via a controllable boration/protodeboronation cascade pathway
Pombeiro Advances in organometallic chemistry and catalysis: the silver/gold Jubilee International conference on organometallic chemistry celebratory book
Saini et al. Transition metal-catalyzed carboxylation of olefins with Carbon dioxide: a comprehensive review
Ramesh et al. A simple removable aliphatic nitrile template 2-cyano-2, 2-di-isobutyl acetic acid for remote meta-selective C–H functionalization
Liu et al. Hydrocarboxylation of alkynes with formic acid over multifunctional ligand modified Pd-catalyst with co-catalytic effect
Shi et al. Photo-induced decarboxylative hydroacylation of α-oxocarboxylic acids with terminal alkynes by radical addition–translocation–cyclization in water
Zong et al. Ruthenium carbonyl complexes supported by pyridine-alkoxide ligands: synthesis, structure and catalytic oxidation of secondary alcohols
Chen et al. Palladium-catalyzed oxidative coupling of arylboronic acid with isocyanide to form aromatic carboxylic acids
Jiang et al. Stereoselective synthesis of tetrasubstituted olefins via palladium-catalyzed three-component coupling of aryl iodides, internal alkynes, and arylboronic acids in supercritical carbon dioxide
CN111217860B (en) Metal complex catalyst and method for catalytic reduction of carboxylic acids
Kurahashi Ni-catalyzed C–C bond formation with α, β-unsaturated carbonyl compounds and alkynes
Lee et al. Enantioselective conjugate radical addition to α′-phenylsulfonyl enones
JP2006151947A (en) Method for producing linear compound by dimerization reaction of terminal olefin
Gomes et al. Addition of electrochemically prepared arylzinc species onto activated olefins via a cobalt catalysis
WO2008059960A1 (en) Method for producing quarter-pyridine derivative and intermediate of quarter-pyridine derivative
WO2008044702A1 (en) Process for production of azabicycloalkanol derivative
Collado et al. Sustainable homogeneous gold catalysis
Zhao et al. Photocatalytic carboxylation with CO2
JP5382667B2 (en) Production of cyclic compounds
Aboo Cyclometalated Rhodium Complexes for Selective Transfer Hydrogenation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170417

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170623

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170728

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20171122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180511

R150 Certificate of patent or registration of utility model

Ref document number: 6339763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250